

RESEARCH ARTICLE

DOI:10.25300/MISQ/2022/16733 MIS Quarterly Vol. 47 No. 2 pp. 639-668 / June 2023 639

FROM BITS TO ATOMS:
OPEN SOURCE HARDWARE AT CERN1

Laia Pujol Priego
Ramon Llull University, ESADE Business School,

Barcelona, SPAIN {Laia.pujol@esade.edu}

Jonathan Wareham
Ramon Llull University, ESADE Business School,

Barcelona, SPAIN {Jonathan.wareham@esade.edu}

 Although considered a relatively recent phenomenon of the past decade, open source hardware (OSH) is
already influencing commercial hardware development. However, a common belief is that the greater
economic cost and complexity of hybrid digital objects (i.e., digital objects with both hardware and software)
precludes their development with open source methods traditionally used for software. We study a
sophisticated OSH named White Rabbit initiated at CERN and developed through a vibrant and heterogenous
open source community. Our findings show that the assumption that hardware and software require
fundamentally distinctive development and production modes should be replaced with a more nuanced
differentiation characterized by three main attributes describing an object’s composition: embodiment,
modularity, and granularity. Taken together, these three attributes determine how a hybrid object is developed
throughout its evolution in an open source community. Our research offers several contributions. First, we
provide a more nuanced view of the consequences of the material embodiment of hardware. Once considered
a simple deterrent to open source development, we describe how economic cost is subordinate to more
influential aspects of an object’s physical layers: as the open source community modifies the object to
accommodate the operating requirements of diverse physical instantiations, such modifications can be
incorporated in the logical design covered by the open source license. Additionally, we show how embodiment,
modularity, and granularity progress through the object’s evolution and how this maturation subsequently
affects development modes. We trace the implications of our findings for hybrids and digital object
conceptualizations in IS research, open source development and, more broadly, normative implications for
OSH in scientific and commercial computing.

Keywords: Open source, open source hardware, hybrid objects, digital objects

Introduction

Open source hardware (OSH) is a term for tangible artifacts—
machines, devices, or other physical things—for which the
design is made publicly available in a way that enables anyone
to study, modify, distribute, make, and sell either a design or
hardware based on the design (Open Source Hardware
Association, 2012). The rise of the do-it-yourself (DIY)

1 Sirkka Jarvenpaa was the accepting senior editor for this paper. Jan Recker served as the associate editor.

©2023. The Authors. This work is licensed under the terms of the Creative Commons Attribution CC BY 4.0 License
(https://creativecommons.org/licenses/by/4.0/)

phenomenon with physical maker spaces, hackspaces, and
FabLabs (Gibb, 2014), along with the general proliferation of
OSH, has attracted the attention of numerous organizations that
include scientific research infrastructures needing customizable
scientific hardware, industrial organizations, and traditional
hardware manufacturers (Balka, 2011; Boisseau et al., 2018;
Mellis & Buechley, 2012; Pearce, 2012). Although considered
a relatively recent phenomenon of the past decade (Balka et al.,

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

640 MIS Quarterly Vol. 47 No. 2 / June 2023

2010; Bonvoisin et al., 2017), OSH2 is already influencing
commercial hardware development. Some compelling
examples include Arduino, RepRap, the Open Compute
Project, and RISC-V.3

Notwithstanding the growing interest in OSH, this phenomenon
poses the question of whether the premises of open source
development, which have historically been built around the
development of software (Crowston & Howison, 2006; Feller
& Fitzgerald, 2001; Fitzgerald, 2006; Mockus et al., 2002),
apply to a form of technology object4 (i.e., a hybrid) which is
both (1) a material object with a “physical mode of being”
(Faulkner & Runde, 2013, p. 806) and (2) a digital object
containing syntactic entities with one or more bitstrings
(Faulkner & Runde, 2019). Hybrids (Faulkner & Runde, 2009,
2013, 2019) include any types of hardware (i.e., electro-
mechanical devices) that contain middleware or embedded
software (Yoo, 2010).

Early research in OSH has explored the specific challenges of
transposing open source development—characterized as highly
voluntary, with loosely centralized, parallel collaborations—to
the development of hybrids (Dahlander & O’Mahony, 2010;
Feller & Fitzgerald, 2000, 2001; Fitzgerald, 2006; Howison &
Crowston, 2014; Lindberg et al., 2016; Shah, 2005, 2006).
Challenges include long developmental cycles and slower
iterations of patches and improvements to physical prototypes
(Boisseau et al., 2018), excessive complexity (Oberloier &
Pearce, 2018), limitations in the available software for hybrid
digital development, financial costs of development and
production, and insufficient licensing of OSH (Balka et al.,
2010; Balka, 2011). Fundamentally, these studies assume that
the physical nature of hybrids is the main constraint in
transposing open source development to hybrids. In parallel,
there are growing calls to develop a more subtle understanding
of the nature of hybrids: “for information systems theory and
practice, the confluence of the digital and physical is a largely
unexplored territory worth exploring, as it has the potential to
fundamentally change our environment” (Kyriakou et al., 2017,
p. 327). However, excessive attention to the physical nature of
OSH may overshadow a more useful and comprehensive
explanation of how a hybrid object’s attributes affect the
developmental model. Given the expectations that OSH “bears
an enormous potential for reframing the social organization of
product development and therewith to disrupt conventional
industrial practices” (Mies et al., 2019, p. 129), we formulate
the main research question of our paper:

2 See a comprehensive list of examples of OSH at https://www.ohwr.org
3 https://www.arduino.cc; https://www.reprap.org; https://www.opencompute.org;
https://www riscv.org

4 We employ the term “object” in the same spirit as Faulkner and Runde (2009,
2013, 2019) and Kallinikos et al., (2013) to designate purposefully engineered
objects rather than any object that occurs naturally.

How do the attributes of a hybrid object and its components
affect the open source model of development?

The objectives of this paper are: (1) to provide an empirical
description of the process of developing a hybrid object
through open source development, and (2) to integrate the
empirical findings into a theoretical model that explains how
the attributes of hybrids and their components affect open
source development. To achieve these objectives, we
conducted a qualitative case study of a high-profile OSH.
White Rabbit (WR) is a hybrid object developed by CERN
(Conseil Européen pour la Recherche Nucléaire) through a
sustained collaboration among traditional vendors, peripheral
research organizations, and a heterogeneous community of
voluntary contributors. The purpose of WR—named for the
character in Alice’s Adventures in Wonderland who carries a
pocket watch and mutters, “I shall be too late!”—is time
synchronization across geographically distributed computing
networks. WR consists of a fully deterministic Ethernet-based
technology and is currently the clock and event distribution
system for CERN’s particle accelerators, where time accuracy
at the nanosecond level is required.5 After its implementation
at CERN, WR was adopted by other scientific research
infrastructures and subsequently implemented in various
industrial settings where a common metric of time accuracy
across large networks is critical, including high-frequency
trading, matching engines in financial services,
telecommunications networks, automated vehicles, navigation
systems for air traffic control, and smart energy grids.

Based on our findings, we offer three central contributions.
First, our work advances an empirically developed
understanding of what we conceptualize as the malleability of
hybrids as a salient characteristic of OSH objects. We adopted
the term from physics to allude to the facility of matter to
deform under compressive forces. As a metaphor, malleability
describes the possibility of changing, modifying, or extending a
hybrid object. For our analysis, we define malleability as the
propensity of a technology object to be adjusted, adapted, or
reconfigured, while (1) fulfilling the intended functionality with
similar methods, and (2) retaining salient characteristics of the
original technology. This delimits malleable technologies in the
same class from alternative technologies that fulfill the same
function with completely different means, mechanisms, or
methods.6 Specifically, we argue that malleability is determined
by the degree of three salient component attributes over time:
embodiment, granularity, and modularity.

5 A nanosecond (ns) is an SI unit of time equal to one billionth of a second; that
is, 1/1,000,000,000th of a second, or 10−9 seconds.
6 As a simple example, floppy disks, CD-ROMs, and solid-state memory all store
bitstrings. Yet their core mechanisms of storage are fundamentally different (i.e.,

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 641

Second, our paper offers a grounded basis for theorizing about
how malleability is a primary determinant of a hybrid
development model (i.e., whether is developed employing open
source or rather traditional hybrids development model). We
reveal how hybrid malleability can vary over time, leading to a
process of hybrid liquification—which occurs when malleable
hybrids are implemented in diverse operating contexts
employing open source development methods—or
crystallization—the integration of malleable hybrids into
restrictive legacy systems employing traditional hybrid
developmental methods. The processes of liquification and
crystallization of a malleable hybrid result from: (1) hybrid
maturity (i.e., how advanced it is in the development process),
and (2) the interaction with the operational requirements of its
physical instantiation (i.e., exogenous forces). Our analysis
contributes to an understanding of the interaction of the physical
and digital essences of hybrid objects, which is largely
underserved in IS research (Ekbia, 2009; Faulkner & Runde,
2009, 2013, 2019; Kallinikos et al., 2013; Yoo 2010; Yoo et al.,
2010). Specifically, our theoretical insights enable a more
nuanced perspective of the role of a hybrid’s material
embodiment, salient in the early skepticism of OSH, and
describes a rather complex portrayal of how the evolving nature
of a hybrid conditions its amenability to open source
development (Benkler, 2002; Crowston & Howison, 2006;
Feller & Fitzgerald, 2001).

Finally, our work generates policy and managerial guidance on
how the potential of OSH can be leveraged if we acknowledge
the evolving nature of hybrids. Based on our research, we argue
that the traditional separation between hardware and software
that often defines how developmental work is organized can be
replaced with a more subtle differentiation between less—or
more—malleable objects. This insight can help relax the
constraints typically perceived in OSH to expand its potential in
more ambitious industrial and scientific endeavors.

We proceed as follows. The next section reviews recent
conceptualizations of digital objects to delineate the
attributes of hybrids and of WR in particular. Then, to
position our case and analytical methods, we review how
hybrids have traditionally been developed. Third, we review
open source literature to underscore the premises of how
work is normally organized in open source development. We
then turn to our case study of WR. Based on our findings
from the analysis of the data, we theorize and formulate a set
of key propositions, derive theoretical and normative
implications, and conclude with the limitations of the present
study and prospects for future research.

magnetism, physical groves on a substrate [lands and pits], or electrons,
respectively). Hence, none of these would be considered malleable versions of
the other, as their function is completed by fundamentally different means.

Theoretical Underpinnings

OSH as Hybrid Digital Objects

The universe has all types of objects. Our study, however, does
not consider all naturally occurring objects. Rather, we adopt
the concepts from Faulkner and Runde (2009, 2013, 2019) and
Kallinikos et al. (2013) to designate purposefully engineered
objects. Objects are entities that endure: “something that exists
through time and is fully present at each and every point in time
over the period of its existence” (Faulkner & Runde, 2019, p. 5)
as continuants (as opposed to occurrents). Additionally, objects
are structured, made up of components: “a number of distinct
parts that are organized or arranged in some way” (Faulkner &
Runde, 2019, p. 6). Objects possess different attributes, which
are defining properties based on how the components work,
how they are arranged, and how they interact with one another.
IS scholars have devoted attention to understanding the specific
attributes of digital objects (or “digital artifacts”) that separate
them from physical objects (Paavola & Miettinen, 2019).

Physical objects are tangible objects (matter) that can be
touched and possess physical substance (Paavola & Miettinen,
2019), possessing spatial attributes such as shape, volume,
mass, and location where this physicality is manifested
(Faulkner & Runde, 2013, 2019; Leonardi, 2010).7
Alternatively, digital objects have been characterized with
attributes such as nonrivalry, infinite expansibility,
reproducibility (Faulkner & Runde, 2009, 2013),
unboundedness (Ekbia, 2009), interactiveness, fluidity,
editability, and distribution (Kallinikos et al., 2010, 2013;
Manovich, 2001). From our review of the literature, three
salient attributes are relevant to our analysis of hybrids (Table
1). When taken together, they describe a great deal about
objects’ composition and components, how they are arranged
and relate to one another, and their degree of coupling:
specifically, their embodiment, modularity, and granularity
(Faulkner & Runde, 2013, 2019; Kallinikos et al., 2010, 2013;
von Briel et al., 2018; Yoo et al., 2010).

Digital and physical objects are combined in hybrids
(Faulkner & Runde, 2019). However, this literature stream is
less attentive to the physical nature of components (e.g.,
Ekbia, 2009; Faulkner & Runde, 2009, 2019; Kallinikos et al.,
2013; Kallinikos & Mariátegui, 2011). Ontologically,
whereas hybrids are often viewed with a separation between
digital and physical layers, they receive less consideration of
their distinct properties as a unified entity (Faulkner & Runde,
2013, 2019; von Briel et al., 2018; Yoo, 2010). Accordingly,
we argue that the category of hybrids warrants its own

7 There are many manifestations of physical phenomena that that lie outside of
this definition in a pure sense (e.g., electromagnetic radiation). For this
discussion, we limit our definition of physical objects to tangible objects.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

642 MIS Quarterly Vol. 47 No. 2 / June 2023

characterization as a class of objects. By treating hybrids as
unified entities and examining the interactions between
physical and digital elements as they evolve through time, we
can obtain insight into a hybrid’s unique nature and how this
affects OSH development.

A Hybrid Object: White Rabbit

Motivated by the need to eliminate the minute distortions in
time measurement across their geographically dispersed
particle accelerator and computing network, CERN initiated

WR as a complete technology stack of deterministic Ethernet-
based technology for time synchronization that uses the IEEE
1588-Precision Time Protocol to reconcile time and phase
measurements between a master reference clock and boundary
clocks. The two main components in the synchronization
hierarchy described by WR are the switch8 and the node.9 Both
switch and node have hardware, gateware,10 and software
layers, which qualify WR as a hybrid object (Figure 1 and
Appendix A). Table 2 describes the components of WR and
hardware, gateware, and software layers. Figure 2 illustrates the
reference design (the source) of a WR node (a WR component),
and Figure 3 shows WR when performing temperature tests.

Table 1. Attributes of Physical and Digital Objects

Attributes Description

(1)

Embodiment

Embodiment refers to the component’s physical or non-physical state (Faulkner & Runde, 2009, 2019;
Yoo, 2010). The notion of embodiment means the property of being manifest in and of the everyday world
(Dourish, 2001; Yoo, 2010). Objects with “perpetual embodiment exist in a physical state” (von Briel et al.,
2018, p. 281).

Physical objects have a physical state: “The physical (obviously) can be touched while the conceptual
cannot. The material properties of physical objects offer certain opportunities and constraints that simply
cannot be overcome—you cannot see through wood or light glass on fire” (Leonardi, 2010, p.1). Digital
objects are objects with component parts that include one or more bitstrings (Faulkner & Runde, 2019,
p.10). Digital objects with physical components—that is, with a perpetual embodiment (Yoo, 2010)—are
hybrids, which “are necessarily material objects, with the physical mode of being of their material
components” (Faulkner & Runde, 2019, p.6).

(2)

Modularity

Modularity is an attribute of object components that determines their coupling (von Briel et al., 2018;
Kallinikos et al., 2010, 2013; Manovich 2001; Yoo et al., 2010).

The modularity of physical objects describes the relationship between the physical units and defines the
relative attribute of an object’s structure as opposed to an integral structure. Similarly, the modularity of digital
objects’ components is an attribute that determines whether components are “responsive to and distinct from
each other (e.g., separated by module or layer boundaries) are loosely coupled, whereas components that
are responsive to but not distinct from each other (e.g., integrated in one module) are tightly coupled” (von
Briel et al., 2018, p. 281). Also hybrids, being simultaneously a physical and a digital object, can similarly
possess loosely coupled or tightly coupled digital and physical components, yet it remains unclear how these
digital and physical come together describing a more or less modular structure.

(3)

Granularity

Granularity is an attribute referring to the ability of an object to be decomposed into numerous, small-
grained components. Whereas modularity refers to the relationship between components, granularity
“entails the stuff of which these blocks are made” (Kallinikos et al., 2013, p. 360), referring to the number
of units into which the object can be decomposed (Ekbia, 2009; Kallinikos & Mariátegui, 2011).

Physical objects have been qualified as seldom granular because “they are made of blocks or elements thus
bundled as to be not readily decomposable and traceable down to elementary units” (Kallinikos et al., 2013,
p. 360). In contrast, granularity in digital objects “derives from their ultimately numerical constitution and the
ability this furnishes for tracing composite units deep down to the most minute elements and operations by
which they aremade” (Kallinikos, 2013, p. 360;Manovich, 2001). In hybrids, it remains unexplored how digital
and physical components interact, describing a more or less granular hybrid configuration.

8 A switch is a PTP instance, an 18-port device (boundary clock), that may
serve as the source of time for other PTP instances (master) and can
synchronize other boundary and ordinary clocks (slaves).
9 The nodes are single port devices (ordinary clocks) that distribute clock
signals, which are physical signals characterized by frequency and phase.
WR switches and nodes are interconnected through optic fiber.

10 Gateware refers to embedded and dedicated code deployed on a field-
programmable gate array (FPGA), which is a hardware circuit programmed
to implement different logical operations. See Appendix B for a technical
note about WR.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 643

Figure 1. WR Representation (Adapted from Moreira et al., 2009)

Table 2. Decomposing WR Hybrid into its Components
WR main components Type Description

Switch

Physical Hardware WR switch box

Digital
Gateware

General-purpose and dedicated switch gateware—IP cores used both in the
switch and interfaces

Software General purpose and dedicated switch software

Node
Physical Hardware WR Precision time Protocol core and Small Form-factor Pluggable

Digital
Gateware General-purpose and dedicated gateware—IP cores used both in the node
Software General-purpose and dedicated software—used both in the switch and node

Figure 2. Example of Documentation (the Source) about the Node Reference Design from WR Repository

Grandmaster
Ordinary clock

Switch
Boundary clock

Switch
Boundary clock

Node
Ordinary clock

Node
Ordinary clock

Node
Ordinary clock

U
p
to

1
0
0
km

2000 nodes

Slave
Slave Slave

SlaveSlave

Master

Master Master Master

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

644 MIS Quarterly Vol. 47 No. 2 / June 2023

Figure 3. Temperature Tests of WR (Lipiński et al., 2011)

Traditional Hybrid Development

Although there is no single approach to hybrid
development, our purpose is to identify the commonalities
across the literature. These include: (1) the logical design of
hybrids (i.e., representation of the object), (2) the
organization of the development work, and (3) the physical
instantiations (i.e., implementations) of the hybrid in the
different contexts over time.

The first step in the development of hybrids is the logical design,
which is represented in the schematic diagram. The schematic
diagram does not provide information on the physical
arrangement or interconnection of the parts; it is only a logical
depiction of the object. Although one could argue that hybrids
and pure software design are similar up to this point, they diverge
from here. In the course of their development, hybrids require a
translational action to go from the semantic representation of the
object to the object itself. Translational action refers to “practices
associated with movement from one layer of the bearer to
another” (Faulkner & Runde, 2019, p. 10). Moving from the
schematic to the actual physical layout is something of an art
form, as the physical nature and interconnection of the
components (size, heat, etc.) must be considered (Ackerman,
2008). Electronic design automation (EDA) can generate a
netlist from component libraries that describes each set of
electrical connections by grouping them into a “net,” which is a
group of components that are electrically tied together.
However, despite the benefits of EDA software, substantial
human expertise must evaluate the challenges of size constraints,
heat, radio interference, external connections, market standards,
component cost, and other operational and environmental
factors (Drechsler & Breiter, 2007; DeMicheli & Sami, 2013;
Gajski & Vahid, 1995). As such, two equally qualified designers
could easily produce two circuit boards of varying quality based
on the same schematic (Ackerman, 2008).

Several observations about the attributes of traditional hybrid
development described in the literature are worth noting and are
summarized in Table 3. Traditionally, these development
processes have been sequential and have been centrally
coordinated with the extensive use of commercial contracts
dictating the allocation, interaction, and monitoring of the
technology development when conducted across organizations
(Cusumano, 1992; Sanchez & Mahoney, 1996; von Hippel &
von Krogh, 2003).

Attributes of Open Source Development

Open source development has been characterized as highly
voluntary, loosely centralized with parallel collaborations
(Dahlander & O’Mahony, 2010; Feller & Fitzgerald, 2000,
2001; Fitzgerald, 2006; Howison & Crowston, 2014;
Lindberg et al., 2016; Shah, 2005, 2006). “Open source” is an
expression employed to describe both the legal status and
developmental model of a digital object, the vast majority of
which is software. The legal status of open source digital
objects requires that the source code must be redistributable
and available to the user, and the creation of derivative work
must be permitted under a license that does not discriminate
against any user or restrict aggregations of software (Feller &
Fitzgerald, 2000). In addition to describing what objects can
be considered open source, scholars have also identified how
open source development is organized. Expressions such as
“the open source way” of development (Crowston &
Howison, 2006) have emerged to describe these common
characteristics of how open source objects are developed. We
adopt the definition of development as the social process of
designing, building, and implementing the technical artifact,
usually in a specific organizational context and over time
(Akhlaghpour et al., 2013).

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 645

Table 3. Attributes of Open source and Traditional Approaches to Hybrid Development

Attributes Open source development Traditional hybrid development Problem

(1)
Self-

assignmentvs.
control

Autonomy and self-selection of
tasks: Open source is characterized
by a collaborative effort where
agents combine effort voluntarily
and self-select their tasks, which
does not mean that they do not
receive pecuniary compensation
(though that may often be true), but
rather that the collaborators choose
their tasks autonomously (Crowston,
1997; Crowston & Howison, 2006;
Feller & Fitzgerald, 2000, 2001;
Howison & Crowston, 2014).

Control over the assignment of
development activities: The
imperfect translational action from
logical design to the object itself
requires human expertise. This,
combined with the long and
interdependent development cycle of
hybrids, has traditionally required
control over development contributors
across organizations (Ackerman,
2008; von Briel et al., 2018; Yu et al.,
2018).

For hybrids with a significant
HW component, the slower
cycle of design/prototype/test
requires more purposeful
direction giving. Furthermore,
technologies of high
sophistication require
specialized expertise at
specific time points. This
renders autonomy and self-
selection impractical for certain
development phases.

(2)
Loosely

centralized vs.
centralized

Loosely centralized: Open
source is characterized by
distributed teams who have
access to the source code, submit
code patches to solve problems,
and add functionalities to the
software. Open source
communities are geographically
distributed and remain open and
fluid to the entry and exit of
contributors. Users can not only
contribute to the source code but
can also test the software, report
bugs, and suggest new features
(Feller & Fitzgerald, 2000;
O’Mahony & Ferraro, 2007).

Centralized direction-giving: Hybrid
development draws long development
cycles that require centralized direction
during their development (Ackerman,
2008). Even if employing virtual
prototypes (Bogers & Horst, 2014) or
advanced manufacturing techniques
like 3D printing, the development of
hybrids “involves more activities such
as transferring premature prototypes
into designs that can actually be
manufactured” (von Briel et al., 2018,
p. 283). These require more time than
modifications to software based on
writing lines of code. The inflexibility of
engineering modifications later in the
process imposes some stability on the
core structure. Testing, therefore, is
often performed by the engineers who
design the object given their integrated
nature (Drechsler & Breiter, 2007;
Gajski & Vahid, 1995; Mellis &
Buechley, 2012; Pan et al., 2018).

The long and interdependent
nature of the development
cycles and testing activities
can necessitate constant
coordination. This can make
loosely centralized
development impractical.

(3)
Parallel vs.
sequential

Massive parallel development and
debugging; asynchronous
collaboration and open
superposition of tasks: Open
source is characterized by massive
parallel development, debugging,
and asynchronous collaboration,
supported by the internet and
concurrent versioning software as a
collaborative platform. Discrete
development tasks can be completed
independently of any required
sequence of development. Modules
with distinct functionality and payoffs
can be isolated and completed.
Problematic tasks can be postponed
without consequence on future work
(Crowston & Howison, 2006;
Lindberg et al., 2016; Markus, 2007;
Shah, 2006; Shaikh & Vaast, 2016).

Sequential development activities:
Hybrid development follows discrete,
sequential, and interdependent
steps. Changes in the fundamental
design are more difficult and
expensive to modify later in the
development cycle, as a change of
one component “is likely to require
extensive compensating changes in
the designs of many interrelated
components” (Sanchez & Mahoney,
1996, p. 65; DeMicheli & Sami,
2013). Common software tools only
partially alleviate the challenges of
tracking and integrating concurrent
modifications introduced by different
developers (Mellis & Buechley,
2012).

The nature of the
development activities, where
design decisions need to be
agreed upon because they
affect the following
development steps and any
change in the process,
requires vast numbers of
compensating activities and a
very structured, sequential
development process.
Parallel development is not
an option for certain
development phases.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

646 MIS Quarterly Vol. 47 No. 2 / June 2023

The basic attributes of open source development have been
articulated by its advocates in a large number of publications
(Cook, 2001; Masum, 2000; Raymond, 1999) and through
diverse case studies (Mockus et al., 2002; Scacchi et al.,
2006). Essentially, open source is considered an alternative
organizational model for development that is neither market-
based nor hierarchical (Shah, 2006). Diverse and partially
overlapping approaches have described it as a commons-
based peer production (Benkler, 2006); a community-based
model (Shah, 2005, 2006); open sourcing (Ågerfalk &
Fitzgerald, 2008); collective invention (Allen, 1983);
private-collective innovation (von Hippel & von Krogh,
2003); and distributed innovation (Lakhani & von Hippel,
2004).Although open source is not a homogeneous approach
to software development, we describe its most frequently
mentioned characteristics (i.e., its attributes) in Table 3. As
a qualification, it should be recognized that the growing
engagement of different commercial interests in open source
software development (e.g., Barrett et al., 2013; Deodhar et
al., 2012; Fitzgerald, 2006; Spaeth et al., 2014; von Krogh et
al., 2012) has relaxed some of the traditional
characterizations of the development process (Dahlander &
O’Mahony, 2010; Fitzgerald, 2006), where planning and
purposive strategies are combined with globally distributed
and voluntary contributions (Dahlander & O’Mahony, 2010;
Fitzgerald, 2006; Shaikh & Vaast, 2016). Table 3 also
specifies a number of challenges that can arise when trying
to impose open source development models upon the
development of hybrids.

Research Context and Method

We engaged in an in-depth single-case qualitative study to
generate theory based on the empirical insights. Single-case
studies permit a deep understanding of digital objects and of
the organizational actions related to their use and
development (Klein & Myers, 1999; Orlikowski & Iacono,
2001). In particular, revelatory cases (Gerring, 2007) are
useful for theory development. We consider WR a revelatory
case in at least two aspects. First, the case offered “an
opportunity to observe and analyze a phenomenon
previously inaccessible to scientific investigation” (Yin,
2003, p. 42). Access to the CERN Hardware and Timing
Section at the Beams Department that coordinated WR
development offered us the opportunity to obtain a decade
of rich longitudinal data on the development of such a
sophisticated technology that has been unprecedented in

11 Accuracy refers to the proximity of measurement results to the true value,
whereas precision is the degree to which repeated (or reproducible)
measurements under unchanged conditions show the same result.

