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Contingent convertible bonds 
in financial networks
Giovanni Calice 1, Carlo Sala 2 & Daniele Tantari 3*

We study the role of contingent convertible bonds (CoCos) in a complex network of interconnected 
banks. By studying the system’s phase transitions, we reveal that the structure of the interbank 
network is of fundamental importance for the effectiveness of CoCos as a financial stability enhancing 
mechanism. Our results show that, under some network structures, the presence of CoCos can 
increase (and not reduce) financial fragility, because of the occurring of unneeded triggers and 
consequential suboptimal conversions that damage CoCos investors. We also demonstrate that, in 
the presence of a moderate financial shock, lightly interconnected financial networks are more robust 
than highly interconnected networks. This makes them a potentially optimal choice for both CoCos 
issuers and buyers.

The 2007–2009 financial crisis highlighted the critical role of interbank interconnectedness in the stability of the 
global financial system and underscored a network-based approach to develop effective strategies for mitigating 
financial risk1–6. Designed to reduce the impact of a lack of short-term liquidity in times of financial distress, Con-
tingent Convertible bonds (henceforth, CoCos) have been extensively issued in the aftermath of the 2008–2009 
financial crisis, with the goal of serving as a protective buffer during adverse times. CoCos are coupon-paying 
bonds that, either convert into equity shares, or are (fully or partially) written-off, when the issuer reaches a 
pre-specified level of financial distress. Hence, CoCos serve as regulatory instruments designed to absorb unex-
pected future losses of the issuing bank through automatic recapitalization triggered at a predefined level. This 
mechanism provides additional loss-absorbing capital to undercapitalized banks during periods when raising 
fresh equity capital would be challenging.

First proposed by Merton7, who initially described the use of CoCos as a capitalization buffer during eco-
nomic downturns, the literature on CoCos began to take shape with the work of Flannery 8,9. As documented in 
a study by Avdjiev et al. 10, since the first issuance by Lloyd’s, over 500 billion US dollars’ worth of CoCos have 
been issued, spanning more than 400 different issues by various banks across different countries. In Fajardo 
& Mendes 11 is documented that the majority of banks issuing CoCos are large, highly leveraged institutions, 
particularly in BRICS and emerging economies, with the primary goal of meeting the risk provisions man-
dated by Basel III requirements. A comprehensive survey of this literature can be found in Avdjiev 10 and Flan-
nery 12, along with their respective references. Notice that an effective modeling and design of CoCos is still a 
fundamental open and unresolved research question in the academic literature. Models where CoCos have a 
conversion trigger linked to accounting values are developed in Refs. 13–16, while CoCos configuration from a 
market value perspective are analyzed in Refs. 17–20. Finally, the incentive effects of CoCos in individual banks 
have been investigated in Hori and & Cerón 21. Overall, it is worth noticing that, due to their complexity, the 
configuration of CoCos is not trivial and, both academics and practitioners, still disagree on how CoCos should 
be structured and priced (see Refs. 12,22,23). The role of CoCos in bank capital regulation is explored in Kashyap 
et al. 24 and The Squam Lake Report 25. Finally, Refs. 26–34 discusses how the possible configurations of CoCos 
can lead to corporate governance problems like debt overhang, or to risk shifting/taking incentives and possible 
bank failures due to extreme deleveraging.

