Generation of ultrasonic and audible sound waves for the automatic classification of packaging waste in reverse vending machines
Ver/Abrir
Este documento contiene ficheros embargados hasta el dia 01-08-2027
Autor/a
Otros/as autores/as
Fecha de publicación
2025-08-01ISSN
1879-2456
Resumen
Reverse vending machines (RVMs) are essential for promoting waste sorting at the source by offering incentives for recycling.However, current RVMs, which primarily rely on expensive sensors such as barcode scanners and computer vision systems, face limitations including unreadable barcodes, high computational demands, and sensitivity to environmental conditions like lighting. This paper presents an alternative, cost-effective approach using acoustic sensors for waste classification, aiming to reduce the
production cost of RVMs. The proposed method consists of emitting ultrasonic and audible sound waves towards the recyclable object and, by analyzing the variations in the acoustic field, an artificial intelligence system classifies the material. For doing so, the system uses the ultrasonic and audible impulse response of each item, measured using the exponential sine sweep (ESS) technique. To validate this approach, a proof-of-concept has been developed and tested in a controlled environment using a scaled replica of
a reverberation chamber, designed to achieve ideal acoustic conditions. Acoustic impulse responses have been captured using ESS emitted by an omnidirectional parametric loudspeaker (OPL), which generates both ultrasonic and audible sound waves via the parametric acoustic array (PAA) effect. This setup allows for simultaneous collection of ultrasonic and audible impulse responses for each recyclable item. The collected acoustic data has then been used to train classical machine learning and deep learning
models to classify the introduced material, specifically plastic, glass, cardboard, and metallic cans. Initial results show promising classification accuracy, demonstrating the potential of this acoustic technology for broader application in RVMs.
Tipo de documento
Artículo
Versión del documento
Versión aceptada
Lengua
Inglés
Materias (CDU)
004 - Informática
531/534 - Mecánica. Vibraciones. Acústica
62 - Ingeniería. Tecnología
Palabras clave
Páginas
10 p.
Publicado por
Elsevier
Publicado en
Waster Management, Vol. 2004,114934
Número del acuerdo de la subvención
info:eu-repo/grantAgreement/MCIN i EU/TED/TED2021-132376A-I00
info:eu-repo/grantAgreement/DREU/IdC Producte/2021 PROD 00104
info:eu-repo/grantAgreement/SUR del DEC/SGR/2021 SGR 01396
Citación recomendada
Esta citación se ha generado automáticamente.
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/


