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ABSTRACT
Government unding entities have placed data sharing at the centre 
o scientic policy. While there is widespread consensus that scien-
tic data sharing benets scientic progress, there are signicant 
barriers to its wider adoption. We seek a deeper understanding o 
how researchers rom diferent elds share their data and the 
barriers and acilitators o such sharing. We draw upon the notions 
o epistemic cultures and collective action theory to consider the 
enablers and deterrents that scientists encounter when contribut-
ing to the collective good o data sharing. Our study employs 
a mixed-methods design by combining survey data collected in 
2016 and 2018 with qualitative data rom two case studies sampled 
within two scientic communities: high-energy physics and mole-
cular biology. We describe how scientic communities with difer-
ent epistemic cultures can employ modularity, time delay, and 
boundary organisations to overcome barriers to data sharing.

KEYWORDS 
Open science; data 
commons; collective action 
theory; epistemic cultures

1. Introduction

In September 2011, researchers in the Oscillation Project with Emulsion-tRacking 
Apparatus (OPERA) red a 730-km beam o muon neutrinos rom European 
Organisation or Nuclear Research (CERN) in Geneva, Switzerland to the Gran Sasso 
National Laboratory in central Italy at what appeared to be a velocity aster than the 
speed o light. Puzzled by this result, researchers uploaded the data, with unprecedented 
granularity, to the open access archive arXiv.org. The data included all the necessary 
procedural descriptions to enable other scientists to search or an explanation o this 
surprising violation o a physical law. Subsequently, more than 200 papers were posted 
on arXiv.org attempting to explain the anomalous result. With ruthless external scrutiny, 
the mystery was resolved within a year – the OPERA team announced the identication 
o two potential sources o timing error that had corrupted the measurements (Royal 
Society 2012). More recently, the COVID-19 pandemic has exemplied the value o 
scientic data sharing, as data sharing was critical or understanding the methods o 
transmission and inection o the SARS-CoV-2 virus, as well as the symptoms. Within 
a short time, the extensive and timely sharing o COVID-19-related data inormed the 
rapid development o vaccines (e.g. EMBL-EBI COVID-19 data portal)1 (Fegan and 
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Cheah 2021). There are numerous additional examples o the value o data sharing 
among scientic communities, although researchers across disciplines engage with data 
sharing in vastly dierent ways (Tenopir et al. 2015).

The relevance o data sharing has become prominent in recent years, as scientic 
research is generating ever-increasing volumes o data (Hey 2009). Some disciplines have 
a long tradition o working with high volumes o data, particularly the big science 
research inrastructures (Weinberg 1961) in physics and astronomy (Atkins et al. 2003; 
Borgman 2012, 2015; Carillo and Papagni 2014), whereas other scientic elds have just 
recently grown more data-intensive (EIROorum IT working group 2013). These dis-
ciplines include computational social science (Lazer 2009), digital humanities (Kaplan 
2015), social media data (Plantin et al. 2018), citizen science research projects 
(Hochachka et al. 2012), and political science and public policy (Lee, Almirall, and 
Wareham 2016).

With the increased quantity o scientic data, perspectives on data sharing have 
evolved, leading to an increase in the role and status o data. Scientic data are now 
recognised as a scholarly object in their own right, with dedicated journals such as 
Nature-Scientic Data. With this shit in perspective, the increase in data-intensive 
methods has been labelled the ‘ourth paradigm’ in science (Atkins et al. 2003; Hey 
2009), augmenting ‘the existing paradigms o experimental, theoretical, and computa-
tional science’ (Edwards et al. 2011, 670). As the potential o scientic big data grows, so 
too does the expectation to share data and allow others to mine, aggregate, and recom-
bine them with other data or novel applications: ‘I the rewards o the data deluge are to 
be reaped, then researchers who produce those data must share them, and do so in such 
a way that the data are interpretable and reusable by others’ (Borgman 2012, 1059). Data 
reuse can be acilitated by making data Findable, Accessible, Interoperable, and Reusable 
(FAIR)2 (Wilkinson et al. 2016). Recent studies have estimated the annual nancial cost 
o not sharing FAIR data to be at least €10.2bn or the European economy, while the 
impact o FAIR on potential economic annual growth is estimated to be €16bn annually 
(European Commission 2019).

The importance o sharing FAIR data comes as part o a more general ‘open’ move-
ment, embracing greater transparency in science (Edwards 2019). Starting with open 
access publishing, the open movement extends to open scientic data, open standards, 
open repositories, open bibliography, open lab-notebooks, open-source sotware and 
hardware – a virtually endless list o ‘open’ qualiers to all activities in the scientic realm 
(Friesike et al. 2015). The urgency o sharing FAIR data is not only based on concerns o 
reproducibility (Baker 2015) or scientic raud (Kuperschmidt 2018), but also in recog-
nition o the novel technological and scientic innovations that can result rom data 
sharing (Borgman 2010). As such, government unding entities, particularly in Western 
Europe and the United States, have placed open data at the crux o scientic policy. As 
European Union Commissioner or Research, Science, and Innovation, Carlos Moedas 
made open research data one o the EU’s priorities in 2015. This led to the ormation o 
several expert working groups (e.g. High-level expert group on FAIR data, the Open 
Science Policy Platorm, Expert group on altmetrics) to provide advice on how to oster 

2The term FAIR was launched in the Lorentz workshop in 2014. The resulting FAIR principles were published in 2016. See 
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and promote research data sharing in Europe. In 2016, the EU launched the Open 
Science Cloud initiative, which is a ederated data inrastructure with cloud-based 
services to provide the scientic community with an open environment or storing, 
sharing, and reusing scientic data. In parallel, many unding agencies now require 
that scientic data be publicly available: or example, the US National Institutes o 
Health (NIH) has required this since 2003 or grants over $500,000 (NIH 2003), the 
National Science Foundation (NSF) since 2010 (Borgman 2012), and the European 
Commission or the Horizon 2020 programme since 2014 (European Commission 
2014). Accompanying policy, new private and public entities have emerged to acilitate 
the aggregation and publication o research data. Examples include the Research Data 
Alliance and the National Data Service, as well as or-prot publishers who attempt to 
build on existing structures (e.g. Mendeley Data) (Borgman 2015). Platorms such as 
Dataverse (King 2007), FigShare (Thelwall and Kousha 2016), Zenodo (Peters et al. 
2017), DataHub (Bhardwaj et al. 2014), EUDat (Lecarpentier et al. 2013), and other 
data repositories3 that oer scholars new venues to archive and share their data have also 
emerged (Cragin et al. 2010).

Although scientic data sharing has been positively promoted or some time, several 
challenges that inhibit data sharing have become apparent. Critics have pointed out that 
data sharing imposes increased costs on scientists and their institutions without com-
mensurate proessional benets (Borgman 2015; Edwards 2019; Edwards et al. 2011; 
Tenopir et al. 2015; Wallis et al. 2013). More importantly, while consistent with the 
Mertonian norm o sharing to build cumulative academic knowledge (Merton 1973), 
data sharing clashes with a system o scientic rewards where ‘the rst person to discover 
a result gets the “prize” associated with discovery’ (Haeussler et al. 2014, 465; Dasgupta 
and David 1987; Stephan 1996). There is thereore a tension between Mertonian ideals 
and the actual incentives o scientists who perceive data sharing as costly without 
commensurate proessional recognition (Hagstrom 1974; Dasgupta and David 1994; 
Murray and O’Mahony 2007). While the prevalence o limited data sharing is known 
(Blumenthal et al. 1996; Campbell and Bendavid 2002; Haeussler et al. 2014; Mukherjee 
and Stern 2009), there is a limited understanding o the complexities and intricacies o 
how – and where – actual data sharing occurs.

