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 Although considered a relatively recent phenomenon of the past decade, open source hardware (OSH) is 
already influencing commercial hardware development. However, a common belief is that the greater 
economic cost and complexity of hybrid digital objects (i.e., digital objects with both hardware and software) 
precludes their development with open source methods traditionally used for software. We study a 
sophisticated OSH named White Rabbit initiated at CERN and developed through a vibrant and heterogenous 
open source community. Our findings show that the assumption that hardware and software require 
fundamentally distinctive development and production modes should be replaced with a more nuanced 
differentiation characterized by three main attributes describing an object’s composition: embodiment,
modularity, and granularity. Taken together, these three attributes determine how a hybrid object is developed 
throughout its evolution in an open source community. Our research offers several contributions. First, we 
provide a more nuanced view of the consequences of the material embodiment of hardware. Once considered 
a simple deterrent to open source development, we describe how economic cost is subordinate to more 
influential aspects of an object’s physical layers: as the open source community modifies the object to 
accommodate the operating requirements of diverse physical instantiations, such modifications can be 
incorporated in the logical design covered by the open source license. Additionally, we show how embodiment, 
modularity, and granularity progress through the object’s evolution and how this maturation subsequently
affects development modes. We trace the implications of our findings for hybrids and digital object 
conceptualizations in IS research, open source development and, more broadly, normative implications for 
OSH in scientific and commercial computing. 
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Introduction 

Open source hardware (OSH) is a term for tangible artifacts—
machines, devices, or other physical things—for which the 
design is made publicly available in a way that enables anyone 
to study, modify, distribute, make, and sell either a design or 
hardware based on the design (Open Source Hardware 
Association, 2012). The rise of the do-it-yourself (DIY) 

1 Sirkka Jarvenpaa was the accepting senior editor for this paper. Jan Recker served as the associate editor.  
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phenomenon with physical maker spaces, hackspaces, and 
FabLabs (Gibb, 2014), along with the general proliferation of 
OSH, has attracted the attention of numerous organizations that 
include scientific research infrastructures needing customizable 
scientific hardware, industrial organizations, and traditional 
hardware manufacturers (Balka, 2011; Boisseau et al., 2018; 
Mellis & Buechley, 2012; Pearce, 2012). Although considered 
a relatively recent phenomenon of the past decade (Balka et al., 
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2010; Bonvoisin et al., 2017), OSH2 is already influencing 
commercial hardware development. Some compelling 
examples include Arduino, RepRap, the Open Compute 
Project, and RISC-V.3 

Notwithstanding the growing interest in OSH, this phenomenon 
poses the question of whether the premises of open source 
development, which have historically been built around the 
development of software (Crowston & Howison, 2006; Feller 
& Fitzgerald, 2001; Fitzgerald, 2006; Mockus et al., 2002), 
apply to a form of technology object4 (i.e., a hybrid) which is 
both (1) a material object with a “physical mode of being”
(Faulkner & Runde, 2013, p. 806) and (2) a digital object 
containing syntactic entities with one or more bitstrings 
(Faulkner & Runde, 2019). Hybrids (Faulkner & Runde, 2009, 
2013, 2019) include any types of hardware (i.e., electro-
mechanical devices) that contain middleware or embedded 
software (Yoo, 2010). 

Early research in OSH has explored the specific challenges of 
transposing open source development—characterized as highly 
voluntary, with loosely centralized, parallel collaborations—to 
the development of hybrids (Dahlander & O’Mahony, 2010;
Feller & Fitzgerald, 2000, 2001; Fitzgerald, 2006; Howison & 
Crowston, 2014; Lindberg et al., 2016; Shah, 2005, 2006). 
Challenges include long developmental cycles and slower 
iterations of patches and improvements to physical prototypes 
(Boisseau et al., 2018), excessive complexity (Oberloier & 
Pearce, 2018), limitations in the available software for hybrid 
digital development, financial costs of development and 
production, and insufficient licensing of OSH (Balka et al., 
2010; Balka, 2011). Fundamentally, these studies assume that 
the physical nature of hybrids is the main constraint in 
transposing open source development to hybrids. In parallel, 
there are growing calls to develop a more subtle understanding 
of the nature of hybrids: “for information systems theory and
practice, the confluence of the digital and physical is a largely 
unexplored territory worth exploring, as it has the potential to 
fundamentally change our environment” (Kyriakou et al., 2017, 
p. 327). However, excessive attention to the physical nature of 
OSH may overshadow a more useful and comprehensive 
explanation of how a hybrid object’s attributes affect the
developmental model. Given the expectations that OSH “bears 
an enormous potential for reframing the social organization of 
product development and therewith to disrupt conventional 
industrial practices” (Mies et al., 2019, p. 129), we formulate 
the main research question of our paper: 

 
2 See a comprehensive list of examples of OSH at https://www.ohwr.org  
3 https://www.arduino.cc; https://www.reprap.org; https://www.opencompute.org; 
https://www riscv.org 

4 We employ the term “object” in the same spirit as Faulkner and Runde (2009,
2013, 2019) and Kallinikos et al., (2013) to designate purposefully engineered
objects rather than any object that occurs naturally. 

How do the attributes of a hybrid object and its components 
affect the open source model of development?  

The objectives of this paper are: (1) to provide an empirical 
description of the process of developing a hybrid object 
through open source development, and (2) to integrate the 
empirical findings into a theoretical model that explains how 
the attributes of hybrids and their components affect open 
source development. To achieve these objectives, we 
conducted a qualitative case study of a high-profile OSH. 
White Rabbit (WR) is a hybrid object developed by CERN 
(Conseil Européen pour la Recherche Nucléaire) through a 
sustained collaboration among traditional vendors, peripheral 
research organizations, and a heterogeneous community of 
voluntary contributors. The purpose of WR—named for the 
character in Alice’s Adventures in Wonderland who carries a 
pocket watch and mutters, “I shall be too late!”—is time 
synchronization across geographically distributed computing 
networks. WR consists of a fully deterministic Ethernet-based 
technology and is currently the clock and event distribution 
system for CERN’s particle accelerators, where time accuracy 
at the nanosecond level is required.5 After its implementation 
at CERN, WR was adopted by other scientific research 
infrastructures and subsequently implemented in various 
industrial settings where a common metric of time accuracy 
across large networks is critical, including high-frequency 
trading, matching engines in financial services, 
telecommunications networks, automated vehicles, navigation 
systems for air traffic control, and smart energy grids.  

Based on our findings, we offer three central contributions. 
First, our work advances an empirically developed 
understanding of what we conceptualize as the malleability of 
hybrids as a salient characteristic of OSH objects. We adopted 
the term from physics to allude to the facility of matter to 
deform under compressive forces. As a metaphor, malleability 
describes the possibility of changing, modifying, or extending a 
hybrid object. For our analysis, we define malleability as the 
propensity of a technology object to be adjusted, adapted, or 
reconfigured, while (1) fulfilling the intended functionality with 
similar methods, and (2) retaining salient characteristics of the 
original technology. This delimits malleable technologies in the 
same class from alternative technologies that fulfill the same 
function with completely different means, mechanisms, or 
methods.6 Specifically, we argue that malleability is determined 
by the degree of three salient component attributes over time: 
embodiment, granularity, and modularity.  

5 A nanosecond (ns) is an SI unit of time equal to one billionth of a second; that 
is, 1/1,000,000,000th of a second, or 10−9 seconds.
6 As a simple example, floppy disks, CD-ROMs, and solid-state memory all store 
bitstrings. Yet their core mechanisms of storage are fundamentally different (i.e.,
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Second, our paper offers a grounded basis for theorizing about 
how malleability is a primary determinant of a hybrid 
development model (i.e., whether is developed employing open 
source or rather traditional hybrids development model). We 
reveal how hybrid malleability can vary over time, leading to a 
process of hybrid liquification—which occurs when malleable 
hybrids are implemented in diverse operating contexts 
employing open source development methods—or 
crystallization—the integration of malleable hybrids into 
restrictive legacy systems employing traditional hybrid 
developmental methods. The processes of liquification and 
crystallization of a malleable hybrid result from: (1) hybrid 
maturity (i.e., how advanced it is in the development process), 
and (2) the interaction with the operational requirements of its 
physical instantiation (i.e., exogenous forces). Our analysis 
contributes to an understanding of the interaction of the physical 
and digital essences of hybrid objects, which is largely 
underserved in IS research (Ekbia, 2009; Faulkner & Runde, 
2009, 2013, 2019; Kallinikos et al., 2013; Yoo 2010; Yoo et al., 
2010). Specifically, our theoretical insights enable a more 
nuanced perspective of the role of a hybrid’s material
embodiment, salient in the early skepticism of OSH, and 
describes a rather complex portrayal of how the evolving nature 
of a hybrid conditions its amenability to open source 
development (Benkler, 2002; Crowston & Howison, 2006; 
Feller & Fitzgerald, 2001).  

Finally, our work generates policy and managerial guidance on 
how the potential of OSH can be leveraged if we acknowledge 
the evolving nature of hybrids. Based on our research, we argue 
that the traditional separation between hardware and software 
that often defines how developmental work is organized can be 
replaced with a more subtle differentiation between less—or 
more—malleable objects. This insight can help relax the 
constraints typically perceived in OSH to expand its potential in 
more ambitious industrial and scientific endeavors.   

We proceed as follows. The next section reviews recent 
conceptualizations of digital objects to delineate the 
attributes of hybrids and of WR in particular. Then, to 
position our case and analytical methods, we review how 
hybrids have traditionally been developed. Third, we review 
open source literature to underscore the premises of how 
work is normally organized in open source development. We 
then turn to our case study of WR. Based on our findings 
from the analysis of the data, we theorize and formulate a set 
of key propositions, derive theoretical and normative 
implications, and conclude with the limitations of the present 
study and prospects for future research. 

 
magnetism, physical groves on a substrate [lands and pits], or electrons,
respectively). Hence, none of these would be considered malleable versions of
the other, as their function is completed by fundamentally different means.  

Theoretical Underpinnings 

OSH as Hybrid Digital Objects 

The universe has all types of objects. Our study, however, does 
not consider all naturally occurring objects. Rather, we adopt 
the concepts from Faulkner and Runde (2009, 2013, 2019) and 
Kallinikos et al. (2013) to designate purposefully engineered 
objects. Objects are entities that endure: “something that exists
through time and is fully present at each and every point in time 
over the period of its existence” (Faulkner & Runde, 2019, p. 5)
as continuants (as opposed to occurrents). Additionally, objects 
are structured, made up of components: “a number of distinct
parts that are organized or arranged in some way” (Faulkner &
Runde, 2019, p. 6). Objects possess different attributes, which 
are defining properties based on how the components work, 
how they are arranged, and how they interact with one another. 
IS scholars have devoted attention to understanding the specific 
attributes of digital objects (or “digital artifacts”) that separate
them from physical objects (Paavola & Miettinen, 2019).  