OSH development (Bonvoisin et al., 2017; Boujut et al.,
2019). Second, WR is an example of OSH development that
relied on a diverse community of technical specialists,
commercial vendors, industrial complementors, and
voluntary contributions, as a collaborative development
endeavor unparalleled in OSH development (Pearce, 2017).

Research Context

WR is the name of an OSH initiated in 2008 when engineers
at CERN were confronted with limited bandwidth and the
impossibility of dynamically evaluating the delay induced
by the data networks that constitute CERN’s geographically
distributed computing infrastructure supporting the world’s
most powerful particle accelerators. WR was developed with
the following unprecedented specifications: (1) the transfer
of a time reference from a central location to many
destinations with an accuracy better than one nanosecond
and a precision11 better than 50 picoseconds,12 (2) the ability
to service more than 2,000 nodes, (3) the ability to cover
distances in the order of 10 km (although it achieved
distances over 100 km in its development process), and (4)
data transfer from a central controller to many nodes with a
guaranteed upper bound in latency.

Prior to WR, the extant synchronization standard for
Ethernet networks was the precise time protocol (PTP),
which is standardized as IEEE 1588. WR extends PTP in a
backwardly compatible way to achieve sub-nanosecond
accuracy (Moreira et al., 2009). “The combination of
deterministic latencies with a common notion of time to
within one nanosecond allows WR to be a suitable
technology to solve diverse problems in distributed real-time
control and data acquisition” (Lipiński et al., 2011, p. 2).

WR started in 2008 as an OSH when CERN decided to
collaboratively develop the technology with any volunteer
contributor, publishing an open call in CERN’s vendor
network, supported by a repository, Wiki, developers’
mailing list, workshops, and a set of collaborative tools.
Most importantly, an open source hardware license was
created to govern the rules of sharing, distributing, and
selling the WR designs. Very early on, the GSI-Helmholtz
Centre for Heavy Ion Research (GSI), a large particle
accelerator facility in Germany, joined. Soon a progressively
larger group of organizations engaged to shape a diverse and
vibrant community that contributed to WR development.
The number of contributors has grown beyond any initial
expectation and has surpassed CERN’s ability to keep track

12 A picosecond is an SI unit of time equal to 10 − 12 or 1/1,000,000,000,000th

(one trillionth) of a second.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 647

of the different WR reuses and adaptations. In less than a
decade it had proliferated into a “multilaboratory,
multicompany and multinational collaboration developing a
technology that is commercially available, used worldwide,
and incorporated into the original PTP” (Lipiński et al.,
2011, p. 2).

Data Collection and Sources

Our primary sources of data were 38 semi-structured and
open-ended interviews that we conducted with selected WR
community actors. These actors included WR developers
from research infrastructures; companies contributing to WR
development; and WR users implementing the technology,
reporting bugs, and helping improve WR. In addition to the
interviews, we conducted direct observations during two
study visits to CERN, in April 2017 and October 2018,
including attendance at a WR developer workshop with
more than 56 participants.

The interviews were chosen on the initial recommendation
of the WR lead team at CERN, with subsequent
recommendations from the interviewees. Our objective was
to interview a representative cross-section of the WR
community to broadly understand the subject area of hybrids
and OSH development and further enable an inductive
generation of theory from the empirical data. Three primary
themes guided the interviews: (1) what is WR’s functionality
and structure, and how does it work? (2) How did different
organizations become involved in WR development? and (3)
What is the WR development process and how is work
organized across contributors? Whereas these three major
themes guided the initial interviews, we allowed for open-
ended discussions around WR to obtain a deeper
understanding of the technology and different aspects of the
development process. We subsequently conducted three
additional rounds of interviews, where the protocols evolved
toward more detailed and focused topics that emerged from
the previous iterations.

The last stage of data collection was devoted to the
confirmation of our interpretations and refining of WR
attributes and relationships with the development
characteristics. Appendix B describes the four stages of data
collection and illustrates the interview protocol used in the
later phases in Table B1 in Appendix B. The interviews were
conducted in English and Spanish from October 2017 to
September 2020. Each interview was between 20 min and 90
min long. Table B2 in the Appendix B provides details on
the study’s primary data and the alphanumeric key
identifiers, representing quoted interviewees.

A second important source of data was the information
retrieved from the WR repository and Wiki, which contains
general information about the WR project and technology,
WR users, and the open hardware license. We also gained
access to the standard working group IEEE1588-2008, where
WR was standardized, to reference the technical
documentation describing WR structure for our analysis. We
employed these secondary sources to obtain a deep
understanding of the technology and the development
processes documented by the developer community (see
description in Table 4). Secondary sources were also
employed to corroborate evidence from primary data. Table
B3 in Appendix B illustrates the use of primary and secondary
sources in our empirical analysis of WR development.

Data Analysis

We performed a four-stage data analysis by relying on
established procedures for inductive research (Gioia et al.,
2013; Miles & Huberman, 1994).

First, our analysis methods involved a detailed study and
reflection of multiple textual materials and abundant
information available online about WR. We produced brief
summaries that moved from technical descriptions to
managerial inferences. Publications related to WR and the
large volume of information available about the technology
helped us to have more technically focused conversations
with informants active in both the WR technology stack and
the OSH developer world (Lok & de Rond, 2012).

Second, we iteratively analyzed the interview transcripts by
coding relevant observations and contrasting them with our
analysis of secondary sources. In the open coding procedure,
we coded at various levels to delineate the main concepts in
the empirical data and generated research memos that
synthesized the emergent themes. During the open coding,
we broke down our data to understand WR attributes and the
characteristics of the development processes. These memos
progressed into extended notes where we consolidated
repetitions and gradually collapsed our codes into first-order
categories (Gioia et al., 2013). During this process, we
periodically discussed any discrepancy in the interpretation
and went back to the empirical data whenever necessary. For
instance, in this process, we began dissecting the WR object
and its structure (i.e., the switch, node, and other
components) and capturing how the WR community
described and qualified WR technology. We also leveraged
the empirical descriptions of how WR component designs
evolved and how the developer community described the
processes for developing WR, and we identified the diverse
WR implementations across different operating contexts.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

648 MIS Quarterly Vol. 47 No. 2 / June 2023

Table 4. Summary of Secondary Data Collected

Types of data Description Use in the analysis

Repository • 5,076 commits
• 36 developer members

To gather data and obtain an
overall understanding of all
WR technology, its
components, cycles of
development, different
component versions,
meetings among contributors,
and main events in WR
development.

Wiki • Documentation about:
• WR technology: WR switch, master (data, timing), node

(WR PTP core), WR good practice guide, calibration
(default parameters for WR switches/nodes,
procedure), data delivery, synchronization,
standardization in IEEE1588-2008, and a frequently
asked questions section.

• WR users: 30 users of WR and 16 evaluating the
technology (documentation about the organizations,
descriptions, and presentations)

• WR projects: 13 publicly funded projects using WR

Newsletters 5 newsletters (2013, 2014, 2015, 2018)

Meeting minutes published 10 meeting minutes (2008-2018)

Workshop • 10 workshops (2008-2018)
• 1 developer meeting (2010)
• 2 tutorial WR workshops (2017, 2018)

Blogs/websites 43 websites of users and projects

Publications • Presentations (n = 64)
• Papers (n = 53)
• Master thesis on WR (n = 2)
• Posters (n = 2)
• Demos (n = 3 in 2010 and 2013)
• Training material (n = 2 in 2013 and 2016)
• Test reports (n = 18)

Standardisation
documentation from IEEE
1588 Working Group

• Working draft on IEEE 1588 standardization 2018
• Technical information provided in the shared group

IEEE 1588 standardization

Third, in the process of axial coding, we structured our first-
order categories into second-order themes and higher-level
aggregate dimensions (Gioia et al., 2013). Within this
process, we gradually progressed toward a more theory-
driven explanation. We performed this process repeatedly,
making extensive use of notes and observations to interpret
the data. For instance, the construct of malleability and the
identified processes of liquification and crystallization were
consolidated in this analytical step. Malleability emerged
from aggregating the qualifications of WR technology
across the second-order themes such as modularity,
granularity, and embodiment, and codes such as “rigid,”
“compact,” and “unbreakable,” from the transcript’s
analysis. Liquification emerged from integrating second-
order codes describing WR development across the logical
design, diverse physical instantiations in scientific settings,
and descriptions such as: “and then people started taking WR
and adapting it to different formats,” “without us doing it”;

“however, the fundamentals of the protocol are the same.”
Similarly, crystallization surfaced from integrating second-
order codes describing WR development and was revealed
from codes such as “proprietary implementations,” “to meet
the requirement of picosecond accuracy in,” and “most
(industrial) applications are concerned with performance”
from the transcript’s analysis. Figure 2 presents the data
structure resulting from this phase.

Finally, we focused on disentangling the linkages between
our dimensions to build a cohesive model theoretically
explaining how the attributes of the hybrid affected the
development model. At this stage, we integrated all major
concepts from hybrid malleability with the development
characteristics to form a holistic and coherent theoretical
model. Once the core categories and the model emerged, we
contrasted them with prior literature on digital objects and
OS development (see the Discussion section) (Bryant &

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 649

Charmaz, 2007). We applied respondent validation (Miles &
Huberman, 1994) by sharing our initial findings with the
participants of the study. To gather feedback about our
study, preliminary results were presented at a workshop of
the WR community on October 6-7, 2018.13 Additionally,
editable tables about the structure and development history
of WR were shared with the interviewees so that the
community could confirm, correct, or elaborate on our
description of the technology and its development process.
Figure 4 illustrates the emerging data structure through our
analysis, and Table B2 in Appendix B illustrates the
progression of our empirical analysis with selected quotes
and empirical observations.

Findings

A detailed analysis of our WR case enabled us to discern the
structure and evolution of WR. This analysis gave us insight
into what we conceptualize as the malleability attribute of
hybrids, which we view as a function of three structural
attributes of the object: (1) its embodiment (i.e., material
components), (2) granularity (i.e., the decomposability of the
components), and (3) modularity (i.e., whether the
components are tightly or loosely coupled). We next describe
WR development in three distinct phases that explain how the
attributes affecting hybrid malleability changed through time
and how these changes affected—and were affected by—the
development model of the WR community.

WR Development

Phase 1: Hybrid Formation (2008−2012)

The first phase began with the project initiation in 2008 and
concluded when the first working version of WR was
produced in 2012. WR was launched as an OSH project, a
decision that is consistent with CERN’s traditional
operational philosophy and raison d’être. However, it
quickly became evident that CERN, as the sponsor and
principal user of WR, needed to (1) centralize WR
development and (2) control the assignment of development
activities for its major (3) sequential and interdependent
steps. As explained by RSE1: “we tried to replicate as much
as we can as an open source project but although we tried,
the problem we had is the time of iteration and inertia, this
was a huge problem and probably the main one.”

13 The workshop information is published at https://www.ohwr.org/
projects/5/wiki/oct2018meeting

First, as RSE6 explained, the organization of WR development
in this first phase was highly centralized: “There was internal
work at CERN and external work by different companies. And
all this work was coordinated at CERN and integrated at CERN
to make it work together.” Second, contractual arrangements
were employed by CERN to control the development of the first
WR prototype, and this required tight direction and supervision
of tasks and development teams. The contractual agreements
included: (1) contracts awarded to companies to gather and
manage WR specifications across the WR development
community; (2) contracts to develop the repository and main
hub for WR collaboration; (3) further contractual arrangements
to contribute to the first switch and node prototypes; and (4)
contracts for prototyping, where manufacturers were asked to
produce a few units of WR components and distribute them
across the community for testing. All of these contractual
arrangements specify that all documentation that results from
the development must be shared in the repository and is
governed under an open source license. An interesting facet of
the contractual agreements was that many vendors included
voluntary contributions as part of their deliverables. This
implies that, if their component included volunteer
contributions from the WR community, they were equally
responsible: “You must be ready to document and publish
everything. Support may take more than you want” (RSE4).
Third, the development followed the four major sequential and
consecutive steps of: (1) requirement and specifications, (2)
design, (3) prototyping, and (4) testing. The outcomes of each
step were highly dependent on the results of the previous step.

The analysis of our data suggests the following reasons for these
three development attributes: First, in the words of RSE6,
regarding the implications of hybrid embodiment:

The development cycle was longer for WR [compared
to other open source software].… in WR the issue is
that, for instance, a modification in the PCB [see
Table B2] of a relatively complex component like the
WR switch can take several months of work so we
need to discuss it.

Second, RSE1 described the constraints of making the hybrid
more granular: “Software is easier to split among companies,
but that does not make sense for hardware. In WR it did not
make any sense. For precision, it is also better that you do not
have too many connectors; here, it was not practical.” CH1
further explained the low granularity: “you could not make it
more granular; it would make it many times more expensive
and need extra work. There would be less efficacy in terms of
precision. It would be harder to make it work.”