To understand the enablers and deterrents o scientic data sharing practices, we draw 
upon both cultural and economic perspectives. From one side, we draw upon the notion 
o ‘epistemic cultures’, which originates rom the sociology o science and has been 
applied in organisational studies and Inormation Systems (IS) to understand inorma-
tion and knowledge sharing across communities (e.g. Kellogg, Orlikowski, and Yates 
2006; Mørk et al. 2008). We ollow anthropologist Knorr Cetina (1999) to understand the 
challenges and processes involved in scientists’ epistemic work. This perspective predicts 
that researchers rom dierent scientic communities will share relatively more – or 
less – compared to other scientic communities due to dierences in disciplines’ shared 
norms. On the other side, taking an economic perspective, we employ collective action 
theory (Hess and Ostrom 2003; Olson 1965; Ostrom 1990) to understand the disincen-
tives and deterrents that scientists ace when considering data contributions to common 
inormation inrastructures or the collective good (Constantinides 2012; Constantinides 
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and Barrett 2015; Vassilakopoulou, Espen, and Aanestad 2016). While both sociological 
and economic perspectives potentially oer theoretical explanations o dierences in 
scientists’ data sharing practices, the processes that lead researchers rom dierent 
scientic elds to share – or not share – are not well understood. Using a mixed- 
methods design (Venkatesh, Brown, and Bala 2013) (Figure 1), this study seeks to address 
two key research questions:

1.1. RQ1: why and how do researchers rom dierent scientifc felds share their 
data?

1.1.1. RQ2: what mechanisms mitigate deterrents to researchers’ data sharing?
To address RQ1, we employ survey data collected in 2016 (n = 1,162) and 2018 
(n = 1,029) to explore why and how scientists share their data, considering contextual 
dierences across scientic communities as well as data-sharing behaviour at an indivi-
dual level. For RQ2 we take a case study approach to identiy the mechanisms that 
overcome data-sharing deterrents by comparing two distinct scientic communities: 
high-energy physics and molecular biology (Knorr Cetina 1999). High-energy physics 
is a eld with a communitarian culture, whereas molecular biology is relatively indivi-
dualistic (Knorr Cetina 1999), and have both achieved high data sharing levels, but in 
dierent ways. Substantial dierences in the scientic technologies, processes, and norms 
between these two disciplines provide the variance needed to identiy and qualiy the 
levers and incentives that underpin data sharing practices.

The contributions o the paper are twoold. First, we provide evidence and develop 
theory about the enablers and deterrents o scientic data sharing behaviour. Specically, 
we provide a nuanced understanding o how both individual and discipline-level actors 
interact to determine researchers’ data sharing attitudes and behaviours. Consistent with 
predictions rom epistemic culture theory, we nd that researchers rom dierent elds 
vary in data sharing practices due to their experienced norms. In agreement with 
collective action theory, we also nd that researchers will respond to their perceived 
individual incentives regarding data sharing. Additionally, our analysis identies three 
concrete mechanisms – modularity, time delay, and boundary organisations – that 
overcome scientists’ limited data sharing as a collective resource o the scientic corpus. 
Elaboration o these mechanisms can inorm open science policies struggling to shape 
scientists’ willingness to embrace scientic data sharing.

Figure 1. The research design: a mixed-methods approach to address RQ1and RQ2.
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In the remainder o the paper, rst we contextualise the research setting by reviewing 
the background concepts o data sharing rom the organisational studies, IS, and Science 
and Technology Studies (STS) literature and identiy the incentives and reasons or 
sharing – or not sharing – scientic data. We then review the theoretical oundations 
o our research study and sequentially describe our methods and results. Methods and 
results rom the survey data are presented rst and then the methods and results rom the 
case studies (Venkatesh, Brown, and Bala 2013). Finally, we synthesise the ndings and 
discuss the theoretical and practical implications o the study, its limitations, and uture 
directions.

2. Conceptual background

‘Data are representations o observations, objects, or other entities used as evidence o 
phenomena or research or scholarship’ (Borgman 2015, 18). A more operational 
denition rom Open Archival Inormation System (OAIS) denes data as ‘a reinter-
pretable representation o inormation in a ormalized manner suitable or commu-
nication, interpretation, or processing’. Examples o data include: ‘sequence o bits, 
a table o numbers, the characters on a page, the recording o sounds made by a person 
speaking, or a moon rock specimen’ (Consultative Committee or Space Data Systems 
2012, 10).

An important qualication is that the research context determines what becomes 
data and how data are processed (Kallinikos and Constantiou 2015). As such, it 
becomes paramount that all relevant contextual inormation is gathered in the 
description o the data; that is, the correct and complete metadata are critical to 
optimising the utility o data across disciplines, time, geographies, or application 
domains (Edwards et al. 2011). The genesis o data may also aect an operational 
decision o whether to preserve the data and or how long (National Science Board 
2005). For instance, observational data are considered essential to preserve, because 
they are the most dicult to replicate. Nevertheless, the question remains as to who 
makes such decisions: who has the authority to decide whether to destroy, share, or 
withhold data?

Historically, the dominant perspective is that the ‘producers’ o scientic data hold the 
authority to disclose or withhold it. Yet, with the increasing volumes o data generated by 
publicly unded programmes and computationally intensive environments, the ‘scientist- 
as-owner’ paradigm obscures a rather complex and more subtle picture o the dierent 
stakeholders involved in data production. Whether it is the scientist, team, lab, reposi-
tory, or other organisational layer, the allocation o data ownership requires a careul 
examination o how data-sharing incentives and deterrents interact across diverse insti-
tutional levels.

2.1. Enablers and deterrents or data sharing: two theoretical perspectives

The tenor o Isaac Newton’s amous quote – ‘I I have seen urther than others, it is by 
standing upon the shoulders o giants’ (Kuhn 1962) – is still prevalent in scientic 
practice. The progression o science relies on the accumulation o knowledge and, 
thus, the sharing o the results o prior research. Yet even though the economic costs 
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and needed eorts o data processing and storage are alling (Romasanta and 
Wareham 2021), how the accumulation and reuse o knowledge occurs within and 
across disciplines is oten unclear, conounding scientists’ motivations or data 
sharing.

Prior literature suggests that while authors are initially the copyright holders o their 
academic publications, the jurisdiction over the data is more ambiguous: uncertainty 
around ownership, control, and access to the data generates tensions amongst stake-
holders (Borgman 2015). ‘Even when individuals and groups assign authority or data, 
the rights and responsibilities may remain unclear’ (Bowker and Leigh Star 1999, 646). As 
a consequence, policymakers, unders, and academic institutions are working to increase 
awareness that, while the publications and knowledge derived rom research data pertain 
to the authors, research data needs to be considered a public good so that its potential 
social and scientic value can be realised (European Commission 2014; OECD 2015; 
Järvenpää and Markus 2018; Vassilakopoulou, Espen, and Aanestad 2016).

2.2. Epistemic cultures

Knorr Cetina (1999) coined the notion o epistemic cultures to describe ‘those amalgams o 
arrangements and mechanisms – bonded through anity, necessity and historical coin-
cidence – which, in a given eld, make up how we know what we know’ (p. 1). The notion 
o epistemic culture claims that the nature o scientic activities, types o reasoning, and 
practices o establishing evidence are variable across scientic elds. The epistemic cultural
approach disputes the ‘unity o science’ associated with the Vienna Circle (Knorr Cetina 
1999) and ‘reveals the ragmentation o contemporary science’ (Mørk et al. 2008, 15).

The concept o dierent scholarly cultures can be drawn back to the idea o ‘styles o 
thought’ shared by ‘thought collectives’ (Knorr Cetina 1999); it also relates to a concept o 
‘thought worlds’ (Dougherty 1992) or the idea o ‘communities o knowing’ (Boland and 
Tenkasi 1995). Haas (1992) used the notion o ‘epistemic communities’ to dene groups 
o people engaged in knowledge production. The general and universal idea across such 
notions is that knowledge is situated and local. ‘There is no “view rom nowhere” – 
knowledge is always situated in a place, time, conditions, practices, and 
understandings’(Borgman 2012 p.37).