Physical objects are tangible objects (matter) that can be 
touched and possess physical substance (Paavola & Miettinen, 
2019), possessing spatial attributes such as shape, volume, 
mass, and location where this physicality is manifested 
(Faulkner & Runde, 2013, 2019; Leonardi, 2010).7 
Alternatively, digital objects have been characterized with 
attributes such as nonrivalry, infinite expansibility, 
reproducibility (Faulkner & Runde, 2009, 2013), 
unboundedness (Ekbia, 2009), interactiveness, fluidity, 
editability, and distribution (Kallinikos et al., 2010, 2013; 
Manovich, 2001). From our review of the literature, three 
salient attributes are relevant to our analysis of hybrids (Table 
1). When taken together, they describe a great deal about 
objects’ composition and components, how they are arranged
and relate to one another, and their degree of coupling: 
specifically, their embodiment, modularity, and granularity 
(Faulkner & Runde, 2013, 2019; Kallinikos et al., 2010, 2013; 
von Briel et al., 2018; Yoo et al., 2010).  

Digital and physical objects are combined in hybrids 
(Faulkner & Runde, 2019). However, this literature stream is 
less attentive to the physical nature of components (e.g., 
Ekbia, 2009; Faulkner & Runde, 2009, 2019; Kallinikos et al., 
2013; Kallinikos & Mariátegui, 2011). Ontologically, 
whereas hybrids are often viewed with a separation between 
digital and physical layers, they receive less consideration of 
their distinct properties as a unified entity (Faulkner & Runde, 
2013, 2019; von Briel et al., 2018; Yoo, 2010). Accordingly, 
we argue that the category of hybrids warrants its own 

7 There are many manifestations of physical phenomena that that lie outside of
this definition in a pure sense (e.g., electromagnetic radiation). For this
discussion, we limit our definition of physical objects to tangible objects. 
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characterization as a class of objects. By treating hybrids as 
unified entities and examining the interactions between 
physical and digital elements as they evolve through time, we 
can obtain insight into a hybrid’s unique nature and how this
affects OSH development. 

A Hybrid Object: White Rabbit 

Motivated by the need to eliminate the minute distortions in 
time measurement across their geographically dispersed 
particle accelerator and computing network, CERN initiated 

WR as a complete technology stack of deterministic Ethernet-
based technology for time synchronization that uses the IEEE 
1588-Precision Time Protocol to reconcile time and phase 
measurements between a master reference clock and boundary 
clocks. The two main components in the synchronization 
hierarchy described by WR are the switch8 and the node.9 Both 
switch and node have hardware, gateware,10 and software 
layers, which qualify WR as a hybrid object (Figure 1 and 
Appendix A). Table 2 describes the components of WR and 
hardware, gateware, and software layers. Figure 2 illustrates the 
reference design (the source) of a WR node (a WR component), 
and Figure 3 shows WR when performing temperature tests. 

 

Table 1. Attributes of Physical and Digital Objects 

Attributes Description 

(1) 

Embodiment 

 

 

Embodiment refers to the component’s physical or non-physical state (Faulkner & Runde, 2009, 2019; 
Yoo, 2010). The notion of embodiment means the property of being manifest in and of the everyday world 
(Dourish, 2001; Yoo, 2010). Objects with “perpetual embodiment exist in a physical state” (von Briel et al.,
2018, p. 281).  

Physical objects have a physical state: “The physical (obviously) can be touched while the conceptual
cannot. The material properties of physical objects offer certain opportunities and constraints that simply 
cannot be overcome—you cannot see through wood or light glass on fire” (Leonardi, 2010, p.1). Digital
objects are objects with component parts that include one or more bitstrings (Faulkner & Runde, 2019, 
p.10). Digital objects with physical components—that is, with a perpetual embodiment (Yoo, 2010)—are 
hybrids, which “are necessarily material objects, with the physical mode of being of their material
components” (Faulkner & Runde, 2019, p.6).  

(2) 

Modularity 

 

 

Modularity is an attribute of object components that determines their coupling (von Briel et al., 2018; 
Kallinikos et al., 2010, 2013; Manovich 2001; Yoo et al., 2010).  

The modularity of physical objects describes the relationship between the physical units and defines the 
relative attribute of an object’s structure as opposed to an integral structure. Similarly, the modularity of digital
objects’ components is an attribute that determines whether components are “responsive to and distinct from
each other (e.g., separated by module or layer boundaries) are loosely coupled, whereas components that 
are responsive to but not distinct from each other (e.g., integrated in one module) are tightly coupled” (von
Briel et al., 2018, p. 281). Also hybrids, being simultaneously a physical and a digital object, can similarly 
possess loosely coupled or tightly coupled digital and physical components, yet it remains unclear how these 
digital and physical come together describing a more or less modular structure. 

(3) 

Granularity 

 

 

Granularity is an attribute referring to the ability of an object to be decomposed into numerous, small-
grained components. Whereas modularity refers to the relationship between components, granularity 
“entails the stuff of which these blocks are made” (Kallinikos et al., 2013, p. 360), referring to the number 
of units into which the object can be decomposed (Ekbia, 2009; Kallinikos & Mariátegui, 2011).  

Physical objects have been qualified as seldom granular because “they are made of blocks or elements thus
bundled as to be not readily decomposable and traceable down to elementary units” (Kallinikos et al., 2013,
p. 360). In contrast, granularity in digital objects “derives from their ultimately numerical constitution and the
ability this furnishes for tracing composite units deep down to the most minute elements and operations by 
which they aremade” (Kallinikos, 2013, p. 360;Manovich, 2001). In hybrids, it remains unexplored how digital 
and physical components interact, describing a more or less granular hybrid configuration.  

 
8 A switch is a PTP instance, an 18-port device (boundary clock), that may 
serve as the source of time for other PTP instances (master) and can 
synchronize other boundary and ordinary clocks (slaves). 
9 The nodes are single port devices (ordinary clocks) that distribute clock
signals, which are physical signals characterized by frequency and phase.
WR switches and nodes are interconnected through optic fiber. 

10 Gateware refers to embedded and dedicated code deployed on a field-
programmable gate array (FPGA), which is a hardware circuit programmed 
to implement different logical operations. See Appendix B for a technical 
note about WR.
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Figure 1. WR Representation (Adapted from Moreira et al., 2009)  

 

Table 2. Decomposing WR Hybrid into its Components 
WR main components Type Description 

Switch 

Physical Hardware WR switch box 

Digital 
Gateware 

General-purpose and dedicated switch gateware—IP cores used both in the 
switch and interfaces 

Software General purpose and dedicated switch software 

Node 
Physical Hardware WR Precision time Protocol core and Small Form-factor Pluggable 

Digital 
Gateware General-purpose and dedicated gateware—IP cores used both in the node 
Software General-purpose and dedicated software—used both in the switch and node 

 

Figure 2. Example of Documentation (the Source) about the Node Reference Design from WR Repository
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Figure 3. Temperature Tests of WR (Lipiński et al., 2011) 

 

Traditional Hybrid Development  

Although there is no single approach to hybrid 
development, our purpose is to identify the commonalities 
across the literature. These include: (1) the logical design of 
hybrids (i.e., representation of the object), (2) the 
organization of the development work, and (3) the physical 
instantiations (i.e., implementations) of the hybrid in the 
different contexts over time. 

The first step in the development of hybrids is the logical design, 
which is represented in the schematic diagram. The schematic 
diagram does not provide information on the physical 
arrangement or interconnection of the parts; it is only a logical 
depiction of the object. Although one could argue that hybrids 
and pure software design are similar up to this point, they diverge 
from here. In the course of their development, hybrids require a 
translational action to go from the semantic representation of the 
object to the object itself. Translational action refers to “practices
associated with movement from one layer of the bearer to 
another” (Faulkner & Runde, 2019, p. 10). Moving from the 
schematic to the actual physical layout is something of an art 
form, as the physical nature and interconnection of the 
components (size, heat, etc.) must be considered (Ackerman, 
2008). Electronic design automation (EDA) can generate a 
netlist from component libraries that describes each set of 
electrical connections by grouping them into a “net,” which is a
group of components that are electrically tied together. 
However, despite the benefits of EDA software, substantial 
human expertise must evaluate the challenges of size constraints, 
heat, radio interference, external connections, market standards, 
component cost, and other operational and environmental 
factors (Drechsler & Breiter, 2007; DeMicheli & Sami, 2013; 
Gajski & Vahid, 1995). As such, two equally qualified designers 
could easily produce two circuit boards of varying quality based 
on the same schematic (Ackerman, 2008).  

Several observations about the attributes of traditional hybrid 
development described in the literature are worth noting and are 
summarized in Table 3. Traditionally, these development 
processes have been sequential and have been centrally 
coordinated with the extensive use of commercial contracts 
dictating the allocation, interaction, and monitoring of the 
technology development when conducted across organizations 
(Cusumano, 1992; Sanchez & Mahoney, 1996; von Hippel & 
von Krogh, 2003).   

Attributes of Open Source Development 

Open source development has been characterized as highly 
voluntary, loosely centralized with parallel collaborations 
(Dahlander & O’Mahony, 2010; Feller & Fitzgerald, 2000,
2001; Fitzgerald, 2006; Howison & Crowston, 2014; 
Lindberg et al., 2016; Shah, 2005, 2006). “Open source” is an
expression employed to describe both the legal status and 
developmental model of a digital object, the vast majority of 
which is software. The legal status of open source digital 
objects requires that the source code must be redistributable 
and available to the user, and the creation of derivative work 
must be permitted under a license that does not discriminate 
against any user or restrict aggregations of software (Feller & 
Fitzgerald, 2000). In addition to describing what objects can 
be considered open source, scholars have also identified how 
open source development is organized. Expressions such as 
“the open source way” of development (Crowston &
Howison, 2006) have emerged to describe these common 
characteristics of how open source objects are developed. We 
adopt the definition of development as the social process of 
designing, building, and implementing the technical artifact, 
usually in a specific organizational context and over time 
(Akhlaghpour et al., 2013). 
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Table 3. Attributes of Open source and Traditional Approaches to Hybrid Development 

Attributes Open source development Traditional hybrid development Problem 

(1) 
Self-

assignmentvs. 
control 

Autonomy and self-selection of 
tasks: Open source is characterized 
by a collaborative effort where 
agents combine effort voluntarily 
and self-select their tasks, which 
does not mean that they do not 
receive pecuniary compensation 
(though that may often be true), but 
rather that the collaborators choose 
their tasks autonomously (Crowston, 
1997; Crowston & Howison, 2006; 
Feller & Fitzgerald, 2000, 2001; 
Howison & Crowston, 2014). 

Control over the assignment of 
development activities: The 
imperfect translational action from 
logical design to the object itself 
requires human expertise. This, 
combined with the long and 
interdependent development cycle of 
hybrids, has traditionally required 
control over development contributors 
across organizations (Ackerman, 
2008; von Briel et al., 2018; Yu et al., 
2018). 

For hybrids with a significant 
HW component, the slower 
cycle of design/prototype/test 
requires more purposeful 
direction giving. Furthermore, 
technologies of high 
sophistication require 
specialized expertise at 
specific time points. This 
renders autonomy and self-
selection impractical for certain 
development phases.  

(2) 
Loosely 

centralized vs. 
centralized 

Loosely centralized: Open 
source is characterized by 
distributed teams who have 
access to the source code, submit 
code patches to solve problems, 
and add functionalities to the 
software. Open source 
communities are geographically 
distributed and remain open and 
fluid to the entry and exit of 
contributors. Users can not only 
contribute to the source code but 
can also test the software, report 
bugs, and suggest new features 
(Feller & Fitzgerald, 2000; 
O’Mahony & Ferraro, 2007). 