To the best of our knowledge, this is the first paper, along with Gupta et al. 35, to analyze the role of CoCos 
in an interbank network. Differently from Gupta et al. 35 we focus more on the interbank network to study the 
contagion and stability effects of CoCos. Specifically, we study whether the introduction of CoCos can effectively 
reduce the overall amount of systemic risk in the economy, in particular by mitigating the extent of default 
propagation that may result in systemic failures. Additionally we investigate whether, also in presence of CoCos, 
interconnected systems exhibit the ’robust-yet-fragile’ phenomenon discussed by Refs. 36–39.
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To achieve this, we expand upon the work of Acemoglu et al. 37 by incorporating CoCos into the financial sys-
tem and exploring their interactions with the network’s topology, thereby influencing financial stability. To shed 
light on the role of CoCos as financial stability instruments, we first revisit in Sections “The interbank model” 
and “Financial networks without CoCos”) the main results concerning the propagation of liquidity distress caused 
by exogenous shocks in the absence of CoCos. Next, in Section “Financial network with CoCos”, we introduce 
CoCos in the banks’ balance sheets, and analyze their effects within the financial network. We initially focus solely 
on CoCos, abstracting from the effects of equity conversion in the connected financial network. Subsequently, 
in Section “CoCos with equity liquidation”, we consider a scenario where all banks in the financial network can 
effectively utilize CoCos proceeds. Our main findings confirm the robust-yet-fragile nature of financial networks, 
as documented in the absence of CoCos40,41. This characteristic persists in the presence of CoCos, where greater 
robustness to the contagion’s trigger corresponds to a more pronounced impact of the contagion once it begins. In 
particular lightly interconnected networks, that are more prone to contagion also for small shocks, demonstrate 
greater robustness to moderate shocks in terms of the extent of contagion when compared to highly intercon-
nected networks. Finally, we find that the effectiveness of CoCos as a financial stability-enhancing mechanism is 
contingent upon the type of network and may not always benefit the economy. In fact, in the presence of moderate 
shocks, fully and highly interconnected networks can act as sources of unnecessary triggers, which are solely a 
consequence of network interconnections rather than bank defaults. This can lead to suboptimal conversions, 
potentially harming CoCos investors who may no longer receive coupon payments.

The interbank model
The inclusion of any debt securities on a bank’s balance sheet establishes bilateral obligations between the issuer 
and the owner, which can be represented by constructing an interbank network with n ∈ N nodes. In the network, 
each bank is represented by a node, and the obligations are denoted by directed edges connecting these nodes. 
Specifically, a directed edge from node i to node j exists if bank i is creditor of bank j, such that yij represents the 
face value of the contract among the two banks.

Following Acemoglou et al. 37, we focus on three time periods, denoted as t0 , t1 and t2 . At t0 each bank i is 
endowed with an initial capital. This initial capital can be lent to other banks, held as cash ci , or invested in com-
petitive projects. If lent to other banks, the interbank lending takes place at t0 , and banks use the money borrowed 
to finance their investments. The investment can yield two types of returns: (i) a short-term t1 stochastic return 
ri , or (ii) a long-term t2 deterministic return Ai , if the project is held until maturity.

At time t1 banks honor their senior and interbank obligations. Senior obligations (e.g. taxes, wages), denoted 
as si > 0 , are non-negative external liabilities that have the highest priority in repayment. For the interbank 
obligations, banks pay an interest rate on the principal, so that the face vale yij of the bank’s j debt to bank i is 
the product of the amount borrowed and the interest rates. Identifying with yi =

∑

j �=i yji the bank i’s interbank 
obligations, it follows that the bank i ’s total liabilities at time t1 are 

∑

j  =i yji + si = yi + si . In terms of liabilities 
liquidation, junior (interbank) debts have all equal seniority, and are paid after the senior debts. After senior 
debts are settled, in the event of a company default, junior debts are repaid proportionally based on their face 
values. Denoting what bank i returns to bank j as xji , it holds

The parameter φi indicates the bank’s fitness, representing the fraction of the junior obligations that bank i can 
repay to its creditors. If φi < 1 then bank i cannot honor its junior debt, while if senior debts cannot be honored, 
all junior debts remain completely unpaid, i.e., φi = 0.

Banks can honor their obligations by using all the resources available at time t1 . In a simplified model they 
include the liquidity (or liquid assets) available zi = ci + ri , i.e. the sum of cash ci and short term return from the 
project ri , and what debtor banks effectively return at time t1 , i.e. 

∑

k  =i xik . If necessary, banks have the option to 
fully or partially liquidate their long-term investments, denoted as Ai , to acquire an additional liquidity budget 
of ζ li , where li ∈ [0,Ai] represents the bank’s liquidation decision, and ζ ∈ [0, 1] signifies the cost of liquidating 
before maturity.

