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ABSTRACT
Government unding entities have placed data sharing at the centre 
o scientic policy. While there is widespread consensus that scien-
tic data sharing benets scientic progress, there are signicant 
barriers to its wider adoption. We seek a deeper understanding o 
how researchers rom diferent elds share their data and the 
barriers and acilitators o such sharing. We draw upon the notions 
o epistemic cultures and collective action theory to consider the 
enablers and deterrents that scientists encounter when contribut-
ing to the collective good o data sharing. Our study employs 
a mixed-methods design by combining survey data collected in 
2016 and 2018 with qualitative data rom two case studies sampled 
within two scientic communities: high-energy physics and mole-
cular biology. We describe how scientic communities with difer-
ent epistemic cultures can employ modularity, time delay, and 
boundary organisations to overcome barriers to data sharing.
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1. Introduction

In September 2011, researchers in the Oscillation Project with Emulsion-tRacking 
Apparatus (OPERA) red a 730-km beam o muon neutrinos rom European 
Organisation or Nuclear Research (CERN) in Geneva, Switzerland to the Gran Sasso 
National Laboratory in central Italy at what appeared to be a velocity aster than the 
speed o light. Puzzled by this result, researchers uploaded the data, with unprecedented 
granularity, to the open access archive arXiv.org. The data included all the necessary 
procedural descriptions to enable other scientists to search or an explanation o this 
surprising violation o a physical law. Subsequently, more than 200 papers were posted 
on arXiv.org attempting to explain the anomalous result. With ruthless external scrutiny, 
the mystery was resolved within a year – the OPERA team announced the identication 
o two potential sources o timing error that had corrupted the measurements (Royal 
Society 2012). More recently, the COVID-19 pandemic has exemplied the value o 
scientic data sharing, as data sharing was critical or understanding the methods o 
transmission and inection o the SARS-CoV-2 virus, as well as the symptoms. Within 
a short time, the extensive and timely sharing o COVID-19-related data inormed the 
rapid development o vaccines (e.g. EMBL-EBI COVID-19 data portal)1 (Fegan and 
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Cheah 2021). There are numerous additional examples o the value o data sharing 
among scientic communities, although researchers across disciplines engage with data 
sharing in vastly dierent ways (Tenopir et al. 2015).

The relevance o data sharing has become prominent in recent years, as scientic 
research is generating ever-increasing volumes o data (Hey 2009). Some disciplines have 
a long tradition o working with high volumes o data, particularly the big science 
research inrastructures (Weinberg 1961) in physics and astronomy (Atkins et al. 2003; 
Borgman 2012, 2015; Carillo and Papagni 2014), whereas other scientic elds have just 
recently grown more data-intensive (EIROorum IT working group 2013). These dis-
ciplines include computational social science (Lazer 2009), digital humanities (Kaplan 
2015), social media data (Plantin et al. 2018), citizen science research projects 
(Hochachka et al. 2012), and political science and public policy (Lee, Almirall, and 
Wareham 2016).

With the increased quantity o scientic data, perspectives on data sharing have 
evolved, leading to an increase in the role and status o data. Scientic data are now 
recognised as a scholarly object in their own right, with dedicated journals such as 
Nature-Scientic Data. With this shit in perspective, the increase in data-intensive 
methods has been labelled the ‘ourth paradigm’ in science (Atkins et al. 2003; Hey 
2009), augmenting ‘the existing paradigms o experimental, theoretical, and computa-
tional science’ (Edwards et al. 2011, 670). As the potential o scientic big data grows, so 
too does the expectation to share data and allow others to mine, aggregate, and recom-
bine them with other data or novel applications: ‘I the rewards o the data deluge are to 
be reaped, then researchers who produce those data must share them, and do so in such 
a way that the data are interpretable and reusable by others’ (Borgman 2012, 1059). Data 
reuse can be acilitated by making data Findable, Accessible, Interoperable, and Reusable 
(FAIR)2 (Wilkinson et al. 2016). Recent studies have estimated the annual nancial cost 
o not sharing FAIR data to be at least €10.2bn or the European economy, while the 
impact o FAIR on potential economic annual growth is estimated to be €16bn annually 
(European Commission 2019).

The importance o sharing FAIR data comes as part o a more general ‘open’ move-
ment, embracing greater transparency in science (Edwards 2019). Starting with open 
access publishing, the open movement extends to open scientic data, open standards, 
open repositories, open bibliography, open lab-notebooks, open-source sotware and 
hardware – a virtually endless list o ‘open’ qualiers to all activities in the scientic realm 
(Friesike et al. 2015). The urgency o sharing FAIR data is not only based on concerns o 
reproducibility (Baker 2015) or scientic raud (Kuperschmidt 2018), but also in recog-
nition o the novel technological and scientic innovations that can result rom data 
sharing (Borgman 2010). As such, government unding entities, particularly in Western 
Europe and the United States, have placed open data at the crux o scientic policy. As 
European Union Commissioner or Research, Science, and Innovation, Carlos Moedas 
made open research data one o the EU’s priorities in 2015. This led to the ormation o 
several expert working groups (e.g. High-level expert group on FAIR data, the Open 
Science Policy Platorm, Expert group on altmetrics) to provide advice on how to oster 

2The term FAIR was launched in the Lorentz workshop in 2014. The resulting FAIR principles were published in 2016. See 
https://www.go-air.org/air-principles/
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and promote research data sharing in Europe. In 2016, the EU launched the Open 
Science Cloud initiative, which is a ederated data inrastructure with cloud-based 
services to provide the scientic community with an open environment or storing, 
sharing, and reusing scientic data. In parallel, many unding agencies now require 
that scientic data be publicly available: or example, the US National Institutes o 
Health (NIH) has required this since 2003 or grants over $500,000 (NIH 2003), the 
National Science Foundation (NSF) since 2010 (Borgman 2012), and the European 
Commission or the Horizon 2020 programme since 2014 (European Commission 
2014). Accompanying policy, new private and public entities have emerged to acilitate 
the aggregation and publication o research data. Examples include the Research Data 
Alliance and the National Data Service, as well as or-prot publishers who attempt to 
build on existing structures (e.g. Mendeley Data) (Borgman 2015). Platorms such as 
Dataverse (King 2007), FigShare (Thelwall and Kousha 2016), Zenodo (Peters et al. 
2017), DataHub (Bhardwaj et al. 2014), EUDat (Lecarpentier et al. 2013), and other 
data repositories3 that oer scholars new venues to archive and share their data have also 
emerged (Cragin et al. 2010).

Although scientic data sharing has been positively promoted or some time, several 
challenges that inhibit data sharing have become apparent. Critics have pointed out that 
data sharing imposes increased costs on scientists and their institutions without com-
mensurate proessional benets (Borgman 2015; Edwards 2019; Edwards et al. 2011; 
Tenopir et al. 2015; Wallis et al. 2013). More importantly, while consistent with the 
Mertonian norm o sharing to build cumulative academic knowledge (Merton 1973), 
data sharing clashes with a system o scientic rewards where ‘the rst person to discover 
a result gets the “prize” associated with discovery’ (Haeussler et al. 2014, 465; Dasgupta 
and David 1987; Stephan 1996). There is thereore a tension between Mertonian ideals 
and the actual incentives o scientists who perceive data sharing as costly without 
commensurate proessional recognition (Hagstrom 1974; Dasgupta and David 1994; 
Murray and O’Mahony 2007). While the prevalence o limited data sharing is known 
(Blumenthal et al. 1996; Campbell and Bendavid 2002; Haeussler et al. 2014; Mukherjee 
and Stern 2009), there is a limited understanding o the complexities and intricacies o 
how – and where – actual data sharing occurs.

To understand the enablers and deterrents o scientic data sharing practices, we draw 
upon both cultural and economic perspectives. From one side, we draw upon the notion 
o ‘epistemic cultures’, which originates rom the sociology o science and has been 
applied in organisational studies and Inormation Systems (IS) to understand inorma-
tion and knowledge sharing across communities (e.g. Kellogg, Orlikowski, and Yates 
2006; Mørk et al. 2008). We ollow anthropologist Knorr Cetina (1999) to understand the 
challenges and processes involved in scientists’ epistemic work. This perspective predicts 
that researchers rom dierent scientic communities will share relatively more – or 
less – compared to other scientic communities due to dierences in disciplines’ shared 
norms. On the other side, taking an economic perspective, we employ collective action 
theory (Hess and Ostrom 2003; Olson 1965; Ostrom 1990) to understand the disincen-
tives and deterrents that scientists ace when considering data contributions to common 
inormation inrastructures or the collective good (Constantinides 2012; Constantinides 
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and Barrett 2015; Vassilakopoulou, Espen, and Aanestad 2016). While both sociological 
and economic perspectives potentially oer theoretical explanations o dierences in 
scientists’ data sharing practices, the processes that lead researchers rom dierent 
scientic elds to share – or not share – are not well understood. Using a mixed- 
methods design (Venkatesh, Brown, and Bala 2013) (Figure 1), this study seeks to address 
two key research questions:

1.1. RQ1: why and how do researchers rom dierent scientifc felds share their 
data?

1.1.1. RQ2: what mechanisms mitigate deterrents to researchers’ data sharing?
To address RQ1, we employ survey data collected in 2016 (n = 1,162) and 2018 
(n = 1,029) to explore why and how scientists share their data, considering contextual 
dierences across scientic communities as well as data-sharing behaviour at an indivi-
dual level. For RQ2 we take a case study approach to identiy the mechanisms that 
overcome data-sharing deterrents by comparing two distinct scientic communities: 
high-energy physics and molecular biology (Knorr Cetina 1999). High-energy physics 
is a eld with a communitarian culture, whereas molecular biology is relatively indivi-
dualistic (Knorr Cetina 1999), and have both achieved high data sharing levels, but in 
dierent ways. Substantial dierences in the scientic technologies, processes, and norms 
between these two disciplines provide the variance needed to identiy and qualiy the 
levers and incentives that underpin data sharing practices.

The contributions o the paper are twoold. First, we provide evidence and develop 
theory about the enablers and deterrents o scientic data sharing behaviour. Specically, 
we provide a nuanced understanding o how both individual and discipline-level actors 
interact to determine researchers’ data sharing attitudes and behaviours. Consistent with 
predictions rom epistemic culture theory, we nd that researchers rom dierent elds 
vary in data sharing practices due to their experienced norms. In agreement with 
collective action theory, we also nd that researchers will respond to their perceived 
individual incentives regarding data sharing. Additionally, our analysis identies three 
concrete mechanisms – modularity, time delay, and boundary organisations – that 
overcome scientists’ limited data sharing as a collective resource o the scientic corpus. 
Elaboration o these mechanisms can inorm open science policies struggling to shape 
scientists’ willingness to embrace scientic data sharing.

Figure 1. The research design: a mixed-methods approach to address RQ1and RQ2.
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In the remainder o the paper, rst we contextualise the research setting by reviewing 
the background concepts o data sharing rom the organisational studies, IS, and Science 
and Technology Studies (STS) literature and identiy the incentives and reasons or 
sharing – or not sharing – scientic data. We then review the theoretical oundations 
o our research study and sequentially describe our methods and results. Methods and 
results rom the survey data are presented rst and then the methods and results rom the 
case studies (Venkatesh, Brown, and Bala 2013). Finally, we synthesise the ndings and 
discuss the theoretical and practical implications o the study, its limitations, and uture 
directions.

2. Conceptual background

‘Data are representations o observations, objects, or other entities used as evidence o 
phenomena or research or scholarship’ (Borgman 2015, 18). A more operational 
denition rom Open Archival Inormation System (OAIS) denes data as ‘a reinter-
pretable representation o inormation in a ormalized manner suitable or commu-
nication, interpretation, or processing’. Examples o data include: ‘sequence o bits, 
a table o numbers, the characters on a page, the recording o sounds made by a person 
speaking, or a moon rock specimen’ (Consultative Committee or Space Data Systems 
2012, 10).

An important qualication is that the research context determines what becomes 
data and how data are processed (Kallinikos and Constantiou 2015). As such, it 
becomes paramount that all relevant contextual inormation is gathered in the 
description o the data; that is, the correct and complete metadata are critical to 
optimising the utility o data across disciplines, time, geographies, or application 
domains (Edwards et al. 2011). The genesis o data may also aect an operational 
decision o whether to preserve the data and or how long (National Science Board 
2005). For instance, observational data are considered essential to preserve, because 
they are the most dicult to replicate. Nevertheless, the question remains as to who 
makes such decisions: who has the authority to decide whether to destroy, share, or 
withhold data?

Historically, the dominant perspective is that the ‘producers’ o scientic data hold the 
authority to disclose or withhold it. Yet, with the increasing volumes o data generated by 
publicly unded programmes and computationally intensive environments, the ‘scientist- 
as-owner’ paradigm obscures a rather complex and more subtle picture o the dierent 
stakeholders involved in data production. Whether it is the scientist, team, lab, reposi-
tory, or other organisational layer, the allocation o data ownership requires a careul 
examination o how data-sharing incentives and deterrents interact across diverse insti-
tutional levels.

2.1. Enablers and deterrents or data sharing: two theoretical perspectives

The tenor o Isaac Newton’s amous quote – ‘I I have seen urther than others, it is by 
standing upon the shoulders o giants’ (Kuhn 1962) – is still prevalent in scientic 
practice. The progression o science relies on the accumulation o knowledge and, 
thus, the sharing o the results o prior research. Yet even though the economic costs 
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and needed eorts o data processing and storage are alling (Romasanta and 
Wareham 2021), how the accumulation and reuse o knowledge occurs within and 
across disciplines is oten unclear, conounding scientists’ motivations or data 
sharing.

Prior literature suggests that while authors are initially the copyright holders o their 
academic publications, the jurisdiction over the data is more ambiguous: uncertainty 
around ownership, control, and access to the data generates tensions amongst stake-
holders (Borgman 2015). ‘Even when individuals and groups assign authority or data, 
the rights and responsibilities may remain unclear’ (Bowker and Leigh Star 1999, 646). As 
a consequence, policymakers, unders, and academic institutions are working to increase 
awareness that, while the publications and knowledge derived rom research data pertain 
to the authors, research data needs to be considered a public good so that its potential 
social and scientic value can be realised (European Commission 2014; OECD 2015; 
Järvenpää and Markus 2018; Vassilakopoulou, Espen, and Aanestad 2016).

2.2. Epistemic cultures

Knorr Cetina (1999) coined the notion o epistemic cultures to describe ‘those amalgams o 
arrangements and mechanisms – bonded through anity, necessity and historical coin-
cidence – which, in a given eld, make up how we know what we know’ (p. 1). The notion 
o epistemic culture claims that the nature o scientic activities, types o reasoning, and 
practices o establishing evidence are variable across scientic elds. The epistemic cultural
approach disputes the ‘unity o science’ associated with the Vienna Circle (Knorr Cetina 
1999) and ‘reveals the ragmentation o contemporary science’ (Mørk et al. 2008, 15).

The concept o dierent scholarly cultures can be drawn back to the idea o ‘styles o 
thought’ shared by ‘thought collectives’ (Knorr Cetina 1999); it also relates to a concept o 
‘thought worlds’ (Dougherty 1992) or the idea o ‘communities o knowing’ (Boland and 
Tenkasi 1995). Haas (1992) used the notion o ‘epistemic communities’ to dene groups 
o people engaged in knowledge production. The general and universal idea across such 
notions is that knowledge is situated and local. ‘There is no “view rom nowhere” – 
knowledge is always situated in a place, time, conditions, practices, and 
understandings’(Borgman 2012 p.37).

In the context o our study, Knorr Cetina’s ideas are useul because the denition o 
‘culture’ is rooted in practice. The ‘epistemic machinery’ denes the shared tools, 
techniques, instruments, methods, and architectures o shared empirical practices that 
the epistemic subjects use to produce and distribute knowledge. She describes the making 
o science through interiorised processes where scientists, organisations, and collectives 
operate (e.g. labs and experiments) (Knorr Cetina 2007).

Employing Knorr Cetina’s lens, data sharing practices would be expected to be 
community-bound and largely determined by epistemic culture. This is logical i we 
consider the long cycles through which new members are trained; the specicities in the 
technology tools; the commonly accepted methods, unding sources, collaborative 
norms; and the ways in which responsibility and authorship are assigned. Dierences 
in data sharing practices would also depend on whether the scientic community is more 
communitarian or individualistic: a communitarian culture should be predisposed to 
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share, with ewer concerns about individual incentives and rewards; whereas an indivi-
dualistic culture would be more driven by individual motivations that give weight to the 
costs o sharing data and the lack o clear individual compensations.

2.3. Collective action theory

To examine the mechanisms by which sel-interested researchers would contribute to 
a data as a public good, we employ collective action theory and the idea o a data as 
commons. The term ‘commons’ designates a ‘resource shared by a group o people that is 
subject to social dilemmas’ (Hess and Ostrom 2003 p.3).

Collective action theory has been widely used in sociology and economics to under-
stand individuals’ motivation to engage in collective action (Fulk et al. 2004; Monge et al. 
1998). Collective action research originated with Olson’s work in the classic Logic o 
Collective Action (Olson 1965), rom which Hardin (1968) developed his ‘tragedy o the 
commons’ thesis, suggesting that uncontrolled individual sel-interest pursuits can 
undermine common public resources (Greco and Floridi 2004). In other words, the 
tragedy o the commons can be viewed as a prisoner’s dilemma (with n-people) where the 
rational pursuit o sel-interest results in suboptimal management o public resources 
and social goods (e.g. orests, sheries) (Greco and Floridi 2004; Fletcher and Zwick 2000; 
Ostrom 1986).

As Hardin (1982) described, communities benet when the individual perceives 
gains rom making contributions to the commons. I such benets are not per-
ceived, the shared pool o resources is ‘latent’ and can deteriorate without external 
intervention. What makes collective action useul in understanding scientic data 
sharing is its ocus on how the appropriation o individual gains is determined by 
adjusting the costs and benets that accrue with contributions to a common 
resource (Fulk et al. 2004; Ostrom 1990; Vitali, Mathiassen, and Rai 2018; Weill 
and Ross 2004).

Table 1 summarises common reasons cited to justiy the benets o data sharing along 
with requent explanations or deterrents. Interestingly, whereas arguments or data 
sharing refect benets to the scientic community, reasons not to share data are 
predominantly based on concerns that individual costs exceed individual benets. 
While not exclusively so, the theory o epistemic cultures largely emphasises norms 
that avour data sharing, where collective action theory is predominantly concerned 
with sel-interest and individual costs.

3. Methods and results

We rst present the methods and results o the analysis o the survey data. We then 
ollow with the case studies and synthesise the ndings rom both (Venkatesh, 
Brown, and Bala 2013). The synthesis o the results in the discussion is 
a ‘bridging’ process (Creswell 2018), where we leverage the complementarities across 
the ndings to enrich our empirical and theoretical understanding o scientic data 
sharing practices.
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3.1. Survey

3.1.1. Methods and data
We developed a large-scale global online survey in the ramework o the Open Science 
Monitor or the European Commission4 in collaboration with a consortium o scholars 
including a major academic publisher, and responses were collected in 2016 and 2018. 
The survey data allow us to address RQ1- why and how do researchers share their data? 
The survey o 2016 was sent in June–July 2016 by the publisher and generated 1,162 
responses, which represented a 2.3% response rate. The margin o error or 1,162 
responses was estimated ± 2.87% at 95% condence levels (see prior analysis o the 
survey and ull dataset in Meijer et al. 2017). The survey o 2018 was sent in October– 
November 2018 to 40,991 individuals randomly selected rom the Scopus author data-
base, weighted to be representative o the researcher population (UNESCO counts o 
researchers, 2013), to which 1,029 researchers responded (2.5% response rate). The 
responses in both surveys were anonymous, not containing any personal identiying 
inormation. There were several dierences between the 2016 and 2018 survey ques-
tionnaires: our additional questions were added in 2018 to assess the consequences o 
data sharing or scientists in their uture collaborations with or-prot entities. 
Additional minor modications were introduced in the 2018 questionnaire to improve 
semantic clarity.

By using random sampling methods to ensure that the individuals selected were 
representative o the researcher population at large, the study sought to mitigate potential 
selection bias. Nonetheless, we can compare UNESCO’s count o researchers across elds 
with the mix we received rom respondents in the survey. As we report in the Appendix, 
we have overrepresentation in the natural sciences and slight underrepresentation in 
engineering.

In the rst phase o the analysis, we explore which actors promote or inhibit 
data sharing among individual researchers. Specically, we examine two aspects: 1) 
their willingness to let others access their research data, and 2) actual experience in 
sharing their data. By analysing both attitudes and behaviours, we obtain a more 
holistic picture o data sharing. These two variables were measured through 
a 5-point Likert scale.

The independent variables were the actors related to data sharing enumerated in the 
literature review. For each o these actors (Table 2), we identied relevant survey 
questions as proxies to represent each enabler or deterrent, which were either ordinal 
or binary. The ordinal variables were measured through a 5-point Likert scale o agree-
ment with statements provided. The binary variables were rom a question asking 
respondents about the benets o data sharing in their eld.

Respondents with missing data or a response o N/A were removed rom the 
analysis. This let us with 491 respondents with complete data across the dierent 
variables we wanted to test in Table 2. Due to the dominance o non-continuous 
variables, we used diagonally weighted least squares (DWLS) to estimate the model 
parameters through the lavaan package in R (Rosseel 2012). DWLS is robust against 
non-normality and works better with ordinal data than maximum likelihood meth-
ods (Mîndrilă 2010) and perorms well with smaller sample sizes (Flora and Curran 
2004).
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In the second phase o the analysis, we explored the dierences in data sharing 
practices across scientic communities. We looked at the same two aspects o research-
ers’ data sharing: willingness to let others access their data and actual experience sharing 
data. Considering the ordinal nature o these variables, we used the Kruskal-Wallis test to 
determine whether dierent research elds have distinct willingness and experiences in 
sharing data. Kruskal–Wallis is a nonparametric statistical test that assesses the dier-
ences among three or more groups (Kruskal and Allen Wallis 1952; McKight and Najab 
2010). In contrast to one-way Analysis o Variance (ANOVA), which is used or normally 
distributed continuous variables, Kruskal–Wallis is more appropriate or ranked data 
such as those rom our survey. To identiy which specic elds share more – or less – 
than other elds, we ollowed up with Dunn’s test, the pairwise multiple-comparison 
procedure used when a Kruskal–Wallis test is rejected (Dunn 1961; Dinno 2015). To 
correct or the increased alse positives that arise rom conducting more statistical tests, 
we also present the results ater Holm’s sequential adjustment (Holm 1979).

3.1.2. Findings of the survey
We began the analysis with a ocus on data sharing or individual researchers. To do this, 
we used the various actors identied under epistemic cultures and collective action and 
related these to both researchers’ willingness and previous experience in data sharing.

We ound support or epistemic norms stimulating data sharing. Our results suggest 
that researchers had positive data sharing outcomes in both attitude and behaviour, i 
they believed that the data are crucial to the advancement o their research eld.
Moreover, the push or data reproducibility, data reuse, and collaborations in their 
eld also seemed to lead researchers to engage with data sharing (Table 3). 
Furthermore, supporting individual incentives to overcome collective action problems 
was related to positive data sharing outcomes. Compliance with unding bodies was 
related to increased willingness to share data. Receiving necessary skill training also 
seemed to lead to data sharing engagement. In summary, various individual-level actors 
seemed to motivate researchers’ sharing o data.

