Real-Time Distributed Architecture for Remote Acoustic Elderly Monitoring in Residential-Scale Ambient Assisted Living Scenarios
View/Open
Other authors
Publication date
2018-08Abstract
Ambient Assisted Living (AAL) has become a powerful alternative to improving the life quality of elderly and partially dependent people in their own living environments. In this regard, tele-care and remote surveillance AAL applications have emerged as a hot research topic in this domain. These services aim to infer the patients’ status by means of centralized architectures that collect data from a set of sensors deployed in their living environment. However, when the size of the scenario and number of patients to be monitored increase (e.g., residential areas, retirement homes), these systems typically struggle at processing all associated data and providing a reasonable output in real time. The purpose of this paper is to present a fog-inspired distributed architecture to collect, analyze and identify up to nine acoustic events that represent abnormal behavior or dangerous health conditions in large-scale scenarios. Specifically, the proposed platform collects data from a set of wireless acoustic sensors and runs an automatic two-stage audio event classification process to decide whether or not to trigger an alarm. Conducted experiments over a labeled dataset of 7116 s based on the priorities of the Fundació Ave Maria health experts have obtained an overall accuracy of 94.6%.
Document Type
Article
Published version
Language
English
Keywords
Acústica
Biosensors
Pages
22 p.
Publisher
MDPI
Is part of
Sensors. 2018, Vol. 18, No.8.
Grant agreement number
info:eu-repo/grantAgreement/SUR del DEC/SGR/2017-SGR-977
This item appears in the following Collection(s)
Rights
© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/