From this mechanism the repayment structure depends on the maximum amount of resources available at 
time t1 , i.e. hi := zi + ζAi +

∑

k �=i xik in relation to the total obligations, i.e. si + yi . It follows that bank i returns 
to bank j the amount

where, in the intermediate case of junior insolvency, bank i repays her creditors a fraction yji/yi of the remain-
ing resources available after senior debts are settled. In the other two cases bank i is either fully solvent xji = yji 
( φi = 1 ), or fully insolvent xji = φi = 0 . Note that the liquidation decision li becomes irrelevant because when 
a bank is insolvent, a full liquidation of the project is required, i.e., li = A . Eq. (1) can be written in a more 
compact form as

where [·]+ = max[·, 0] . Dividing Eq. (2) by yji and using φi = xji/yji , we can derive the financial distress propa-
gation rule in terms of the bank’s fitness,

xji = φi yji , φi ∈ [0, 1] for any i, j = 1, . . . , n.

(1)xji = φi yji =







yji , if hi > si + yi
(hi − si)yji/yi if hi ∈ (si , si + yi)
0 if hi ∈ (0, si)

(2)xji =
yji

yi
min(yi , hi − si)

+ = yji min

(

1,
hi − si

yi

)+

,
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where we emphasized that the available resources hi = zi + ζAi +
∑

k �=i yikφk := hi(φ) depend on the other 
banks fitness. We also define the activation function as fy,s(h) = min(1, h−s

y )+ . Eq. (3) can be thought either as an 
updating rule for fitness propagation, φt+1

i = fy,s(hi(φ
t)) , or as an equilibrium defining map F : [0, 1]n → [0, 1]n , 

φ = (φ1, . . . ,φn) → F(φ) =
(

fy,s(hi(φ))
)n

i=1
.

In the remainder of the paper, we focus on a system of homogeneous banks, where we assume that si = s 
and yi = y for all i = 1, . . . , n . Furthermore, Eq. (2) suggests that we can make the assumption, without loss of 
generality, that Ai = 0 , as project liquidation simply acts as an additional asset and can thus be absorbed into 
the variable zi . Lastly, we consider the possibility of banks experiencing exogenous liquidity shocks. For each 
bank i, we model this situation as zi = a > s in the absence of shocks and as zi = a− ε in the presence of shocks.

In the above setting, starting from the initial condition φ0 = (1, . . . , 1) we iterate Eq. (3) until convergence to 
an equilibrium fitness which is the unique37,42 fixed point. We therefore investigate the equilibrium’s properties 
in terms of two key factors: (1) the extent of contagion denoted as E(φ) and (2) the system’s distress represented 
as D(φ) . These are defined as follows:

Additionally, we study the financial stability of the system as a function of (1) the topological properties of the 
interbank directed and weighted network Y = (yij) ; and (2) the size and distribution of the shocks.

Financial networks without CoCos
The focus of the present analysis is mainly on the role of the connectivity as a first order possible metrics of 
network topology. To isolate the effect of the network connectivity from the possible noise due to node hetero-
geneity we consider regular networks. In the Supplementary Material we also consider more realistic networks 
with some level of degree heterogeneity and a macroscopic structure (e.g. assortative communities or core-
periphery structure), by showing that the non trivial behavior of the contagion still can be interpreted to some 
extent as a result of the network local connectivity. A network is regular if 

∑

j  =i yij =
∑

j  =i yji = y , i.e. everyone 
owes everyone the same amount. Two particular extreme cases are represented by the ring and the complete 
regular networks. Specifically, a financial network is a ring network if yi,i−1 = y1,n = y , and yij = 0 otherwise. 
Under this configuration, bank i is the unique creditor of bank i − 1 , and bank 1 is the unique creditor of bank 
n, so that a default of a bank spillovers entirely on the subsequent banks. Conversely, a financial network is a 
complete network if yij =

y
n−1∀i �= j . Under this setting a liability, and thus a possible bank default, is equally 

divided among all n banks in the financial network. With the aim of studying more realistic networks that better 
resemble an interbank network, we also introduce and focus most of our attention on random regular networks 
with different degrees of connectivity, 0 < c < ∞ . Connectivity is defined as the number of incoming (or out-
going) links in the network, represented as c =

∑

j �=i Iyij>0 =
∑

j �=i Iyji>0 . Assuming the same connectivity for 
each bank, we obtain a regular network by dividing all the junior liabilities y of a bank in equal parts between 
its neighbors, i.e. yij =

y
c Iyij>0.

The principal discovery in the study by Acemoglou et al. 37 concerning the resilience of ring and complete 
financial networks under the influence of a non-negative exogenous shock ε > 0 can be summarized (please 
refer to the Supplementary Material) in the following.

Theorem 3.1  Given ε∗ = n(a− s) and y∗ = (n− 1)(a− s) , then:

•	 as soon as ε < ε∗ (small shock regime) or y < y∗ (low exposure regime) the extent of contagion in the ring 
network is larger than that in the complete network.

•	 as soon as ε > ε∗ and y > y∗ default becomes systemic in both the ring and the complete networks.

Figure 1 illustrates the extent of financial contagion and banking distress as functions of the shock in the high 
exposure regime, ( y > y⋆ ), with ring and complete networks represented by blue and green lines, respectively.

Two important messages emerge from the figure. First, it is evident how the contagion becomes systemic 
at the same point ε = ε∗ . Secondly, contagion (default leading to default) is quicker with the ring network for 
small shocks. On the other hand, large shocks, which by definition envisage less interconnection among banks, 
lead to senior debts being wiped out to absorb losses. In this regime, the ring network becomes as stable as the 
complete network, thus reflecting a robust-yet-fragile framework.

Figure 1 also presents, for different intermediate network connectivity, the average results over 10 realizations 
of random regular networks sampled from a directed configuration model43,44. Interestingly, when the extent 
of financial contagion is nearly zero, the results confirm that the complete network exhibits greater stability to 
small shocks, compared to all other networks. In fact, for the ring and all intermediate networks, the extent of 
contagion increases with the shock size. In contrast, the complete network only experiences systemic contagion 
for ε > ε⋆ , marking the previously defined phase transition with a jump. Focusing on the intermediate networks, 
we can delve deeper into their behavior and responses to shocks. Our findings reveal the existence of three 
regimes, not just two. Specifically, as we progress from the ring network and increase the degree of connectivity, 

(3)φi = min

(

1,
hi(φ)− si

yi

)+

= fyi ,si (hi(φ)),

(4)E(φ) = 1−
1

n

n
∑

i=1

δφi ,1; D(φ) = 1−
1

n

n
∑

i=1

φi .
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the system becomes progressively more resilient, with a notable jump in the extent of contagion as the shock size 
increases. The jump corresponds to the point at which the shock propagates simultaneously to all neighbors of 
the stressed bank. In the limit, as the network becomes fully connected, the system remains stable until it reaches 
the transition point where the shock becomes systemic. It is interesting to note that there are shock size regimes 
where increasing connectivity doesn’t necessarily result in a greater stability. A more connected network tends 
to be more stable only before the first jump. Beyond that point, the system becomes more fragile compared to 
cases with lower connectivity.

Financial network with CoCos
The situation is different when we consider all bilateral obligations between banks to be CoCo bonds. A crucial 
element in any CoCo configuration is the trigger, which defines a critical level of the issuer’s financial distress. 
When the trigger condition is met, the bond is either partially or fully written off. As a result, the issuer bank 
experiences a reduction in its exposure while the owner bank receives some equity shares in exchange (for CoCos 
with equity-conversion). Various types of trigger mechanisms exist12, depending on the definition of financial 
distress (e.g., market- or book-value trigger). In our model, we define it as the ratio between a proxy of the 
bank’s i equity, Ei , and the bank’s assets, hi , at time t1 . Recall that hi = zi +

∑

j �=i xij represents the total amount 
of resources available, and that s + y denotes the total obligations of bank’s i at time t1 . Under this framework, 
we assume a trigger to occur if

where τ > 0 is a discretionary threshold.
In the case of CoCos with equity conversion, when a trigger event occurs, the bonds are either partially or 

fully converted into equity to address, if feasible, the shortfall up to the threshold Ei = τhi . Suppose that, before 
conversion, Ei = βhi , with β � τ . Under this scenario the amount of bond �y that has to be converted into 
equity is �y = (τ − β)hi , provided that y > �y.

