Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorSemino, Carlos
dc.contributor.authorBetriu, Nausika
dc.contributor.authorJarrosson-Moral, Claire
dc.date.accessioned2021-06-25T14:08:13Z
dc.date.accessioned2023-07-13T05:46:01Z
dc.date.available2021-06-25T14:08:13Z
dc.date.available2023-07-13T05:46:01Z
dc.date.issued2020-05
dc.identifier.urihttp://hdl.handle.net/20.500.14342/1119
dc.description.abstractHair follicle dermal papilla cells (HFDPC) are a specialized cell population located in the bulge of the hair follicle with unique characteristics such as aggregative behavior and the ability to induce new hair follicle formation. However, when expanded in conventional 2D monolayer culture, their hair inductive potency is rapidly lost. Different 3D culture techniques, including cell spheroid formation, have been described to restore, at least partially, their original phenotype, and therefore, their hair inductive ability once transplanted into a recipient skin. Moreover, hair follicle dermal papilla cells have been shown to differentiate into all mesenchymal lineages, but their differentiation potential has only been tested in 2D cultures. In the present work, we have cultured HFDPC in the 3D self-assembling peptide scaffold RAD16-I to test two different tissue engineering scenarios: restoration of HFDPC original phenotype after cell expansion and osteogenic and adipogenic differentiation. Experimental results showed that the 3D environment provided by RAD16-I allowed the restoration of HFDPC signature markers such as alkaline phosphatase, versican and corin. Moreover, RAD16-I supported, in the presence of chemical inductors, three-dimensional osteogenic and adipogenic differentiation. Altogether, this study suggests a potential 3D culture platform based on RAD16-I suitable for the culture, original phenotype recovery and differentiation of HFDPC.eng
dc.format.extent17 p.cat
dc.language.isoengcat
dc.publisherMDPIcat
dc.relation.ispartofBiomolecules. Vol.10, n.5 (2020), 684cat
dc.rightsAttribution 4.0 International
dc.rights© L'autor/a
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceRECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.otherEnginyeria de teixitscat
dc.subject.otherAutoassemblatgecat
dc.subject.otherPèptidscat
dc.subject.otherSelf-assembling peptidescat
dc.subject.otherHair follicle dermal papilla cellscat
dc.subject.otherOsteogenesiscat
dc.subject.otherAdipogenesiscat
dc.subject.otherTissue engineeringcat
dc.titleCulture and differentiation of human hair follicle dermal papilla cells in a soft 3D self-assembling peptide scaffoldcat
dc.typeinfo:eu-repo/semantics/articlecat
dc.typeinfo:eu-repo/semantics/publishedVersioncat
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapcat
dc.subject.udc577
dc.identifier.doihttps://doi.org/10.3390/biom10050684cat


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint