Dedifferentiated human articular chondrocytes redifferentiate to a cartilage-like tissue phenotype in a poly(ε-caprolactone)/self-assembling peptide composite scaffold
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2016-06Resum
Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D) woven microfiber poly (ε-caprolactone) (PCL) scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone) under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.
Tipus de document
Article
Versió publicada
Llengua
Anglès
Matèries (CDU)
57 - Biologia
Paraules clau
Biomimètica
Cartílags
Cartilage tissue engineering
3D cell culture
Human chondrocytes
Cell differentiation
Biomimetic materials
Pàgines
18 p.
Publicat per
MDPI
Publicat a
Materials. Vol.9, n.6 (2016), 472
Número de l'acord de la subvenció
info:eu-repo/grantAgreement/AO Foundation/CRP ACI/BIOCART
info:eu-repo/grantAgreement/AO Foundation/CRP ACI/OSTEOCHON3D
info:eu-repo/grantAgreement/NHI/AR50245
info:eu-repo/grantAgreement/NHI/AR48852
info:eu-repo/grantAgreement/NHI/AG15768
info:eu-repo/grantAgreement/NHI/AR48182
info:eu-repo/grantAgreement/NHI/AG46927
info:eu-repo/grantAgreement/SUR del DEC i FSE/FI/2015FI_B2 00109
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/