We present varying attitudes and behaviour towards data sharing among scientic 
disciplines in Figure 2. Visual examination shows a mixed nding, where many disciplines 
are similar in data sharing, and some disciplines in the extremes share more or share less 
compared to the average. To make a better judgement o these disciplines’ dierences, we 
used the Kruskal-Wallis test, which conrmed that certain disciplines dier in their data- 
sharing activity. By their willingness to allow others access to research data, we ound 
dierences across disciplines (statistic = 26.9, p-value = 0.003). Moreover, in their experi-
ence sharing o data, we also ound signicant dierences (statistic = 25.7, p-value = 0.004).

To identiy which disciplines diered in data sharing, we used post-hoc pairwise Dunn 
test with Holm correction. Researchers in environmental sciences tend to be the most 
willing to allow others access to their research data. This is relative to the disciplines o 
medicine and engineering, where many respondents mentioned that they are not as 
engaged in data sharing. As or the remainder o the disciplines, we do not nd 

4Open Science Monitor: https://ec.europa.eu/ino/research-and-innovation/strategy/goals-research-and-innovation- 
policy/open-science/open-science-monitor_en
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signicant dierences in their sharing o data. In continuation, we explored the various 
outcomes o data sharing: with whom data is shared, where it is shared, and what type o 
data is shared. This inormation is summarised in Figure 3.

Regarding the question o with whom researchers tend to share their data, we nd that 
they are highly discriminatory. Although they may grant non-collaborators access to 
their data through personal communication, we see that researchers tend to be most 
comortable sharing with collaborators they know personally. This was consistent across 
all elds. The most variance we see across elds is whether they share data with their 
research partners such as unders (Figure 3).

Location o data storage diered signicantly among the disciplines. Certain elds 
preer to publish data (1) in the appendix, (2) as stand-alone peer-reviewed data pub-
lications, (3) in data repositories, or (4) through other avenues altogether. Finally, elds 
also vary across the types o data they generate and, logically, the types o data they are 

Table 2. Factors related to data sharing.

Variable Survey question
Relevant actor 

represented Type

Data sharing (Dependent variables)
Willingness I am willing to allow others to access 

my research data
Data sharing 5-point scale (Strongly 

disagree to Strongly 
agree)

Experience I have previously shared my research 
data with others

Data sharing 5-point scale (Strongly 
disagree to Strongly 
agree)

Enablers: Epistemic culture lense
Reproducibility o 

research
Reproducibility o research Reproducibility Yes/No

Data reuse Data reuse Higher scientic 
eciency and 
progress

Yes/No

Research 
aggregation

Research aggregation Higher scientic 
eciency and 
progress

Yes/No

Importance o data 
sharing in eld

Sharing research data is important or 
doing research in my eld

Higher scientic 
quality

5-point scale (Strongly 
disagree to Strongly 
agree)

Collaboration More possibilities or collaboration Higher scientic 
quality

Binary

Deterrents: Collective action incentives
Data sharing 

rewarded in eld
Sharing research data is associated with 

credit or reward in my eld
Personal credit/ 

rewards
5-point scale (Strongly 

disagree to Strongly 
agree)

Higher paper 
acceptance

Article more likely to be accepted or 
publication

Personal credit/ 
rewards

Yes/No

Higher citation Article more likely to be cited Personal credit/ 
rewards

Yes/No

Compliance to 
unding body

Compliance with unding body 
mandates

Misuse and liability
concerns

Yes/No

Compliance with 
journal/publisher

Compliance with journal or publisher 
requirements

Misuse and liability
concerns

Yes/No

Training I have received sucient training in 
research data sharing

Lack o skills 5-point scale (Strongly 
disagree to Strongly 
agree)

Costs Eort required prior to sharing data Costs to prepare data 5-point scale (Strongly 
disagree to Strongly 
agree)
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willing to share. Across all elds, the primary type o data that researchers generate is 
numerical, ollowed by textual data, although elds do not vary in their rates o sharing 
such data.

What becomes clear rom the survey results is that data sharing is a practice that 
varies not only across disciplines, but also between researchers rom the same disci-
pline. In other words, the results o the questionnaire thus ar reveal a complex picture 
where discipline-level and individual-level actors are highly interlinked. Consistent 
with an epistemic culture explanation, we see that certain disciplines are more open to 
sharing than others. Additionally, consistent with a collective action perspective, we 
nd that individual researchers within the same discipline can vary in their data 
sharing.

To contextualise our subsequent cases studies, we highlight the specic results or 
physics and astronomy and lie science as they compare to all other elds across the 
survey items. Both the disciplines o Lie Science and Astronomy/Physics share data at 
high levels as compared to the other elds surveyed. As seen in Figure 4, they share the 
same motivators and deterrents in data sharing despite the theoretical dierences pre-
viously emphasised in the literature. Comparing the two would provide useul cross- 
discipline variance or addressing RQ2.

Table 3. Researcher willingness to share data or various reasons and experience o it.
Willingness Experience

Epistemic culture Reproducibility o research 0.287 
(0.131)*

0.181 
(0.119)

Data reuse 0.205 
(0.118)

0.366 
(0.117)**

Research aggregation 0.111 
(0.122)

−0.017 
(0.114)

Importance o data sharing in eld 0.565 
(0.08)***

0.568 
(0.072)***

Collaboration 0.251 
(0.118)*

0.181 
(0.113)

Collective action Data sharing rewarded in eld 0.094 
(0.053)

0.029 
(0.047)

Higher paper acceptance −0.199 
(0.113)

−0.023 
(0.115)

Higher citation −0.179 
(0.109)

0.007 
(0.106)

Compliance with unding body 0.360 
(0.166)*

0.293 
(0.172)

Compliance with journal/publisher 0.034 
(0.130)

0.027 
(0.130)

Training 0.091 
(0.047)

0.136 
(0.046)**

Costs −0.048 
(0.071)

0.072 
(0.070)

N 491 489
Test statistic 0.000 0.000
R2 0.278 0.143

p-values: * <0.05, ** < 0.01, ***<0.001 
Analysis perormed in survey data 2018
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4. Case studies

4.1. Methods and data

To capture the data sharing practices o lie science and physics, we thematically sampled 
(Creswell 2018) high-energy physics (HEP) and molecular biology (MB) communities’ 
practices anchored in two inormation inrastructures. Inormation inrastructures have 
been dened as ‘a digital library system based on commonly shared standards and 
containing inormation o both local and/or widespread interest’ (Kahn and Cer 
1988, 3), designed or intended ‘to augment our ability to search or, correlate, analyse 
and synthesize available inormation’ (Kahn and Cer 1988, 11). Our decision to ocus on 
inormation inrastructures (as opposed to less-institutionalised data sharing practices) is 
because the highest data sharing levels are in communities that actively use inormation 
inrastructures (Edwards et al. 2009; Ribes and Lee 2010). Both cases represent 

Figure 2. Data sharing by discipline.  
The elds are ordered by their researchers’ average experience sharing data. The elds included are 
Maths (MATHS), Medicine and Allied Health (MED), Engineering (ENG), Materials Science (MAT SCI), 
Computer Science (COMP SCI), Social Sciences, Humanities & Economics (SOC HUM ECON), Chemistry 
(CHEM), Physics & Astronomy (PHY), Lie Sciences (LIFE SCI) and Earth & Environmental Science (ENV). 
The responses o ‘N/A’ and ‘Neither agree nor disagree’ were let out or clarity. Width relates to 
sample size. + denote signicant dierence to at least one other eld ater posthoc Dunn test without 
adjustment (p-value<0.05). * denote elds that continue to have signicant dierences to at least one 
other eld ater posthoc dunn test with Holm adjustment (p-value <0.05).
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inrastructures based upon data commons, i.e. inrastructures that co-locate data, sto-
rage, and computing acilities with commonly used services and tools or analysing and 
sharing data or a dened base o users (Grossman et al. 2016).