In the context o our study, Knorr Cetina’s ideas are useul because the denition o 
‘culture’ is rooted in practice. The ‘epistemic machinery’ denes the shared tools, 
techniques, instruments, methods, and architectures o shared empirical practices that 
the epistemic subjects use to produce and distribute knowledge. She describes the making 
o science through interiorised processes where scientists, organisations, and collectives 
operate (e.g. labs and experiments) (Knorr Cetina 2007).

Employing Knorr Cetina’s lens, data sharing practices would be expected to be 
community-bound and largely determined by epistemic culture. This is logical i we 
consider the long cycles through which new members are trained; the specicities in the 
technology tools; the commonly accepted methods, unding sources, collaborative 
norms; and the ways in which responsibility and authorship are assigned. Dierences 
in data sharing practices would also depend on whether the scientic community is more 
communitarian or individualistic: a communitarian culture should be predisposed to 
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share, with ewer concerns about individual incentives and rewards; whereas an indivi-
dualistic culture would be more driven by individual motivations that give weight to the 
costs o sharing data and the lack o clear individual compensations.

2.3. Collective action theory

To examine the mechanisms by which sel-interested researchers would contribute to 
a data as a public good, we employ collective action theory and the idea o a data as 
commons. The term ‘commons’ designates a ‘resource shared by a group o people that is 
subject to social dilemmas’ (Hess and Ostrom 2003 p.3).

Collective action theory has been widely used in sociology and economics to under-
stand individuals’ motivation to engage in collective action (Fulk et al. 2004; Monge et al. 
1998). Collective action research originated with Olson’s work in the classic Logic o 
Collective Action (Olson 1965), rom which Hardin (1968) developed his ‘tragedy o the 
commons’ thesis, suggesting that uncontrolled individual sel-interest pursuits can 
undermine common public resources (Greco and Floridi 2004). In other words, the 
tragedy o the commons can be viewed as a prisoner’s dilemma (with n-people) where the 
rational pursuit o sel-interest results in suboptimal management o public resources 
and social goods (e.g. orests, sheries) (Greco and Floridi 2004; Fletcher and Zwick 2000; 
Ostrom 1986).

As Hardin (1982) described, communities benet when the individual perceives 
gains rom making contributions to the commons. I such benets are not per-
ceived, the shared pool o resources is ‘latent’ and can deteriorate without external 
intervention. What makes collective action useul in understanding scientic data 
sharing is its ocus on how the appropriation o individual gains is determined by 
adjusting the costs and benets that accrue with contributions to a common 
resource (Fulk et al. 2004; Ostrom 1990; Vitali, Mathiassen, and Rai 2018; Weill 
and Ross 2004).

Table 1 summarises common reasons cited to justiy the benets o data sharing along 
with requent explanations or deterrents. Interestingly, whereas arguments or data 
sharing refect benets to the scientic community, reasons not to share data are 
predominantly based on concerns that individual costs exceed individual benets. 
While not exclusively so, the theory o epistemic cultures largely emphasises norms 
that avour data sharing, where collective action theory is predominantly concerned 
with sel-interest and individual costs.

3. Methods and results

We rst present the methods and results o the analysis o the survey data. We then 
ollow with the case studies and synthesise the ndings rom both (Venkatesh, 
Brown, and Bala 2013). The synthesis o the results in the discussion is 
a ‘bridging’ process (Creswell 2018), where we leverage the complementarities across 
the ndings to enrich our empirical and theoretical understanding o scientic data 
sharing practices.
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3.1. Survey

3.1.1. Methods and data
We developed a large-scale global online survey in the ramework o the Open Science 
Monitor or the European Commission4 in collaboration with a consortium o scholars 
including a major academic publisher, and responses were collected in 2016 and 2018. 
The survey data allow us to address RQ1- why and how do researchers share their data? 
The survey o 2016 was sent in June–July 2016 by the publisher and generated 1,162 
responses, which represented a 2.3% response rate. The margin o error or 1,162 
responses was estimated ± 2.87% at 95% condence levels (see prior analysis o the 
survey and ull dataset in Meijer et al. 2017). The survey o 2018 was sent in October– 
November 2018 to 40,991 individuals randomly selected rom the Scopus author data-
base, weighted to be representative o the researcher population (UNESCO counts o 
researchers, 2013), to which 1,029 researchers responded (2.5% response rate). The 
responses in both surveys were anonymous, not containing any personal identiying 
inormation. There were several dierences between the 2016 and 2018 survey ques-
tionnaires: our additional questions were added in 2018 to assess the consequences o 
data sharing or scientists in their uture collaborations with or-prot entities. 
Additional minor modications were introduced in the 2018 questionnaire to improve 
semantic clarity.

By using random sampling methods to ensure that the individuals selected were 
representative o the researcher population at large, the study sought to mitigate potential 
selection bias. Nonetheless, we can compare UNESCO’s count o researchers across elds 
with the mix we received rom respondents in the survey. As we report in the Appendix, 
we have overrepresentation in the natural sciences and slight underrepresentation in 
engineering.

In the rst phase o the analysis, we explore which actors promote or inhibit 
data sharing among individual researchers. Specically, we examine two aspects: 1) 
their willingness to let others access their research data, and 2) actual experience in 
sharing their data. By analysing both attitudes and behaviours, we obtain a more 
holistic picture o data sharing. These two variables were measured through 
a 5-point Likert scale.

The independent variables were the actors related to data sharing enumerated in the 
literature review. For each o these actors (Table 2), we identied relevant survey 
questions as proxies to represent each enabler or deterrent, which were either ordinal 
or binary. The ordinal variables were measured through a 5-point Likert scale o agree-
ment with statements provided. The binary variables were rom a question asking 
respondents about the benets o data sharing in their eld.

Respondents with missing data or a response o N/A were removed rom the 
analysis. This let us with 491 respondents with complete data across the dierent 
variables we wanted to test in Table 2. Due to the dominance o non-continuous 
variables, we used diagonally weighted least squares (DWLS) to estimate the model 
parameters through the lavaan package in R (Rosseel 2012). DWLS is robust against 
non-normality and works better with ordinal data than maximum likelihood meth-
ods (Mîndrilă 2010) and perorms well with smaller sample sizes (Flora and Curran 
2004).
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In the second phase o the analysis, we explored the dierences in data sharing 
practices across scientic communities. We looked at the same two aspects o research-
ers’ data sharing: willingness to let others access their data and actual experience sharing 
data. Considering the ordinal nature o these variables, we used the Kruskal-Wallis test to 
determine whether dierent research elds have distinct willingness and experiences in 
sharing data. Kruskal–Wallis is a nonparametric statistical test that assesses the dier-
ences among three or more groups (Kruskal and Allen Wallis 1952; McKight and Najab 
2010). In contrast to one-way Analysis o Variance (ANOVA), which is used or normally 
distributed continuous variables, Kruskal–Wallis is more appropriate or ranked data 
such as those rom our survey. To identiy which specic elds share more – or less – 
than other elds, we ollowed up with Dunn’s test, the pairwise multiple-comparison 
procedure used when a Kruskal–Wallis test is rejected (Dunn 1961; Dinno 2015). To 
correct or the increased alse positives that arise rom conducting more statistical tests, 
we also present the results ater Holm’s sequential adjustment (Holm 1979).

3.1.2. Findings of the survey
We began the analysis with a ocus on data sharing or individual researchers. To do this, 
we used the various actors identied under epistemic cultures and collective action and 
related these to both researchers’ willingness and previous experience in data sharing.

We ound support or epistemic norms stimulating data sharing. Our results suggest 
that researchers had positive data sharing outcomes in both attitude and behaviour, i 
they believed that the data are crucial to the advancement o their research eld.
Moreover, the push or data reproducibility, data reuse, and collaborations in their 
eld also seemed to lead researchers to engage with data sharing (Table 3). 
Furthermore, supporting individual incentives to overcome collective action problems 
was related to positive data sharing outcomes. Compliance with unding bodies was 
related to increased willingness to share data. Receiving necessary skill training also 
seemed to lead to data sharing engagement. In summary, various individual-level actors 
seemed to motivate researchers’ sharing o data.