Centralized direction-giving: Hybrid 
development draws long development 
cycles that require centralized direction 
during their development (Ackerman, 
2008). Even if employing virtual 
prototypes (Bogers & Horst, 2014) or 
advanced manufacturing techniques 
like 3D printing, the development of 
hybrids “involves more activities such
as transferring premature prototypes 
into designs that can actually be 
manufactured” (von Briel et al., 2018,
p. 283). These require more time than 
modifications to software based on 
writing lines of code. The inflexibility of 
engineering modifications later in the 
process imposes some stability on the 
core structure. Testing, therefore, is 
often performed by the engineers who 
design the object given their integrated 
nature (Drechsler & Breiter, 2007; 
Gajski & Vahid, 1995; Mellis & 
Buechley, 2012; Pan et al., 2018).  

The long and interdependent 
nature of the development 
cycles and testing activities 
can necessitate constant 
coordination. This can make 
loosely centralized 
development impractical.  

(3) 
Parallel vs. 
sequential 

Massive parallel development and 
debugging; asynchronous 
collaboration and open 
superposition of tasks: Open 
source is characterized by massive 
parallel development, debugging, 
and asynchronous collaboration, 
supported by the internet and 
concurrent versioning software as a 
collaborative platform. Discrete 
development tasks can be completed 
independently of any required 
sequence of development. Modules 
with distinct functionality and payoffs 
can be isolated and completed. 
Problematic tasks can be postponed 
without consequence on future work
(Crowston & Howison, 2006; 
Lindberg et al., 2016; Markus, 2007; 
Shah, 2006; Shaikh & Vaast, 2016). 

Sequential development activities: 
Hybrid development follows discrete, 
sequential, and interdependent 
steps. Changes in the fundamental 
design are more difficult and 
expensive to modify later in the 
development cycle, as a change of 
one component “is likely to require
extensive compensating changes in 
the designs of many interrelated 
components” (Sanchez & Mahoney, 
1996, p. 65; DeMicheli & Sami, 
2013). Common software tools only 
partially alleviate the challenges of 
tracking and integrating concurrent 
modifications introduced by different 
developers (Mellis & Buechley,
2012).  

The nature of the 
development activities, where 
design decisions need to be 
agreed upon because they 
affect the following 
development steps and any 
change in the process, 
requires vast numbers of 
compensating activities and a 
very structured, sequential 
development process. 
Parallel development is not 
an option for certain 
development phases. 
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The basic attributes of open source development have been 
articulated by its advocates in a large number of publications 
(Cook, 2001; Masum, 2000; Raymond, 1999) and through 
diverse case studies (Mockus et al., 2002; Scacchi et al., 
2006). Essentially, open source is considered an alternative 
organizational model for development that is neither market-
based nor hierarchical (Shah, 2006). Diverse and partially 
overlapping approaches have described it as a commons-
based peer production (Benkler, 2006); a community-based 
model (Shah, 2005, 2006); open sourcing (Ågerfalk & 
Fitzgerald, 2008); collective invention (Allen, 1983); 
private-collective innovation (von Hippel & von Krogh, 
2003); and distributed innovation (Lakhani & von Hippel, 
2004).Although open source is not a homogeneous approach 
to software development, we describe its most frequently 
mentioned characteristics (i.e., its attributes) in Table 3. As 
a qualification, it should be recognized that the growing 
engagement of different commercial interests in open source 
software development (e.g., Barrett et al., 2013; Deodhar et 
al., 2012; Fitzgerald, 2006; Spaeth et al., 2014; von Krogh et 
al., 2012) has relaxed some of the traditional 
characterizations of the development process (Dahlander & 
O’Mahony, 2010; Fitzgerald, 2006), where planning and
purposive strategies are combined with globally distributed 
and voluntary contributions (Dahlander & O’Mahony, 2010;
Fitzgerald, 2006; Shaikh & Vaast, 2016). Table 3 also 
specifies a number of challenges that can arise when trying 
to impose open source development models upon the 
development of hybrids. 

Research Context and Method 

We engaged in an in-depth single-case qualitative study to 
generate theory based on the empirical insights. Single-case 
studies permit a deep understanding of digital objects and of 
the organizational actions related to their use and 
development (Klein & Myers, 1999; Orlikowski & Iacono, 
2001). In particular, revelatory cases (Gerring, 2007) are 
useful for theory development. We consider WR a revelatory 
case in at least two aspects. First, the case offered “an
opportunity to observe and analyze a phenomenon 
previously inaccessible to scientific investigation” (Yin,
2003, p. 42). Access to the CERN Hardware and Timing 
Section at the Beams Department that coordinated WR 
development offered us the opportunity to obtain a decade 
of rich longitudinal data on the development of such a 
sophisticated technology that has been unprecedented in 

 
11 Accuracy refers to the proximity of measurement results to the true value,
whereas precision is the degree to which repeated (or reproducible)
measurements under unchanged conditions show the same result. 

OSH development (Bonvoisin et al., 2017; Boujut et al., 
2019). Second, WR is an example of OSH development that 
relied on a diverse community of technical specialists, 
commercial vendors, industrial complementors, and 
voluntary contributions, as a collaborative development 
endeavor unparalleled in OSH development (Pearce, 2017).  

Research Context 

WR is the name of an OSH initiated in 2008 when engineers 
at CERN were confronted with limited bandwidth and the 
impossibility of dynamically evaluating the delay induced 
by the data networks that constitute CERN’s geographically
distributed computing infrastructure supporting the world’s
most powerful particle accelerators. WR was developed with 
the following unprecedented specifications: (1) the transfer 
of a time reference from a central location to many 
destinations with an accuracy better than one nanosecond 
and a precision11 better than 50 picoseconds,12 (2) the ability 
to service more than 2,000 nodes, (3) the ability to cover 
distances in the order of 10 km (although it achieved 
distances over 100 km in its development process), and (4) 
data transfer from a central controller to many nodes with a 
guaranteed upper bound in latency. 

Prior to WR, the extant synchronization standard for 
Ethernet networks was the precise time protocol (PTP), 
which is standardized as IEEE 1588. WR extends PTP in a 
backwardly compatible way to achieve sub-nanosecond 
accuracy (Moreira et al., 2009). “The combination of
deterministic latencies with a common notion of time to 
within one nanosecond allows WR to be a suitable 
technology to solve diverse problems in distributed real-time 
control and data acquisition” (Lipiński et al., 2011, p. 2). 

WR started in 2008 as an OSH when CERN decided to 
collaboratively develop the technology with any volunteer 
contributor, publishing an open call in CERN’s vendor
network, supported by a repository, Wiki, developers’
mailing list, workshops, and a set of collaborative tools. 
Most importantly, an open source hardware license was 
created to govern the rules of sharing, distributing, and 
selling the WR designs. Very early on, the GSI-Helmholtz 
Centre for Heavy Ion Research (GSI), a large particle 
accelerator facility in Germany, joined. Soon a progressively 
larger group of organizations engaged to shape a diverse and 
vibrant community that contributed to WR development. 
The number of contributors has grown beyond any initial 
expectation and has surpassed CERN’s ability to keep track

12 A picosecond is an SI unit of time equal to 10 − 12 or 1/1,000,000,000,000th

(one trillionth) of a second.
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of the different WR reuses and adaptations. In less than a 
decade it had proliferated into a “multilaboratory,
multicompany and multinational collaboration developing a 
technology that is commercially available, used worldwide, 
and incorporated into the original PTP” (Lipiński et al.,
2011, p. 2).  

Data Collection and Sources 

Our primary sources of data were 38 semi-structured and 
open-ended interviews that we conducted with selected WR 
community actors. These actors included WR developers 
from research infrastructures; companies contributing to WR 
development; and WR users implementing the technology, 
reporting bugs, and helping improve WR. In addition to the 
interviews, we conducted direct observations during two 
study visits to CERN, in April 2017 and October 2018, 
including attendance at a WR developer workshop with 
more than 56 participants.  

The interviews were chosen on the initial recommendation 
of the WR lead team at CERN, with subsequent 
recommendations from the interviewees. Our objective was 
to interview a representative cross-section of the WR 
community to broadly understand the subject area of hybrids 
and OSH development and further enable an inductive 
generation of theory from the empirical data. Three primary 
themes guided the interviews: (1) what is WR’s functionality
and structure, and how does it work? (2) How did different 
organizations become involved in WR development? and (3) 
What is the WR development process and how is work 
organized across contributors? Whereas these three major 
themes guided the initial interviews, we allowed for open-
ended discussions around WR to obtain a deeper 
understanding of the technology and different aspects of the 
development process. We subsequently conducted three 
additional rounds of interviews, where the protocols evolved 
toward more detailed and focused topics that emerged from 
the previous iterations.  

The last stage of data collection was devoted to the 
confirmation of our interpretations and refining of WR 
attributes and relationships with the development 
characteristics. Appendix B describes the four stages of data 
collection and illustrates the interview protocol used in the 
later phases in Table B1 in Appendix B. The interviews were 
conducted in English and Spanish from October 2017 to 
September 2020. Each interview was between 20 min and 90 
min long. Table B2 in the Appendix B provides details on 
the study’s primary data and the alphanumeric key
identifiers, representing quoted interviewees. 

A second important source of data was the information 
retrieved from the WR repository and Wiki, which contains 
general information about the WR project and technology, 
WR users, and the open hardware license. We also gained 
access to the standard working group IEEE1588-2008, where 
WR was standardized, to reference the technical 
documentation describing WR structure for our analysis. We 
employed these secondary sources to obtain a deep 
understanding of the technology and the development 
processes documented by the developer community (see 
description in Table 4). Secondary sources were also 
employed to corroborate evidence from primary data. Table 
B3 in Appendix B illustrates the use of primary and secondary 
sources in our empirical analysis of WR development. 

Data Analysis 

We performed a four-stage data analysis by relying on 
established procedures for inductive research (Gioia et al., 
2013; Miles & Huberman, 1994).  

First, our analysis methods involved a detailed study and 
reflection of multiple textual materials and abundant 
information available online about WR. We produced brief 
summaries that moved from technical descriptions to 
managerial inferences. Publications related to WR and the 
large volume of information available about the technology 
helped us to have more technically focused conversations 
with informants active in both the WR technology stack and 
the OSH developer world (Lok & de Rond, 2012).  

Second, we iteratively analyzed the interview transcripts by 
coding relevant observations and contrasting them with our 
analysis of secondary sources. In the open coding procedure, 
we coded at various levels to delineate the main concepts in 
the empirical data and generated research memos that 
synthesized the emergent themes. During the open coding, 
we broke down our data to understand WR attributes and the 
characteristics of the development processes. These memos 
progressed into extended notes where we consolidated 
repetitions and gradually collapsed our codes into first-order 
categories (Gioia et al., 2013). During this process, we 
periodically discussed any discrepancy in the interpretation 
and went back to the empirical data whenever necessary. For 
instance, in this process, we began dissecting the WR object 
and its structure (i.e., the switch, node, and other 
components) and capturing how the WR community 
described and qualified WR technology. We also leveraged
the empirical descriptions of how WR component designs
evolved and how the developer community described the
processes for developing WR, and we identified the diverse
WR implementations across different operating contexts.
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Table 4. Summary of Secondary Data Collected 

Types of data Description Use in the analysis 

Repository • 5,076 commits  
• 36 developer members 

To gather data and obtain an 
overall understanding of all 
WR technology, its 
components, cycles of 
development, different 
component versions, 
meetings among contributors, 
and main events in WR 
development. 