4.1.1. Empirical context 1: molecular biology and open targets
The sequencing o the human genome (Human Genome Project, HGP) is recognised 
as ‘the largest undertaking in the history o biological science’ (Chaguturu, Murad, and 
Murad 2014, 35). Not only did it transorm biology into a data-driven discipline with 
a deluge o new data and computational techniques, but it also opened the debate 
about research data sharing. Celera, a private undertaking, initially announced their 
intention to patent ully-characterised important structures amounting to 100–300 

Figure 3. Data sharing outcomes across all elds.  
Plots show percent responses across researchers rom all elds. Asterisks denote p-value ater Kruskal– 
Wallis test (* <0.05, ** < 0.01, ***<0.001) comparing dierent elds in their responses. The type o 
data shared is less than 100% due to researchers saying that it is not very important in their eld.
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genetic targets, which prompted considerable outcry (Leonelli 2012). In March 2000, 
U.S. President Bill Clinton announced that the data on the Human Genome Project 
(HGP) sequence should be made reely available to the entire research community. The 
HGP propelled discourse and debates on open research data to the oreront o 
molecular biology research (Leonelli 2012) and spawned a new generation o inorma-
tion inrastructures to generate, integrate, and curate the growing data pools with 
commonly used tools and analytical methods (Grossman et al. 2016; Vamathevan et al. 
2019). As a result, the discipline has been very active in developing inrastructures 
based upon data commons, one o them being Open Targets (Pujol Priego and 
Wareham 2018).

Open Targets (OT) is a MB consortium created in 2015 by the European Molecular 
Biology Laboratory-European Bioinormatics Institute (EMBL- EBI), Europe’s fagship 
laboratory or lie science, with the Wellcome Sanger Institute, and ve pharmaceutical 
companies (i.e. Biogen, Celgene, GSK, Sano, Takeda); it aims to accelerate knowledge 
about the links between genetic targets and disease development. The OT consortium 
includes publicly unded, non-prot, and or-prot organisations with vastly divergent 
institutional objectives and stakeholders. The inrastructure started as a result o phar-
maceutical companies searching to scale requisite R&D capabilities by generating, inte-
grating, and curating large data pools with commonly used tools and analytical methods 
about the early phases o drug discovery or the research community (Grossman et al. 
2016; Vamathevan et al. 2019). The architecture, data policies, and procedures rom 
researchers participating in OT provide insights about the mechanisms that eectively 
oster data sharing across the MB research community. As o this writing, OT inra-
structure contains more than 27,717 genetic targets, 7,999,050 associations, 13,445 
diseases, and 20 data sources (Open Targets 2020).

Figure 4. Comparison o data sharing among disciplines, highlighting lie sciences and physics/ 
astronomy.  
For reerence, we also show the mean response across all elds. For questions with 5-point Likert scale coded 
rom 0 to 4, we divided the response by 4 or the plot. All the statistical analysis was done with the original 
(non-transormed) data through Kruskal–Wallis test. Asterisks denote p-value ater Kruskal–Wallis test 
comparing the two elds o Lie Science and Astrophysics in their responses. (* <0.05, ** < 0.01, ***<0.001).
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4.1.2. Empirical context 2: high-energy physics and reana
Big scientic research inrastructures within HEP, such as CERN, have a long tradition 
o embracing open data. Large volumes o data generated via expensive, unique, and 
elaborate experiments make data preservation and reuse important. Reana is a reusable 
and reproducible research data analysis inrastructure that was created at CERN in 
2018 to acilitate data and code reuse. The inrastructure was initiated to combat the 
reproducibility crisis in the particle physics eld. CERN built Reana as a data inra-
structure to allow the dierent HEP experiments to adhere to FAIR principles and 
acilitate data sharing and reuse in the community. Reana allows the reuse and 
reinterpretation o the data shared by helping HEP scientists to structure their input 
data, analysis code, containerised environments, and computational workfows to run 
the analysis on remote clouds (Pujol Priego and Wareham 2019). What makes Reana 
attractive is that the inrastructure helps to generalise computational practices 
employed by HEP scientists, thereby systematising reproducibility. The inrastructure 
supports a plurality o ‘container technologies (Docker), workfow engines (CWL, 
Yadage), shared storage systems (Ceph, EOS) and compute cloud inrastructures 
(Ku- Kubernetes/OpenStack, HTCondor)’ used by the HEP scientic community 
(Simko et al. 2018, 1). The inrastructure sits on extant platorms and services provided 
by CERN to the HEP community; these include Zenodo, a ree and open data 
repository, and CERN open data portal, both o which are precedents to Reana 
inrastructure (Pujol Priego and Wareham 2019).

4.1.3. Data sources and analysis
The study o both cases relies on the diverse primary and secondary data sources 
described in Table 4. Numerous discussions with managers rom Open Targets and 
Reana were an integral part o the Open Science Monitor, published by the European 
Commission in separate reports (Pujol Priego and Wareham 2018, 2019). Primary data 
included 18 semi-structured interviews and direct observations rom a study visit at the 
Wellcome Genome Campus or the OT open days (June 2019) and recurrent study visits 
at CERN rom 2018–2020. As part o participation in the two additional EU H2020 
unded projects, the authors beneted rom extensive conversations with policymakers, 
research inrastructure managers, data architects, and programmers, in which they 
discussed data sharing practices and uture open research data initiatives 
(CS3MESH4EOSC part o European Open Science Cloud and ATTRACT unded by 
Research Inrastructure Innovation H2020-INFRAINNOV). The interview process was 
concluded when no signicant additional insights were obtained rom the data, and 
theoretical saturation was achieved.

Secondary sources included data rom media outlets, with 47 publications resulting 
rom OT and Reana, 1 tutorial and 12 runnable examples about how to use the inra-
structures. Additionally, 8 blog posts, 25 release notes, 2 webinars, several workshop 
presentations, and inormation available in the dierent HEP experiments and OT 
organisations’ websites were used. These secondary sources were very useul in the rst 
stages o the analytical processes, enabling us to have more technically inormed con-
versations in both the inrastructures and data sharing practices. The combination o our 
primary data with secondary data allowed us to crosscheck ndings and build our 
theoretical inerences rom the cases.

234 L. PUJOL PRIEGO ET AL.



Data were analysed by perorming a two-stage inductive analysis, relying on established 
procedures or inductive research (Miles and Huberman 1994). The rst stage was devoted 
to reading the abundant material available online about OT, HEP experiments, and Reana. 
We produced brie summaries that moved rom technical descriptions o the inrastruc-
ture to managerial inerences. In-depth interviews were then conducted to understand 
how scientists use the inrastructures. We perormed the interviews and analysis in several 
iterations, and thus earlier transcripts inormed and incorporated inormation emerging 
rom later interviews. In addition, we contrasted the transcripts rom the interviews with 
our analysis o secondary sources. We generated research memos that synthesised the 
emergent themes identied in the analysis and compared them with prior research. 
Finally, to validate our ndings, we applied respondent validation (Miles and Huberman 
1994) by sharing our initial ndings with the study participants.

4.2. Findings o the case studies

Preliminary observations about HEP and MB communities suggest two dierent epis-
temic cultures consistent with Knorr Cetina’s thesis, with HEP being more communitar-
ian and MB more individualistic. When looking at how HEP data fows are organised, we 
rst realised the importance o the institutional entity o ‘the experiment’. In HEP, 
a limited number o capital-intensive experiments have been designed and constructed 
over 20 years. For example, CERN currently hosts seven large experiments on the Large 
Hadron Collider, our o which are elaborate international collaborations (ATLAS, CMS, 
ALICE, LHCb). By contrast, MB is organised around the ‘laboratory’ – or even teams 
within a single institution. Very oten, the molecular biologists are shaped by the 
conviction that they need to compete ‘or the priority o important ndings’ (Knorr 
Cetina 1999), generating competition within – and across – laboratories.

When comparing how HEP and MB ascribe contributions to an individual scientist, 
we soon realised that HEP publications list a vast number o authors, as the construction 
and operation o HEP experiments oten depends on many people; the record being over 

Table 4. Data collection sources or both Molecular Biology (MB) and High-Energy Physics (HEP).
MB – Open Targets HEP- Reana and related platorms

Primary data 
sources

13 interviews with scientists and managerial 
team o OT

5 interviews with scientists and managerial team o 
Reana and related platorms; and 4 interviews with 
CERN programmers and data architects.

Observations Study visit to Genome Campus OT Open Days – 
workshop, working groups and social event 
(June 2019)

Study visits to CERN (2018, 2019, 2020). 
Partner in H2020 unded CS3MESH4EOSC, 
a constituent project o the European Open Science 
Cloud https://cordis.europa.eu/project/id/863353, 
and ATTRACT https://attract-eu.com/. Interviews 
and discussions with open data related services at 
CERN (Zenodo, Open Data Portal, CS3- 
ScienceMesh).

Secondary 
data 
sources

41 publications 
1 tutorial on OT inrastructure 
3 outreach posts; 19 release notes; 6 posts; 7 
websites

Experimental data policy and guidelines: CMS, ALICE, 
ATLAS, LHCb, OPERA data policy; CERN open data 
terms o use; 22 guidelines in CERN open data 
portal; CERN Analysis Preservation Portal; Joint 
declaration and Taskorce documentation on HEP 
data preservation; Reana workshop presentations 
June 2018; 12 runnable examples o Reana; 6 
publications, 6 release notes, 2 blog posts.
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5,000 authors on one article rom CERN (Aad et al. 2015). In MB, although there are also 
challenges in ascribing results to individual scientists, the experiments are typically ar 
less capital-intensive and permit dierentiation in contributions within smaller teams. 
Finally, it is worth noting that some MB research is closer to commercial organisations 
(lie sciences and pharma), whereas HEP is traditionally considered basic research with 
a more extended pathway towards any commercial outcome (Wareham et al. 2021; 
Romasanta et al. 2021). Accordingly, we would expect a more competitive culture with 
less data sharing in MB than HEP.

4.2.1. Open targets
The architecture o the OT data inrastructure is modular, containing dierent layers o 
access rights and data standards that employ a variety o mechanisms or researchers to be 
able to share their data (compliant with post-HGP norms). The stratied architecture grants 
dierent access rights to the data, where data generators are awarded complete access to 
a hidden layer, augmented by a public data layer (with dierent rights) that is accessible to 
any researcher willing to reuse the data. This modularity simultaneously allows researchers 
to grasp any individual or competitive benets o being the generators o the data, while also 
being compliant with the collective norms o data transparency and sharing.

The modular architecture, with dierent access rights, also engages a time delay 
between the generation o the data and the publication o the data in the inrastructure 
that spans, on average, two years. As an inormant explains: ‘Everybody understands that 
until there is a ormal publication ater the project, there is no disclosure.’

Finally, the inormation inrastructure acts as a ‘boundary organisation’ (O’Mahony 
and Bechky 2008); that is, ‘structures capable o eectively mediating between disparate 
constituencies and establishing common ground among the diering interests in the 
play’ (Perkmann and Schildt 2015, 1134). An interviewee explains: ‘There is a need to 
coordinate the integration o data into OT, both rom the projects that generate data but 
also with the data providers such as Chembl and Uniprot and all the data that goes into the 
platorm to keep it up to date. We also work with the developer team that creates some o 
the eatures that users will use to visualize the data coming through.’

Modularity and time delay are coordinated by the boundary organisation: normative 
governance on data access and reuse is embedded in the inrastructure, where the 
ownership and responsibilities over the data are explicit. These three mechanisms t in 
a ‘logic o exchange’ that seeks to maximise benets or the researchers (that is, the 
potential o data reuse and the commercial interests o data generators), while minimis-
ing the costs o sharing data (e.g. loss o potential commercial value, publication rights, 
recognition). This is achieved through protocols and data standards. The act that or- 
prot companies orm a signicant part o the OT consortium suggests that the mechan-
isms developed are eective in balancing incentives to scientists while mitigating the risks 
o a competitive loss to other re-users o their data.

4.2.2. Reana
CERN built Reana upon data access and preservation policies agreed within the main 
experiments. Although the data policies may dier slightly across experiments, they all 
stratiy the data generated by the HEP community in our main layers: (a) data directly 
related to the publications, which include the complete documentation or the published 
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results; (b) simplied data ormats devoted to training exercises within the physics 
community; (c) reconstructed data, simulations, and sotware analysis to acilitate 
research analysis; and nally, (d) the raw data and associated sotware, allowing access 
to the ull potential o the experimental data’s reuse (Pujol Priego and Wareham 2019). 
Data sharing is concentrated in data layers (b) and (c). Raw data (d) are not made 
available to other researchers to reuse or pragmatic reasons. For instance, one o the core 
CERN experiments, CMS (Compact Muon Solenoid), produces on average 1 petabyte 
(100 gigabytes) o ‘raw’ data per second; similar data volumes characterise other experi-
ments. As the Large Hadron Collider (LHC) data policy explains5 ‘It is practically 
impossible to make the ull raw data-set rom scientic endeavours o the scale o high- 
energy physics easily usable in a meaningul way outside o the collaboration [. . .]It should 
be noted that, or these reasons, direct access to the raw data is not even permitted to 
individuals within the collaboration, and that instead the production o reconstructed data 
is perormed centrally.’

Experiments also employ a time delay between the generation o the experi-
mental data and the time o sharing with the external research community. These 
periods are also reerred to as embargo periods that allow the data generators within 
the experiment to publish the results. As explained in the LHC experiment data 
policy: ‘In general data will be retained or the sole use o the collaboration or 
a period commensurate with the substantial investment in the eort needed to record, 
reconstruct and analyse those data. Ater this period, some portion o the data will 
then be made available externally, with this proportion rising with time . . .. The 
portion o the data which LHCb would normally make available is 50% ater ve 
years, rising to 100% ater ten years.’

The main idea behind Reana’s inrastructure is to preserve sotware and data work-
fows so that they can enhance collaborative scientic work and diuse knowledge o the 
experimental procedures (Dphep Study Group 2009). Such data sharing protocols and 
preservation techniques are embedded in the Reana ramework and reinorce the need 
or quality metadata: ‘Our own experience rom opening up vast volumes o data is that 
openness cannot simply be tacked on as an aterthought at the end o the scientic 
endeavour. Besides, openness alone does not guarantee reproducibility or reusability, so 
it should not be pursued as a goal in itsel. Focusing on data is also not enough: it needs to 
be accompanied by sotware, workfow, and explanations, all o which need to be captured 
throughout the usual iterative and closed research liecycle, ready or a timely open release 
with the results’ (Chen et al. 2018).

Reana acts as a boundary organisation or ‘interace’ to the experiment’s knowhow, so 
that other researchers outside the experiment can reuse it. While normative governance 
dening data access rights and responsibilities exists, it applied aapplied at the experi-
ment level, not the inrastructure level. As such, the inrastructure is required to respect 
distinct data policies.

Table 5 provides a detailed description o the progression o our empirical 
analysis towards the three theoretical constructs: modularity, time delay, and bound-
ary organisations. Table 6 summarises the similarities and dissimilarities identied 
rom the Open Targets (MB) and Reana (HEP) analyses. While both scientic 
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communities employ similar mechanisms to overcome scientists’ deterrents to share 
data, they dier in how such mechanisms are used in their respective inrastructures 
and scientic communities.

