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Abstract

Network analysis has found widespread utility in many research areas. However, assessing

the statistical significance of observed relationships within networks remains a complex

challenge. Traditional node permutation tests are often insufficient in capturing the effect of

changing network topology by creating reliable null distributions. We propose two randomi-

zation alternatives to address this gap: random rewiring and controlled rewiring. These

methods incorporate changes in the network topology through edge swaps. However, con-

trolled rewiring allows for more nuanced alterations of the original network than random

rewiring. In this sense, this paper introduces a novel evaluation tool, the Expanded Qua-

dratic Assignment Procedure (EQAP), designed to calculate a specific p-value and interpret

statistical tests with enhanced precision. The combination of EQAP and controlled rewiring

provides a robust network comparison and statistical analysis framework. The methodology

is exemplified through two real-world examples: the analysis of an organizational network

structure, illustrated by the Enron-Email dataset, and a social network case, represented by

the UK Faculty friendship network. The utility of these statistical tests is underscored by

their capacity to safeguard researchers against Type I errors when exploring network met-

rics dependent on intricate topologies.

Introduction

Understanding network processes is crucial for uncovering the emergent behavior of intercon-

nected elements [1]. Usually, examining individual actions provides insights, but it falls short

of grasping broader global dynamics [2]. Network science aids researchers in understanding

complex interactions among elements [3]. However, studying networks raises critical ques-

tions, particularly regarding statistical limitations and the role of network topology when inter-

preting observed outcomes [4]. This acknowledgment underscores the need for a more

gradual approach when analyzing if there are significant differences between diverse network

topologies.

In this sense, hypothesis testing in network analysis represents a growing area where statis-

tical methods intersect with complex data structures. Exploring different methodologies has

been a subject of significant interest and has garnered attention within the research
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community. While some contributions have been instrumental in extending standard testing

frameworks to network-based hypothesis assessments [5, 6], or adapted resampling techniques

[7] to network-based data, others have paved the way for incorporating Bayesian frameworks

in complex networks’ hypothesis assessments [8, 9]. However, further developments are still

required.

Irrespective of the hypothesis testing framework employed, permutation tests have consis-

tently served as a primary tool for generating alternative networks. These alternative networks

play a crucial role in evaluating the significance of the topological properties in the studied net-

work, including centrality [10], interconnectivity [11, 12], subgraph patterns [13, 14], and net-

work dynamics [15, 16]. By facilitating an exploration of the link between network structure

and model outcomes, they greatly enhance result interpretation and enable more accurate pre-

dictions about the behavior of the system under analysis [10]. Such capability arises from per-

mutation tests, which randomly shuffle the network structure while holding other variables

constant, generating a null distribution for comparative analysis. [17, 18]. At last, researchers

can determine the statistical significance of the network topology by comparing observed net-

work metrics with those generated through permutations.

However, permutation tests may not always provide accurate results since not all

changes have the same impact, as demonstrated in the limitations section. Misinterpreting

Type I errors in network analysis can lead to false positive findings, resulting in erroneous

conclusions, spurious associations, and misleading downstream analyses. Therefore, select-

ing appropriate statistical methods is crucial to ensure the integrity of the obtained results

[19].

A well-known combinatorial optimization problem that has garnered significant attention

due to its challenging nature and diverse real-world applications is the Quadratic Assignment
Procedure (QAP). The QAP is a method primarily used for testing dyadic hypotheses. It is

essential to note that QAP is not designed to test structural elements like motifs, centralities, or

clustering within a network. The nature of the hypotheses that QAP can address is crucial for

understanding its applicability. QAP, being a permutation-based method, is commonly

employed for conducting dyadic regression. This method is particularly interesting for analyz-

ing relationships between pairs of entities in various contexts [20]. In this sense, some recent

studies suggest that combining edge rewiring with the existing techniques could be beneficial

for testing significant differences between the original network and the rewired version [21].

By incorporating edge rewiring, researchers can introduce controlled variations into the net-

work structure, allowing for comparing the original network with modified versions. This

approach enables the assessment of how changes in edge connections impact the network’s

overall characteristics and properties.

In light of this limitation, this article presents a novel approach to evaluating the statistical

significance of a given network topology. Our contributions extend to three main areas:

1. We introduce a new method, the Expanded Quadratic Assignment Procedure (EQAP), to

quantify network similarity more effectively than traditional methods such as the Mantel

test and the Quadratic Assignment Procedure (QAP). These conventional methods fall

short in analyzing the complex topology of networks.

2. To address this, we explore two randomization alternatives. First, the well-known “random
rewiring”, which retains the number of connections for each network element while ran-

domly reconnecting them. Second, we introduce an alternative technique called “controlled
rewiring”, which involves reconnecting elements, starting with those with fewer central con-

nections and progressively including more central ones.

PLOS ONE Structure matters: Assessing the statistical significance of network topologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0309005 October 2, 2024 2 / 28

through the project REMISS (PLEC2021-007850).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. There was no

additional external funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0309005


3. The primary focus of our research is to analyze the p-values obtained through combining

these alternatives with the EQAP method. Traditional permutation methods result in overly

significant p-values, whereas our proposed alternatives maintain a balance, enabling more

accurate comparisons.

4. By integrating Random Rewiring and Controlled Rewiring into the EQAP, we offer a com-

prehensive toolset for network analysis. The primary objective is to generate multiple non-

significant randomized versions of the original network for subsequent comparative

modeling.

5. Our results indicate that controlled rewiring is the most suitable method for analyzing the

significance of topological metrics in networks. By systematically reconnecting nodes based

on their connectivity, this method enables a detailed examination of how network topology

impacts network dynamics.

6. We have developed a user-friendly Python library to facilitate the assessment of network

topology significance by allowing researchers to compare the original network metrics with

those derived from the rewired networks.

The rest of this paper is organized as follows. Firstly, we introduce the main topological

metrics used in network research and revise the existing methods to analyze network topologi-

cal significance. Secondly, we examine their limitations when comparing a modified network

to the original one. Then, we propose two randomization alternatives to alter the network’s

topology, and the Expanded Quadratic Assignment Procedure (EQAP), which measures

whether there are significant differences with a p-value. Subsequently, the process of imple-

menting the proposed methodology, guide on comparing it against a Null Model, and derived

experimental results on real-world data. Finally, we discuss the methodological findings, rec-

ommendations when implementing the methods, and some research conclusions and future

work.

Related work

Networks can exhibit diverse structural configurations. In this work, we consider a network as

a pair G = (V, E), where V is a set of nodes or vertices connected by a set of E edges or links [22,

46]. The adjacency matrix of a network G is a square matrix representing the connections or

relationships between the nodes in the graph. Let n be the number of vertices. If the vertices

are labeled V = v1, v2, . . ., vn, then the adjacency matrix A will be an n × nmatrix. The elements

aij 2 A equal 1 if an edge exists between vertex vi and vertex vj, or 0 otherwise.

The number of nodes, edges, or the network type (directed or undirected) are measures of

network complexity. However, other metrics, such as the degree distribution, shed more light

on its connectivity and functionality. The degree (kvi) corresponds to the number of edges a

node vi has to other nodes vj [23]. In the case of directed networks, we can calculate each

node’s inward degree, or in-degree, (kinvi ) and outward degree, or out-degree, (koutvi ).

Several metrics are used to study network topology features. Centrality measures describe

how predominant nodes are located in the center of any network. The most common central-

ity measure is betweenness. It is calculated as Bvi ¼
P

vj 6¼vi 6¼vk

sðvj ;vkÞ
ðviÞ

sðvj ;vkÞ
; where sðvj ;vkÞ stands for

the total number of shortest paths from node vj to node vk and sðvj;vkÞðviÞ is the number of

those paths that pass through vi. Betweenness centrality can also be calculated on an edge’s

basis, which we call edge betweenness. In addition, the closeness metric is a simplified version

of betweenness. It measures how central a node is by considering the total distance between a
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given node and all the others. Closeness was defined by [24] as Cvi ¼
1P
i
dðvj ;viÞ

; where d(vj, vi)

stands for the length of the shortest path between nodes vi and vj.
Additionally, to centrality measures, interconnectivity measures provide valuable insights

into resource flow efficiency. The average shortest path length assesses the network’s global

connectivity and diameter by quantifying the average distance between every pair of nodes.

The local clustering coefficient [25] indicates the level of interconnectivity among a node’s

neighbors, and it represents the probability that two neighbor nodes connect each other [23].

For a specific node vi with degree kvi , it is defined as Cvi ¼
2Lvi

kvi ðkvi � 1Þ
; where Lvi stands for the

number of edges among vi neighbors. The average value of local clustering coefficients is often

called transitivity [23].

Besides, Assortativity refers to the tendency of nodes in a network to connect to similar

nodes. To measure assortativity, Newman (2002) developed the assortativity coefficient

[26]. When considering the node degree in directed networks, it is calculated as r ¼
P

vi
eðvi ;viÞ�

P
vi
kinvi k

out
vi

1�
P

vi
kinvi k

out
vi

; where sðvi ;viÞ is the self-loops sum of the node vi and kinvi , and koutvi
are the

fraction of incoming and outgoing edges attached to the node vi.
Finally, other measures study how subgraph patterns arise within a network topology. The

number of triangles in a network measures the local interconnectivity density and represents

mutual connections between nodes [23]. Triangles are indicative of cohesive social groups or

subnetworks. It is computed as the number of sets of three nodes, each with a relationship to

the other two. The global clustering coefficient quantifies the proportion of closed triangles

about the total number of triangles (both open and closed) in a network.

Some studies also analyze network similarities by focusing on the existence of common

structural patterns or motifs shared across networks belonging to the same superfamily [27].

These similarities, known as Structural Patterns (SPs) of superfamilies, suggest underlying

commonalities in the local structure or connectivity patterns among networks, even when

describing different systems. Identifying such SPs provides insights into potential functional

tasks or evolutionary relationships among networks within the same superfamily. Under this

perspective, our approach offers an alternative methodology for investigating network dynam-

ics and properties, i.e., instead of focusing on identifying similarities in SPs, we propose inte-

grating statistical analysis with systematic alterations of network topology by comparing the

similarities between networks before and after structural alterations induced by edge rewiring.

This comparison attempts to shed light on how changes in network topology influence net-

work behavior, robustness, and function.

To assess the meaning of the presented metrics and their implications, subjecting them to a

statistical test against a null distribution is essential. To this end, hypothesis testing methodolo-

gies have been extensively discussed [28–30], which provided the theoretical foundations and

practical applications of statistical hypothesis testing, offering insights into optimal testing pro-

cedures and efficiency.

Nowadays, the most commonly used tests for network analysis in social sciences are the

Mantel test, presented here for completeness of the analysis, and the Quadratic Assignment

Procedure (QAP) [31, 32]. These tests help researchers determine whether the observed pat-

terns and relationships in network data are statistically significant or could have occurred by

random chance (the null hypothesis). In essence, they serve as critical tools for verifying the

validity and significance of network analyses [33].
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Mantel test

The Mantel test is a statistical method frequently employed in network analysis to assess the

similarity or dissimilarity between two networks through permutations [31]. This test is com-

monly used to compare two different networks based on their structure and assess the signifi-

cance of their differences [34]. Given the null hypothesis that there is no correlation between

two distance matrices of the same size, the Mantel test rejects this hypothesis, as explained

below.

rM ¼
P

i<jwijdij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i<jw2
ij

P
i<jd2

ij

q ; ð1Þ

where the indices ij refer to the element in the i-th row and j-th column of the matrices. The

numerator of rM represents the sum of the products of the corresponding upper triangle ele-

ments of the matricesW and D, while the denominator represents the product of their stan-

dard deviations.

To test the null hypothesis, we generate a null distribution of rM by permuting the rows and

columns of D and recalculating rM. Specifically, we randomly permute the rows and columns

of D for B times and calculate rðbÞM for each permutation b = 1, . . ., B. We then calculate the

empirical p-value as:

p ¼
PB

b¼1
IðrðbÞM � rMÞ þ

PB
b¼1
IðrðbÞM � � rMÞ

2B
; ð2Þ

where I(�) is the indicator function. If p is below a pre-specified significance level α, the null

hypothesis is rejected, concluding there is a significant correlation betweenW and D.

Quadratic Assignment Procedure

An alternative method is the Quadratic Assignment Procedure (QAP). QAP is a permutation-

based method used to test the significance of the association between two matrices in network

analysis. It is useful for assessing the similarity or dissimilarity between two networks by com-

paring the observed matrix similarity/dissimilarity with a null distribution obtained through

matrix permutations [35, 36]. QAP can handle various types of matrices, including adjacency

and similarity matrices. When using adjacency matrices, QAP tests hypotheses about the rela-

tionship between different types of networks or the same network observed at different times

or under different conditions. This flexibility makes QAP a powerful tool for network analysis.

To account for the dependency structure of network data, QAP generates a null distribution

by randomly shuffling the rows and columns of the matrices while preserving the dependen-

cies within each matrix. This approach creates a null distribution, assuming no association

between the matrices. By using matrix permutations that respect the dependencies, QAP pro-

vides a robust method for testing the significance of the association, addressing the non-inde-

pendence of network data [32, 34].

The Quadratic Assignment Procedure (QAP) runs as a combinatorial optimization method

targeting a specific challenge. Given two n × nmatrices,W = (wij) and D = (dij), the goal of the

Quadratic Assignment Procedure is to find a permutation matrix P of size n × n that mini-

mizes the objective function:

ObjðW;DÞ ¼ traceðWTDPÞ ð3Þ

where trace denotes the trace of a matrix, and P is a permutation matrix, i.e., a binary matrix

with exactly one 1 in each row and each column and all other entries being 0. The (i, j)-th
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entry of P is denoted by pij, which is 1 if and only if an element of column i is assigned to col-

umn j.
The QAP finds the optimal permutation matrix P that minimizes the objective function,

effectively assigning rows and columns of matrixW to rows and columns of matrix D in a way

that minimizes the objective of the assignment, as measured by the trace of the productWTDP.

The QAP for 2D matrices is based on the following assumptions:

• If P is a permutation matrix, then PT is also a permutation matrix.

• The trace of a product of two matrices is equal to the sum of the products of their corre-

sponding elements.

• The objective function can be written as ObjðW;DÞ ¼
Pn

i¼1

Pn
j¼1
wijdpi ;pj , where pi and pj are

the indices of the elements in D that correspond to the assigned locations of i and j under the

permutation matrix P.

Limitations of the existing permutation tests

Permutation tests, including the Mantel test and QAP, are invalid for detecting minor differ-

ences in network topologies. These tests rely on randomly permuting the data to create a null

distribution. However, when the differences between network topologies are subtle, the proce-

dure fails to effectively capture these small changes, leading to limited statistical power and

inaccurate inference [37].

Limitations of the Mantel test

The Mantel test encounters an issue when comparing permutations of the same matrix. In

such cases, the test rearranges the order of pairwise distances without altering the actual dis-

tances between pairs of observations. While traditionally associated with distance matrices, the

Mantel test is versatile and applicable to any type of square symmetric matrix, including adja-

cency matrices. Consequently, the correlation between the matrices becomes perfect, and the

resulting p-value equals one, indicating no evidence of a significant difference between the

matrices [32, 34].

Limitation 1. The Mantel test p-value for equal matrices (D =W) is always 1. Consider

two distance matrices,W and D, both sized n × n. The Mantel test statistic, denoted as rM, is

defined by the covariance betweenW and D, divided by the product of their standard

deviations.

Expressed as rM ¼
covðW;DÞ
sðWÞ�sðDÞ, where cov and σ represent covariance and standard deviation

functions, respectively. WhenW equals D, the covariance simplifies to the variance ofW.

Substituting this into the Mantel test formula yields rM = 1.

Therefore, ifW perfectly matches D, the empirical p-value of the Mantel test consistently

returns as 1. This is equivalent to the Pearson correlation coefficient betweenW and D. Thus,

whenW equals D, the Mantel test simplifies to the Pearson correlation coefficient between the

distance matrices:

rP ¼
P

i<jðwij � �WÞðdij � �DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i<jðwij � �WÞ2
P

i<jðdij � �DÞ2
q ; ð4Þ

where wij and dij are as previously defined, and �W and �D denote the means of the distance
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matrices. The Mantel test statistic rM and the Pearson correlation coefficient rP are equivalent

whenW = D.