We present varying attitudes and behaviour towards data sharing among scientic 
disciplines in Figure 2. Visual examination shows a mixed nding, where many disciplines 
are similar in data sharing, and some disciplines in the extremes share more or share less 
compared to the average. To make a better judgement o these disciplines’ dierences, we 
used the Kruskal-Wallis test, which conrmed that certain disciplines dier in their data- 
sharing activity. By their willingness to allow others access to research data, we ound 
dierences across disciplines (statistic = 26.9, p-value = 0.003). Moreover, in their experi-
ence sharing o data, we also ound signicant dierences (statistic = 25.7, p-value = 0.004).

To identiy which disciplines diered in data sharing, we used post-hoc pairwise Dunn 
test with Holm correction. Researchers in environmental sciences tend to be the most 
willing to allow others access to their research data. This is relative to the disciplines o 
medicine and engineering, where many respondents mentioned that they are not as 
engaged in data sharing. As or the remainder o the disciplines, we do not nd 

4Open Science Monitor: https://ec.europa.eu/ino/research-and-innovation/strategy/goals-research-and-innovation- 
policy/open-science/open-science-monitor_en
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signicant dierences in their sharing o data. In continuation, we explored the various 
outcomes o data sharing: with whom data is shared, where it is shared, and what type o 
data is shared. This inormation is summarised in Figure 3.

Regarding the question o with whom researchers tend to share their data, we nd that 
they are highly discriminatory. Although they may grant non-collaborators access to 
their data through personal communication, we see that researchers tend to be most 
comortable sharing with collaborators they know personally. This was consistent across 
all elds. The most variance we see across elds is whether they share data with their 
research partners such as unders (Figure 3).

Location o data storage diered signicantly among the disciplines. Certain elds 
preer to publish data (1) in the appendix, (2) as stand-alone peer-reviewed data pub-
lications, (3) in data repositories, or (4) through other avenues altogether. Finally, elds 
also vary across the types o data they generate and, logically, the types o data they are 

Table 2. Factors related to data sharing.

Variable Survey question
Relevant actor 

represented Type

Data sharing (Dependent variables)
Willingness I am willing to allow others to access 

my research data
Data sharing 5-point scale (Strongly 

disagree to Strongly 
agree)

Experience I have previously shared my research 
data with others

Data sharing 5-point scale (Strongly 
disagree to Strongly 
agree)

Enablers: Epistemic culture lense
Reproducibility o 

research
Reproducibility o research Reproducibility Yes/No

Data reuse Data reuse Higher scientic 
eciency and 
progress

Yes/No

Research 
aggregation

Research aggregation Higher scientic 
eciency and 
progress

Yes/No

Importance o data 
sharing in eld

Sharing research data is important or 
doing research in my eld

Higher scientic 
quality

5-point scale (Strongly 
disagree to Strongly 
agree)

Collaboration More possibilities or collaboration Higher scientic 
quality

Binary

Deterrents: Collective action incentives
Data sharing 

rewarded in eld
Sharing research data is associated with 

credit or reward in my eld
Personal credit/ 

rewards
5-point scale (Strongly 

disagree to Strongly 
agree)

Higher paper 
acceptance

Article more likely to be accepted or 
publication

Personal credit/ 
rewards

Yes/No

Higher citation Article more likely to be cited Personal credit/ 
rewards

Yes/No

Compliance to 
unding body

Compliance with unding body 
mandates

Misuse and liability
concerns

Yes/No

Compliance with 
journal/publisher

Compliance with journal or publisher 
requirements

Misuse and liability
concerns

Yes/No

Training I have received sucient training in 
research data sharing

Lack o skills 5-point scale (Strongly 
disagree to Strongly 
agree)

Costs Eort required prior to sharing data Costs to prepare data 5-point scale (Strongly 
disagree to Strongly 
agree)
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willing to share. Across all elds, the primary type o data that researchers generate is 
numerical, ollowed by textual data, although elds do not vary in their rates o sharing 
such data.

What becomes clear rom the survey results is that data sharing is a practice that 
varies not only across disciplines, but also between researchers rom the same disci-
pline. In other words, the results o the questionnaire thus ar reveal a complex picture 
where discipline-level and individual-level actors are highly interlinked. Consistent 
with an epistemic culture explanation, we see that certain disciplines are more open to 
sharing than others. Additionally, consistent with a collective action perspective, we 
nd that individual researchers within the same discipline can vary in their data 
sharing.

To contextualise our subsequent cases studies, we highlight the specic results or 
physics and astronomy and lie science as they compare to all other elds across the 
survey items. Both the disciplines o Lie Science and Astronomy/Physics share data at 
high levels as compared to the other elds surveyed. As seen in Figure 4, they share the 
same motivators and deterrents in data sharing despite the theoretical dierences pre-
viously emphasised in the literature. Comparing the two would provide useul cross- 
discipline variance or addressing RQ2.

Table 3. Researcher willingness to share data or various reasons and experience o it.
Willingness Experience

Epistemic culture Reproducibility o research 0.287 
(0.131)*

0.181 
(0.119)

Data reuse 0.205 
(0.118)

0.366 
(0.117)**

Research aggregation 0.111 
(0.122)

−0.017 
(0.114)

Importance o data sharing in eld 0.565 
(0.08)***

0.568 
(0.072)***

Collaboration 0.251 
(0.118)*

0.181 
(0.113)

Collective action Data sharing rewarded in eld 0.094 
(0.053)

0.029 
(0.047)

Higher paper acceptance −0.199 
(0.113)

−0.023 
(0.115)

Higher citation −0.179 
(0.109)

0.007 
(0.106)

Compliance with unding body 0.360 
(0.166)*

0.293 
(0.172)

Compliance with journal/publisher 0.034 
(0.130)

0.027 
(0.130)

Training 0.091 
(0.047)

0.136 
(0.046)**

Costs −0.048 
(0.071)

0.072 
(0.070)

N 491 489
Test statistic 0.000 0.000
R2 0.278 0.143

p-values: * <0.05, ** < 0.01, ***<0.001 
Analysis perormed in survey data 2018

230 L. PUJOL PRIEGO ET AL.



4. Case studies

4.1. Methods and data

To capture the data sharing practices o lie science and physics, we thematically sampled 
(Creswell 2018) high-energy physics (HEP) and molecular biology (MB) communities’ 
practices anchored in two inormation inrastructures. Inormation inrastructures have 
been dened as ‘a digital library system based on commonly shared standards and 
containing inormation o both local and/or widespread interest’ (Kahn and Cer 
1988, 3), designed or intended ‘to augment our ability to search or, correlate, analyse 
and synthesize available inormation’ (Kahn and Cer 1988, 11). Our decision to ocus on 
inormation inrastructures (as opposed to less-institutionalised data sharing practices) is 
because the highest data sharing levels are in communities that actively use inormation 
inrastructures (Edwards et al. 2009; Ribes and Lee 2010). Both cases represent 

Figure 2. Data sharing by discipline.  
The elds are ordered by their researchers’ average experience sharing data. The elds included are 
Maths (MATHS), Medicine and Allied Health (MED), Engineering (ENG), Materials Science (MAT SCI), 
Computer Science (COMP SCI), Social Sciences, Humanities & Economics (SOC HUM ECON), Chemistry 
(CHEM), Physics & Astronomy (PHY), Lie Sciences (LIFE SCI) and Earth & Environmental Science (ENV). 
The responses o ‘N/A’ and ‘Neither agree nor disagree’ were let out or clarity. Width relates to 
sample size. + denote signicant dierence to at least one other eld ater posthoc Dunn test without 
adjustment (p-value<0.05). * denote elds that continue to have signicant dierences to at least one 
other eld ater posthoc dunn test with Holm adjustment (p-value <0.05).
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inrastructures based upon data commons, i.e. inrastructures that co-locate data, sto-
rage, and computing acilities with commonly used services and tools or analysing and 
sharing data or a dened base o users (Grossman et al. 2016).