5. Discussion

Our study aimed to answer two research questions: (1) Why and how do researchers 
rom dierent scientic elds share their data? and (2) What mechanisms enable 
researchers to share their data? Regarding RQ1, we nd that data sharing varies sig-
nicantly across certain disciplines, although data sharing attitude and experience can be 
similar across elds. Most o the data sharing is carried out between collaborators on the 
same projects, suggesting that researchers adopt a discriminatory approach by sharing 
data with selected partners. Addressing RQ2, we nd that communitarian and indivi-
dualistic scientic communities employ three mechanisms (with some variation) to 
enable data sharing: (1) modularity, (2) time delay, and (3) boundary organisations. 
These mechanisms serve to establish transparent data governance and acilitate the 
identication o the ‘bona de’ researcher.

Scientists are oten proessionally competitive. In this sense, individual incentives, 
proessional recognition, and status are important components o a scientist’s career. 
However, nothing precludes collective norms and values rom coexisting alongside 
individual motives; most scientists care about advancing science as a social good yet 
seek recognition or their contributions to it. Our survey evidence suggests that data 
sharing perceptions and practices are highly variable among academic disciplines. We 
iner that dierences in the balance between individual and collective orientations 
explains, at least partially, some o the larger variance o data sharing across academic 
communities (Fulk et al. 2004; Hardin 1982; Ostrom 1990; Vitali, Mathiassen, and Rai 
2018).

The nature o, and manner in which, science is conducted across disciplines is also 
highly determinative o data sharing (Borgman 2012; Knorr Cetina 1999, 2007; Gläser 
et al. 2015). HEP primarily conducts undamental research with ew immediate applica-
tions in industry; that is, while physics research has inormed industrial development in 
a multitude o ways, the path to commercial applications is a longer one. MB, by contrast, 
is oten more proximate to the lie sciences and pharma industries. In act, much MB 
research is unded by big pharma (Contreras and Vertinsky 2016; Vertinsky 2014; Cain 
2012; Mittleman, Neil, and Cutcher-Gersheneld 2013). So where HEP researchers have 
little reason to rerain rom disclosing research data once academic credit is recognised, 
MB’s proximity to industries premised on nite periods o IP protection makes the 
calculus o disclosure ar more complex.

With this background, our case analysis contrasted two inormation inrastructures 
that deployed mechanisms to align scientists’ proessional incentives with data sharing 
practices (Figure 5).

5Large Hadron Collider (LHC) data policy: https://twiki.cern.ch/twiki/pub/LHCb/LHCbDataPreservation/130321- 
LHCbDataAccessPolicy.pd Retrieved 20th October 2021:
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Our ramework shows the tension between the community epistemic norms and the 
individual costs and benets o data sharing. Our analysis identied three mechanisms to 
accommodate these tensions:

Data modularity enables data governance that acknowledges that research data are 
heterogeneous, as are the producers, audiences, and applications o such data. In HEP, 
more pragmatic considerations o the size and usability o data are determinative, while 
in MB, data modularity is conditioned by the applications o the data by its generators 
and consumers. Specically, where most HEP research is publicly unded, MB research is 
unded by constellations o public and private sources. Consequently, demands or public 
disclosure need to be balanced with potential commercial appropriation or the private 
entities that have unded the research (Cain 2012; Mittleman, Neil, and Cutcher- 
Gersheneld 2013).

Time delay also serves to balance any conficting interests between the generators and 
consumers o data. In HEP, practical uncertainties about how data should be structured, 
analysed, or interpreted can require delays in its disclosure. In parallel, the requirements 

Table 5. Theoretical progression o our analysis.
Empirical observations rom data sources Identication o 

theoretical 
constructsMB- Open Targets HEP- Reana

‘So, we have a platorm that is public and open to 
everybody. Then, or the experimental projects, 
the partners share the data while they are 
creating it in Google buckets.’ 
‘We have other eatures that are private, that 
we do not share with others. Those hidden 
eatures allow me, or instance, to work with 
my compound library on the platorm, which 
I do not share with other OT partners.’

‘Open access to its data by people outside the 
collaboration can be considered at our levels o 
increasing complexity.’ 
CMS experiment preserves ‘the reconstructed 
data and simulations by keeping available 
a copy o the data reconstructed with the best
available knowledge o the detector 
perormance and conditions or each period o 
data-taking a virtualised computing 
environment, compatible with the sotware 
version with which the original data can be 
analysed’ (Dphep Study Group 2009: 7).

Modularity 
(Mechanism 1)

‘We have an internal internet that we use to say 
here’s what this data is and you can request it 
and I will send it to you in a password protected 
encrypted ormat. They get it sent and then 
I send them passwords separately, and then 
they take it rom there. Lots o our partners, 
they preer sometimes to use the raw data, so 
they all go through their own pipeline.’ 
‘Once the project themselves have published the 
data in their own time, once that’s publicly 
available, then we can link to it on our public 
platorm. In the meantime, though, it’s all very 
confdential and we don’t share anything 
outside o the internal platorm that we have. 
It’s up to the project to have that publication 
beore we start sending it out to the world.’

‘New data will enter the portal once the embargo 
periods or them are over.’ (CERN Open Data 
Portal) 
‘The frst data release o 2010 data took place in 
2014.’ (R1) 
‘The frst data release was ollowed by a ull 
analysis o the procedure, which was endorsed 
by the Collaboration Board in 2015, and regular 
data releases, accompanied by appropriate 
simulated data, each approved by the 
Collaboration Board, are now taking place.’ 
(CMS April 2018)

Time delay 
(Mechanism 2)

‘There is a need to coordinate the integration o 
data into OT, both rom the projects that 
generate data but also with the data providers 
such as Chembl and Uniprot and all the data 
that goes into the platorm to keep it up to 
date. We also work with the developer team 
that creates some o the eatures that users will 
use to visualize the data coming through.’

‘The data preservation process should ollow well- 
defned policies, defned as soon as possible 
during the lietime o the collaborations, and 
possibly embedded in a global HEP data 
preservation initiative.’

Boundary 
organisation 
(Mechanism 3)
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o the principal research teams who need sucient time or data analysis and publication 
are also determinative. In MB, time delays serve a similar unction: they permit the 
generators and unders o data to develop research leads towards commercial appro-
priability beore releasing data into public platorms (Contreras 2010; Contreras and 
Vertinsky 2016).

Boundary organisations, nally, are o particular signicance in their responsibility or 
data governance. These are dened by the dierent inrastructures required to conduct 
science in HEP and MB: the experiment or the inormation inrastructure. While both 
disciplines are data intensive, HEP requires particle accelerators, detection and imaging 
technologies o vast size, energies, and economic investment, that bind their operation to 
very large teams o scientists working on centrally coordinated and internationally 
unded experiments. This generates a highly collective culture with commensurate 
communal recognition and norms. Data collection, storage, and analysis are governed 
centrally, and are publicly transparent to a broad contingency o stakeholders whenever 
easible. Most importantly, centralised data governance exists at the point o data genesis: 
or HEP, ‘data openness cannot simply be tacked on as an aterthought’ (Chen et al. 2018).

MB, by contrast, does not require the same level o public investment in inrastructure (it 
should, however, be noted that a signicant amount o cell biology does transpire at larger 
synchrotron, ree-electron laser, and neutron scattering acilities.) Many diagnostic and 
analytical instruments are owned and operated by individual organisations and laboratories; 
data generation is de-centralised. The unctional units in MB are oten smaller teams o 
researchers where the contributions o individual researchers are more transparent. Given 
the high status o much MB research, this ragmented structure can lead to competitive 
dynamics across research teams that inhibit data sharing. Additionally, a critical dierence 
rom HEP is that any decision to disclose MB data to a centrally governed inormation 
inrastructure is discretionary and most oten occurs ater the data genesis.

Table 6. Similarities and dierences observed between Reana (HEP) and open targets (MB).

Similarities 
(What 
mechanism)

Dierences 
(How the mechanism is represented)

HEP – Reana MB – Open Targets

Modularity 
(Mechanism 1)

HEP establishes our layers o data: raw data is 
not released, while more curated versions o 
data are opened (level 2 in open data portal 
and reused in Reana; level 1 rom publications 
through HEP library systems).