Wiki • Documentation about: 
• WR technology: WR switch, master (data, timing), node 

(WR PTP core), WR good practice guide, calibration 
(default parameters for WR switches/nodes, 
procedure), data delivery, synchronization, 
standardization in IEEE1588-2008, and a frequently 
asked questions section. 

• WR users: 30 users of WR and 16 evaluating the 
technology (documentation about the organizations, 
descriptions, and presentations) 

• WR projects: 13 publicly funded projects using WR 

Newsletters 5 newsletters (2013, 2014, 2015, 2018) 

Meeting minutes published 10 meeting minutes (2008-2018) 

Workshop  • 10 workshops (2008-2018) 
• 1 developer meeting (2010) 
• 2 tutorial WR workshops (2017, 2018) 

Blogs/websites 43 websites of users and projects 

Publications • Presentations (n = 64) 
• Papers (n = 53) 
• Master thesis on WR (n = 2) 
• Posters (n = 2) 
• Demos (n = 3 in 2010 and 2013) 
• Training material (n = 2 in 2013 and 2016) 
• Test reports (n = 18) 

Standardisation 
documentation from IEEE 
1588 Working Group 

• Working draft on IEEE 1588 standardization 2018 
• Technical information provided in the shared group 

IEEE 1588 standardization 

 
Third, in the process of axial coding, we structured our first-
order categories into second-order themes and higher-level 
aggregate dimensions (Gioia et al., 2013). Within this 
process, we gradually progressed toward a more theory-
driven explanation. We performed this process repeatedly, 
making extensive use of notes and observations to interpret 
the data. For instance, the construct of malleability and the 
identified processes of liquification and crystallization were 
consolidated in this analytical step. Malleability emerged 
from aggregating the qualifications of WR technology 
across the second-order themes such as modularity, 
granularity, and embodiment, and codes such as “rigid,”
“compact,” and “unbreakable,” from the transcript’s
analysis. Liquification emerged from integrating second-
order codes describing WR development across the logical 
design, diverse physical instantiations in scientific settings, 
and descriptions such as: “and then people started taking WR 
and adapting it to different formats,” “without us doing it”; 

“however, the fundamentals of the protocol are the same.”
Similarly, crystallization surfaced from integrating second-
order codes describing WR development and was revealed 
from codes such as “proprietary implementations,” “to meet
the requirement of picosecond accuracy in,” and “most 
(industrial) applications are concerned with performance”
from the transcript’s analysis. Figure 2 presents the data 
structure resulting from this phase.  

Finally, we focused on disentangling the linkages between 
our dimensions to build a cohesive model theoretically 
explaining how the attributes of the hybrid affected the 
development model. At this stage, we integrated all major 
concepts from hybrid malleability with the development 
characteristics to form a holistic and coherent theoretical 
model. Once the core categories and the model emerged, we 
contrasted them with prior literature on digital objects and 
OS development (see the Discussion section) (Bryant & 
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Charmaz, 2007). We applied respondent validation (Miles & 
Huberman, 1994) by sharing our initial findings with the 
participants of the study. To gather feedback about our 
study, preliminary results were presented at a workshop of 
the WR community on October 6-7, 2018.13 Additionally, 
editable tables about the structure and development history 
of WR were shared with the interviewees so that the 
community could confirm, correct, or elaborate on our 
description of the technology and its development process. 
Figure 4 illustrates the emerging data structure through our 
analysis, and Table B2 in Appendix B illustrates the 
progression of our empirical analysis with selected quotes 
and empirical observations.   

Findings 

A detailed analysis of our WR case enabled us to discern the 
structure and evolution of WR. This analysis gave us insight 
into what we conceptualize as the malleability attribute of 
hybrids, which we view as a function of three structural 
attributes of the object: (1) its embodiment (i.e., material 
components), (2) granularity (i.e., the decomposability of the 
components), and (3) modularity (i.e., whether the 
components are tightly or loosely coupled). We next describe 
WR development in three distinct phases that explain how the 
attributes affecting hybrid malleability changed through time 
and how these changes affected—and were affected by—the 
development model of the WR community. 

WR Development 

Phase 1: Hybrid Formation (2008−2012) 

The first phase began with the project initiation in 2008 and 
concluded when the first working version of WR was 
produced in 2012. WR was launched as an OSH project, a 
decision that is consistent with CERN’s traditional
operational philosophy and raison d’être. However, it 
quickly became evident that CERN, as the sponsor and 
principal user of WR, needed to (1) centralize WR 
development and (2) control the assignment of development 
activities for its major (3) sequential and interdependent 
steps. As explained by RSE1: “we tried to replicate as much 
as we can as an open source project but although we tried, 
the problem we had is the time of iteration and inertia, this 
was a huge problem and probably the main one.” 

13 The workshop information is published at https://www.ohwr.org/
projects/5/wiki/oct2018meeting 

First, as RSE6 explained, the organization of WR development 
in this first phase was highly centralized: “There was internal
work at CERN and external work by different companies. And 
all this work was coordinated at CERN and integrated at CERN 
to make it work together.” Second, contractual arrangements 
were employed by CERN to control the development of the first 
WR prototype, and this required tight direction and supervision 
of tasks and development teams. The contractual agreements 
included: (1) contracts awarded to companies to gather and 
manage WR specifications across the WR development 
community; (2) contracts to develop the repository and main 
hub for WR collaboration; (3) further contractual arrangements 
to contribute to the first switch and node prototypes; and (4) 
contracts for prototyping, where manufacturers were asked to 
produce a few units of WR components and distribute them 
across the community for testing. All of these contractual 
arrangements specify that all documentation that results from 
the development must be shared in the repository and is 
governed under an open source license. An interesting facet of 
the contractual agreements was that many vendors included 
voluntary contributions as part of their deliverables. This 
implies that, if their component included volunteer 
contributions from the WR community, they were equally 
responsible: “You must be ready to document and publish
everything. Support may take more than you want” (RSE4).
Third, the development followed the four major sequential and 
consecutive steps of: (1) requirement and specifications, (2) 
design, (3) prototyping, and (4) testing. The outcomes of each 
step were highly dependent on the results of the previous step.  

The analysis of our data suggests the following reasons for these 
three development attributes: First, in the words of RSE6, 
regarding the implications of hybrid embodiment:  

The development cycle was longer for WR [compared 
to other open source software].… in WR the issue is
that, for instance, a modification in the PCB [see 
Table B2] of a relatively complex component like the 
WR switch can take several months of work so we 
need to discuss it.  

Second, RSE1 described the constraints of making the hybrid 
more granular: “Software is easier to split among companies,
but that does not make sense for hardware. In WR it did not 
make any sense. For precision, it is also better that you do not 
have too many connectors; here, it was not practical.” CH1
further explained the low granularity: “you could not make it
more granular; it would make it many times more expensive 
and need extra work. There would be less efficacy in terms of 
precision. It would be harder to make it work.” 
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Figure 4. Data Structure  

1st-Order concepts 2nd-Order Themes Aggregate Dimensions

Malleability

Embodiment
• Physical object with digital 

components

Granularity
• Inability to divide in multiple

components in a first development
phase, but possiblity to split further
the object in a second phase

• Described as a hardware box
• Instantiation of the node in different hardware
• Need to wait for building it and then testing it in the

development cycle

• Not feasible to split in multiple components
• Division in multiple components complexifies and 

rends expensier the development
• Loose of precision due to too many unnecessary

connectors

Modularity
• Tightly coupled components in a first

development phase, and loosely
coupled components in a second phase

• Compact device that works as a unified object
• Monolithic architecture
• Same protocol for switch and node
• Ability to disgraggate components once a first

version was built to pursue discrete modifications

Liquification

Development
• De-centralized, high voluntary

development with parallel
contributions

• Three versions of the switch and eighteen versions of 
the node documented in WR repository

• New designs of nodes conditional on the 
characteristics of the context of application

• Further switch versions as result of bug reporting

• Little direction given by the sponsor as the switch
was stable

• Developer community grows and there is high level
of voluntary contributors to node versions

• High volume of new parallel design contributions in 
the repository

Physical instantiations
• Heterogeneous instantiations of 

components depending on the context
of implementation

• First implementations of WR in other scientific 
contexts

• Implementations first in similar research settings 
(other accelerators) and increasingly expands to other 
scientific contexts

Crystallization

Logical design
• Proprietary modifications to the

object

Development
• Centralized organized inside the

organizations developing proprietary
versions, and sequential development

• Modifications of WR node and switch to integrate it 
with diverse industrial contexts

• Design modifications of WR to be integrated with 
proprietary hardware in legacy systems

• Directed development of proprietary design versions
of WR inside organizations following sequential
steps and not disclosed to the community

• Proprietary contributions to the switch and node
designs not disclosed to the community

Physical instantiations
• Heterogeneous instantiations of the

objects in industrial contexts

• Implementations of WR in industrial contexts such as 
smart grid, financial services, telecommunications 
networks, air traffic control, and others where time 
synchronization was critical

Logical design
• Modifications compatible with extant

versions of the logical design to 
accommodate the object to diverse
operating contexts for scientific
research infrastructures
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Third, the following comment made by respondent RSE6 
captures the low modularity of WR; that is, the high coupling 
between switch and node and the component layers: “For 
WR, we think of hardware boxes.” As RSE1 added: 

The switch is quite a compact device; it must work 
like one unified device, and if you have different 
companies, you need to define different interfaces 
between the parts that they are designing, test each 
part, see that they work together, and you make it 
much more complex, too much work, and much more 
expensive. 

In sum, although some asynchronous development was 
conducted by voluntary developers from peripheral research 
organizations, in this first phase, WR displays low 
malleability. The design of the core WR technologies with 
exacting performance requirements on a monolithic hybrid 
architecture resulted in physical embodiment, low 
granularity, and low modularity, which lead to a 
predominance of practices from traditional hybrid 
development. 

Phase 2: Hybrid Development in Local Contexts 
(2012−2015) 

The second phase began with the first WR prototype release. 
At this point, the first users began implementing WR and 
reporting bugs, the fixes of which were incorporated into 
further designs. Novel instantiations of the node began to 
appear based on the unique requirements of the installations 
of other scientific research infrastructures. Extraordinary 
examples include: (1) meteorology research institutes that 
must transfer time from atomic clocks over distances up to 
1,000 km; (2) the neutrino telescope KM3Net, located in the 
deepest seas of the Mediterranean; and (3) the world’s largest 
and most sensitive cosmic ray observatory for gamma-ray 
astronomy, the Large High Altitude Air Shower Observatory 
(LHAASO), built in China at 4,410 meters above sea level. 
However, modifications, both physical and programmatic, 
were often needed: “In embedded detector electronics there is 
usually not much space available. A standard WR switch is 
not suited for detectors like Chromium or KM3NeT” (WR
repository, 2020). 