4.1.1. Empirical context 1: molecular biology and open targets
The sequencing o the human genome (Human Genome Project, HGP) is recognised 
as ‘the largest undertaking in the history o biological science’ (Chaguturu, Murad, and 
Murad 2014, 35). Not only did it transorm biology into a data-driven discipline with 
a deluge o new data and computational techniques, but it also opened the debate 
about research data sharing. Celera, a private undertaking, initially announced their 
intention to patent ully-characterised important structures amounting to 100–300 

Figure 3. Data sharing outcomes across all elds.  
Plots show percent responses across researchers rom all elds. Asterisks denote p-value ater Kruskal– 
Wallis test (* <0.05, ** < 0.01, ***<0.001) comparing dierent elds in their responses. The type o 
data shared is less than 100% due to researchers saying that it is not very important in their eld.
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genetic targets, which prompted considerable outcry (Leonelli 2012). In March 2000, 
U.S. President Bill Clinton announced that the data on the Human Genome Project 
(HGP) sequence should be made reely available to the entire research community. The 
HGP propelled discourse and debates on open research data to the oreront o 
molecular biology research (Leonelli 2012) and spawned a new generation o inorma-
tion inrastructures to generate, integrate, and curate the growing data pools with 
commonly used tools and analytical methods (Grossman et al. 2016; Vamathevan et al. 
2019). As a result, the discipline has been very active in developing inrastructures 
based upon data commons, one o them being Open Targets (Pujol Priego and 
Wareham 2018).

Open Targets (OT) is a MB consortium created in 2015 by the European Molecular 
Biology Laboratory-European Bioinormatics Institute (EMBL- EBI), Europe’s fagship 
laboratory or lie science, with the Wellcome Sanger Institute, and ve pharmaceutical 
companies (i.e. Biogen, Celgene, GSK, Sano, Takeda); it aims to accelerate knowledge 
about the links between genetic targets and disease development. The OT consortium 
includes publicly unded, non-prot, and or-prot organisations with vastly divergent 
institutional objectives and stakeholders. The inrastructure started as a result o phar-
maceutical companies searching to scale requisite R&D capabilities by generating, inte-
grating, and curating large data pools with commonly used tools and analytical methods 
about the early phases o drug discovery or the research community (Grossman et al. 
2016; Vamathevan et al. 2019). The architecture, data policies, and procedures rom 
researchers participating in OT provide insights about the mechanisms that eectively 
oster data sharing across the MB research community. As o this writing, OT inra-
structure contains more than 27,717 genetic targets, 7,999,050 associations, 13,445 
diseases, and 20 data sources (Open Targets 2020).

Figure 4. Comparison o data sharing among disciplines, highlighting lie sciences and physics/ 
astronomy.  
For reerence, we also show the mean response across all elds. For questions with 5-point Likert scale coded 
rom 0 to 4, we divided the response by 4 or the plot. All the statistical analysis was done with the original 
(non-transormed) data through Kruskal–Wallis test. Asterisks denote p-value ater Kruskal–Wallis test 
comparing the two elds o Lie Science and Astrophysics in their responses. (* <0.05, ** < 0.01, ***<0.001).
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4.1.2. Empirical context 2: high-energy physics and reana
Big scientic research inrastructures within HEP, such as CERN, have a long tradition 
o embracing open data. Large volumes o data generated via expensive, unique, and 
elaborate experiments make data preservation and reuse important. Reana is a reusable 
and reproducible research data analysis inrastructure that was created at CERN in 
2018 to acilitate data and code reuse. The inrastructure was initiated to combat the 
reproducibility crisis in the particle physics eld. CERN built Reana as a data inra-
structure to allow the dierent HEP experiments to adhere to FAIR principles and 
acilitate data sharing and reuse in the community. Reana allows the reuse and 
reinterpretation o the data shared by helping HEP scientists to structure their input 
data, analysis code, containerised environments, and computational workfows to run 
the analysis on remote clouds (Pujol Priego and Wareham 2019). What makes Reana 
attractive is that the inrastructure helps to generalise computational practices 
employed by HEP scientists, thereby systematising reproducibility. The inrastructure 
supports a plurality o ‘container technologies (Docker), workfow engines (CWL, 
Yadage), shared storage systems (Ceph, EOS) and compute cloud inrastructures 
(Ku- Kubernetes/OpenStack, HTCondor)’ used by the HEP scientic community 
(Simko et al. 2018, 1). The inrastructure sits on extant platorms and services provided 
by CERN to the HEP community; these include Zenodo, a ree and open data 
repository, and CERN open data portal, both o which are precedents to Reana 
inrastructure (Pujol Priego and Wareham 2019).

4.1.3. Data sources and analysis
The study o both cases relies on the diverse primary and secondary data sources 
described in Table 4. Numerous discussions with managers rom Open Targets and 
Reana were an integral part o the Open Science Monitor, published by the European 
Commission in separate reports (Pujol Priego and Wareham 2018, 2019). Primary data 
included 18 semi-structured interviews and direct observations rom a study visit at the 
Wellcome Genome Campus or the OT open days (June 2019) and recurrent study visits 
at CERN rom 2018–2020. As part o participation in the two additional EU H2020 
unded projects, the authors beneted rom extensive conversations with policymakers, 
research inrastructure managers, data architects, and programmers, in which they 
discussed data sharing practices and uture open research data initiatives 
(CS3MESH4EOSC part o European Open Science Cloud and ATTRACT unded by 
Research Inrastructure Innovation H2020-INFRAINNOV). The interview process was 
concluded when no signicant additional insights were obtained rom the data, and 
theoretical saturation was achieved.

Secondary sources included data rom media outlets, with 47 publications resulting 
rom OT and Reana, 1 tutorial and 12 runnable examples about how to use the inra-
structures. Additionally, 8 blog posts, 25 release notes, 2 webinars, several workshop 
presentations, and inormation available in the dierent HEP experiments and OT 
organisations’ websites were used. These secondary sources were very useul in the rst 
stages o the analytical processes, enabling us to have more technically inormed con-
versations in both the inrastructures and data sharing practices. The combination o our 
primary data with secondary data allowed us to crosscheck ndings and build our 
theoretical inerences rom the cases.
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Data were analysed by perorming a two-stage inductive analysis, relying on established 
procedures or inductive research (Miles and Huberman 1994). The rst stage was devoted 
to reading the abundant material available online about OT, HEP experiments, and Reana. 
We produced brie summaries that moved rom technical descriptions o the inrastruc-
ture to managerial inerences. In-depth interviews were then conducted to understand 
how scientists use the inrastructures. We perormed the interviews and analysis in several 
iterations, and thus earlier transcripts inormed and incorporated inormation emerging 
rom later interviews. In addition, we contrasted the transcripts rom the interviews with 
our analysis o secondary sources. We generated research memos that synthesised the 
emergent themes identied in the analysis and compared them with prior research. 
Finally, to validate our ndings, we applied respondent validation (Miles and Huberman 
1994) by sharing our initial ndings with the study participants.

4.2. Findings o the case studies

Preliminary observations about HEP and MB communities suggest two dierent epis-
temic cultures consistent with Knorr Cetina’s thesis, with HEP being more communitar-
ian and MB more individualistic. When looking at how HEP data fows are organised, we 
rst realised the importance o the institutional entity o ‘the experiment’. In HEP, 
a limited number o capital-intensive experiments have been designed and constructed 
over 20 years. For example, CERN currently hosts seven large experiments on the Large 
Hadron Collider, our o which are elaborate international collaborations (ATLAS, CMS, 
ALICE, LHCb). By contrast, MB is organised around the ‘laboratory’ – or even teams 
within a single institution. Very oten, the molecular biologists are shaped by the 
conviction that they need to compete ‘or the priority o important ndings’ (Knorr 
Cetina 1999), generating competition within – and across – laboratories.