In the case y � �y , then the entire CoCo is converted: this happens if

From Eqs. (5,6) we can define three different scenarios.

•	 If s
1−τ

� hi �
s+y
1−τ

 , the bond undergoes partial conversion into equity: in this case, CoCos holders receive 
�y = (τ − β)hi of converted equity, and xi =

∑

j �=i xji = y −�y = (1− τ)hi − s of unconverted CoCos.
•	 If s � hi �

s
1−τ

 , the entire bond is converted: in this case, CoCos holders hold �y = y of converted equity 
and no unconverted CoCo, i.e. xi = 0.

•	 If hi � s , equity holders absorb the losses ahead of senior creditors, and consequently, they do not receive 
converted equity. In this case, xi = 0.

When we combine all these cases together, we obtain xi = min[y, (1− τ)hi − s]+ . Then, dividing by y, we can 
obtain the equivalent trigger propagation rule but in terms of the banks fitness φi = xij/yij = xi/yi as

(5)
Ei

hi
:=

hi − (s + y)

hi
� τ ⇐⇒ hi �

s + yi

1− τ
,

(6)y � �y ⇐⇒ hi − s − βhi � (τ − β)hi ⇐⇒ hi �
s

1− τ
.

(7)φi = fy,s((1− τ)hi(φ)),

Figure 1.   Simulation on Random Regular networks with N = 50 , a = 21 , s = 20 , y = 75 > y⋆ . Results are 
averaged over 10 different realizations, sampled from a directed configuration model. Left panel: extent of 
contagion; Right panel: system’s distress.
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where fy,s is defined in Eq. (3). The main difference between Eq. (7) and Eq. (3) lies in the interpretation of the 
fitness parameter φi . In the presence of CoCos, φi < 1 does not signify default but rather the triggering of the 
CoCo. Consequently, distress propagation in this system indicates a triggering propagation.

It is worth noticing that the continuous map defined in Eq.  (7) admits a unique fixed point, regardless of the 
network structure (see Supplementary Material). As in the previous section, after an exogenous liquidity shock, 
we can analytically derive the unique equilibrium for both the ring and complete networks. The properties of 
this equilibrium are summarized in the following.

Theorem 4.1  There exist exposure thresholds y∗r (τ ) , y∗c (τ ) and shock thresholds ε∗r (y, τ) , ε∗c (y, τ) (their explicit 
expressions are provided in the Supplementary Material) such that:

•	 when (y, τ) ∈ Sr = {ε > ε∗r (y, τ), y > y∗r (τ )} the shock triggers a systemic CoCo triggering in the ring 
network.

•	 when (y, τ) ∈ Sc = {ε > ε∗c (y, τ), y > y∗c (τ )} the shock triggers a systemic CoCo triggering in the complete 
network.

where Sr and Sc identify the systemic unstable regions for the ring and complete networks, respectively. It fol-
lows that their complement, S c

r  and S c
c  , identify the safe regions for the ring and complete networks, respec-

tively. Moreover Sr ⊂ Sc and

•	 when (y, τ)  ∈ Sc(implying (y, τ)  ∈ Sr ) the ring network is the least (and the complete network is the most 
stable) financial network.

•	 there exist a region where (y, τ)  ∈ Sr but (y, τ) ∈ Sc where the ring network is the most (and the complete 
network is the least) stable financial network.

The proof, detailed in the Supplementary Material, relies once more on the analytical solution of the fixed-
point Eq. (7).

The first part of the theorem asserts that, in the presence of CoCos, the unstable region (characterized by 
large shocks and high exposure) is not universal, as in the case of vanilla bonds. Instead, it strongly depends 
on the network structure, resulting in different thresholds for various levels of shock size ( ε ) and exposure (y). 
Additionally, as depicted in Fig. 2, the unstable regions (or equivalently the safe regions) are strongly influenced 
by the triggering parameter τ.