In this phase, WR development is characterized by being (1) 
loosely centralized, (2) highly voluntary, and with (3) parallel 
contributions toward modest changes to the design of the 
switch, but with many new designs and configurations for the 
nodes proliferating from a flourishing and increasingly 
heterogeneous WR community. First, with the switch stable, 
it was possible to proceed with loosely centralized control, 
permitting many new designs of the nodes:  

What happened is that we designed one node, which is 
the spec card, and then people started taking it and 
adapting it to different formats … one company 
developed a simplified version. Some people took this 
design and made different formats, and this was 
without us doing it, we did not pay for the design, it 
was because people needed it (RSE6).  

Second, in the words of RSE1, regarding one of the highly 
voluntary contributions:  

There was an engineer from South Africa who was 
interested in solving particular problems with much 
greater temperature variations in South Africa 
compared to CERN, where optical fibres are 
underground and naturally isolated from the 
temperature variations of the atmosphere. So, he 
discovered effects that we had not seen and voluntarily 
improved WR in what affects timing for long distances. 

Third, within this phase, a more heterogeneous community of 
WR users engaged in parallel developments to provide 
alternate versions of WR to customize it to the specific 
operational requirements of their infrastructures. The 
LHASSO scientific experiment in China, for instance, 
developed the so-called “mini-WR node,” which is the
smallest WR node created to give flexibility for connector and 
panel arrangement on the carrier board. Other node designs 
from scientific organizations included an additional FPGA to 
increase processing capability, or plug-in versions of the node 
to allow stand-alone implementations.  

The analysis of our data suggests the following reasons for the 
predominance of loosely centralized, voluntary, and parallel 
contributions. First, the low granularity and low modularity of 
the WR switch and node hierarchy, which were highly 
determinative in the first phase of development, were less of a 
constraint in later phases. Once the development of the WR 
stack was sufficiently stable, developers in a second phase 
could disaggregate WR components—and thereby increase 
granularity and modularity—to pursue discrete modifications 
of the node and switch in parallel. As this quote from RSE6 
illustrates, where the switch and node were initially developed 
together, different node configurations and switch 
improvements were possible in subsequent implementations: 

What the switch and node have in common is that: 
what is implemented on each part of the switch is the 
same on one node, plus the WR protocol, which is the 
same on the switch and the node. Yet, in simplified 
words, whereas the node has the wider connection, so 
the fibre, on the other side is usually used for 
something. And because of that, you may need various 
different node versions. 
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In summary, the second phase of WR displayed higher 
malleability, due to evolving WR structure (i.e., immutable 
embodiment with higher granularity and modularity) 
combined with the increasing maturity of the hybrid, which 
leads to a predominance of open source development 
attributes.  

Phase 3: Development of Hybrid Derivative Works 
(2015−2020) 

The third phase began when WR started a standardization 
process to guarantee the stability of the technology, which 
raised awareness about the potential of WR across industries 
outside of scientific research. In this phase, we found a 
growing number of increasingly heterogeneous WR 
implementations by industry. Examples of implementations 
include Vodafone, which conducted a successful proof of 
concept in 2017 to distribute accurate timing through the live 
Vodafone network, where time was measured with a 
surprisingly small error of less than one nanosecond over a 
cascade of four sites that spanned a total distance of 320 km. 
In financial services, the Frankfurt Stock Exchange 
implemented WR because, as described by CH1:  

Financial transaction organizations are required by 
law to prove that the time reference used for stamping 
transactions is UTC [Universal Time Coordinated] 
traceable. Thus, the accuracy required is in the 
millisecond range, but WR enables the nanosecond 
range with high accuracy and so enables legal 
timestamping applications.   

In the third phase, although some control was exercised by 
the sponsor, it was mostly in the further standardization of 
core technologies and logical design. WR industrial 
implementors exercised greater autonomy in technology 
modification in legacy systems. As described by CH6:  

The way you do an open source on software, you tend 
to get it to be implemented in different 
microprocessor architectures. However, hardware is 
different. So, it’s like any time you put two pieces of
hardware together, they are never going to be exactly 
the same. Therefore, as WR evolves, the real 
challenge is that they have tried hard to make it such 
that you just push a button and things are configured 
automatically and pull in the relevant files for 
architecture, but it does not work like that. It is not 
easy; this is really hard. 

New versions of WR switches and nodes were developed as 
proprietary applications, controlled by different companies 
implementing WR, which were not always disclosed to the 
WR community.  

In this phase, WR maintains the malleability from Phase 2 
but is augmented by (1) centralized development and high 
pecuniary control over the assignment of tasks by companies 
developing WR industrial implementations, (2) 
fewer/fragmented voluntary contributions compared to the 
previous phase, and (3) sequential proprietary developments 
to improve the design of WR and integrate it in different 
industrial technologies.  

Our data analysis suggests the following reasons: The 
embodiment remained as it was—but both the high 
granularity and modularity (easily decoupling of switch-
node) salient in the second phase were again reduced in the 
third phase in some individual implementations. This was 
due to the fact that many industrial applications required that 
WR be integrated with legacy systems. A company 
developer explained the constraints of legacy systems: 
“What we want to try with proprietary implementations is to
meet the requirement of picosecond accuracy, but not with 
custom hardware as we want to make it more generic—and 
removing all our infrastructure would not make much 
sense.” Another company developer added: “The main 
limitation of WR is that it is a brand-new hardware design, a 
custom hardware. It does not have the off-the-shelf 
components and we should develop things to overcome these 
limitations.” Some of the improvements in the previous WR 
switch design included frequency stability in terms of noise 
reduction, less power consumption, and enhanced 
monitoring integrated into the data visualization tools, 
providing information about WR performance in higher-
level information systems.  

In summary, we have presented the evolution of the WR as 
occurring in three main phases, which are defined by the 
nature of the development that transpired, the developmental 
model employed, and the source and locus of the 
developmental efforts coming from both the WR sponsor 
and the external WR community. A critical focus of our 
interpretation of how WR evolved and matured through time 
includes the interplay between endogenous attributes of the 
hybrid, how these evolved intact with developmental 
maturity and exogenous requirements, and how these 
modifications further informed the evolution of the WR 
logical design. Table 5 summarizes these insights, which we 
subsequently elaborate.
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Table 5. Summary of Relationship Between Object Attributes and Development Model 

   Phase 1 
(2008-2012) 

Phase 2 
(2013-2015)  

Phase 3 
(2016-2020) 

Logical design:  

How WR objects and 
components evolved 

 

WR OSH v0.0 ➔ v.1.0 

First version of the switch and node 
controlled by CERN. 

WR OSH v1.0 ➔ v3.0 (switch) and 
18 versions of the node 
documented in WR repository.  

IEEE1588-2008 

New designs of WR nodes, which 
are conditional on the 
characteristics of the environment 
where WR is applied. Further 
switch versions are a result of bug 
reporting to the switch.  

WR OSH v3.0 ➔ v.3.4 ➔ v 4.0 
(ongoing) (switch) and multiple 
proprietary versions of WR. 

IEEE1588-2019 (PTP high 
accuracy) 

Release of different versions of the 
switch with improvements and 
extensions made. Proprietary 
versions of WR: first
implementations of WR in other 
industries (e.g., financial services, 
telecommunications) lead to new 
proprietary versions of WR 
switches and nodes.  

Development 
characteristics:  

How WR 
development was 
organized  

Centralized, control, sequential: 

Strong direction provided by the 
sponsor was given to the design. 
Contractual agreements with HW 
and SW suppliers to allow a first 
prototype to emerge. Few voluntary 
contributions that include few 
research infrastructures.  

Endogenous attributes: The 
object does not allow for massive 
parallel development, but 
sequential and highly dependent 
steps that need to be directed 
because of embodiment, low 
granularity, and the tightly coupled 
nature of components, which make 
the structure highly interrelated in 
particular for precision reasons.  

Exogenous requirements: 
Prototype developed for particle 
colliders. 

Decentralized, highly voluntary, 
parallel contributions: 

Little direction given by the sponsor 
as the switch was stable, while 
there was a high level of 
generativity, as the new designs of 
the nodes were shared in the 
repository as the WR community 
was growing. High level of 
voluntary contributors to design 
multiple versions of the node. 
Contractual agreements for WR 
production. 

Endogenous attributes: The 
object allows for parallel, 
generative, and decentralized 
developments of new design 
versions of the node with a stable 
version of the switch because there 
is high granularity and modularity 
where node-switch development 
can be decomposed but also 
between its embodied and 
nonphysical components once the 
first prototype is developed. This 
generates heterogeneous node 
designs for different WR 
instantiations. 

Exogenous requirements: 
Modifications to node (primarily) to 
accommodate diverse operating 
contexts for scientific research 
infrastructures. 

Centralized, less voluntary, 
sequential: 

Proprietary design versions of WR 
were directed inside the 
organizations following sequential 
development processes and not 
disclosed to the community. 
Voluntary contributions are 
balanced by proprietary 
contributions to the switch and 
node designs. 

Endogenous attributes: While 
new versions of the switch and 
node are pursued, the switch and 
node need to be bundled again, 
reflecting a low granular and tightly 
coupled structure when the 
embodied object must be 
integrated with legacy systems for 
different industrial applications. 

Exogenous requirements: 
Modifications of node and switch to 
integrate into legacy systems 
across diverse industrial 
applications. 

Physical 
instantiation: 

WR implementations 

and visual
representation 

Hybrid formation: WR prototype for 
development/proof of concept. 
Internal at CERN/GSI. 

First implementations of WR in 
other scientific research 
infrastructures.  

 

Integration of WR in industrial 
applications. 
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Key Propositions Emerging from the 
Analysis 

We present a conceptual model (Figure 5) that depicts a set of key 
propositions emerging from our empirical investigation. Our 
figure illustrates how the three hybrid attributes (i.e., granularity, 
modularity, and embodiment) determine the malleability of a 
hybrid object. This is moderated by the developmental maturity 
of the hybrid. Where an object with low malleability is amenable 
to traditional hybrid development methods, high malleability is 
more suited to OS development modes. Once the core 
technologies are sufficiently stable, the peripheral layers of the 
technology stack can be customized to specific implementation 
contexts in a process of liquification. Liquification occurs when 
the core is sufficiently stable to permit modifications of peripheral 
elements of the hybrid technology stack to accommodate the 
requirements of diverse (exogenous) implementation contexts yet 
remain consistent with the logical design of the OSH license. In 
extreme contexts where the existing legacy systems are far from 
the standards of the core technology, new versions of the hybrid 
can be developed in a process of crystallization. Crystallization 
occurs when the core of the hybrid technology is stable, yet 
exogenous implementation contexts require instantiations that 
push the technology object outside of the boundaries of the 
logical design described by the OSH license and thus become 
discrete instantiations that fulfill the functionality of the original 
technology yet are incompatible with  the OSH license. We reflect 
upon and further refine this logic in what follows. 

Our analysis departs from platitudes such as “bits are free, atoms
are not” that were salient in early skepticism of OSH (Balka,
2011; Balka et al., 2010; Boisseau et al., 2018; Oberloier & 
Pearce, 2018; West & Kuk, 2014). It offers a more refined 
understanding of the role of a hybrid’s material embodiment and
under what conditions a hybrid’s malleability makes it amenable
to open source development. For hybrid malleability, 
embodiment is determinative but not so much as a function of 
postdevelopmental manufacturing cost. Rather, what is important 
is how embodiment combines appropriate levels of modularity 
and granularity, resulting from designing the optimal hybrid to 
fulfill its operating requirements. This leads to Proposition 1. 