When comparing how HEP and MB ascribe contributions to an individual scientist, 
we soon realised that HEP publications list a vast number o authors, as the construction 
and operation o HEP experiments oten depends on many people; the record being over 

Table 4. Data collection sources or both Molecular Biology (MB) and High-Energy Physics (HEP).
MB – Open Targets HEP- Reana and related platorms

Primary data 
sources

13 interviews with scientists and managerial 
team o OT

5 interviews with scientists and managerial team o 
Reana and related platorms; and 4 interviews with 
CERN programmers and data architects.

Observations Study visit to Genome Campus OT Open Days – 
workshop, working groups and social event 
(June 2019)

Study visits to CERN (2018, 2019, 2020). 
Partner in H2020 unded CS3MESH4EOSC, 
a constituent project o the European Open Science 
Cloud https://cordis.europa.eu/project/id/863353, 
and ATTRACT https://attract-eu.com/. Interviews 
and discussions with open data related services at 
CERN (Zenodo, Open Data Portal, CS3- 
ScienceMesh).

Secondary 
data 
sources

41 publications 
1 tutorial on OT inrastructure 
3 outreach posts; 19 release notes; 6 posts; 7 
websites

Experimental data policy and guidelines: CMS, ALICE, 
ATLAS, LHCb, OPERA data policy; CERN open data 
terms o use; 22 guidelines in CERN open data 
portal; CERN Analysis Preservation Portal; Joint 
declaration and Taskorce documentation on HEP 
data preservation; Reana workshop presentations 
June 2018; 12 runnable examples o Reana; 6 
publications, 6 release notes, 2 blog posts.
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5,000 authors on one article rom CERN (Aad et al. 2015). In MB, although there are also 
challenges in ascribing results to individual scientists, the experiments are typically ar 
less capital-intensive and permit dierentiation in contributions within smaller teams. 
Finally, it is worth noting that some MB research is closer to commercial organisations 
(lie sciences and pharma), whereas HEP is traditionally considered basic research with 
a more extended pathway towards any commercial outcome (Wareham et al. 2021; 
Romasanta et al. 2021). Accordingly, we would expect a more competitive culture with 
less data sharing in MB than HEP.

4.2.1. Open targets
The architecture o the OT data inrastructure is modular, containing dierent layers o 
access rights and data standards that employ a variety o mechanisms or researchers to be 
able to share their data (compliant with post-HGP norms). The stratied architecture grants 
dierent access rights to the data, where data generators are awarded complete access to 
a hidden layer, augmented by a public data layer (with dierent rights) that is accessible to 
any researcher willing to reuse the data. This modularity simultaneously allows researchers 
to grasp any individual or competitive benets o being the generators o the data, while also 
being compliant with the collective norms o data transparency and sharing.

The modular architecture, with dierent access rights, also engages a time delay 
between the generation o the data and the publication o the data in the inrastructure 
that spans, on average, two years. As an inormant explains: ‘Everybody understands that 
until there is a ormal publication ater the project, there is no disclosure.’

Finally, the inormation inrastructure acts as a ‘boundary organisation’ (O’Mahony 
and Bechky 2008); that is, ‘structures capable o eectively mediating between disparate 
constituencies and establishing common ground among the diering interests in the 
play’ (Perkmann and Schildt 2015, 1134). An interviewee explains: ‘There is a need to 
coordinate the integration o data into OT, both rom the projects that generate data but 
also with the data providers such as Chembl and Uniprot and all the data that goes into the 
platorm to keep it up to date. We also work with the developer team that creates some o 
the eatures that users will use to visualize the data coming through.’

Modularity and time delay are coordinated by the boundary organisation: normative 
governance on data access and reuse is embedded in the inrastructure, where the 
ownership and responsibilities over the data are explicit. These three mechanisms t in 
a ‘logic o exchange’ that seeks to maximise benets or the researchers (that is, the 
potential o data reuse and the commercial interests o data generators), while minimis-
ing the costs o sharing data (e.g. loss o potential commercial value, publication rights, 
recognition). This is achieved through protocols and data standards. The act that or- 
prot companies orm a signicant part o the OT consortium suggests that the mechan-
isms developed are eective in balancing incentives to scientists while mitigating the risks 
o a competitive loss to other re-users o their data.

4.2.2. Reana
CERN built Reana upon data access and preservation policies agreed within the main 
experiments. Although the data policies may dier slightly across experiments, they all 
stratiy the data generated by the HEP community in our main layers: (a) data directly 
related to the publications, which include the complete documentation or the published 
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results; (b) simplied data ormats devoted to training exercises within the physics 
community; (c) reconstructed data, simulations, and sotware analysis to acilitate 
research analysis; and nally, (d) the raw data and associated sotware, allowing access 
to the ull potential o the experimental data’s reuse (Pujol Priego and Wareham 2019). 
Data sharing is concentrated in data layers (b) and (c). Raw data (d) are not made 
available to other researchers to reuse or pragmatic reasons. For instance, one o the core 
CERN experiments, CMS (Compact Muon Solenoid), produces on average 1 petabyte 
(100 gigabytes) o ‘raw’ data per second; similar data volumes characterise other experi-
ments. As the Large Hadron Collider (LHC) data policy explains5 ‘It is practically 
impossible to make the ull raw data-set rom scientic endeavours o the scale o high- 
energy physics easily usable in a meaningul way outside o the collaboration [. . .]It should 
be noted that, or these reasons, direct access to the raw data is not even permitted to 
individuals within the collaboration, and that instead the production o reconstructed data 
is perormed centrally.’

Experiments also employ a time delay between the generation o the experi-
mental data and the time o sharing with the external research community. These 
periods are also reerred to as embargo periods that allow the data generators within 
the experiment to publish the results. As explained in the LHC experiment data 
policy: ‘In general data will be retained or the sole use o the collaboration or 
a period commensurate with the substantial investment in the eort needed to record, 
reconstruct and analyse those data. Ater this period, some portion o the data will 
then be made available externally, with this proportion rising with time . . .. The 
portion o the data which LHCb would normally make available is 50% ater ve 
years, rising to 100% ater ten years.’

The main idea behind Reana’s inrastructure is to preserve sotware and data work-
fows so that they can enhance collaborative scientic work and diuse knowledge o the 
experimental procedures (Dphep Study Group 2009). Such data sharing protocols and 
preservation techniques are embedded in the Reana ramework and reinorce the need 
or quality metadata: ‘Our own experience rom opening up vast volumes o data is that 
openness cannot simply be tacked on as an aterthought at the end o the scientic 
endeavour. Besides, openness alone does not guarantee reproducibility or reusability, so 
it should not be pursued as a goal in itsel. Focusing on data is also not enough: it needs to 
be accompanied by sotware, workfow, and explanations, all o which need to be captured 
throughout the usual iterative and closed research liecycle, ready or a timely open release 
with the results’ (Chen et al. 2018).

Reana acts as a boundary organisation or ‘interace’ to the experiment’s knowhow, so 
that other researchers outside the experiment can reuse it. While normative governance 
dening data access rights and responsibilities exists, it applied aapplied at the experi-
ment level, not the inrastructure level. As such, the inrastructure is required to respect 
distinct data policies.

Table 5 provides a detailed description o the progression o our empirical 
analysis towards the three theoretical constructs: modularity, time delay, and bound-
ary organisations. Table 6 summarises the similarities and dissimilarities identied 
rom the Open Targets (MB) and Reana (HEP) analyses. While both scientic 
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communities employ similar mechanisms to overcome scientists’ deterrents to share 
data, they dier in how such mechanisms are used in their respective inrastructures 
and scientic communities.