Naturally, as τ tends to zero, CoCos become vanilla bonds, and the two regions tend to coincide. Conversely, 
as τ increases, the two regions tend to diverge more and more significantly. In the second part of the theorem, 
the two unstable regions (for the ring and complete networks) are compared. Remarkably, it appears that the 
safe region for the complete network is the smallest one. This suggests that if the size of the shock is such that 
it does not determine a systemic triggering in the complete network, the latter is the most stable topology (first 
point). However (second point), the triggering in the complete network becomes systemic for a shock size that 
is smaller than the one necessary for a systemic triggering in the ring network. As such, and as illustrated by 
the blue region in Fig. 2, there exists a medium shock size region where the ring network is more stable than 
the complete network. For larger shocks, the triggering becomes systemic also in the ring network, and the two 
topologies are equivalently sub-optimal.

Figure 3 shows the extent of contagion and system’s distress as a function of the shock size in a high exposure 
regime, for different network connectivity.

Figure 2.   Safe region for the ring and the complete networks for different values of τ.
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From the figure, we can observe that the system behaves similarly to the vanilla bond case for relatively 
small shocks. The ring network exhibits the highest resilience, the complete network the lowest, and intermedi-
ate connectivity levels result in jumps that define the region where higher connectivity enhances the system’s 
robustness. Note that, immediately after a jump occurs, the network enters a fragility phase where systems with 
lower connectivity are more robust. For medium shock sizes, an inversion point is reached where all lines in 
Fig. 3 intersect. Beyond this point, contagion becomes systemic in the complete network while the ring network 
remains relatively stable. Finally, for larger shocks sizes, all the network structures are equivalent, since they 
cannot prevent the triggering to become systemic. A final remark on the difference between CoCos and vanilla 
bonds concerns the shape of the shock size threshold ε(y, τ) which now explicitly depends on the bank exposure 
y (instead of τ ). In particular, for both network topologies, the critical threshold decreases with the exposure (the 
higher the exposure the smaller the safe regions), while in the presence of vanilla bond ( τ = 0 ) it is independent. 
An important financial stability consequence is the existence of a maximum exposure, beyond which any (even 
small) shock can trigger a distressed bank and potentially lead to a systemic crisis.

CoCos with equity liquidation
As a final step, we analyze the scenario of a trigger event in which the CoCos holder can liquidate (at a liquidation 
cost) the dollar amount of shares of the CoCos received as a consequence of the trigger. Note that, neglecting 
this monetary value, would result in an overestimation of both the shock size and the degree of systemic dis-
tress, or, equivalently, an underestimation of the systemic crisis threshold. From the previous section, if a shock 
in the economy leads to a trigger, then the CoCos issuer bank i repays an amount xnci  of unconverted CoCos 
xnci = min[y, (1− τ)hi − s]+ while it converts and uses the remaining amount xci = y − xnci  . If we denote with 
η ∈ [0, 1] the effective market value of the issuer bank’s share after the trigger, we can generalize the debt repaying 
rule as xi = xnci + ηxci = ηyi + (1− η)min[y, (1− τ)hi − s]+ and, equivalently, the propagation rule in terms 
of the bank fitness becomes:

that generalizes Eq. (7) and reduces to it in the limit of η → 0 . Again, there is an unique equilibrium regardless of 
the network structure (see Supplementary Material), that can be reached by iteration, starting from φ = (1, . . . , 1) 
and propagating an exogenous liquidity shock. The value of η depends on various internal and external factors, 
including the overall quality of the bank, the state of the banking system, and the size of the shock affecting an 
individual bank. Moreover, a CoCo conversion might depress the bank’s equity, being a trigger usually seen as a 
bad signal for the bank issuer by market participants. Acknowledging all these factors and their consequences, 
in this paper, we treat η as exogenously given, and analyze the effects on the level of bank fitness for different 
values of η.

First, for η = 0 (shares have zero value) the bank cannot use any money from the conversion and we indeed 
retrieve the results of the previous section. Second, for 0 < η � 1 the equity conversion mitigates the propaga-
tion of the shock in a non-linear way, and η becomes the minimum possible bank fitness. Figure 4 shows the 
extent of contagion as a function of the shock for different values of η.