Proposition 1: High granularity, high modularity, and 
nonmaterial embodiment increase a hybrid object’s malleability. 

A central insight from our analysis is that malleability is not static. 
In Phase 1, the primary focus was on the development of the core 
functionality and performance of the technology by the sponsor 
for implementations in similar contexts (i.e., particle colliders). 
The demands emphasized endogenous attributes of the 
technology, where the tight coupling of the components with 
limited modularity was required to maximize WR performance. 
In Phase 2, as WR was implemented in heterogeneous 

environments with different operating conditions, the exogenous 
factors of the WR physical instantiations played a determinative 
role in forcing the decoupling and modification of the node. This 
suggests that the hybrid is not exclusively defined or constrained 
by its endogenous attributes. Rather, as the technology matures to 
permit a decoupling of the hybrid’s layers, exogenous
requirements of WR instantiations in scientific settings (e.g., 
volatile temperatures, very high altitude, or deep sea level) further 
stimulated the evolution of granularity and modularity and 
thereby increased its malleability. This leads to Proposition 2. 

Proposition 2: The malleability of a hybrid increases with 
maturity. 

Our analysis suggests that when WR was in a very early stage of 
development and a proof of concept or working prototype was 
yet to be produced, the development had to be highly centralized 
with limited volunteer contributions completed in highly 
structured and sequential steps. Although WR was officially open 
source, most external contributions came from a few specific 
vendors operating with commercial contracts and there were few 
voluntary contributions. Our data clearly indicate that an 
alternative development model with numerous components, 
interfaces, or unanticipated volunteer contributions would not 
only increase the development efforts of the sponsor but also 
reduce the operating precision of WR. Consequently, our study 
suggests that if a hybrid is not sufficiently malleable, a traditional 
mode of hybrid development occurs, leading to Proposition 3.  

Proposition 3: Less malleable objects are associated with a 
development model characterized by (a) assigned tasks and 
pecuniary compensation, (b) centralization, and (c) sequential 
collaboration. 

Once the core technology was complete and stable, 
implementations began outside of CERN in other scientific 
research infrastructures. Whereas some of these were particle 
accelerators such as GSI, others were completely different and 
required WR to operate distinctively. As a result, implementors 
and voluntary organizations were able to decompose the WR 
stack to modify the node to the specific operating conditions of 
their installations. This ability to take an object that was once low 
in malleability and decouple it into its many components makes 
it more malleable and capable of independent modification by 
developers working in parallel. Consequently, WR evolved into 
a more highly malleable object that enabled voluntary 
contributions where developers self-assigned their development 
activities in independent, parallel, and asynchronous 
contributions. Proposition 4 follows. 

Proposition 4: Highly malleable objects are associated with a 
development model characterized by (a) self-assigned tasks, (b) 
decentralization, and (c) asynchronous collaboration. 
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Figure 5. Conceptual Model   

Our case data indicates that consistent with Proposition 2, 
with maturity and higher malleability, numerous 
independent modifications were made at different research 
infrastructures. For example, at the end of Phase 2, 18 
different versions of the node were documented on the WR 
repository. At the same time, given the commonalities of the 
research infrastructures, as well as the fact that they were all 
compliant with the shared WR logical design, they are 
considered to be in the same category of interoperable 
technology. We conceptualize hybrid liquification as a 
metaphor to describe the process by which the hybrid 
components are constantly modified through open source 
attributes (i.e., decentralized, highly voluntary, parallel 
contributions). Multiple variants of the hybrid components 
result from the liquification process and are compatible with 
extant versions of the WR logical design—that is, 
heterogeneous node designs for different WR instantiations 
that are compatible with the standard WR core technology.  

In Phase 3, hybrid malleability continued yet resulted in a 
different process for some physical instantiations. When WR 
was implemented in increasingly heterogeneous industrial 
settings, such system integrations often required the hybrid 
to be modified to the operating specifications of a different 
sector and, additionally, integrated into legacy systems that 
could be equally distinct. As is evident from our case data, 
the nature of the legacy systems often played a constraining 
role to the extent that the WR technology required 
substantial modifications to be compatible. In extreme cases, 
this generated instantiations of WR where the switch-node 
became recoupled for easier integration and interoperability 

with legacy systems. Such modifications for WR integration 
were performed in a highly centralized manner, with control 
over the assignment of developmental tasks. We term this 
process crystallization. Crystallization is a metaphor that we 
employ to describe the process by which core technologies 
are modified, employing traditional hybrid development 
attributes (i.e., centralized control over sequential 
development tasks) and resulting in variants that diverge 
from the WR logical design to become proprietary versions 
of WR. This did not happen with all the WR instantiations 
in Phase 3. Rather, the liquification and crystallization 
processes occurred in parallel. This leads to propositions 5a 
and 5b. 

Proposition 5a: With high malleability, a hybrid can liquify 
with increasing requirements of diverse operating contexts. 

Proposition 5b: With high malleability, a hybrid can 
crystallize with increasing requirements of diverse 
operating contexts with restrictive legacy systems. 

Our final insight is that it is important to differentiate 
physical instantiations or implementations of WR across its 
development from the evolution of the logical design shared 
openly and regulated by a WR OSH license. The evolution 
of the WR instantiations followed a path with homogeneous 
versions developed for particle accelerators in Phase 1, 
complemented with moderately diverse modifications of the 
node for distinct research infrastructures in Phase 2 (i.e., 
liquification), combined with extensive modifications to 
both the switch and node to integrate into legacy systems in 
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diverse industrial settings in Phase 3 (i.e., crystallization). As 
implementations became increasingly heterogeneous, so did 
contributions to the logical design. While it is important to 
distinguish the physical instantiations from the logical 
design (OSH licensed), they continue to simultaneously 
influence one another, despite any divergence. This mutual 
influence has implications for third-party manufacturers of 
WR hardware and its implementors, but even more 
important is the way it affects how insights derived from 
individual modifications further inform future versions of 
the WR logical design. This emphasizes the need to restate 
the often-made point that open source is not about free things 
(digital, hybrid, and material), but rather the freedom to use 
and modify what is codified under the open source license 
(Feller & Fitzgerald, 2001). An important observation is the 
role that the IEEE1588 PTP standard played in maintaining 
the cohesion in the logical design. The standard ensured a 
certain compatibility with complementary technologies in 
diverse industrial implementations, yet it also anchored 
some stability and predictability in the evolution of the 
logical design. This helped mitigate the perceived risk of 
fragmentation of the WR community that could potentially 
result with excessive crystallization.  

Discussion and Implications 

This article investigates the question of how the attributes 
of a hybrid object and its components affect the open 
source model of development. Limited insight into the 
complex nature of hybrids (Kyriakou et al., 2017) has 
obfuscated where it is possible to organize their 
developmental work with open source methods 
traditionally based on digital software.  

Our work contributes to the field by conceptualizing hybrid 
attributes in a manner that extends the ontological 
separation of digital objects and their material bearers 
(Faulkner & Runde, 2019; Kallinikos et al., 2013; Yoo et 
al., 2010). By doing so, we argue how embodiment 
interacts with granularity and modularity to determine a 
hybrid object’s suitability for an open source development 
model. We further describe how the endogenous attributes 
of the hybrid (i.e., its modularity, granularity, and 
embodiment) interact with exogenous demands; that is, the 
operating conditions for the object’s physical instantiation
or any systems integration restrictions. This leads to two 
sets of implications concerning (1) the role of malleability 
and material embodiment in digital and hybrid
conceptualizations, and (2) liquification and crystallization
processes in open source development.

About Malleability and Material Embodiment  

First, in a context of increased automation, the Internet of 
Things, or wearable technologies where the boundary between 
hardware and software is increasingly blurred (Recker et al., 
2021; Romasanta et al., 2021), we argue that the construct of 
malleability is useful for identifying how the development work 
of different types of hybrid and digital objects can be organized.  

Our analysis qualifies characterizations of hybrids as less 
malleable compared to digital objects (von Briel et al., 2018; 
Yoo et al., 2010) that predominantly focus on the effect of the 
object’s material embodiment but underestimate the object’s
structure. Specifically, a great deal of research in open source 
development suggests that the physical embodiment of the 
object can render open source development modalities 
prohibitive (Balka, 2011; Balka et al., 2010; Boisseau et al., 
2018; Oberloier & Pearce, 2018; West & Kuk, 2014). However, 
following the discussion of von Briel et al. (2018), our case 
analysis demonstrates that it was the combination of material 
embodiment, modularity, and granularity of both the hardware 
and software that determined the hybrid’s overall malleability
and, consequently, the development model. Although material 
embodiment is not inconsequential, it is less determinative than 
the modularity and granularity of the object’s structure: In the
case of WR, the most important factor was the extreme 
performance requirements of the core technology that made 
higher levels of granularity and modularity prohibitive in its 
logical design, dictating a development model that was, in early 
phases, centrally controlled and concentrated in a few partners. 
In subsequent phases, the material embodiment was 
determinative to the degree that different operating conditions 
warranted modifications to WR components to make them 
operationally robust in those environments. These 
modifications were registered in the WR community and many 
of them impacted future WR logical designs regulated by the 
WR OSH license. In this respect, we can very much claim that, 
due to the nature of the material embodiment and the different 
physical instantiations of WR, numerous contributions were 
made to the evolution of the WR logical design.  

Extensive material embodiment is often associated with the 
higher economic cost of manufacturing a physical artifact 
(Balka, 2011; Balka et al., 2010). It is interesting to note that 
high development and production costs were not detrimental to 
WR development as an OSH. Rather, its implementation was 
simply concentrated in scientific and industrial organizations 
with the needs and resources to pay for it, just like any other 
commercial product. In this respect, an OSH with high 
economic costs mirrors the commercial aspect of open source 
software 2.0 (Fitzgerald, 2006, Niederman et al., 2006). 
Although it does not preclude its success, it does more narrowly 
define the nature of the open source community supporting, 
using, and monetizing it. 
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About Liquification and Crystallization 

Our analysis also suggests that the malleability of hybrids is 
not a static property of the object but one that changes 
through its maturation. Where both modularity and 
granularity have been applied to describe the structure of 
digital objects at large (Ekbia, 2009; Kallinikos et al., 2013; 
Kallinikos & Mariátegui, 2011; Manovich, 2001; Yoo, 2010; 
Yoo et al., 2010), our study offers a dynamic perspective in 
which malleability changes across the different phases of its 
evolution. With high malleability, the processes of 
liquification or crystallization can result, depending on how 
the hybrid structural attributes interact with exogenous 
implementation requirements.  

While the term “liquification” (Norman, 2001)—or 
“liquefaction” (Lusch & Nambisan, 2015)—has previously 
been employed in the service innovation literature to 
describe a dematerialization process or “the ability to
separate information from the physical world” (Øvrelid &
Kempton, 2019, p. 3; Barrett et al., 2012; Lusch & 
Nambisan, 2015), we extend its meaning to the context of 
hybrid development to refer to how the process of increasing 
malleability facilitates a plurality of physical instantiations. 
Unlike the liquification process, which described a WR 
transformation resulting in WR variants compatible with the 
licensed WR logical design, crystallization depicted a 
process that led to WR variants that were incompatible with 
the licensed WR logical design.  