In this case, the null hypothesis is that there is no correlation between the two matrices, i.e.,

rP = 0. Under the null hypothesis, the distribution of rP follows a Student’s t-distribution with

n(n − 1)/2 − 1 degrees of freedom, where n is the number of objects. In particular, the distribu-

tion is symmetric about 0, meaning that the probability of observing a value of rP greater than

or equal to its observed value is equal to that of observing a value of rP less than or equal to its

negative.

Since the empirical p-value of the Mantel test is computed as the proportion of permuta-

tions that yield a test statistic greater than or equal to the observed value plus the proportion

that yields a test statistic less than or equal to the negative of the observed value, we have:

p ¼
PB

b¼1
IðrðbÞP � rPÞ þ

PB
b¼1
IðrðbÞP � � rPÞ

2B
: ð5Þ

Since the null distribution of rP is symmetric about 0, the two sums in the numerator of the

above expression are equal, and the empirical p-value is equal to:

p ¼
PB

b¼1
IðrðbÞP � rPÞ
B

: ð6Þ

In other words, the empirical p-value equals the proportion of permutations that yield a

Pearson correlation coefficient greater than or equal to the observed value. Since the observed

value of rP is a Pearson correlation coefficient between two identical distance matrices, which

is always 1, the empirical p-value is 1 for any number of permutations B. Therefore, ifW = D,

the empirical p-value of the Mantel test is always 1.

Limitation 2. The Mantel test p-value for permuted matrices (D = PW) is always 1.

Consider that P represents the permutation matrix that transforms matrixW into matrix D.

This n × nmatrix has only one 1 in each row and column, with all other entries as 0. When we

multiplyW by P, we get D.

The Mantel test statistic, denoted as rM, is given by:

rM ¼
P

i<jwijdij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i<jw2
ij

P
i<jd2

ij

q ð7Þ

Expanding the terms using the information that D is a result of permuting rows and col-

umns ofW via matrix P, we find that:

rM ¼
Pn

i¼1

Pn
j¼1
wijðpijwijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWTWÞ � ðPWÞ

p ð8Þ

Here, (WTW) represents the element-wise square of the matrixW, and (PW) stands for the

multiplication of P byW. The Mantel test statistic, rM, can be succinctly expressed as:

rM ¼
Pn

i¼1

Pn
j¼1
wijðpijwijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWTWÞ � ðPWÞ

p ð9Þ
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This serves as the desired expression for the Mantel test statistic, presented in terms of

matrix operations. Therefore, the Mantel test statistic can be expressed as:

MantelðW;DÞ ¼ traceðWTPWÞ ð10Þ

To prove the empirical p-value of the Mantel test is universally equal to 1, we can use the

following reasoning. The Mantel test p-value is computed as:

p ¼
1

M

XM

i¼1

IðMantelðWpi
; PWÞ � MantelðW; PWÞÞ; ð11Þ

whereM is the number of permutations,Wpi
is the matrix obtained by permuting the rows

and columns ofW according to the i-th permutation πi, and I is the indicator function.

Since PW is a permutation ofW, the Mantel statistic will be zero, and the p-value will be 1.

This is because a permutation ofW simply rearranges the order of the pairwise distances, but

does not change the actual distances between pairs of observations. As a result, the correlation

betweenW and PW will be perfect, and the p-value will indicate that there is no evidence of a

significant difference between the two matrices.

Therefore, whenW and D are equal, the empirical p-value of the Mantel test is always 1.

The Mantel test p-value decreases inversely with the number of permutations, k, as p � 1

k.

Finally, although recent publications show that the Mantel test is not affected by inflated

Type I error when spatial autocorrelation affects only one variable, when investigating correla-

tions, or when either the response or the explanatory variable is affected by spatial autocorrela-

tion while investigating causal relationships [38], a critical limitation of the Mantel test is its

reliance on distance variables, which measure the relationships between pairs of objects. The

Mantel test is inherently unsuitable when applied to networks with no geographical or spatial

data, such as social networks. In such cases, where the spatial arrangement or proximity of net-

work nodes is unknown, the Mantel test becomes ineffective for assessing associations within

the network. In light of the Mantel test limitations, we only focus on the Quadratic Assignment

Procedure in what follows.