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

650 MIS Quarterly Vol. 47 No. 2 / June 2023

Figure 4. Data Structure

1st-Order concepts 2nd-Order Themes Aggregate Dimensions

Malleability

Embodiment
• Physical object with digital

components

Granularity
• Inability to divide in multiple

components in a first development
phase, but possiblity to split further
the object in a second phase

• Described as a hardware box
• Instantiation of the node in different hardware
• Need to wait for building it and then testing it in the

development cycle

• Not feasible to split in multiple components
• Division in multiple components complexifies and

rends expensier the development
• Loose of precision due to too many unnecessary

connectors

Modularity
• Tightly coupled components in a first

development phase, and loosely
coupled components in a second phase

• Compact device that works as a unified object
• Monolithic architecture
• Same protocol for switch and node
• Ability to disgraggate components once a first

version was built to pursue discrete modifications

Liquification

Development
• De-centralized, high voluntary

development with parallel
contributions

• Three versions of the switch and eighteen versions of
the node documented in WR repository

• New designs of nodes conditional on the
characteristics of the context of application

• Further switch versions as result of bug reporting

• Little direction given by the sponsor as the switch
was stable

• Developer community grows and there is high level
of voluntary contributors to node versions

• High volume of new parallel design contributions in
the repository

Physical instantiations
• Heterogeneous instantiations of

components depending on the context
of implementation

• First implementations of WR in other scientific
contexts

• Implementations first in similar research settings
(other accelerators) and increasingly expands to other
scientific contexts

Crystallization

Logical design
• Proprietary modifications to the

object

Development
• Centralized organized inside the

organizations developing proprietary
versions, and sequential development

• Modifications of WR node and switch to integrate it
with diverse industrial contexts

• Design modifications of WR to be integrated with
proprietary hardware in legacy systems

• Directed development of proprietary design versions
of WR inside organizations following sequential
steps and not disclosed to the community

• Proprietary contributions to the switch and node
designs not disclosed to the community

Physical instantiations
• Heterogeneous instantiations of the

objects in industrial contexts

• Implementations of WR in industrial contexts such as
smart grid, financial services, telecommunications
networks, air traffic control, and others where time
synchronization was critical

Logical design
• Modifications compatible with extant

versions of the logical design to
accommodate the object to diverse
operating contexts for scientific
research infrastructures

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 651

Third, the following comment made by respondent RSE6
captures the low modularity of WR; that is, the high coupling
between switch and node and the component layers: “For
WR, we think of hardware boxes.” As RSE1 added:

The switch is quite a compact device; it must work
like one unified device, and if you have different
companies, you need to define different interfaces
between the parts that they are designing, test each
part, see that they work together, and you make it
much more complex, too much work, and much more
expensive.

In sum, although some asynchronous development was
conducted by voluntary developers from peripheral research
organizations, in this first phase, WR displays low
malleability. The design of the core WR technologies with
exacting performance requirements on a monolithic hybrid
architecture resulted in physical embodiment, low
granularity, and low modularity, which lead to a
predominance of practices from traditional hybrid
development.

Phase 2: Hybrid Development in Local Contexts
(2012−2015)

The second phase began with the first WR prototype release.
At this point, the first users began implementing WR and
reporting bugs, the fixes of which were incorporated into
further designs. Novel instantiations of the node began to
appear based on the unique requirements of the installations
of other scientific research infrastructures. Extraordinary
examples include: (1) meteorology research institutes that
must transfer time from atomic clocks over distances up to
1,000 km; (2) the neutrino telescope KM3Net, located in the
deepest seas of the Mediterranean; and (3) the world’s largest
and most sensitive cosmic ray observatory for gamma-ray
astronomy, the Large High Altitude Air Shower Observatory
(LHAASO), built in China at 4,410 meters above sea level.
However, modifications, both physical and programmatic,
were often needed: “In embedded detector electronics there is
usually not much space available. A standard WR switch is
not suited for detectors like Chromium or KM3NeT” (WR
repository, 2020).

In this phase, WR development is characterized by being (1)
loosely centralized, (2) highly voluntary, and with (3) parallel
contributions toward modest changes to the design of the
switch, but with many new designs and configurations for the
nodes proliferating from a flourishing and increasingly
heterogeneous WR community. First, with the switch stable,
it was possible to proceed with loosely centralized control,
permitting many new designs of the nodes:

What happened is that we designed one node, which is
the spec card, and then people started taking it and
adapting it to different formats … one company
developed a simplified version. Some people took this
design and made different formats, and this was
without us doing it, we did not pay for the design, it
was because people needed it (RSE6).

Second, in the words of RSE1, regarding one of the highly
voluntary contributions:

There was an engineer from South Africa who was
interested in solving particular problems with much
greater temperature variations in South Africa
compared to CERN, where optical fibres are
underground and naturally isolated from the
temperature variations of the atmosphere. So, he
discovered effects that we had not seen and voluntarily
improved WR in what affects timing for long distances.

Third, within this phase, a more heterogeneous community of
WR users engaged in parallel developments to provide
alternate versions of WR to customize it to the specific
operational requirements of their infrastructures. The
LHASSO scientific experiment in China, for instance,
developed the so-called “mini-WR node,” which is the
smallest WR node created to give flexibility for connector and
panel arrangement on the carrier board. Other node designs
from scientific organizations included an additional FPGA to
increase processing capability, or plug-in versions of the node
to allow stand-alone implementations.

The analysis of our data suggests the following reasons for the
predominance of loosely centralized, voluntary, and parallel
contributions. First, the low granularity and low modularity of
the WR switch and node hierarchy, which were highly
determinative in the first phase of development, were less of a
constraint in later phases. Once the development of the WR
stack was sufficiently stable, developers in a second phase
could disaggregate WR components—and thereby increase
granularity and modularity—to pursue discrete modifications
of the node and switch in parallel. As this quote from RSE6
illustrates, where the switch and node were initially developed
together, different node configurations and switch
improvements were possible in subsequent implementations:

What the switch and node have in common is that:
what is implemented on each part of the switch is the
same on one node, plus the WR protocol, which is the
same on the switch and the node. Yet, in simplified
words, whereas the node has the wider connection, so
the fibre, on the other side is usually used for
something. And because of that, you may need various
different node versions.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

652 MIS Quarterly Vol. 47 No. 2 / June 2023

In summary, the second phase of WR displayed higher
malleability, due to evolving WR structure (i.e., immutable
embodiment with higher granularity and modularity)
combined with the increasing maturity of the hybrid, which
leads to a predominance of open source development
attributes.

Phase 3: Development of Hybrid Derivative Works
(2015−2020)

The third phase began when WR started a standardization
process to guarantee the stability of the technology, which
raised awareness about the potential of WR across industries
outside of scientific research. In this phase, we found a
growing number of increasingly heterogeneous WR
implementations by industry. Examples of implementations
include Vodafone, which conducted a successful proof of
concept in 2017 to distribute accurate timing through the live
Vodafone network, where time was measured with a
surprisingly small error of less than one nanosecond over a
cascade of four sites that spanned a total distance of 320 km.
In financial services, the Frankfurt Stock Exchange
implemented WR because, as described by CH1:

Financial transaction organizations are required by
law to prove that the time reference used for stamping
transactions is UTC [Universal Time Coordinated]
traceable. Thus, the accuracy required is in the
millisecond range, but WR enables the nanosecond
range with high accuracy and so enables legal
timestamping applications.

In the third phase, although some control was exercised by
the sponsor, it was mostly in the further standardization of
core technologies and logical design. WR industrial
implementors exercised greater autonomy in technology
modification in legacy systems. As described by CH6:

The way you do an open source on software, you tend
to get it to be implemented in different
microprocessor architectures. However, hardware is
different. So, it’s like any time you put two pieces of
hardware together, they are never going to be exactly
the same. Therefore, as WR evolves, the real
challenge is that they have tried hard to make it such
that you just push a button and things are configured
automatically and pull in the relevant files for
architecture, but it does not work like that. It is not
easy; this is really hard.

New versions of WR switches and nodes were developed as
proprietary applications, controlled by different companies
implementing WR, which were not always disclosed to the
WR community.

In this phase, WR maintains the malleability from Phase 2
but is augmented by (1) centralized development and high
pecuniary control over the assignment of tasks by companies
developing WR industrial implementations, (2)
fewer/fragmented voluntary contributions compared to the
previous phase, and (3) sequential proprietary developments
to improve the design of WR and integrate it in different
industrial technologies.

Our data analysis suggests the following reasons: The
embodiment remained as it was—but both the high
granularity and modularity (easily decoupling of switch-
node) salient in the second phase were again reduced in the
third phase in some individual implementations. This was
due to the fact that many industrial applications required that
WR be integrated with legacy systems. A company
developer explained the constraints of legacy systems:
“What we want to try with proprietary implementations is to
meet the requirement of picosecond accuracy, but not with
custom hardware as we want to make it more generic—and
removing all our infrastructure would not make much
sense.” Another company developer added: “The main
limitation of WR is that it is a brand-new hardware design, a
custom hardware. It does not have the off-the-shelf
components and we should develop things to overcome these
limitations.” Some of the improvements in the previous WR
switch design included frequency stability in terms of noise
reduction, less power consumption, and enhanced
monitoring integrated into the data visualization tools,
providing information about WR performance in higher-
level information systems.

In summary, we have presented the evolution of the WR as
occurring in three main phases, which are defined by the
nature of the development that transpired, the developmental
model employed, and the source and locus of the
developmental efforts coming from both the WR sponsor
and the external WR community. A critical focus of our
interpretation of how WR evolved and matured through time
includes the interplay between endogenous attributes of the
hybrid, how these evolved intact with developmental
maturity and exogenous requirements, and how these
modifications further informed the evolution of the WR
logical design. Table 5 summarizes these insights, which we
subsequently elaborate.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 653

Table 5. Summary of Relationship Between Object Attributes and Development Model

 Phase 1
(2008-2012)

Phase 2
(2013-2015)

Phase 3
(2016-2020)

Logical design:

How WR objects and
components evolved

WR OSH v0.0 ➔ v.1.0

First version of the switch and node
controlled by CERN.

WR OSH v1.0 ➔ v3.0 (switch) and
18 versions of the node
documented in WR repository.

IEEE1588-2008

New designs of WR nodes, which
are conditional on the
characteristics of the environment
where WR is applied. Further
switch versions are a result of bug
reporting to the switch.

WR OSH v3.0 ➔ v.3.4 ➔ v 4.0
(ongoing) (switch) and multiple
proprietary versions of WR.

IEEE1588-2019 (PTP high
accuracy)

Release of different versions of the
switch with improvements and
extensions made. Proprietary
versions of WR: first
implementations of WR in other
industries (e.g., financial services,
telecommunications) lead to new
proprietary versions of WR
switches and nodes.

Development
characteristics:

How WR
development was
organized

Centralized, control, sequential:

Strong direction provided by the
sponsor was given to the design.
Contractual agreements with HW
and SW suppliers to allow a first
prototype to emerge. Few voluntary
contributions that include few
research infrastructures.

Endogenous attributes: The
object does not allow for massive
parallel development, but
sequential and highly dependent
steps that need to be directed
because of embodiment, low
granularity, and the tightly coupled
nature of components, which make
the structure highly interrelated in
particular for precision reasons.

Exogenous requirements:
Prototype developed for particle
colliders.

Decentralized, highly voluntary,
parallel contributions:

Little direction given by the sponsor
as the switch was stable, while
there was a high level of
generativity, as the new designs of
the nodes were shared in the
repository as the WR community
was growing. High level of
voluntary contributors to design
multiple versions of the node.
Contractual agreements for WR
production.

Endogenous attributes: The
object allows for parallel,
generative, and decentralized
developments of new design
versions of the node with a stable
version of the switch because there
is high granularity and modularity
where node-switch development
can be decomposed but also
between its embodied and
nonphysical components once the
first prototype is developed. This
generates heterogeneous node
designs for different WR
instantiations.

Exogenous requirements:
Modifications to node (primarily) to
accommodate diverse operating
contexts for scientific research
infrastructures.

Centralized, less voluntary,
sequential:

Proprietary design versions of WR
were directed inside the
organizations following sequential
development processes and not
disclosed to the community.
Voluntary contributions are
balanced by proprietary
contributions to the switch and
node designs.

Endogenous attributes: While
new versions of the switch and
node are pursued, the switch and
node need to be bundled again,
reflecting a low granular and tightly
coupled structure when the
embodied object must be
integrated with legacy systems for
different industrial applications.

Exogenous requirements:
Modifications of node and switch to
integrate into legacy systems
across diverse industrial
applications.

Physical
instantiation:

WR implementations

and visual
representation

Hybrid formation: WR prototype for
development/proof of concept.
Internal at CERN/GSI.

First implementations of WR in
other scientific research
infrastructures.

Integration of WR in industrial
applications.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

654 MIS Quarterly Vol. 47 No. 2 / June 2023

Key Propositions Emerging from the
Analysis

We present a conceptual model (Figure 5) that depicts a set of key
propositions emerging from our empirical investigation. Our
figure illustrates how the three hybrid attributes (i.e., granularity,
modularity, and embodiment) determine the malleability of a
hybrid object. This is moderated by the developmental maturity
of the hybrid. Where an object with low malleability is amenable
to traditional hybrid development methods, high malleability is
more suited to OS development modes. Once the core
technologies are sufficiently stable, the peripheral layers of the
technology stack can be customized to specific implementation
contexts in a process of liquification. Liquification occurs when
the core is sufficiently stable to permit modifications of peripheral
elements of the hybrid technology stack to accommodate the
requirements of diverse (exogenous) implementation contexts yet
remain consistent with the logical design of the OSH license. In
extreme contexts where the existing legacy systems are far from
the standards of the core technology, new versions of the hybrid
can be developed in a process of crystallization. Crystallization
occurs when the core of the hybrid technology is stable, yet
exogenous implementation contexts require instantiations that
push the technology object outside of the boundaries of the
logical design described by the OSH license and thus become
discrete instantiations that fulfill the functionality of the original
technology yet are incompatible with the OSH license. We reflect
upon and further refine this logic in what follows.

Our analysis departs from platitudes such as “bits are free, atoms
are not” that were salient in early skepticism of OSH (Balka,
2011; Balka et al., 2010; Boisseau et al., 2018; Oberloier &
Pearce, 2018; West & Kuk, 2014). It offers a more refined
understanding of the role of a hybrid’s material embodiment and
under what conditions a hybrid’s malleability makes it amenable
to open source development. For hybrid malleability,
embodiment is determinative but not so much as a function of
postdevelopmental manufacturing cost. Rather, what is important
is how embodiment combines appropriate levels of modularity
and granularity, resulting from designing the optimal hybrid to
fulfill its operating requirements. This leads to Proposition 1.