Liquification and crystallization processes draw parallels 
with software engineering literature, describing the 
evolution of purely digital objects (software) through 
forking processes (Gamalielsson & Lundell, 2014; Robles 
& González-Barahona, 2012; Zhou et al., 2020). In the 
development of digital objects, social forks describe the 
processes of creating a public copy of a repository with the 
goal of contributing to the original project in a distributed 
development (Ren et al., 2019; Zhou et al., 2020), where 
the results are compatible variants of the original code 
(Feitelson, 2012). Within the same literature, hard forks 
describe the process of “splitting off a new development
branch” (Zhou et al., 2020) to target user segments or 
functionality not accommodated in the original version. 
However, even though the concept of forking is analogous 
to the liquification and crystallization concepts we propose, 
their underlying causes are different. In software, hard 
forks are typically motivated by the fact that as the project 
matures, the original goals of the contributors eventually 
diverge, and other contributors may want to take the 
technology in a different direction (Ven & Mannaert, 2008; 
Viseur, 2012). In contrast, in our case, the exogenous 
factors dictating where the hybrid needs to be operated and 
integrated largely explain the liquification and 

crystallization processes. Hence, where software forking 
often occurs as a result of a political or technical 
disagreement endogenous to the developer community 
(Robles & González-Barahona, 2012), for hybrids, 
liquification and crystallization naturally occur in response 
to exogenous factors (e.g., operating conditions, 
integration context) that influence the design modifications 
and subsequently inform the evolution of the hybrid’s
logical design. This difference is not trivial and further 
qualifies the role of physical embodiment—and its 
interaction with exogenous factors—in determining the 
development modalities.   

Practical Implications  

Big-science research infrastructures have developed some of 
the world’s most sophisticated technologies with the
potential for multiple and unanticipated applications in 
different industries (Pujol Priego et al., 2022; Wareham & 
Pujol Priego, 2019; Wareham et al., 2022). In parallel, 
commercial interest in OSH is growing, particularly for 
organizations that want to minimize the nonrecurring 
engineering costs of technologies that do not yet exist by 
sharing these expenses with an open source community 
(Barrett et al., 2013; Deodhar et al., 2012; Fitzgerald, 2006; 
Spaeth et al., 2014; von Krogh et al., 2012). An important 
opportunity exists to develop such sophisticated 
technologies through open source development, unlocking 
its potential for downstream product developments. While 
skepticism prevails in policy and investment circles 
regarding how highly sophisticated technology stacks may 
be developed following open source premises, our analysis 
suggests that development models can adjust to the changing 
malleability of the object through time. The WR case 
acknowledges a need, at specific points, for traditional open 
source development to incorporate more centralized, 
directed, and less bazaar-like processes. 

The adjustment of the open source premise with more 
directed development has already been identified in more 
commercially oriented open source software (Dahlander & 
O’Mahony, 2010; Fitzgerald, 2006), where commitments
and clear development decisions sometimes need to prevail 
over heterogeneous viewpoints and self-sectioning 
(Bergquist & Ljungberg, 2001; Casadesus-Masanell & 
Ghemawat, 2006; Raymond, 1999). Our work qualifies these 
insights for commercially focused OSH, giving physical 
embodiment a role that is determinative yet subordinate. If 
we liberate open source from the prejudices that have 
traditionally shadowed hardware (i.e., high economic costs 
of production), we can better cultivate the knowledge and 
practice of how sophisticated, commercially adopted 
hardware can be developed following open source premises. 
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Limitations and Future Research  

The selection of a single case such as WR limits the 
generalizability of the findings. Nonetheless, (1) we employed 
different data collection methods and collected a sufficient 
amount of secondary and primary data from multiple 
informants to increase confidence in our interpretations, (2) 
we took care in documenting our analytical processes to 
dissect our inferences from the empirical data, (3) we 
incorporated diverse viewpoints and interpretations, and (4) 
we shared and discussed our findings with the WR community 
at two different stages of our analytical progression to 
corroborate our interpretations. Such processes helped build 
confidence in our analytical steps. Although this single case 
study design allowed us to generalize to a theory (Lee & 
Baskerville, 2003; Tsang & Williams, 2012), we acknowledge 
that further research is required to replicate our findings across 
different contexts (Yin, 2003).  

First, we should be prudent in extrapolating our findings to 
contexts that do not have the same level of technical 
sophistication, economic resources, and political status as the 
sponsor CERN, as these factors may be influential in the case 
of WR. Second, as a technology, there are two aspects of WR 
that are also exceptional. Because time measurement in the 
extreme is very sensitive to both the physical and logical design 
of the technology, other OSH projects may not have the same 
technical sensitivities and may therefore be amenable to a wider 
range of development models. Additionally, WR is not a 
general-use technology like an operating system or scripting 
software; it was commissioned with a specific purpose and is 
intolerant to significant variance in its performance. Clearly, 
OSH projects that are more general purpose and unconstrained 
by such rigid performance requirements may tolerate greater 
scope drift or more organic development processes. We hope 
our study will trigger more empirical OSH research and will 
open new opportunities for future research on hybrid 
malleability. In our study, we were able to observe the trajectory 
(i.e., the increasing or decreasing) of malleability, but 
theoretical and empirical work that takes the next step and 
investigates malleability patterns (e.g., linearity, exponentiality) 
can help us better understand the implications of how 
malleability behaves for development practices.   

Conclusion 

Open source hardware is growing in its visibility and 
promise. However, limited experience and insight into OSH 
for larger commercial applications has hindered the
realization of its full potential. Seeking a more nuanced and
useful understanding, our research focuses on a holistic
continuum of physical and digital attributes, allowing us to
better understand the determinants of open source

development for hybrid technology objects. Our work 
challenges the assumptions and addresses some of the 
shortcomings of prior research in OSH, particularly the 
focus on physical embodiment as detrimental to open source 
development. Alternatively, we offer a more complex 
explanation of how an object’s physical embodiment
interacts with other structural attributes that determine its 
amenability to open source development. Our theoretical 
insights can potentially trigger new ways of looking at both 
digital and hybrid objects and offer new avenues to leverage 
the potential of OSH.  
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Appendix A 

Technical Note 

Table A1. Technical Description of WR Components 
Switch components Description Type 
WR switch box  WR switch box is a white metal 19’ 1 U case with two cooling fans in the

back. 

H
a

rd
w

a
re 

Main PCB: Contains the main 
electronics components, ARM 
processor, Xilinx FPGA chip, 
oscillators, memories, etc. 

PCB is a printed circuit board and FPGA is a field programmable gate array. 
ARM processor is a central processing unit (CPU) built on the RISC-based 
architecture developed by Advanced RISC Machines (thus ARM). Oscillators 
are devices for generating oscillatory electric currents or voltages by non-
mechanical means. Memories refer to devices that are used to store 
information for immediate use. 

Backplane PCB: Contains electrical 
connections to 18 SFP cages, debug 
USB-UART ports, Light-emitting diode 
(LEDs), etc. 

Large-format printed circuit boards (PCBs) are used as backbones for 
connecting several PCBs together. USB = universal serial bus, and UART 
corresponds to universal asynchronous receiver/transmitter. USB-UART 
ports are controllers that provide USB connectivity to devices with 
a UART interface. 

General-purpose gateware: IP cores 
used both in the switch  

IP cores are intellectual property core or preconfigured logic functions 
implemented in the switch. 

G
ate

w
a

re 

Dedicated switch gateware  Package contains field-programmable gate array gateware running in the 
embedded Linux. 

Gateware-software interface Gateware-software interfaces contain wishbone bus configuration registers 
of the modules inside the gateware of the WR switch.  

Dedicated switch software Package contains field-programmable gate array software running in the 
embedded Linux. 

S
o

ftw
a

re 

at91bootstrap-3.3 Second-level bootloader for Microchip SoC (system on a chip) provides a set 
of algorithms to manage the hardware initialization such as clock speed 
configuration. 

barebox-2014.04 Primary boot loader is used in embedded devices. 
Linux-3.16.38 Linux kernel package. 
buildroot-2016.02 Make files and patches that facilitate the generation of a complete and 

insignificant embedded Linux system. 
General-purpose software: Used both 
in the switch and node 

Precise Time Protocol (PTP) is a software stack whose single source code 
can be compiled for many architectures and which is easily extensible. 

Node components Description 
WR PTP core and SFP PTP is the Precision Time Protocol implemented on a FPGA mezzanine 

card. SFP is a small form-factor pluggable: a compact, hot-pluggable 
network interface module. 

H
a

rd
w

a
re 

General-purpose gateware: IP cores 
used both in the node 

Intellectual property cores or preconfigured logic functions are used in the 
node. 

G
ate

w
a

re 

Dedicated gateware for the node Specific gateware layer allows WR to be used as a standard network 
interface card implementing the WR technology functionalities. 
 

General-purpose software: Used both 
in the switch and node 

Precise Time Protocol (PTP) is a software stack whose single source code 
can be compiled for many node architectures.  

S
o

ftw
a

re 

Dedicated software for the node Specific software layer allows WR to be used as a standard network 
interface card implementing the WR technology functionalities.
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Table A2. Technical Definitions 

Technical term Full description 

Accuracy The mean over an ensemble of measurements of the time or frequency error between the clock 
under test and a reference clock. Line B in Figure below represents the error in the measured mean 
value with respect to the reference, i.e., the accuracy. The width of the curve of ensemble 
measurements is represented by line C. 

  

Boundary clock A PTP instance that has multiple PTP ports in a domain and maintains the timescale used in the 
domain. Within a domain, it may serve as the source of time to other PTP instances, i.e., be a 
master clock, and can in addition synchronize to another boundary clock or ordinary clock, i.e., be a 
slave clock. 

Clock A device that can provide a measurement of the passage of time since a defined epoch. A clock 
provides time at desired moments of the timescale it maintains. Time is obtained either:  

Physically: In this type of clock, time is modeled using a clock signal and a time counter that is 
driven by the clock signal.  

Mathematically: In this type of clock, time is generated by a model that describes the relation of this 
clock to another clock (e.g., to a physical clock in a different timescale). The model enables the 
calculation of the time of the clock from the time of the other clock. 

Clock signal A physical signal that has periodic events. The periodic events mark the significant instants at which 
a time counter is incremented. The clock signal is characterized by its frequency and phase. 

Epoch The origin of a timescale. 

Event An abstraction of the mechanism by which signals or conditions are generated and represented. In 
this abstraction, the aspects of interest of the signals are conditions that occur at discrete instants of 
time. 

Grandmaster clock In the context of a single PTP domain, the local PTP clock of an ordinary clock or a boundary clock 
that is the source of time to which all other local PTP clocks in the domain are synchronized. 

Ordinary clock A PTP instance that has a single PTP port in its domain and maintains the 208 timescales used in 
the domain. An ordinary clock can serve as a source of time, i.e., contain a master clock; or, 
alternatively, the local PTP clock of an ordinary clock can be synchronized, i.e., be a slave clock to 
the local PTP clock of a boundary clock or another ordinary clock in the domain. 