In MB, raw data rom target associations with 
metadata is released in OT. However, the 
aggregations with data related to the next 
steps o the drug discovery process (e.g. 
proprietary compound libraries) remain 
closed.

Time Delay 
(Mechanism 2)

The embargo period o HEP is around 5 to 
10 years, depending on the experiments. Ater 
the embargo period in HEP, only a % o the 
data is agreed to be released.

In MB, the time delay between the generation o 
the data and release in OT is o 18–24 months. 
In MB, all the data generated is shared in OT 
inrastructure.

Boundary 
organisation 
(Mechanism 3)

The boundary organisation and what makes the 
interace that mediates the data fows 
between researchers and establishes the 
rules, responsibilities, and drivers in data 
policies varies in the two cases. In HEP, the 
prominent role is played by the experiment, 
which decides rights and responsibilities 
across data. These rules prevail across 
inrastructures, including Reana. The 
competition over the data is not between 
scientists but between experiments.

In MB, the dierent experimental projects need 
to comply with the data governance and rules 
o OT, which establishes the protocols to 
avoid unintended spillovers and regulates the 
process to release the data.
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The appropriate governance o this subtle yet undamental dierence (mandatory data 
governance at data genesis, or discretionary data governance ater data genesis) is sup-
ported by the time delays and modularity that are adequately adjustable to accommodate 
the divergent incentives and objectives o the researchers, institutions, and unders.

5.1. Implications or policy and practice

Our study reveals a complex interpretation o where a community’s norms mesh with 
individual incentives to share data or the collective benet. The research community by 
and large is optimistic about the scientic benets o data sharing. From our data, we nd 
that 74% o researchers say that having access to other data would benet them. There is 
a consensus that scientic data should be a public good: replicability and transparency are 
benecial to science; FAIR data practices are desirable in principle; cooperation makes 
science more ecient and reduces scientic raud. However, a closer examination o 
what scientists proclaim ideally, versus what they actually practice, reveals a more 
ambiguous situation. Scientists need assurance o recognition o their work, and private 
entities that und research desire reasonable saeguards or a air return on their nancial 
investments. This implies that policies seeking to eectively boost scientic data sharing 
should aim to be tailored to meet the needs o discipline-specic practices and norms at 
both individual and institutional levels.

Accordingly, beyond the mechanisms identied in this study (data modularity, 
time delay, and boundary organisations), unding institutions and policymakers can 
consider additional levers that allow scientists to receive commensurate rewards or 
data cultivation and publication. Fundamentally, this means elevating the status o 
data curation rom a necessary input to the scientic process, to a valid, high-status 

Figure 5. Mechanisms that enable HEP and MB researchers to share data. The (+) show signicant 
motivator/deterrent o data sharing rom our study.
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outcome in its own right. Inspiration can be ound in the practices o patenting and 
sotware licencing which ensure that inventors share their knowledge in exchange 
or various rights. This implies that public agencies, academic institutions, and other 
arbiters o scientic merit, award data curation and publication greater status in 
unding decisions, recruitment and promotion processes, or other proessional 
accolades. Such structural changes could potentially have shorter-term eects in 
the individual cost-benet calculus o collective action (Fulk et al. 2004; Hardin 
1982; Ostrom 1990; Vitali, Mathiassen, and Rai 2018), as well as longer-term eects 
in the evolution o the epistemic cultures (Borgman 2012; Knorr Cetina 1999, 2007; 
Gläser et al. 2015).

It is also important to highlight that there are additional considerations that 
determine data sharing attitudes and behaviours across disciplines. Scientists are 
oten legitimately concerned with the potential misuse or erroneous interpretations 
o their results. The recent Covid-19 pandemic evidences the act that data publication 
is not an end in itsel, but must be tempered with qualied interpretation to inorm 
public health policy appropriately. By extension, FAIR data practices entail costs o 
documenting metadata and scientic procedures in a manner acilitate appropriate 
interpretation and communication, which, or elds such as public health or environ-
mental policy, are increasingly vital.

Many o these additional ‘costs’ (arbitration, interpretation, communication) are 
currently assumed by scientic organisations such as CERN, NASA, CDC, EMBL, etc. 
As such, our study inorms the potential eorts o other scientic communities currently 
less reliant on the cultivation o large data quantities, but increasingly so. In addition to 
appropriate application o modularity, time delay, and boundary organisations, inorma-
tion inrastructures can be designed with complementary mechanisms that oresee data 
sharing implications o beyond immediate scientic communities, but policy makers and 
the public at large.

6. Limitations and future research

Our ndings are subject to limitations that warrant urther investigation. Although 
the sample sizes in our survey were large, given the relatively short interval between 
2016 and 2018, this sampling is likely insucient to detect long-term patterns o 
data sharing behaviour. Additional surveys in the coming years can enrich our 
current data to uncover conounding relationships in scientists’ willingness to 
share data. Research that purposeully examines heterogeneity in data sharing 
practices across disciplines can benet rom in-depth comparisons o high- and 
low- intensity data sharing communities. Furthermore, while HEP and MB represent 
disciplines that are very capital-intensive, a research design ocusing on scientic 
contexts with dierent economic dynamics would be useul or extending our 
understanding o data sharing practices.

By using random selection methods to identiy respondents representative o the 
researcher population at large, our survey sought to mitigate selection bias. However, 
we acknowledge a potential bias o researchers: those more inclined towards sharing 
scientic data could have a greater propensity to respond to the survey invitation. In 
addition, while the sponsorship o a major publisher in the survey might have also 
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infuenced survey response bias, we estimate that the additional involvement o an 
academic consortium and the European Commission could have partially counterba-
lanced any respondent bias.

Finally, regarding the case study analysis, we acknowledge that the challenge o 
the case method is to generalise the ndings. Nevertheless, it is worth mentioning 
that there is a trade-o between internal and external validity. Our results are deeply 
grounded in the studied contexts, and we employed established procedures in 
inductive research to maximise the internal validity o our results. Consequently, 
we should be prudent in extrapolating our results to other contexts and scientic 
communities that do not display the same institutional and economic characteris-
tics. We encourage additional in-depth research across other epistemic cultures and 
academic disciplines to better inorm our understanding o how data sharing can be 
governed.

7. Conclusion

Data sharing is a practice intended or the collective benet o scientic progress. Yet, reasons 
or its gradual and disparate adoption are less obvious. Scientic communities are ar rom 
united and display heterogeneous practices and norms in the way science is produced and 
how merit and status are allocated. Consequently, a delicate system o mechanisms needs to 
be established to align individual and collective incentives. The use o modularity, time delay, 
and boundary organisations are pivotal in the inormation inrastructures created by the 
scientic disciplines currently at the oreront o scientic data sharing. Other academic 
communities that seek to ollow these examples can apply these mechanisms in a manner 
consistent with their own epistemic cultures and proessional practices.
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Appendix 1. Analysis of survey sample

Survey in this study UNESCO data

DiferenceFields
Percent among 

repondents Grouped Fields
Percent across all 

researchers Grouped

SocSci + Arts Hum 
+ Economics

15.3% 15.3% Social sciences 14.7% 20.8% −5.5%
Humanities 6.1%

(Continued)
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Survey in this study UNESCO data Diference

Fields
Percent among 

repondents Grouped Fields
Percent across all 

researchers Grouped

Lie Sciences 13.8% 38.1% Natural sciences 18.3% 24.2% 13.9%
Earth & Env. 

Science
12.9%

Physics & 
Astronomy

7.0% Agricultural and 
veterinary 
sciences

5.9%

Chemistry 4.4%
Computer Science 7.7% 31.9% Engineering and 

tech
41.6% 41.6% −9.7%

Engineering 15.9%
Material Science 4.1%
Maths 4.3%
Medicine and 

Allied Health
12.1% 12.1% Medical and health 

sciences
13.4% 13.4% −1.3%

Other 2.6% 2.6% 2.6%
Total 100.0% 100.0% Total 100.0% 100.0%
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