Inferring the votes in a new political landscape: the case of the 2019 Spanish Presidential elections
Ver/Abrir
Autor/a
Grimaldi, Didier
Diaz Cely, Javier
Arboleda, Hugo
Otros/as autores/as
Universitat Ramon Llull. La Salle
Universidad Icesi
Fecha de publicación
2020-08Resumen
The avalanche of personal and social data circulating in Online Social Networks over the past 10 years has attracted a great deal of interest from Scholars and Practitioners who seek to analyse not only their value, but also their limits. Predicting election results using Twitter data is an example of how data can directly influence the politic domain and it also serves an appealing research topic. This article aims to predict the results of the 2019 Spanish Presidential election and the voting share of each candidate, using Tweeter. The method combines sentiment analysis and volume information and compares the performance of five Machine learning algorithms. Several data scrutiny uncertainties arose that hindered the prediction of the outcome. Consequently, the method develops a political lexicon-based framework to measure the sentiments of online users. Indeed, an accurate understanding of the contextual content of the tweets posted was vital in this work. Our results correctly ranked the candidates and determined the winner by means of a better prediction of votes than official research institutes.
Tipo de documento
Artículo
Versión publicada
Lengua
English
Materias (CDU)
00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades
004 - Informática
32 - Política
62 - Ingeniería. Tecnología
65 - Gestión y organización. Administración y dirección de empresas. Publicidad. Relaciones públicas. Medios de comunicación de masas
Palabras clave
Aprenentatge automàtic
Espanya. Parlament -- Eleccions, 2019
Eleccions -- Xarxes socials
Dades massives
Páginas
19 p.
Publicado por
Springer
Publicado en
Journal of Big Data, 2020
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/