5. Discussion

Our study aimed to answer two research questions: (1) Why and how do researchers 
rom dierent scientic elds share their data? and (2) What mechanisms enable 
researchers to share their data? Regarding RQ1, we nd that data sharing varies sig-
nicantly across certain disciplines, although data sharing attitude and experience can be 
similar across elds. Most o the data sharing is carried out between collaborators on the 
same projects, suggesting that researchers adopt a discriminatory approach by sharing 
data with selected partners. Addressing RQ2, we nd that communitarian and indivi-
dualistic scientic communities employ three mechanisms (with some variation) to 
enable data sharing: (1) modularity, (2) time delay, and (3) boundary organisations. 
These mechanisms serve to establish transparent data governance and acilitate the 
identication o the ‘bona de’ researcher.

Scientists are oten proessionally competitive. In this sense, individual incentives, 
proessional recognition, and status are important components o a scientist’s career. 
However, nothing precludes collective norms and values rom coexisting alongside 
individual motives; most scientists care about advancing science as a social good yet 
seek recognition or their contributions to it. Our survey evidence suggests that data 
sharing perceptions and practices are highly variable among academic disciplines. We 
iner that dierences in the balance between individual and collective orientations 
explains, at least partially, some o the larger variance o data sharing across academic 
communities (Fulk et al. 2004; Hardin 1982; Ostrom 1990; Vitali, Mathiassen, and Rai 
2018).

The nature o, and manner in which, science is conducted across disciplines is also 
highly determinative o data sharing (Borgman 2012; Knorr Cetina 1999, 2007; Gläser 
et al. 2015). HEP primarily conducts undamental research with ew immediate applica-
tions in industry; that is, while physics research has inormed industrial development in 
a multitude o ways, the path to commercial applications is a longer one. MB, by contrast, 
is oten more proximate to the lie sciences and pharma industries. In act, much MB 
research is unded by big pharma (Contreras and Vertinsky 2016; Vertinsky 2014; Cain 
2012; Mittleman, Neil, and Cutcher-Gersheneld 2013). So where HEP researchers have 
little reason to rerain rom disclosing research data once academic credit is recognised, 
MB’s proximity to industries premised on nite periods o IP protection makes the 
calculus o disclosure ar more complex.

With this background, our case analysis contrasted two inormation inrastructures 
that deployed mechanisms to align scientists’ proessional incentives with data sharing 
practices (Figure 5).

5Large Hadron Collider (LHC) data policy: https://twiki.cern.ch/twiki/pub/LHCb/LHCbDataPreservation/130321- 
LHCbDataAccessPolicy.pd Retrieved 20th October 2021:
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Our ramework shows the tension between the community epistemic norms and the 
individual costs and benets o data sharing. Our analysis identied three mechanisms to 
accommodate these tensions:

Data modularity enables data governance that acknowledges that research data are 
heterogeneous, as are the producers, audiences, and applications o such data. In HEP, 
more pragmatic considerations o the size and usability o data are determinative, while 
in MB, data modularity is conditioned by the applications o the data by its generators 
and consumers. Specically, where most HEP research is publicly unded, MB research is 
unded by constellations o public and private sources. Consequently, demands or public 
disclosure need to be balanced with potential commercial appropriation or the private 
entities that have unded the research (Cain 2012; Mittleman, Neil, and Cutcher- 
Gersheneld 2013).

Time delay also serves to balance any conficting interests between the generators and 
consumers o data. In HEP, practical uncertainties about how data should be structured, 
analysed, or interpreted can require delays in its disclosure. In parallel, the requirements 

Table 5. Theoretical progression o our analysis.
Empirical observations rom data sources Identication o 

theoretical 
constructsMB- Open Targets HEP- Reana

‘So, we have a platorm that is public and open to 
everybody. Then, or the experimental projects, 
the partners share the data while they are 
creating it in Google buckets.’ 
‘We have other eatures that are private, that 
we do not share with others. Those hidden 
eatures allow me, or instance, to work with 
my compound library on the platorm, which 
I do not share with other OT partners.’

‘Open access to its data by people outside the 
collaboration can be considered at our levels o 
increasing complexity.’ 
CMS experiment preserves ‘the reconstructed 
data and simulations by keeping available 
a copy o the data reconstructed with the best
available knowledge o the detector 
perormance and conditions or each period o 
data-taking a virtualised computing 
environment, compatible with the sotware 
version with which the original data can be 
analysed’ (Dphep Study Group 2009: 7).

Modularity 
(Mechanism 1)

‘We have an internal internet that we use to say 
here’s what this data is and you can request it 
and I will send it to you in a password protected 
encrypted ormat. They get it sent and then 
I send them passwords separately, and then 
they take it rom there. Lots o our partners, 
they preer sometimes to use the raw data, so 
they all go through their own pipeline.’ 
‘Once the project themselves have published the 
data in their own time, once that’s publicly 
available, then we can link to it on our public 
platorm. In the meantime, though, it’s all very 
confdential and we don’t share anything 
outside o the internal platorm that we have. 
It’s up to the project to have that publication 
beore we start sending it out to the world.’

‘New data will enter the portal once the embargo 
periods or them are over.’ (CERN Open Data 
Portal) 
‘The frst data release o 2010 data took place in 
2014.’ (R1) 
‘The frst data release was ollowed by a ull 
analysis o the procedure, which was endorsed 
by the Collaboration Board in 2015, and regular 
data releases, accompanied by appropriate 
simulated data, each approved by the 
Collaboration Board, are now taking place.’ 
(CMS April 2018)

Time delay 
(Mechanism 2)

‘There is a need to coordinate the integration o 
data into OT, both rom the projects that 
generate data but also with the data providers 
such as Chembl and Uniprot and all the data 
that goes into the platorm to keep it up to 
date. We also work with the developer team 
that creates some o the eatures that users will 
use to visualize the data coming through.’

‘The data preservation process should ollow well- 
defned policies, defned as soon as possible 
during the lietime o the collaborations, and 
possibly embedded in a global HEP data 
preservation initiative.’

Boundary 
organisation 
(Mechanism 3)
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o the principal research teams who need sucient time or data analysis and publication 
are also determinative. In MB, time delays serve a similar unction: they permit the 
generators and unders o data to develop research leads towards commercial appro-
priability beore releasing data into public platorms (Contreras 2010; Contreras and 
Vertinsky 2016).

Boundary organisations, nally, are o particular signicance in their responsibility or 
data governance. These are dened by the dierent inrastructures required to conduct 
science in HEP and MB: the experiment or the inormation inrastructure. While both 
disciplines are data intensive, HEP requires particle accelerators, detection and imaging 
technologies o vast size, energies, and economic investment, that bind their operation to 
very large teams o scientists working on centrally coordinated and internationally 
unded experiments. This generates a highly collective culture with commensurate 
communal recognition and norms. Data collection, storage, and analysis are governed 
centrally, and are publicly transparent to a broad contingency o stakeholders whenever 
easible. Most importantly, centralised data governance exists at the point o data genesis: 
or HEP, ‘data openness cannot simply be tacked on as an aterthought’ (Chen et al. 2018).

MB, by contrast, does not require the same level o public investment in inrastructure (it 
should, however, be noted that a signicant amount o cell biology does transpire at larger 
synchrotron, ree-electron laser, and neutron scattering acilities.) Many diagnostic and 
analytical instruments are owned and operated by individual organisations and laboratories; 
data generation is de-centralised. The unctional units in MB are oten smaller teams o 
researchers where the contributions o individual researchers are more transparent. Given 
the high status o much MB research, this ragmented structure can lead to competitive 
dynamics across research teams that inhibit data sharing. Additionally, a critical dierence 
rom HEP is that any decision to disclose MB data to a centrally governed inormation 
inrastructure is discretionary and most oten occurs ater the data genesis.

Table 6. Similarities and dierences observed between Reana (HEP) and open targets (MB).

Similarities 
(What 
mechanism)

Dierences 
(How the mechanism is represented)

HEP – Reana MB – Open Targets

Modularity 
(Mechanism 1)

HEP establishes our layers o data: raw data is 
not released, while more curated versions o 
data are opened (level 2 in open data portal 
and reused in Reana; level 1 rom publications 
through HEP library systems).

In MB, raw data rom target associations with 
metadata is released in OT. However, the 
aggregations with data related to the next 
steps o the drug discovery process (e.g. 
proprietary compound libraries) remain 
closed.