Limitations of the Quadratic Assignment Procedure

It is worth noting that QAP also encounters limitations when comparing permutations of the

same matrix [39]. The QAP objective function is invariant under row and column permutations,

meaning that any permutation of the optimal assignment obtained from QAP is also optimal.

Therefore, the p-value results in 1. In these cases extracting meaningful information becomes

challenging [32, 34]. The implications of the following limitations are depicted in Fig 1.

Limitation 3. The QAP p-value for equal matrices (D =W) is always 1. If matricesW
and D are equal, i.e., D =W, then the objective function of the Quadratic Assignment Proce-

dure (QAP) simplifies to:

ObjðW;DÞ ¼
Xn

i¼1

Xn

j¼1

wijdpipj ¼
Xn

i¼1

Xn

j¼1

wijwpipj ¼
Xn

i¼1

Xn

j¼1

wijpijwijpji ð12Þ

¼
Xn

i¼1

Xn

j¼1

pijwijpjiwij ¼ traceðPWPTWÞ: ð13Þ

Moreover, to minimize this objective function, Pmust be the identity permutation, as any

other permutation would introduce additional terms to the trace and increase the objective.
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Thus, when P is the identity permutation, we obtain:

ObjðW;DÞ ¼ traceðIWITWÞ ¼ traceðW2Þ: ð14Þ

Since this objective is independent of the permutation matrix P, any permutation of the rows

and columns ofW would yield the same objective, and therefore, all permutations achieve the

same objective. Consequently, any permutation is an optimal solution in this case.

Finally, when applying a permutation test to assess the statistical significance of the solu-

tion, we compare the observed objective function with the objective functions obtained under

permutations. However, since all permutations achieve the same objective, the observed objec-

tive function is always as extreme or more extreme than the objective functions obtained

under permutations. Therefore, the p-value obtained from the permutation test is equal to 1,

indicating that the observed solution is not statistically significant.

Furthermore, if we observe the p-value p along the number of permutations k, it decreases

by p � 1

k, reflecting the fact that as the number of permutations increases, the observed solution

becomes increasingly likely, and its significance decreases.

Limitation 4. The QAP p-value for permuted matrices (D = PW) is always 1. Consider

now the effect of a row permutation on the objective function:

ObjðW 0;DÞ ¼
Xn

i¼1

Xn

j¼1

w0ijdpipj; ð15Þ

whereW0 is the matrix obtained by permuting the rows ofW according to P. Since P is a

Fig 1. Limitations of the Quadratic Assignment Procedure scheme. (a) Two nodes of the original network are permuted, while the edges’ structure

remains unchanged. (b) The adjacency matrices of the original and the modified networks are calculated. (c) The objective function is calculated using

the adjacency matrices. The optimal permutation that minimizes it is the original network. (d) For each simulation, the p-value equals 1. When all p-

values for the different simulations are aggregated, the p-value decays by 1/n.

https://doi.org/10.1371/journal.pone.0309005.g001
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permutation, the rows ofW0 are just a reordering of the rows ofW, so the sum in the objective

function is still over the same set of elements. Therefore, the value of the objective function is

the same forW andW0. Similarly, we can show that the objective function is invariant under

column permutations.

When D is a permutation ofW, this means a permutation matrix P exists, such as D =

PWPT. Now, consider the objective function of the QAP with matricesW and D = PWPT:

ObjðW;DÞ ¼ traceðWTPWðPTÞÞ: ð16Þ

Since P is a permutation matrix, PT is also a permutation matrix. Therefore, this objective

function is equivalent to the original objective function for matricesW and D.

In addition, if D is a permutation ofW, and P is the permutation matrix such that D =

PWPT, any optimal solution to the QAP with matricesW and D = PWPT corresponds to an

optimal permutation matrix P0. Since P0 represents the optimal assignment for matricesW and

D = PWPT, applying the inverse permutation P−1 (which is also a permutation matrix) to P0

will yield an optimal assignment for matricesW and D. Therefore, the optimal solution for

matricesW and D = PWPT can be obtained by applying the corresponding permutation P to

the rows and columns ofW.