For η = 0.03 (left panel) the ring network is more stable than both the complete network and all the inter-
mediate ones. In fact, while the extent of contagion becomes systemic (=1) in the ring network only for large 
shocks ( ε � 35 ), the complete network is the one that first reaches maximal instability (for ε � 12 ), followed 
by the intermediate network. With respect to the intermediate networks, the lightly interconnected networks 
are again more stable than the highly interconnected ones, and with a stronger magnitude than the case with 
no equity conversion. As shown in the right panel of Fig. 4, the stability of the ring and lightly interconnected 
networks strengthens as η increases, but non-linearly. For η = 0.3 , the ring network reclaims its position as the 
most stable, never reaching full contagion and achieving maximum contagion at around E (φ) = 20% even for 
the largest shocks. Moreover, and due to the non-linearity of the change, lightly interconnected networks ( c = 2 

(8)φi = η + (1− η)fy,s((1− τ)hi(φ)),

Figure 3.   Simulation on random regular networks with N = 50 , a = 21 , s = 20 , y = 75 . Results are averaged 
over 10 different realizations sampled from a directed configuration model.
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and c = 3 ) are never susceptible to systemic contagion and reach their maximum value at E (φ) ≈ 60% . Finally, 
for the set of medium to highly interconnected networks, the extent of contagion grows more than linearly, with 
the complete network showing a systemic contagion already for small shocks ( ε = 17 ). In summary, our results 
clearly show that the equity conversion is the most beneficial for no or lowly interconnected networks, and is the 
most detrimental for highly interconnected networks. In fact, highly interconnected networks are more prone 
to financial contagion in presence of a CoCos trigger. Figure 5 summarizes the results by showing the level of 
the critical size of the shock ε∗(η, τ) as a function of the conversion value η.

It is evident how, in the ring network, the critical size of the shock grows much faster than in the complete 
network.

It is important to note that the equity conversion resulting from the trigger might be beneficial for the banking 
system when the shock amplifies systemic financial risk. Conversely, unnecessary conversions can penalize and 
affect bond (CoCo) holders. We define the conversions to be unnecessary whenever a shock leads to a systemic 
conversion without creating systemic risk in the economy. To better elucidate this result, we compare Fig. 1 with 
Fig. 5. Figure 1 shows that in the absence of CoCos the risk is systemic only from ε � 50 , while Fig. 5 illustrates 
that the ring and the lightly interconnected networks experience a systemic trigger for much smaller shocks in 
the economy. From a market perspective, to prevent automatic triggering below a certain threshold, CoCo issuers 
could consider issuing CoCos with dual-trigger conversion, incorporating both an endogenous trigger linked to 
the balance sheet or firm’s equity value and an exogenous trigger controlled by the regulatory authority (e.g.,15).

Conclusions
Contingent convertible bonds (CoCos) are regulatory financial instruments introduced in the aftermath of the 
2008-2009 financial crisis with the aim of mitigating systemic risk in the financial system during challenging 
times. In this paper, we present various balance-sheet-based interbank financial networks, both with and with-
out CoCos. We demonstrate that the network’s structure significantly influences the effectiveness of CoCos as 
risk-mitigating securities. Specifically, we demonstrate that for ring and complete networks the state (phase) 

Figure 4.   Simulation on Random Regular networks with N = 50 , a = 21 , s = 20 , y = 75 . Results are averaged 
over 10 different realizations sampled from a directed configuration model.

Figure 5.   Critical shock for the ring and the complete network as a function of η , see Supplementary Material 
for the explicit expressions.
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transition in a network without CoCos is also naturally operational in a network with CoCos, thus confirming the 
robust-yet-fragile result documented by37. We also demonstrate that, in the presence of moderate shocks, lightly 
interconnected networks enhance financial system stability more than highly interconnected ones. Additionally, 
we highlight the importance of considering the type of interbank financial network for maximizing the effective-
ness of CoCos for both issuers and investors. Overall, policymakers and regulators should carefully consider the 
interbank network’s role in assessing the potential financial contagion dynamics of CoCos. Despite the focus of 
the present analysis is on the role of the network connectivity, as a first order characterization of the network 
topology, it would be crucial for future research to analyze the role of Coco bonds in the case of an interbank 
network with degree heterogeneity or a more realistic macroscopic structure45–49.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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