Time Delay 
(Mechanism 2)

The embargo period o HEP is around 5 to 
10 years, depending on the experiments. Ater 
the embargo period in HEP, only a % o the 
data is agreed to be released.

In MB, the time delay between the generation o 
the data and release in OT is o 18–24 months. 
In MB, all the data generated is shared in OT 
inrastructure.

Boundary 
organisation 
(Mechanism 3)

The boundary organisation and what makes the 
interace that mediates the data fows 
between researchers and establishes the 
rules, responsibilities, and drivers in data 
policies varies in the two cases. In HEP, the 
prominent role is played by the experiment, 
which decides rights and responsibilities 
across data. These rules prevail across 
inrastructures, including Reana. The 
competition over the data is not between 
scientists but between experiments.

In MB, the dierent experimental projects need 
to comply with the data governance and rules 
o OT, which establishes the protocols to 
avoid unintended spillovers and regulates the 
process to release the data.

240 L. PUJOL PRIEGO ET AL.



The appropriate governance o this subtle yet undamental dierence (mandatory data 
governance at data genesis, or discretionary data governance ater data genesis) is sup-
ported by the time delays and modularity that are adequately adjustable to accommodate 
the divergent incentives and objectives o the researchers, institutions, and unders.

5.1. Implications or policy and practice

Our study reveals a complex interpretation o where a community’s norms mesh with 
individual incentives to share data or the collective benet. The research community by 
and large is optimistic about the scientic benets o data sharing. From our data, we nd 
that 74% o researchers say that having access to other data would benet them. There is 
a consensus that scientic data should be a public good: replicability and transparency are 
benecial to science; FAIR data practices are desirable in principle; cooperation makes 
science more ecient and reduces scientic raud. However, a closer examination o 
what scientists proclaim ideally, versus what they actually practice, reveals a more 
ambiguous situation. Scientists need assurance o recognition o their work, and private 
entities that und research desire reasonable saeguards or a air return on their nancial 
investments. This implies that policies seeking to eectively boost scientic data sharing 
should aim to be tailored to meet the needs o discipline-specic practices and norms at 
both individual and institutional levels.

Accordingly, beyond the mechanisms identied in this study (data modularity, 
time delay, and boundary organisations), unding institutions and policymakers can 
consider additional levers that allow scientists to receive commensurate rewards or 
data cultivation and publication. Fundamentally, this means elevating the status o 
data curation rom a necessary input to the scientic process, to a valid, high-status 

Figure 5. Mechanisms that enable HEP and MB researchers to share data. The (+) show signicant 
motivator/deterrent o data sharing rom our study.
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outcome in its own right. Inspiration can be ound in the practices o patenting and 
sotware licencing which ensure that inventors share their knowledge in exchange 
or various rights. This implies that public agencies, academic institutions, and other 
arbiters o scientic merit, award data curation and publication greater status in 
unding decisions, recruitment and promotion processes, or other proessional 
accolades. Such structural changes could potentially have shorter-term eects in 
the individual cost-benet calculus o collective action (Fulk et al. 2004; Hardin 
1982; Ostrom 1990; Vitali, Mathiassen, and Rai 2018), as well as longer-term eects 
in the evolution o the epistemic cultures (Borgman 2012; Knorr Cetina 1999, 2007; 
Gläser et al. 2015).

It is also important to highlight that there are additional considerations that 
determine data sharing attitudes and behaviours across disciplines. Scientists are 
oten legitimately concerned with the potential misuse or erroneous interpretations 
o their results. The recent Covid-19 pandemic evidences the act that data publication 
is not an end in itsel, but must be tempered with qualied interpretation to inorm 
public health policy appropriately. By extension, FAIR data practices entail costs o 
documenting metadata and scientic procedures in a manner acilitate appropriate 
interpretation and communication, which, or elds such as public health or environ-
mental policy, are increasingly vital.

Many o these additional ‘costs’ (arbitration, interpretation, communication) are 
currently assumed by scientic organisations such as CERN, NASA, CDC, EMBL, etc. 
As such, our study inorms the potential eorts o other scientic communities currently 
less reliant on the cultivation o large data quantities, but increasingly so. In addition to 
appropriate application o modularity, time delay, and boundary organisations, inorma-
tion inrastructures can be designed with complementary mechanisms that oresee data 
sharing implications o beyond immediate scientic communities, but policy makers and 
the public at large.

6. Limitations and future research

Our ndings are subject to limitations that warrant urther investigation. Although 
the sample sizes in our survey were large, given the relatively short interval between 
2016 and 2018, this sampling is likely insucient to detect long-term patterns o 
data sharing behaviour. Additional surveys in the coming years can enrich our 
current data to uncover conounding relationships in scientists’ willingness to 
share data. Research that purposeully examines heterogeneity in data sharing 
practices across disciplines can benet rom in-depth comparisons o high- and 
low- intensity data sharing communities. Furthermore, while HEP and MB represent 
disciplines that are very capital-intensive, a research design ocusing on scientic 
contexts with dierent economic dynamics would be useul or extending our 
understanding o data sharing practices.

By using random selection methods to identiy respondents representative o the 
researcher population at large, our survey sought to mitigate selection bias. However, 
we acknowledge a potential bias o researchers: those more inclined towards sharing 
scientic data could have a greater propensity to respond to the survey invitation. In 
addition, while the sponsorship o a major publisher in the survey might have also 

242 L. PUJOL PRIEGO ET AL.



infuenced survey response bias, we estimate that the additional involvement o an 
academic consortium and the European Commission could have partially counterba-
lanced any respondent bias.

Finally, regarding the case study analysis, we acknowledge that the challenge o 
the case method is to generalise the ndings. Nevertheless, it is worth mentioning 
that there is a trade-o between internal and external validity. Our results are deeply 
grounded in the studied contexts, and we employed established procedures in 
inductive research to maximise the internal validity o our results. Consequently, 
we should be prudent in extrapolating our results to other contexts and scientic 
communities that do not display the same institutional and economic characteris-
tics. We encourage additional in-depth research across other epistemic cultures and 
academic disciplines to better inorm our understanding o how data sharing can be 
governed.

7. Conclusion

Data sharing is a practice intended or the collective benet o scientic progress. Yet, reasons 
or its gradual and disparate adoption are less obvious. Scientic communities are ar rom 
united and display heterogeneous practices and norms in the way science is produced and 
how merit and status are allocated. Consequently, a delicate system o mechanisms needs to 
be established to align individual and collective incentives. The use o modularity, time delay, 
and boundary organisations are pivotal in the inormation inrastructures created by the 
scientic disciplines currently at the oreront o scientic data sharing. Other academic 
communities that seek to ollow these examples can apply these mechanisms in a manner 
consistent with their own epistemic cultures and proessional practices.
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Appendix 1. Analysis of survey sample

Survey in this study UNESCO data

DiferenceFields
Percent among 

repondents Grouped Fields
Percent across all 

researchers Grouped

SocSci + Arts Hum 
+ Economics

15.3% 15.3% Social sciences 14.7% 20.8% −5.5%
Humanities 6.1%

(Continued)
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Survey in this study UNESCO data Diference

Fields
Percent among 

repondents Grouped Fields
Percent across all 

researchers Grouped

Lie Sciences 13.8% 38.1% Natural sciences 18.3% 24.2% 13.9%
Earth & Env. 

Science
12.9%

Physics & 
Astronomy

7.0% Agricultural and 
veterinary 
sciences

5.9%

Chemistry 4.4%
Computer Science 7.7% 31.9% Engineering and 

tech
41.6% 41.6% −9.7%

Engineering 15.9%
Material Science 4.1%
Maths 4.3%
Medicine and 

Allied Health
12.1% 12.1% Medical and health 

sciences
13.4% 13.4% −1.3%

Other 2.6% 2.6% 2.6%
Total 100.0% 100.0% Total 100.0% 100.0%
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