As established above, the objective function Obj(W, D) is invariant under row and column

permutations ofW and D. Therefore, any permutation of the optimal assignment obtained

from the QAP yields the same objective. Consequently, all permutations achieve the same

objective, and the p-value obtained from a permutation test is always 1 when D is a permuta-

tion ofW.

Network randomization methods

While permutation tests like the Mantel test and QAP are valuable tools in network analysis,

they may not be optimal for detecting minor differences in network topologies. Alternative

network randomization methods, such as degree-constrained link shuffling or connected

degree-constrained link shuffling, offer more robust null models that can better capture subtle

variations in network structures, enhancing the accuracy and reliability of statistical inferences

in network analysis [40].

In the statistical inference realm, the term null model has conventionally been used to

describe the likelihood of an observation occurring by chance. However, this term might inac-

curately suggest the absence of relevant patterns in the system under study. Gauvin et al. [40]

propose the term reference models as a more appropriate alternative to null models. The term

reference underscores the idea that observations are not being compared to a completely ran-

dom scenario devoid of predictable patterns, but rather to a system where certain features of

interest are retained while others are randomized. In what follows, we will refer to these mod-

els as reference models.

In network analysis, the search for robust statistical inferences often depends on the efficacy

of reference models in capturing the peculiarities of network structures. The degree-con-
strained link shuffling is a widely-used technique for randomizing networks while preserving

their degree distribution, also known as Maslov-Sneppen method [41]. Its fundamental idea is

to keep node degrees while randomly reshuffling their links [42]. However, it may generate

disconnected networks, particularly in sparse networks. To overcome this limitation, [40] pre-

sented connected-degree constrained link shuffling to ensure the connectedness of the resulting

networks. These techniques are strictly equivalent for a large number of swaps. Both methods

can be considered as specific versions of the configuration model [43], which generates random

graphs based on a given degree sequence. However, these techniques are not grounded on
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Markov Chain Monte Carlo (MCMC) methods, then we cannot generate meaningful p-values

to check whether there are subtle differences between reference models and the original net-

works that occur by random chance or there are significant differences between them.

The use of MCMC algorithms with edge swap or rewiring techniques has been a prevalent

method for generating randomized networks [44]. A MCMC approach involves iteratively

swapping pairs of connections within a network until a well-randomized structure is achieved.

The process of edge swapping within MCMC schemes has been shown to produce new, quasi-

independent network samples. Specifically, double edge-swap MCMC methods have been

highlighted for their ability to uniformly sample from various graph spaces given sufficient

time [45]. When analyzing p-values, we must create multiple non-significant randomized ver-

sions of the original network, enabling subsequent comparisons. In this context, the MCMC

approach offers the advantage of producing several randomized versions, each with distinct

topological features but statistically comparable to the original network, allowing for compre-

hensive comparative analysis. While MCMC algorithms with edge rewiring techniques offer

valuable advantages for generating randomized networks, they also come with limitations,

including computational complexity, potential biases, and limited flexibility [46].

Alternative network randomization approaches, such as Exponential random graph models

(ERGMs) [47, 48], provide insights into the entire network structure significance by permut-

ing both nodes and edges, capturing node-level characteristics and the network’s underlying

structure. However, ERGMs have limitations: they are computationally intensive, require care-

ful model specification to avoid bias, are prone to overfitting due to their inherent parameters

complexity, can be complex to interpret, need adequate data for reliable estimates, and, in gen-

eral, pose challenges in model selection [49, 50].

Proposed alternatives for network randomization

Incorporating edges’ rewiring techniques in permutation tests allows for examining the signifi-

cance of network structure by altering edges while keeping nodes fixed. This expands the

scope of permutation tests and enables the assessment of the impact of edge rearrangement on

network properties. Rewiring can be considered an example of local permutation in network

analysis because it involves the local rearrangement of edges while keeping the overall node

configuration fixed. By doing so, researchers can explore alternative network configurations

[12].