Proposition 1: High granularity, high modularity, and
nonmaterial embodiment increase a hybrid object’s malleability.

A central insight from our analysis is that malleability is not static.
In Phase 1, the primary focus was on the development of the core
functionality and performance of the technology by the sponsor
for implementations in similar contexts (i.e., particle colliders).
The demands emphasized endogenous attributes of the
technology, where the tight coupling of the components with
limited modularity was required to maximize WR performance.
In Phase 2, as WR was implemented in heterogeneous

environments with different operating conditions, the exogenous
factors of the WR physical instantiations played a determinative
role in forcing the decoupling and modification of the node. This
suggests that the hybrid is not exclusively defined or constrained
by its endogenous attributes. Rather, as the technology matures to
permit a decoupling of the hybrid’s layers, exogenous
requirements of WR instantiations in scientific settings (e.g.,
volatile temperatures, very high altitude, or deep sea level) further
stimulated the evolution of granularity and modularity and
thereby increased its malleability. This leads to Proposition 2.

Proposition 2: The malleability of a hybrid increases with
maturity.

Our analysis suggests that when WR was in a very early stage of
development and a proof of concept or working prototype was
yet to be produced, the development had to be highly centralized
with limited volunteer contributions completed in highly
structured and sequential steps. Although WR was officially open
source, most external contributions came from a few specific
vendors operating with commercial contracts and there were few
voluntary contributions. Our data clearly indicate that an
alternative development model with numerous components,
interfaces, or unanticipated volunteer contributions would not
only increase the development efforts of the sponsor but also
reduce the operating precision of WR. Consequently, our study
suggests that if a hybrid is not sufficiently malleable, a traditional
mode of hybrid development occurs, leading to Proposition 3.

Proposition 3: Less malleable objects are associated with a
development model characterized by (a) assigned tasks and
pecuniary compensation, (b) centralization, and (c) sequential
collaboration.

Once the core technology was complete and stable,
implementations began outside of CERN in other scientific
research infrastructures. Whereas some of these were particle
accelerators such as GSI, others were completely different and
required WR to operate distinctively. As a result, implementors
and voluntary organizations were able to decompose the WR
stack to modify the node to the specific operating conditions of
their installations. This ability to take an object that was once low
in malleability and decouple it into its many components makes
it more malleable and capable of independent modification by
developers working in parallel. Consequently, WR evolved into
a more highly malleable object that enabled voluntary
contributions where developers self-assigned their development
activities in independent, parallel, and asynchronous
contributions. Proposition 4 follows.

Proposition 4: Highly malleable objects are associated with a
development model characterized by (a) self-assigned tasks, (b)
decentralization, and (c) asynchronous collaboration.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 655

Figure 5. Conceptual Model

Our case data indicates that consistent with Proposition 2,
with maturity and higher malleability, numerous
independent modifications were made at different research
infrastructures. For example, at the end of Phase 2, 18
different versions of the node were documented on the WR
repository. At the same time, given the commonalities of the
research infrastructures, as well as the fact that they were all
compliant with the shared WR logical design, they are
considered to be in the same category of interoperable
technology. We conceptualize hybrid liquification as a
metaphor to describe the process by which the hybrid
components are constantly modified through open source
attributes (i.e., decentralized, highly voluntary, parallel
contributions). Multiple variants of the hybrid components
result from the liquification process and are compatible with
extant versions of the WR logical design—that is,
heterogeneous node designs for different WR instantiations
that are compatible with the standard WR core technology.

In Phase 3, hybrid malleability continued yet resulted in a
different process for some physical instantiations. When WR
was implemented in increasingly heterogeneous industrial
settings, such system integrations often required the hybrid
to be modified to the operating specifications of a different
sector and, additionally, integrated into legacy systems that
could be equally distinct. As is evident from our case data,
the nature of the legacy systems often played a constraining
role to the extent that the WR technology required
substantial modifications to be compatible. In extreme cases,
this generated instantiations of WR where the switch-node
became recoupled for easier integration and interoperability

with legacy systems. Such modifications for WR integration
were performed in a highly centralized manner, with control
over the assignment of developmental tasks. We term this
process crystallization. Crystallization is a metaphor that we
employ to describe the process by which core technologies
are modified, employing traditional hybrid development
attributes (i.e., centralized control over sequential
development tasks) and resulting in variants that diverge
from the WR logical design to become proprietary versions
of WR. This did not happen with all the WR instantiations
in Phase 3. Rather, the liquification and crystallization
processes occurred in parallel. This leads to propositions 5a
and 5b.

Proposition 5a: With high malleability, a hybrid can liquify
with increasing requirements of diverse operating contexts.

Proposition 5b: With high malleability, a hybrid can
crystallize with increasing requirements of diverse
operating contexts with restrictive legacy systems.

Our final insight is that it is important to differentiate
physical instantiations or implementations of WR across its
development from the evolution of the logical design shared
openly and regulated by a WR OSH license. The evolution
of the WR instantiations followed a path with homogeneous
versions developed for particle accelerators in Phase 1,
complemented with moderately diverse modifications of the
node for distinct research infrastructures in Phase 2 (i.e.,
liquification), combined with extensive modifications to
both the switch and node to integrate into legacy systems in

Hybrid attributes

OS development

Voluntary nature of collaboration in self-
assigning the development activities

Loosely centralized

Asynchronous collaboration in
parallel development activities

P1

P3

Centralized development

Sequential development activities

Control over the assignment and
pecunary development activities

High malleability

Low malleability
P4

Modularity

Granularity

Traditional hybrid development

Embodiment

P2

LIQ
UI
FIC

AT
IO
N

CRYSTALLIZATION

P5a

P5b
Maturity

Ex
o
ge
n
o
u
s
re
q
u
ir
e
m
e
n
ts
fr
o
m

p
h
ys
ic
al
in
st
an
ti
at
io
n
s

MALLEABILITY

Development

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

656 MIS Quarterly Vol. 47 No. 2 / June 2023

diverse industrial settings in Phase 3 (i.e., crystallization). As
implementations became increasingly heterogeneous, so did
contributions to the logical design. While it is important to
distinguish the physical instantiations from the logical
design (OSH licensed), they continue to simultaneously
influence one another, despite any divergence. This mutual
influence has implications for third-party manufacturers of
WR hardware and its implementors, but even more
important is the way it affects how insights derived from
individual modifications further inform future versions of
the WR logical design. This emphasizes the need to restate
the often-made point that open source is not about free things
(digital, hybrid, and material), but rather the freedom to use
and modify what is codified under the open source license
(Feller & Fitzgerald, 2001). An important observation is the
role that the IEEE1588 PTP standard played in maintaining
the cohesion in the logical design. The standard ensured a
certain compatibility with complementary technologies in
diverse industrial implementations, yet it also anchored
some stability and predictability in the evolution of the
logical design. This helped mitigate the perceived risk of
fragmentation of the WR community that could potentially
result with excessive crystallization.

Discussion and Implications

This article investigates the question of how the attributes
of a hybrid object and its components affect the open
source model of development. Limited insight into the
complex nature of hybrids (Kyriakou et al., 2017) has
obfuscated where it is possible to organize their
developmental work with open source methods
traditionally based on digital software.

Our work contributes to the field by conceptualizing hybrid
attributes in a manner that extends the ontological
separation of digital objects and their material bearers
(Faulkner & Runde, 2019; Kallinikos et al., 2013; Yoo et
al., 2010). By doing so, we argue how embodiment
interacts with granularity and modularity to determine a
hybrid object’s suitability for an open source development
model. We further describe how the endogenous attributes
of the hybrid (i.e., its modularity, granularity, and
embodiment) interact with exogenous demands; that is, the
operating conditions for the object’s physical instantiation
or any systems integration restrictions. This leads to two
sets of implications concerning (1) the role of malleability
and material embodiment in digital and hybrid
conceptualizations, and (2) liquification and crystallization
processes in open source development.

About Malleability and Material Embodiment

First, in a context of increased automation, the Internet of
Things, or wearable technologies where the boundary between
hardware and software is increasingly blurred (Recker et al.,
2021; Romasanta et al., 2021), we argue that the construct of
malleability is useful for identifying how the development work
of different types of hybrid and digital objects can be organized.

Our analysis qualifies characterizations of hybrids as less
malleable compared to digital objects (von Briel et al., 2018;
Yoo et al., 2010) that predominantly focus on the effect of the
object’s material embodiment but underestimate the object’s
structure. Specifically, a great deal of research in open source
development suggests that the physical embodiment of the
object can render open source development modalities
prohibitive (Balka, 2011; Balka et al., 2010; Boisseau et al.,
2018; Oberloier & Pearce, 2018; West & Kuk, 2014). However,
following the discussion of von Briel et al. (2018), our case
analysis demonstrates that it was the combination of material
embodiment, modularity, and granularity of both the hardware
and software that determined the hybrid’s overall malleability
and, consequently, the development model. Although material
embodiment is not inconsequential, it is less determinative than
the modularity and granularity of the object’s structure: In the
case of WR, the most important factor was the extreme
performance requirements of the core technology that made
higher levels of granularity and modularity prohibitive in its
logical design, dictating a development model that was, in early
phases, centrally controlled and concentrated in a few partners.
In subsequent phases, the material embodiment was
determinative to the degree that different operating conditions
warranted modifications to WR components to make them
operationally robust in those environments. These
modifications were registered in the WR community and many
of them impacted future WR logical designs regulated by the
WR OSH license. In this respect, we can very much claim that,
due to the nature of the material embodiment and the different
physical instantiations of WR, numerous contributions were
made to the evolution of the WR logical design.

Extensive material embodiment is often associated with the
higher economic cost of manufacturing a physical artifact
(Balka, 2011; Balka et al., 2010). It is interesting to note that
high development and production costs were not detrimental to
WR development as an OSH. Rather, its implementation was
simply concentrated in scientific and industrial organizations
with the needs and resources to pay for it, just like any other
commercial product. In this respect, an OSH with high
economic costs mirrors the commercial aspect of open source
software 2.0 (Fitzgerald, 2006, Niederman et al., 2006).
Although it does not preclude its success, it does more narrowly
define the nature of the open source community supporting,
using, and monetizing it.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 657

About Liquification and Crystallization

Our analysis also suggests that the malleability of hybrids is
not a static property of the object but one that changes
through its maturation. Where both modularity and
granularity have been applied to describe the structure of
digital objects at large (Ekbia, 2009; Kallinikos et al., 2013;
Kallinikos & Mariátegui, 2011; Manovich, 2001; Yoo, 2010;
Yoo et al., 2010), our study offers a dynamic perspective in
which malleability changes across the different phases of its
evolution. With high malleability, the processes of
liquification or crystallization can result, depending on how
the hybrid structural attributes interact with exogenous
implementation requirements.

While the term “liquification” (Norman, 2001)—or
“liquefaction” (Lusch & Nambisan, 2015)—has previously
been employed in the service innovation literature to
describe a dematerialization process or “the ability to
separate information from the physical world” (Øvrelid &
Kempton, 2019, p. 3; Barrett et al., 2012; Lusch &
Nambisan, 2015), we extend its meaning to the context of
hybrid development to refer to how the process of increasing
malleability facilitates a plurality of physical instantiations.
Unlike the liquification process, which described a WR
transformation resulting in WR variants compatible with the
licensed WR logical design, crystallization depicted a
process that led to WR variants that were incompatible with
the licensed WR logical design.

Liquification and crystallization processes draw parallels
with software engineering literature, describing the
evolution of purely digital objects (software) through
forking processes (Gamalielsson & Lundell, 2014; Robles
& González-Barahona, 2012; Zhou et al., 2020). In the
development of digital objects, social forks describe the
processes of creating a public copy of a repository with the
goal of contributing to the original project in a distributed
development (Ren et al., 2019; Zhou et al., 2020), where
the results are compatible variants of the original code
(Feitelson, 2012). Within the same literature, hard forks
describe the process of “splitting off a new development
branch” (Zhou et al., 2020) to target user segments or
functionality not accommodated in the original version.
However, even though the concept of forking is analogous
to the liquification and crystallization concepts we propose,
their underlying causes are different. In software, hard
forks are typically motivated by the fact that as the project
matures, the original goals of the contributors eventually
diverge, and other contributors may want to take the
technology in a different direction (Ven & Mannaert, 2008;
Viseur, 2012). In contrast, in our case, the exogenous
factors dictating where the hybrid needs to be operated and
integrated largely explain the liquification and

crystallization processes. Hence, where software forking
often occurs as a result of a political or technical
disagreement endogenous to the developer community
(Robles & González-Barahona, 2012), for hybrids,
liquification and crystallization naturally occur in response
to exogenous factors (e.g., operating conditions,
integration context) that influence the design modifications
and subsequently inform the evolution of the hybrid’s
logical design. This difference is not trivial and further
qualifies the role of physical embodiment—and its
interaction with exogenous factors—in determining the
development modalities.

Practical Implications

Big-science research infrastructures have developed some of
the world’s most sophisticated technologies with the
potential for multiple and unanticipated applications in
different industries (Pujol Priego et al., 2022; Wareham &
Pujol Priego, 2019; Wareham et al., 2022). In parallel,
commercial interest in OSH is growing, particularly for
organizations that want to minimize the nonrecurring
engineering costs of technologies that do not yet exist by
sharing these expenses with an open source community
(Barrett et al., 2013; Deodhar et al., 2012; Fitzgerald, 2006;
Spaeth et al., 2014; von Krogh et al., 2012). An important
opportunity exists to develop such sophisticated
technologies through open source development, unlocking
its potential for downstream product developments. While
skepticism prevails in policy and investment circles
regarding how highly sophisticated technology stacks may
be developed following open source premises, our analysis
suggests that development models can adjust to the changing
malleability of the object through time. The WR case
acknowledges a need, at specific points, for traditional open
source development to incorporate more centralized,
directed, and less bazaar-like processes.

