Generation of ultrasonic and audible sound waves for the automatic classification of packaging waste in reverse vending machines
Visualitza/Obre
Aquest document conté fitxers embargats fins el dia 01-08-2027
Autor/a
Altres autors/es
Data de publicació
2025-08-01ISSN
1879-2456
Resum
Reverse vending machines (RVMs) are essential for promoting waste sorting at the source by offering incentives for recycling.However, current RVMs, which primarily rely on expensive sensors such as barcode scanners and computer vision systems, face limitations including unreadable barcodes, high computational demands, and sensitivity to environmental conditions like lighting. This paper presents an alternative, cost-effective approach using acoustic sensors for waste classification, aiming to reduce the
production cost of RVMs. The proposed method consists of emitting ultrasonic and audible sound waves towards the recyclable object and, by analyzing the variations in the acoustic field, an artificial intelligence system classifies the material. For doing so, the system uses the ultrasonic and audible impulse response of each item, measured using the exponential sine sweep (ESS) technique. To validate this approach, a proof-of-concept has been developed and tested in a controlled environment using a scaled replica of
a reverberation chamber, designed to achieve ideal acoustic conditions. Acoustic impulse responses have been captured using ESS emitted by an omnidirectional parametric loudspeaker (OPL), which generates both ultrasonic and audible sound waves via the parametric acoustic array (PAA) effect. This setup allows for simultaneous collection of ultrasonic and audible impulse responses for each recyclable item. The collected acoustic data has then been used to train classical machine learning and deep learning
models to classify the introduced material, specifically plastic, glass, cardboard, and metallic cans. Initial results show promising classification accuracy, demonstrating the potential of this acoustic technology for broader application in RVMs.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
Anglès
Matèries (CDU)
004 - Informàtica
531/534 - Mecànica. Vibracions. Acústica
62 - Enginyeria. Tecnologia
Paraules clau
Pàgines
10 p.
Publicat per
Elsevier
Publicat a
Waster Management, Vol. 2004,114934
Número de l'acord de la subvenció
info:eu-repo/grantAgreement/MCIN i EU/TED/TED2021-132376A-I00
info:eu-repo/grantAgreement/DREU/IdC Producte/2021 PROD 00104
info:eu-repo/grantAgreement/SUR del DEC/SGR/2021 SGR 01396
Citació recomanada
Aquesta citació s'ha generat automàticament.
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/