Precision Precision is the degree to which repeated (or reproducible) measurements under unchanged 
conditions show the same results. 

Synchronized clocks Absent relativistic effects, two clocks are synchronized to a specified uncertainty if they have the 
same epoch and their measurements of the time of the same single event occurring at an arbitrary 
instant differ by no more than that uncertainty. 

Note: Technical definitions were extracted from the WR standard draft: P1588/D1.3, Draft Standard for a Precision Clock Synchronisation 
Protocol for Networked Measurement and Control Systems (June 2018), Version 3.08. 

C

B
Measured
mean value

Reference
clock value
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Appendix B  
Method Note 

Examples of interview guide through an advanced stage of the analytical progression, corresponding to analytical Phase 3 in Table A2. 
Summary of primary data collected. 

Table B. Example of Interview Guide Through Advance Stage of the Analytica Progression: 

Initial engagement 

How did you learn about and initially become involved in WR? 

When did you engage in WR development? 

What has been your role and the role of your organization in WR development? Which components have you and your 
organization contributed to? 

How did your organization fund the investment for collaborating in WR? Did it change over time? 
(If it was via a contract): What was the reason for the contract? Duration? What happened after the contract? 

About WR technology  

What are the components, functions, and applications of WR? 

How would you describe the WR switch? What is the structure of the switch? 

How would you describe the WR node? What is the structure of the node? 

How does the structure of the switch and node differ? 

Did the structure of the switch and node change? If yes, why? 

What were the main differences in the switch versions that emerged?  

What were the main differences in the node versions that emerged?  

How do you explain the number of versions in both the switch and node? 

About the process of development of the different components 

Could you describe the main steps in the development of WR that you recall? 

What, in your opinion, were the major events in the development of WR? Why? 

In which phases were you involved in WR development?  

If respondent was involved in the specifications: How did you agree on WR specifications? 

If respondent was involved in the design of the switch: How was the design of WR switch organized? 

If respondent was involved in the design of the node: How was the design of WR node organized? 

How was the production of WR prototypes was managed? 

If respondent was involved in the testing: How was WR testing and certification organized? 

If respondent was involved in the standardization activities: How was WR standardization organized? 

Did you report to anyone inside and outside your organization? 

How did you coordinate your work with other contributors in your organization? 

Did you select your own tasks? Which tasks? 

Which tools did you use to develop and communicate the outcomes of your work? How did you use the WR repository, WR 
Wiki, and mailing list? Others? 

Did you have WR meetings? With whom? For what purpose? 

Did you develop any proprietary WR? If yes: When? Why? How did you organize the proprietary development? 
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Table B2. Summary of Interview Data Collected 

Stage Respondent Interviews Role 

Phase 1: General 
understanding of WR structure, 
the process, different phases, 
agents, and actions in WR 
development  

RSE1 2 Engineer in research infrastructures (RI) 

RSE2 2 Engineer in RI 

RSE3 1 Engineer in RI 

RT1 1 Personnel at the technology transfer offices (TTO) 

RT2 1 Personnel at the TTO 

P1 1 Personnel at the TTO 

R1 1 Scientist/engineer in RI 

R2 1 Scientist/engineer in RI  

R3 1 Scientist/engineer in RI 

CS1 1 Engineer in company developing SW 

CH1 1 Engineer in company developing HW 

CH2 1 Engineer in company developing HW 

CH3 1 Engineer in company developing HW 

CH4 1 Engineer in company developing HW 

CD1 1 Engineer in company developing WR pilots  

CA1 1 Customers of WR not involved in WR development 

Phase 2: Understanding how 
work was organized in the WR 
development process within the 
different phases identified 

RSE4 2 Engineer at RI 

RSE 5 1 Engineer at RI 

RSE1 1 Engineer at RI 

R3 1 Scientist/engineer in RI 

R4 1 Scientist/engineer in RI 

R5 1 Other staff in RI involved in WR  

CS2 1 Engineer in RI 

CH4 1 Engineer in company developing HW 

CD3 1 Engineer in company developing WR pilots 

R6 1 Engineer in RI 

CA1 1 Customers of WR not involved in WR development 

Phase 3: Increasing detail on 
the characterization of WR 
structure and each 
development model 

RSE1 1 Scientist/engineer in RI  

RSE 5 1 Scientist/engineer in RI  

RSE 4 1 Scientist/engineer in RI  

CH1 1 Engineer in company developing HW 

Phase 4: Confirmation of the 
interpretations and fine-grained 
detail on WR attributes and 
relationships with the 
development characteristics 

CH5 1 Engineer in company developing HW 

CH6 1 Engineer in company developing HW 

CH7 1 Engineer in company developing HW 

RSE 4 1 Engineer in RI  
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Table B3. Illustration of Empirical Analysis of WR Development  

Aggregate dimension: Malleability 

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations 

Embodiment “We developed (in collaboration with CERN, GSI, and other partners) the 18-port White Rabbit Switch, designing 
the main board in the MicroTCA form factor. The core element was a Virtex-6 (LX240T) FPGA. We paired this 
device with an external processor (ARM926E) running an embedded Linux OS to perform the high-level 
operations such as system updates, file management, etc. The switch uses 18 GTX links for SFPs and 40 GPIOs 
for general-purpose tasks (LEDS, SFP detection, etc.).”14 

“If we think of a node, we think about an IP core that you can instantiate in different hardware.” RSE2 

“If we say a switch, we think about a hardware box.” RSE1 

Granularity “You could not make it (the switch) more granular; it would make it many costs and extra work and less efficacy in
terms of precision. It would be harder to make it work.”RSE1 

“Gateware and software are easier to split it among companies, but hardware does not make sense.” RSE6 

Modularity “Node is an end device whether it receives or sends staff to one port. You throw or you digest the data. It is like 
one of the switch ports; plus, you need to implement, like in the switch, WR protocol” RSE 6 

"The switch is quite a compact device; it needs to work like one unified device, and if you have different 
companies, you need to define different interfaces between the parts that they are designing, test each part, see 
that they work together, and you make it much more complex, too much work and much more expensive. For the 
precision, it is also better that you do not have so many connectors; here, it was not practical." RSE 1 

Aggregate dimension: Liquification 

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations 

Logical design “It needs to allow different configurations…plus, you need to implement more flexibility because it needs to allow
different types of configurations; plus, you need to implement more features let’s say.” 

“The exact configuration depends on application requirements.” RSE6  

“I said I'd open a thread here to ask for suggestions regarding the feature list for a new version of the WR switch.
Considering it usually takes a couple of years to go from ideas to a product you can actually buy, I think it's good 
to launch an informal discussion about the features early enough.”15 

Development "We had different actors working in parallel. I was coordinating the contributions that came from gateware Y that 
was integrating everything together. In the beginning, we had two companies helping with the software and 
gateware, the other two for the hardware. X was integrating everything."RSE6 

“We are now developing gateware for new designs of the nodes, so we are supporting different applications of the
nodes because it depends on each application.” RSE6 

“The node is different because the first node was a spec board and designed here, and then one company
developed a simplified version. Some people took this design and made different formats, and this was without us 
doing it, we did not pay for the design, it was because people needed it.” RSE6 

“In embedded detector electronics there is usually not much space available. A standard WR switch is not suited
for detectors like Chromium or KM3NeT.” (WR repository, 2020) 

“There was an engineer from South Africa who was interested in solving particular problems with much greater 
temperature variations in South Africa compared to CERN, where optical fibres are underground and naturally 
isolated from the temperature variations of the atmosphere. So, he discovered effects that we had not seen and 
voluntarily improved WR in what affects timing for long distances.” RSE1 

14 In Xcell Journal issue 91: https://issuu.com/xcelljournal/docs/xcell_journal_issue_91
15 In WR repository: https://www.ohwr.org/project/wr-switch-hw-v4/wikis/uploads/f677af5cb169e3b031c33cf5ed768ac8/msg00015.html  
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Physical instantiations “CRIO-WR is a standalone White Rabbit node implementation on a PCB with a form factor for National 
Instruments CompactRIO modules. The board is originally derived from and keeps maximum firmware compatibly 
with the established boards SPEC and CUTE-WR.” (WR repository, 2021) 

• LHAASO—New node design (Tsinghua University, China) implements WR  

• CTA—Cherenkov Telescope Array, implementation of WR 

• The first deployment of a system based on WR synchronization in Gran Sasso (CNGS) measurements 

• China Spallation Neutron Source Institute of High Energy Physics, CSNS implements WR  

• CNGS. Timing for neutrino measurements implements WR  

• DESY, Germany implements WR 

• MIKES (Center for Metrology and Accreditation, Finland) implements WR. Switch and node design 
improvements 

• Dept of Physics and Astronomics VUA, The Netherlands  

Aggregate dimension: Crystallization 

Second-order codes Selected evidence on first-order codes from representative quotes and empirical observations 

Logical design “It is easier, less effort and cheaper to adapt the design of a company by adding some components and you
would have your design with WR support. It would be extensive and massive work to add our open source 
implementation. This would imply that all user interfaces and many features that we don’t have in open source. It
would imply a lot of development and testing” RSE6 

“If you have your own implementation of PTP [it] is less work to add/modify some components than change
everything to do it using the open source components. It would be extensive and massive work to add our open 
source implementation. This would imply that all user interfaces and many features that we don’t have in open
source. It would imply a lot of development and testing.” CH5 

“Also, as there is a standard, companies know that it will not change. Not only for the standard, but basically, 
because the technology was mature enough in 2012 to be incorporated in companies’ hardware. Since 2012 it
hasn’t changed much. Few updates of specs, some improve[ment]s but it is quite stable in all implementations of 
devices. There are new things since 2012 but not in releases in WR devices. The protocol of the switch is not 
changing.” CH6 

“The changes compared to the V3.4 switch fall into two categories: replace existing components due to 
obsolescence, and changes to allow the easy installation of a low-jitter-daughterboard.”(WR repository, 2020) 

“The backplane has been modified so that the fans are always on (in the original backplane 3.3 design the fans 
are controlled by software). This keeps the hardware cooled in all circumstances” (WR repository, 2020). 

Development “What we want to try with proprietary implementations is to meet the requirement of picosecond accuracy, but not
with custom hardware as we want to make it more generic—and removing all our infrastructure would not make 
much sense.” CH5 

“The way you do an open source on software, you tend to get it to be implemented in different microprocessor 
architectures. However, hardware is different. So, it’s like any time you put two pieces of hardware together, they
are never going to be exactly the same. Therefore, as WR evolves, the real challenge is that they have tried hard 
to make it such that you just push a button and things are configured automatically and pull in the relevant files for 
architecture, but it does not work like that. It is not easy; this is really hard.” CH6 

“The main limitations of WR is that it is a brand-new hardware design, a custom hardware. It does not have the 
off-the-shelf components and we should develop things to overcome these limitations.” CH1 

Physical instantiations • Frankfurt Stock Exchange’s deployment of WR 

• Vodafone proof of concept of WR in the Netherlands 

• D-TACQ Solutions Ltd. proprietary WR 

• Picoquant proprietary WR 

• SyncTechnology proprietary WR 

 
 

 