The adjustment of the open source premise with more
directed development has already been identified in more
commercially oriented open source software (Dahlander &
O’Mahony, 2010; Fitzgerald, 2006), where commitments
and clear development decisions sometimes need to prevail
over heterogeneous viewpoints and self-sectioning
(Bergquist & Ljungberg, 2001; Casadesus-Masanell &
Ghemawat, 2006; Raymond, 1999). Our work qualifies these
insights for commercially focused OSH, giving physical
embodiment a role that is determinative yet subordinate. If
we liberate open source from the prejudices that have
traditionally shadowed hardware (i.e., high economic costs
of production), we can better cultivate the knowledge and
practice of how sophisticated, commercially adopted
hardware can be developed following open source premises.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

658 MIS Quarterly Vol. 47 No. 2 / June 2023

Limitations and Future Research

The selection of a single case such as WR limits the
generalizability of the findings. Nonetheless, (1) we employed
different data collection methods and collected a sufficient
amount of secondary and primary data from multiple
informants to increase confidence in our interpretations, (2)
we took care in documenting our analytical processes to
dissect our inferences from the empirical data, (3) we
incorporated diverse viewpoints and interpretations, and (4)
we shared and discussed our findings with the WR community
at two different stages of our analytical progression to
corroborate our interpretations. Such processes helped build
confidence in our analytical steps. Although this single case
study design allowed us to generalize to a theory (Lee &
Baskerville, 2003; Tsang & Williams, 2012), we acknowledge
that further research is required to replicate our findings across
different contexts (Yin, 2003).

First, we should be prudent in extrapolating our findings to
contexts that do not have the same level of technical
sophistication, economic resources, and political status as the
sponsor CERN, as these factors may be influential in the case
of WR. Second, as a technology, there are two aspects of WR
that are also exceptional. Because time measurement in the
extreme is very sensitive to both the physical and logical design
of the technology, other OSH projects may not have the same
technical sensitivities and may therefore be amenable to a wider
range of development models. Additionally, WR is not a
general-use technology like an operating system or scripting
software; it was commissioned with a specific purpose and is
intolerant to significant variance in its performance. Clearly,
OSH projects that are more general purpose and unconstrained
by such rigid performance requirements may tolerate greater
scope drift or more organic development processes. We hope
our study will trigger more empirical OSH research and will
open new opportunities for future research on hybrid
malleability. In our study, we were able to observe the trajectory
(i.e., the increasing or decreasing) of malleability, but
theoretical and empirical work that takes the next step and
investigates malleability patterns (e.g., linearity, exponentiality)
can help us better understand the implications of how
malleability behaves for development practices.

Conclusion

Open source hardware is growing in its visibility and
promise. However, limited experience and insight into OSH
for larger commercial applications has hindered the
realization of its full potential. Seeking a more nuanced and
useful understanding, our research focuses on a holistic
continuum of physical and digital attributes, allowing us to
better understand the determinants of open source

development for hybrid technology objects. Our work
challenges the assumptions and addresses some of the
shortcomings of prior research in OSH, particularly the
focus on physical embodiment as detrimental to open source
development. Alternatively, we offer a more complex
explanation of how an object’s physical embodiment
interacts with other structural attributes that determine its
amenability to open source development. Our theoretical
insights can potentially trigger new ways of looking at both
digital and hybrid objects and offer new avenues to leverage
the potential of OSH.

Acknowledgments

We are deeply indebted to the senior editor, Sirkka Jarvenpaa, and
the associate editor, Jan Recker, for their editorial guidance and
developmental feedback, which helped us shape our work and
improve the paper. We are also indebted to the team of anonymous
reviewers for their insightful comments and suggestions. We also
appreciate the support of all the people we had the privilege to meet
at CERN, as well as the members of the White Rabbit community,
who were a fundamental piece of the study. Preliminary findings
from this study were presented at the 39th International Conference
on Information Systems (ICIS 2018).

References

Ackerman, J. R. (2008). Toward open source hardware. University of
Dayton Law Review, 34, 183-222.

Ågerfalk, P. J., & Fitzgerald, B. (2008). Outsourcing to an unknown
workforce: Exploring open sourcing as a global sourcing
strategy. MIS Quarterly, 32(2), 385-409. https://doi.org/10.2307/
25148845

Akhlaghpour, S., Wu, J., Lapointe, L., & Pinsonneault, A. (2013).
The ongoing quest for the IT artifact: Looking back, moving
forward. Journal of Information Technology, 28(2), 150-166.
https://doi.org/10.1057/jit.2013.10

Allen, R. C. (1983). Collective invention. Journal of Economic
Behavior and Organization, 4(1), 1-24. https://doi.org/10.1016/
0167-2681(83)90023-9

Balka, K. (2011). Open source product development: The meaning
and relevance of openness. Springer.

Balka, K., Raasch, C., & Herstatt, C. (2010). How open is open
source? Software and beyond. Creativity and Innovation
Management, 19(3), 248-256. https://doi.org/10.1111/j.1467-
8691.2010.00569.x

Barrett, M., Davidson, E., Fayard, A.-L., Vargo, S., & Yoo, Y. (2012,
December 14). Being innovative about service innovation:
Service, design and digitalization. In Proceedings of the
International Conference on Information Systems.
https://aisel.aisnet.org/icis2012/proceedings/Panels/7

Barrett, M., Heracleous, L., & Walsham, G. (2013). A rhetorical
approach to IT diffusion: Reconceptualizing the ideology-
framing relationship in computerization movements. MIS
Quarterly, 37(1) 201-220. http://www.jstor.org/stable/43825943

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 659

Benkler, Y. (2002). Coase’s penguin, or, Linux and “the nature of the
firm.” Yale Law Journal, 112(3) Article 369. https://doi.org/
10.2307/1562247

Benkler, Y. (2006). The wealth of networks: How social production
transforms markets and freedom. Yale University Press.

Bergquist, M., & Ljungberg, J. (2001). The power of gifts:
Organizing social relationships in open source communities.
Information Systems Journal, 11(4), 305-320. https://doi.org/
10.1046/j.1365-2575.2001.00111.x

Bogers, M., & Horst, W. (2014). Collaborative prototyping: Cross-
fertilization of knowledge in prototype-driven problem solving.
Journal of Product Innovation Management, 31(4), 744-764.
https://doi.org/10.1111/jpim.12121

Boisseau, É., Omhover, J.-F., & Bouchard, C. (2018). Open-design:
A state of the art review. Design Science, 4(e3).
https://doi.org/10.1017/dsj.2017.25

Bonvoisin, J., Mies, R., Boujut, J.-F., & Stark, R. (2017). What is the
“source” of open source hardware? Journal of Open Hardware,
1(1), Article 5. https://doi.org/10.5334/joh.7

Boujut, J.-F., Pourroy, F., Marin, P., Dai, J., & Richardot, G. (2019).
Open source hardware communities: investigating participation
in design activities. In Proceedings of the Design Society:
International Conference on Engineering Design, 1(1), 2307-
2316.

Bryant, A., & Charmaz, K. (2007). The SAGE Handbook of
Grounded Theory. SAGE. https://dx.doi.org/10.4135/978184
8607941

Casadesus-Masanell, R., & Ghemawat, P. (2006). Dynamic mixed
duopoly: A model motivated by Linux vs. Windows.
Management Science, 52(7), 1072-1084. https://doi.org/
10.1287/mnsc.1060.0548

Cook, J. (2001). Open source development: An Arthurian legend.
Presented at the 1st Workshop on Open-source Software
Engineering at ICSE 2001, Toronto, ON, Canada.
https://flosshub.org/content/open-source-development-
arthurian-legend

Crowston, K. (1997). A coordination theory approach to
organizational process design. Organization Science, 8(2), 157-
175. https://doi.org/10.1287/orsc.8.2.157

Crowston, K., & Howison, J. (2006). Hierarchy and centralization in
free and open source software team communications.
Knowledge, Technology and Policy, 18(4), 65-85.
https://doi.org/10.1007/s12130-006-1004-8

Cusumano, M. A. (1992). Shifting economies: From craft production
to flexible systems and software factories. Research Policy,
21(5), 453-480. https://doi.org/10.1016/0048-7333(92)90005-O

Dahlander, L., & O’Mahony, S. (2010). Progressing to the center:
Coordinating project work. Organization Science, 22(4), 961-
979. https://doi.org/10.1287/orsc.1100.0571

DeMicheli, G., & Sami, M. G. (2013). Hardware/software co-design.
Springer.

Deodhar, S. J., Saxena, K. B. C., Gupta, R. K., & Ruohonen, M.
(2012). Strategies for software-based hybrid business models.
The Journal of Strategic Information Systems, 21(4), 274-294.
https://doi.org/10.1016/j.jsis.2012.06.001

Dourish, P. (2001). Where the action is: The foundations of embodied
interaction. MIT Press. https://doi.org/10.7551/mitpress/7221.
001.0001

Drechsler, R., & Breiter, A. (2007, July 22-25). Hardware project
management: What we can learn from the software development
process for hardware design? In Proceedings of the 2nd

International Conference on Software and Data Technologies
(pp. 409-416). https://doi.org/0.5220/0001324204090416

Ekbia, H. R. (2009). Digital artifacts as quasi-objects: Qualification,
mediation, and materiality. Journal of the American Society for
Information Science and Technology, 60(12), 2554-2566.
https://doi.org/10.1002/asi.21189

Faulkner, P., & Runde, J. (2009). On the identity of technological
objects and user innovations in function. Academy of
Management Review, 34(3), 442-462. https://doi.org/10.5465/
amr.2009.40632318

Faulkner, P., & Runde, J. (2013). Technological objects, social
positions, and the transformational model of social activity. MIS
Quarterly, 37(3), 803-818. https://www.jstor.org/stable/
43826001

Faulkner, P., & Runde, J. (2019). Theorizing the digital object. MIS
Quarterly, 43(4), 1279-1302. 10.25300/MISQ/2019/13136

Feller, J., & Fitzgerald, B. (2000). A framework analysis of the open
source software development paradigm. In Proceedings of the
21st International Conference on Information Systems (pp. 58-
69).

Feller, J., & Fitzgerald, B. (2001). Understanding open source
software development (1st ed.). Addison-Wesley Professional.

Feitelson, D. (2012). Perpetual development: A model of the Linux
kernel life cycle. Journal of Systems and Software, 85(4), 859-
875. https://doi.org/10.1016/j.jss.2011.10.050

Fitzgerald. (2006). The transformation of open source software, MIS
Quarterly, 30(3), 587. https://www.jstor.org/stable/25148740

Gajski, D. D., & Vahid, F. (1995). Specification and design of
embedded hardware-software systems. IEEE Design Test of
Computers, 12(1), 53-67. https://doi.org/10.1109/54.350695

Gamalielsson G., & Lundell, B. (2014). Sustainability of open source
software communities beyond a fork: How and why has the
LibreOffice project evolved? Journal of Systems and Software,
89, 128-145. https://doi.org/10.1016/j.jss.2013.11.1077

Gerring, J. (2007). Case study research: Principles and practices.
Cambridge University Press.

Gibb, A. (2014). Building open source hardware: DIY
manufacturing for hackers and makers (1st ed.). Addison-
Wesley Professional.

Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking
qualitative rigor in inductive research: Notes on the Gioia
methodology. Organizational Research Methods, 16, 15-31.
https://doi.org/10.1177/1094428112452151

Howison, J., & Crowston, K. (2014). Collaboration through open
superposition: A theory of the open source way. MIS Quarterly,
38(1), 29-50. https://www.jstor.org/stable/26554867

Kallinikos, J., Aaltonen, A., & Marton, A. (2010). A theory of digital
objects. First Monday, 15(6). https://doi.org/10.5210/
fm.v15i6.3033

Kallinikos, J., Aaltonen, A., & Marton, A. (2013). The ambivalent
ontology of digital artifacts. MIS Quarterly, 37(2), 357-370.
https://doi.org/10.25300/MISQ/2013/37.2.02

Kallinikos, J., & Mariátegui, J.-C. (2011). Video as digital object:
Production and distribution of video content in the internet media
ecosystem. The Information Society, 27(5), 281-294. https://
doi.org/10.1080/01972243.2011.607025

Klein, H. K., & Myers, M. D. (1999). A set of principles for
conducting and evaluating interpretive field studies in
information systems. MIS Quarterly 23(1), 67-93. https://
doi.org/10.2307/249410

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

660 MIS Quarterly Vol. 47 No. 2 / June 2023

Kyriakou, H., Nickerson, J.V. & Sabnis, G., (2017). Knowledge
reuse for customization: Metamodels in an open design
community for 3D printing. MIS Quarterly, 41(1), 315-332.
https://doi.org/10.25300/MISQ/2017/41.1.17

Lakhani, K. R., & von Hippel, E. (2004). How open source software
works: “Free” user-to-user assistance. In C. Herstatt & J. G.
Sander (Eds.), Produktentwicklung mit virtuellen Communities:
Kundenwünsche erfahren und Innovationen realisieren (pp. 303-
339). Gabler. https://doi.org/10.1007/978-3-322-84540-5_13

Lee, A. S., & Baskerville, R. L. (2003). Generalizing generalizability
in information systems research. Information systems
research, 14(3), 221-243. https://doi.org/10.1287/isre.14.3.221.
16560

Leonardi, P. M. (2010). Digital materiality? How artifacts without
matter, matter. First Monday, 15(6-7). https://doi.org/10.5210/
fm.v15i6.3036

Lindberg, A., Berente, N., Gaskin, J., & Lyytinen, K. (2016).
Coordinating interdependencies in online communities: A study of
an open source software project. Information Systems Research,
27(4), 751-772. https://doi.org/10.1287/isre.2016.0673

Lipiński, M., Włostowski, T., Serrano, J., & Alvarez, P. (2011,
September 12-16). White Rabbit: A PTP application for robust
sub-nanosecond synchronization. In 2011 IEEE International
Symposium on Precision Clock Synchronization for
Measurement, Control and Communication (pp. 25-30).
https://ieeexplore.ieee.org/document/6070148

Lok, J., & de Rond, M. (2012). On the plasticity of institutions:
Containing and restoring practice breakdowns at the Cambridge
University Boat Club. Academy of Management Journal, 56(1),
185-207. https://doi.org/10.5465/amj.2010.0688

Lusch, R. F., & Nambisan, S. (2015). Service innovation: A service-
dominant logic perspective. MIS Quarterly, 39(1), 155-176.
https://doi.org/10.25300/MISQ/2015/39.1.07

Manovich, L. (2001). The language of new media. MIT Press.
Markus, M. L. (2007). The governance of free/open source software

projects: Monolithic, multidimensional, or configurational?
Journal of Management and Governance, 11(2), 151-163.
https://doi.org/10.1007/s10997-007-9021-x

Masum, H. (2000). Reputation layers for open-source development.
In Making sense of the bazaar: Proceedings of the 1st workshop
open source software engineering (pp. 3-5). https://flosshub.org/
sites/flosshub.org/files/masum.pdf

Mellis, D., & Buechley, L. (2012). Collaboration in open-source
hardware: Third-party variations on the Arduino Duemilanove.
In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work (pp. 1175-1178). https://doi.org/
10.1145/2145204.2145377

Mies, R., Bonvoisin, J., & Jochem, R. (2019). Harnessing the synergy
potential of open source hardware communities. In T. Redlich,
M. Moritz, & J. Wulfsberg (Eds.), Co-creation: Reshaping
business and society in the era of bottom-up economics (pp. 129-
145). Springer. https://doi.org/ 10.1007/978-3-319-97788-1_11

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis:
An expanded sourcebook (2nd ed.). SAGE.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case
studies of open source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346. https://doi.org/10.1145/567793.
567795

Moreira, P., Serrano, J., Wlostowski, T., Loschmidt, P., & Gaderer,
G. (2009, October 12-16). White Rabbit: Sub-nanosecond timing

distribution over ethernet. In Proceedings of the ISPCS 2009
International IEEE Symposium on Precision Clock
Synchronization for Measurement, Control and Communication,
58-62. https://doi.org/10.1109/ISPCS.2009.5340196

Niederman, F., Davis, A., Greiner, M. E., Wynn, D., & York, P. T.
(2006). Research agenda for studying open source II: View
through the lens of referent discipline theories. Communications
of the Association for Information Systems, 18(7) 129-149.
https://doi.org/10.17705/1CAIS.01808

Norman, R. (2001). Reframing business: When the map changes the
landscape. Wiley.

Oberloier, S., & Pearce, J. M. (2018). General design procedure for
free and open-source hardware for scientific equipment. Designs,
2(1), 2. https://doi.org/10.3390/designs2010002

O’Mahony, S., & Ferraro, F. (2007). The emergence of governance
in an open source community, Academy of Management Journal.
50(5), 1079-1106. https://doi.org/10.5465/amj.2007.27169153

Open Source Hardware Association. (2012). Definition of open
source hardware. Open Source Hardware Association.
https://www.oshwa.org/definition/

Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary:
Desperately seeking the “IT” in IT Research—A call to
theorizing the IT artifact. Information Systems Research, 12(2),
121-134. https://doi.org/10.1287/isre.12.2.121.9700

Øvrelid, E., & Kempton, A. (2019). From recombination to
reconfiguration: Affording process innovation in digital
infrastructures. In Proceedings of the 27th European Conference
on Information Systems.

Paavola, S., & Miettinen, R. (2019). Dynamics of design
collaboration: BIM models as intermediary digital objects.
Computer Supported Cooperative Work, 28(1), 1-23.
https://doi.org/10.1007/s10606-018-9306-4

Pan, W., Li, Z., Zhang, Y., & Weng, C. (2018). The new hardware
development trend and the challenges in data management and
analysis. Data Science and Engineering, 3(3), 263-276.
https://doi.org/10.1007/s41019-018-0072-6

Pearce, J. M. (2012). Building research equipment with free, open-
source hardware. Science, 337(6100), 1303-1304. https://doi.org/
10.1126/science.1228183

Pearce, J. M. (2017). Emerging business models for open source
hardware. Journal of Open Hardware, 1(1). https://doi.org/
10.5334/joh.4

Pujol Priego, L., Wareham, J., & Romasanta, A.K. (2022) The puzzle
of sharing scientific data, Industry and Innovation, 29(2), 219-
250. https://doi.org/10.1080/13662716.2022.2033178

Raymond, E. (1999). The cathedral and the bazaar: Musings on
Linux and open source by an accidental revolutionary.
Knowledge, Technology and Policy, 12(3), 23-49.

Recker, J., Lukyanenko, R., Jabbari, M., Samuel, B. M., &
Castellanos, A. (2021). From representation to mediation: A new
agenda for conceptual modeling research in a digital world. MIS
Quarterly, 45(1), 269-300. https://doi.org/10.25300/MISQ/
2021/16027

Ren, L., Zhou, S., Kästner, C. & Wa˛sowski, A. (2019). Identifying
redundancies in fork-based development. In Proceedings of the
IEEE 26th International Conference on Software Analysis,
Evolution, and Reengineering (pp. 230-241).
https://doi.org/10.1109/SANER.2019.8668023

Robles, G., González-Barahona, J.M. (2012). A comprehensive
study of software forks: Dates, reasons and outcomes. In I.
Hammouda, B. Lundell, T. Mikkonen, & W. Scacchi (Eds.),

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 661

Open source systems: Long-term sustainability. Springer.
https://doi.org/10.1007/978-3-642-33442-9_1

Romasanta, A., Ahmadova, G., Wareham, J. & Pujol Priego, L.
(2021). Deep tech: Unveiling the foundations (ESADE working
papers series 276). Available at https://ssrn.com/abstract
=4009164

Sanchez, R., & Mahoney, J. T. (1996). Modularity, flexibility, and
knowledge management in product and organization design.
Strategic Management Journal, 17(S2), 63-76. https://doi.org/
10.1002/smj.4250171107

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K.
(2006). Understanding free/open source software development
processes. Software Process: Improvement and Practice, 11(2),
95-105. https://doi.org/10.1002/spip.255

Shah, S. K. (2005). Open beyond software. In C. DiBona, D. Cooper,
& M. Stone (Eds.), Open sources 2.0: The continuing evolution
(pp. 339-360). O’Reilly Media.

Shah, S. K. (2006). Motivation, governance, and the viability of
hybrid forms in open source software development. Management
Science, 52(7), 1000-1014. https://doi.org/10.1287/mnsc.1060.
0553

Shaikh, M., & Vaast, E. (2016). Folding and unfolding: Balancing
openness and transparency in open source communities.
Information Systems Research, 27(4), 813-833. https://doi.org/
10.1287/isre.2016.0646

Spaeth, S., von Krogh, G., & He, F. (2014). Research note: Perceived
firm attributes and intrinsic motivation in sponsored open source
software projects. Information Systems Research, 26(1), 224-
237. https://doi.org/10.1287/isre.2014.0539

Tsang, E. W., & Williams, J.N., (2012). Generalization and
induction: Misconceptions, clarifications, and a classification of
induction. MIS Quarterly, 729-748. https://doi.org/10.2307/
41703478

Ven, K., & Mannaert, H. (2008). Challenges and strategies in the use
of open source software by independent software vendors.
Information and Software Technology, 50(9-10), 991-1002.
https://doi.org/10.1016/j.infsof.2007.09.001

Viseur, R. (2012). Forks impacts and motivations in free and open
source projects. International Journal of Advanced Computer
Science and Applications, 3(2), 117-122.
https://doi.org/10.14569/IJACSA.2012.030221

von Briel, F., Recker, J., & Davidsson, P. (2018). Not all digital
venture ideas are created equal: Implications for venture creation
processes. The Journal of Strategic Information Systems, 27(4),
278-295. https://doi.org/10.1016/j.jsis.2018.06.002

von Hippel, E. & von Krogh, G. (2003). Open source software and
the “private-collective” innovation model: Issues for
organization science. Organization Science, 14(2), 209-223.
https://doi.org/10.1287/orsc.14.2.209.14992

von Krogh, G. Haefliger, S., Spaeth, S., & Wallin, M. W. (2012).
Carrots and rainbows: Motivation and social practice in open
source software development. MIS Quarterly, 36(2), 649.
https://doi.org/10.2307/41703471

Wareham, J., & Pujol Priego, L. (2019). From big science to big
business. Research Professional News. https://www.research
professionalnews.com/rr-news-europe-views-of-europe-2019-6-
from-big-science-to-big-business/

Wareham, J., Pujol Priego, L., Romasanta, A.K., Mathiassen, T.W.,
Nordberg, M., & Tello, P.G., (2022). Systematizing serendipity
for big science infrastructures: The ATTRACT project.

Technovation, 102374. https://doi.org/10.1016/j.technovation.
2021.102374

West, J., & Kuk, G. (2014). Proprietary benefits from open
communities: How MakerBot leveraged Thingiverse in 3D
printing. 3D Printing, 27. Available at https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=2544970

Yin, R. K. (2003). Case study research: Design and methods (applied
social research methods). SAGE.

Yoo, Y. (2010). Computing in everyday life: A call for research on
experiential computing. MIS Quarterly, 34(2), 213-231.
https://doi.org/10.2307/20721425

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research
commentary—The new organizing logic of digital innovation:
An agenda for information systems research. Information
Systems Research, 21(4), 724-735. https://doi.org/10.1287/isre.
1100.0322

Yu, F., Pasinelli, M., & Brem, A. (2018). Prototyping in theory and
in practice: A study of the similarities and differences between
engineers and designers. Creativity and Innovation Management,
27(2), 121-132. https://doi.org/10.1111/caim.12242

Zhou, S., Vasilescu, B. & Kästner, C., (2020). How has forking
changed in the last 20 years? A study of hard forks on GitHub. In
Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering (pp. 445-456). https://cmustrudel.
github.io/papers/zhou20forks.pdf

About the Authors

Laia Pujol Priego is an assistant professor at ESADE Business &
Law Schools, Ramon Llull University. She is also a research fellow
at The Lisbon Council, a Brussels-based think tank. Laia’s research
program focuses on digital innovation, in particular, the management
implications of developing and commercializing emerging and
science-based technologies, data commons infrastructures and data
practices. Her research has appeared in Technovation, Government
Information Quarterly, Industry and Innovation, Issues of Science
and Technology, and Innovation: Organization & Management.
Laia’s past affiliations include IESE Business School, International
University of Catalonia (UIC), and was visiting researcher at
McDonough Business School at Georgetown University. Her
research has been financially supported by the European
Commission, the Catalan government, the University of Deusto,
Comillas Pontifical University, and Ramon Llull University.

Jonathan Wareham is a professor/catedrático of information
systems at ESADE Business & Law Schools, Ramon Llull
University, where he previously served as dean (Faculty & Research)
and vice dean (Research). His current research focuses on scientific
computing, scientific policy, and how scientific technologies are
influencing the business world. Wareham's research has been
published in journals and proceedings such as Organization Science,
Decision Sciences, MIS Quarterly, Decision Support Systems, IEEE
Transactions on Engineering Management, IEEE Computer,
Communications of the ACM, Journal of the American Society for
Information Science and Technology, and others. He has served as a
senior editor for MIS Quarterly and as an associate editor for
Information Systems Research. He was the general conference chair
of the 20th European Conference on Information Systems (ECIS
2012). Personal website: https://jwareham.org/

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

662 MIS Quarterly Vol. 47 No. 2 / June 2023

Appendix A

Technical Note

Table A1. Technical Description of WR Components
Switch components Description Type
WR switch box WR switch box is a white metal 19’ 1 U case with two cooling fans in the

back.

H
a

rd
w

a
re

Main PCB: Contains the main
electronics components, ARM
processor, Xilinx FPGA chip,
oscillators, memories, etc.

PCB is a printed circuit board and FPGA is a field programmable gate array.
ARM processor is a central processing unit (CPU) built on the RISC-based
architecture developed by Advanced RISC Machines (thus ARM). Oscillators
are devices for generating oscillatory electric currents or voltages by non-
mechanical means. Memories refer to devices that are used to store
information for immediate use.

Backplane PCB: Contains electrical
connections to 18 SFP cages, debug
USB-UART ports, Light-emitting diode
(LEDs), etc.

Large-format printed circuit boards (PCBs) are used as backbones for
connecting several PCBs together. USB = universal serial bus, and UART
corresponds to universal asynchronous receiver/transmitter. USB-UART
ports are controllers that provide USB connectivity to devices with
a UART interface.

General-purpose gateware: IP cores
used both in the switch

IP cores are intellectual property core or preconfigured logic functions
implemented in the switch.

G
ate

w
a

re

Dedicated switch gateware Package contains field-programmable gate array gateware running in the
embedded Linux.

Gateware-software interface Gateware-software interfaces contain wishbone bus configuration registers
of the modules inside the gateware of the WR switch.

Dedicated switch software Package contains field-programmable gate array software running in the
embedded Linux.

S
o

ftw
a

re

at91bootstrap-3.3 Second-level bootloader for Microchip SoC (system on a chip) provides a set
of algorithms to manage the hardware initialization such as clock speed
configuration.

barebox-2014.04 Primary boot loader is used in embedded devices.
Linux-3.16.38 Linux kernel package.
buildroot-2016.02 Make files and patches that facilitate the generation of a complete and

insignificant embedded Linux system.
General-purpose software: Used both
in the switch and node

Precise Time Protocol (PTP) is a software stack whose single source code
can be compiled for many architectures and which is easily extensible.

Node components Description
WR PTP core and SFP PTP is the Precision Time Protocol implemented on a FPGA mezzanine

card. SFP is a small form-factor pluggable: a compact, hot-pluggable
network interface module.

H
a

rd
w

a
re

General-purpose gateware: IP cores
used both in the node

Intellectual property cores or preconfigured logic functions are used in the
node.

G
ate

w
a

re

Dedicated gateware for the node Specific gateware layer allows WR to be used as a standard network
interface card implementing the WR technology functionalities.

General-purpose software: Used both
in the switch and node

Precise Time Protocol (PTP) is a software stack whose single source code
can be compiled for many node architectures.

S
o

ftw
a

re

Dedicated software for the node Specific software layer allows WR to be used as a standard network
interface card implementing the WR technology functionalities.

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 663

Table A2. Technical Definitions

Technical term Full description

Accuracy The mean over an ensemble of measurements of the time or frequency error between the clock
under test and a reference clock. Line B in Figure below represents the error in the measured mean
value with respect to the reference, i.e., the accuracy. The width of the curve of ensemble
measurements is represented by line C.

Boundary clock A PTP instance that has multiple PTP ports in a domain and maintains the timescale used in the
domain. Within a domain, it may serve as the source of time to other PTP instances, i.e., be a
master clock, and can in addition synchronize to another boundary clock or ordinary clock, i.e., be a
slave clock.

Clock A device that can provide a measurement of the passage of time since a defined epoch. A clock
provides time at desired moments of the timescale it maintains. Time is obtained either:

Physically: In this type of clock, time is modeled using a clock signal and a time counter that is
driven by the clock signal.

Mathematically: In this type of clock, time is generated by a model that describes the relation of this
clock to another clock (e.g., to a physical clock in a different timescale). The model enables the
calculation of the time of the clock from the time of the other clock.

Clock signal A physical signal that has periodic events. The periodic events mark the significant instants at which
a time counter is incremented. The clock signal is characterized by its frequency and phase.

Epoch The origin of a timescale.

Event An abstraction of the mechanism by which signals or conditions are generated and represented. In
this abstraction, the aspects of interest of the signals are conditions that occur at discrete instants of
time.

Grandmaster clock In the context of a single PTP domain, the local PTP clock of an ordinary clock or a boundary clock
that is the source of time to which all other local PTP clocks in the domain are synchronized.

Ordinary clock A PTP instance that has a single PTP port in its domain and maintains the 208 timescales used in
the domain. An ordinary clock can serve as a source of time, i.e., contain a master clock; or,
alternatively, the local PTP clock of an ordinary clock can be synchronized, i.e., be a slave clock to
the local PTP clock of a boundary clock or another ordinary clock in the domain.

Precision Precision is the degree to which repeated (or reproducible) measurements under unchanged
conditions show the same results.

Synchronized clocks Absent relativistic effects, two clocks are synchronized to a specified uncertainty if they have the
same epoch and their measurements of the time of the same single event occurring at an arbitrary
instant differ by no more than that uncertainty.

Note: Technical definitions were extracted from the WR standard draft: P1588/D1.3, Draft Standard for a Precision Clock Synchronisation
Protocol for Networked Measurement and Control Systems (June 2018), Version 3.08.

C

B
Measured
mean value

Reference
clock value

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

664 MIS Quarterly Vol. 47 No. 2 / June 2023

Appendix B
Method Note

Examples of interview guide through an advanced stage of the analytical progression, corresponding to analytical Phase 3 in Table A2.
Summary of primary data collected.

Table B. Example of Interview Guide Through Advance Stage of the Analytica Progression:

Initial engagement

How did you learn about and initially become involved in WR?

When did you engage in WR development?

What has been your role and the role of your organization in WR development? Which components have you and your
organization contributed to?

How did your organization fund the investment for collaborating in WR? Did it change over time?
(If it was via a contract): What was the reason for the contract? Duration? What happened after the contract?

About WR technology

What are the components, functions, and applications of WR?

How would you describe the WR switch? What is the structure of the switch?

How would you describe the WR node? What is the structure of the node?

How does the structure of the switch and node differ?

Did the structure of the switch and node change? If yes, why?

What were the main differences in the switch versions that emerged?

What were the main differences in the node versions that emerged?

How do you explain the number of versions in both the switch and node?

About the process of development of the different components

Could you describe the main steps in the development of WR that you recall?

What, in your opinion, were the major events in the development of WR? Why?

In which phases were you involved in WR development?

If respondent was involved in the specifications: How did you agree on WR specifications?

If respondent was involved in the design of the switch: How was the design of WR switch organized?

If respondent was involved in the design of the node: How was the design of WR node organized?

How was the production of WR prototypes was managed?

If respondent was involved in the testing: How was WR testing and certification organized?

If respondent was involved in the standardization activities: How was WR standardization organized?

Did you report to anyone inside and outside your organization?

How did you coordinate your work with other contributors in your organization?

Did you select your own tasks? Which tasks?

Which tools did you use to develop and communicate the outcomes of your work? How did you use the WR repository, WR
Wiki, and mailing list? Others?

Did you have WR meetings? With whom? For what purpose?

Did you develop any proprietary WR? If yes: When? Why? How did you organize the proprietary development?

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 665

Table B2. Summary of Interview Data Collected

Stage Respondent Interviews Role

Phase 1: General
understanding of WR structure,
the process, different phases,
agents, and actions in WR
development

RSE1 2 Engineer in research infrastructures (RI)

RSE2 2 Engineer in RI

RSE3 1 Engineer in RI

RT1 1 Personnel at the technology transfer offices (TTO)

RT2 1 Personnel at the TTO

P1 1 Personnel at the TTO

R1 1 Scientist/engineer in RI

R2 1 Scientist/engineer in RI

R3 1 Scientist/engineer in RI

CS1 1 Engineer in company developing SW

CH1 1 Engineer in company developing HW

CH2 1 Engineer in company developing HW

CH3 1 Engineer in company developing HW

CH4 1 Engineer in company developing HW

CD1 1 Engineer in company developing WR pilots

CA1 1 Customers of WR not involved in WR development

Phase 2: Understanding how
work was organized in the WR
development process within the
different phases identified

RSE4 2 Engineer at RI

RSE 5 1 Engineer at RI

RSE1 1 Engineer at RI

R3 1 Scientist/engineer in RI

R4 1 Scientist/engineer in RI

R5 1 Other staff in RI involved in WR

CS2 1 Engineer in RI

CH4 1 Engineer in company developing HW

CD3 1 Engineer in company developing WR pilots

R6 1 Engineer in RI

CA1 1 Customers of WR not involved in WR development

Phase 3: Increasing detail on
the characterization of WR
structure and each
development model

RSE1 1 Scientist/engineer in RI

RSE 5 1 Scientist/engineer in RI

RSE 4 1 Scientist/engineer in RI

CH1 1 Engineer in company developing HW

Phase 4: Confirmation of the
interpretations and fine-grained
detail on WR attributes and
relationships with the
development characteristics

CH5 1 Engineer in company developing HW

CH6 1 Engineer in company developing HW

CH7 1 Engineer in company developing HW

RSE 4 1 Engineer in RI

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

666 MIS Quarterly Vol. 47 No. 2 / June 2023

Table B3. Illustration of Empirical Analysis of WR Development

Aggregate dimension: Malleability

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations

Embodiment “We developed (in collaboration with CERN, GSI, and other partners) the 18-port White Rabbit Switch, designing
the main board in the MicroTCA form factor. The core element was a Virtex-6 (LX240T) FPGA. We paired this
device with an external processor (ARM926E) running an embedded Linux OS to perform the high-level
operations such as system updates, file management, etc. The switch uses 18 GTX links for SFPs and 40 GPIOs
for general-purpose tasks (LEDS, SFP detection, etc.).”14

“If we think of a node, we think about an IP core that you can instantiate in different hardware.” RSE2

“If we say a switch, we think about a hardware box.” RSE1

Granularity “You could not make it (the switch) more granular; it would make it many costs and extra work and less efficacy in
terms of precision. It would be harder to make it work.”RSE1

“Gateware and software are easier to split it among companies, but hardware does not make sense.” RSE6

Modularity “Node is an end device whether it receives or sends staff to one port. You throw or you digest the data. It is like
one of the switch ports; plus, you need to implement, like in the switch, WR protocol” RSE 6

"The switch is quite a compact device; it needs to work like one unified device, and if you have different
companies, you need to define different interfaces between the parts that they are designing, test each part, see
that they work together, and you make it much more complex, too much work and much more expensive. For the
precision, it is also better that you do not have so many connectors; here, it was not practical." RSE 1

Aggregate dimension: Liquification

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations

Logical design “It needs to allow different configurations…plus, you need to implement more flexibility because it needs to allow
different types of configurations; plus, you need to implement more features let’s say.”

“The exact configuration depends on application requirements.” RSE6

“I said I'd open a thread here to ask for suggestions regarding the feature list for a new version of the WR switch.
Considering it usually takes a couple of years to go from ideas to a product you can actually buy, I think it's good
to launch an informal discussion about the features early enough.”15

Development "We had different actors working in parallel. I was coordinating the contributions that came from gateware Y that
was integrating everything together. In the beginning, we had two companies helping with the software and
gateware, the other two for the hardware. X was integrating everything."RSE6

“We are now developing gateware for new designs of the nodes, so we are supporting different applications of the
nodes because it depends on each application.” RSE6

“The node is different because the first node was a spec board and designed here, and then one company
developed a simplified version. Some people took this design and made different formats, and this was without us
doing it, we did not pay for the design, it was because people needed it.” RSE6

“In embedded detector electronics there is usually not much space available. A standard WR switch is not suited
for detectors like Chromium or KM3NeT.” (WR repository, 2020)

“There was an engineer from South Africa who was interested in solving particular problems with much greater
temperature variations in South Africa compared to CERN, where optical fibres are underground and naturally
isolated from the temperature variations of the atmosphere. So, he discovered effects that we had not seen and
voluntarily improved WR in what affects timing for long distances.” RSE1

14 In Xcell Journal issue 91: https://issuu.com/xcelljournal/docs/xcell_journal_issue_91
15 In WR repository: https://www.ohwr.org/project/wr-switch-hw-v4/wikis/uploads/f677af5cb169e3b031c33cf5ed768ac8/msg00015.html

Pujol Priego & Wareham / From Bits to Atoms: Open Source Hardware at CERN

MIS Quarterly Vol. 47 No. 2 / June 2023 667

Physical instantiations “CRIO-WR is a standalone White Rabbit node implementation on a PCB with a form factor for National
Instruments CompactRIO modules. The board is originally derived from and keeps maximum firmware compatibly
with the established boards SPEC and CUTE-WR.” (WR repository, 2021)

• LHAASO—New node design (Tsinghua University, China) implements WR

• CTA—Cherenkov Telescope Array, implementation of WR

• The first deployment of a system based on WR synchronization in Gran Sasso (CNGS) measurements

• China Spallation Neutron Source Institute of High Energy Physics, CSNS implements WR

• CNGS. Timing for neutrino measurements implements WR

• DESY, Germany implements WR

• MIKES (Center for Metrology and Accreditation, Finland) implements WR. Switch and node design
improvements

• Dept of Physics and Astronomics VUA, The Netherlands

Aggregate dimension: Crystallization

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations

Logical design “It is easier, less effort and cheaper to adapt the design of a company by adding some components and you
would have your design with WR support. It would be extensive and massive work to add our open source
implementation. This would imply that all user interfaces and many features that we don’t have in open source. It
would imply a lot of development and testing” RSE6

“If you have your own implementation of PTP [it] is less work to add/modify some components than change
everything to do it using the open source components. It would be extensive and massive work to add our open
source implementation. This would imply that all user interfaces and many features that we don’t have in open
source. It would imply a lot of development and testing.” CH5

“Also, as there is a standard, companies know that it will not change. Not only for the standard, but basically,
because the technology was mature enough in 2012 to be incorporated in companies’ hardware. Since 2012 it
hasn’t changed much. Few updates of specs, some improve[ment]s but it is quite stable in all implementations of
devices. There are new things since 2012 but not in releases in WR devices. The protocol of the switch is not
changing.” CH6

“The changes compared to the V3.4 switch fall into two categories: replace existing components due to
obsolescence, and changes to allow the easy installation of a low-jitter-daughterboard.”(WR repository, 2020)

“The backplane has been modified so that the fans are always on (in the original backplane 3.3 design the fans
are controlled by software). This keeps the hardware cooled in all circumstances” (WR repository, 2020).

Development “What we want to try with proprietary implementations is to meet the requirement of picosecond accuracy, but not
with custom hardware as we want to make it more generic—and removing all our infrastructure would not make
much sense.” CH5

“The way you do an open source on software, you tend to get it to be implemented in different microprocessor
architectures. However, hardware is different. So, it’s like any time you put two pieces of hardware together, they
are never going to be exactly the same. Therefore, as WR evolves, the real challenge is that they have tried hard
to make it such that you just push a button and things are configured automatically and pull in the relevant files for
architecture, but it does not work like that. It is not easy; this is really hard.” CH6

“The main limitations of WR is that it is a brand-new hardware design, a custom hardware. It does not have the
off-the-shelf components and we should develop things to overcome these limitations.” CH1

Physical instantiations • Frankfurt Stock Exchange’s deployment of WR

• Vodafone proof of concept of WR in the Netherlands

• D-TACQ Solutions Ltd. proprietary WR

• Picoquant proprietary WR

• SyncTechnology proprietary WR