Permutation tests modify the network by changing the node attributes but keeping the

edges’ properties unchanged. Therefore, nodes change their roles, however, the overall net-

work structure remains the same. As a result, node permutation does not identify similarities

in topology but explores the relation between node attributes and their network location. Con-

versely, the shuffle procedure randomly reorders the edges, leading to a completely reorga-

nized connection distribution while maintaining the node attributes. Shuffling results in nodes

keeping their initial attributes but changing their relationships, causing the dismantling of the

original core nodes. This random reorganization leads to significant information loss and

directly affects the edges’ distribution, which impacts the statistical significance tests. There-

fore, we exclude permutation and shuffle procedures as viable randomization alternatives.

To assess the statistical significance of network topologies, we must compare it to a modi-

fied version of the original structure (our reference model). However, there are different ways

to modify a network topology. Here, we compare the two proposed MCMC alternatives: ran-
dom rewiring and controlled rewiring. A comprehensive comparison of the alternatives is pre-

sented in Table 1.
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Random rewiring

The random rewiring alternative (Algorithm 1) described in [51] uses edge-swapping Markov
Chain Monte Carlomethods to modify connections by keeping the degree distribution and

loopless nodes as constraints. Random rewiring changes the edges, randomly selecting two dis-

tinct edges (vi, vj) and (vk, vl) from the network. These chosen edges are then swapped to form

either (vi, vk), (vj, vl), or (vi, vl), (vj, vk) at random. This process may introduce self-loops or

multiple edges. However, in this research, we only consider simple graphs, i.e., there are no

self-loops.

For instance, in Fig 2(a), the rewiring algorithm randomly selects edges (v5, v6) and (v1, v4),

then it swaps the edge-pair into (v1, v6) and (v4, v4), as displayed. Consequently, the network’s

degree distribution remains constant, meaning every single node keeps its number of

connections.

Rewiring modifies the network structure while keeping some topological constraints. The

rewired network preserves some statistics, such as degree distribution. Therefore, rewiring

keeps some properties of the original network, maintaining those highly connected nodes with

the same number of outgoing connections but changing their destinations. To this extent, ran-

dom rewiring allows us to analyze the change in topology without entirely breaking the exist-

ing structures, only changing link destinations.

Algorithm 1 Random rewiring
Require: Graph G = (V, E), number of rewirings n
Ensure: Rewired graph G0 = (V, E0)
for k  1 to n do . n � |G.E| where |G.E| stands for the number
of edges
ðva;vbÞ  Uð0; jG:EjÞ . Randomly choose the first edge to rewire
ðvc;vdÞ  Uð0; jG:EjÞ . Randomly choose the second edge to rewire

Table 1. Comparison between alternatives when changing the network topology.

Alternative Nodes Edges Structure

Random Rewiring Remain the

same

Randomly swapped by pairs Original core nodes are kept but reconnected to other nodes. The original structure is

strongly modified.

Controlled

Rewiring

Remain the

same

Swapped by pairs according to a

metric

Original core nodes are kept but reconnected to other nodes. The original structure is

subtly modified.

https://doi.org/10.1371/journal.pone.0309005.t001

Fig 2. Randomization alternatives scheme. In all examples, the thickness of an edge represents its betweenness centrality. (a) The random rewiring

alternative swaps the edges by randomly selected pairs while nodes remain the same. The edges betweenness centrality is still altered. (b) Finally, in the

controlled rewiring alternative, the edges to be rewired are selected according to a metric and the edge betweenness centrality is less altered.

https://doi.org/10.1371/journal.pone.0309005.g002
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if a � Uð0; 1Þ then
G.E(va, vb), G.E(vc, vd)  (va, vc), (vb, vd) . Rewire
operation

else
G.E(va, vb), G.E(vc, vd)  (va, vd), (vb, vc) . Rewire
operation

end if
end for
return G

Example. Following the example in Fig 2(a), after random rewiring, a manager will still be a
manager but connected to different employees. Although the number of connections of each
employee remains equal, their centrality within the organization considerably changes.

Controlled rewiring

We introduce a new approach called controlled rewiring (Algorithm 2) alongside the random

rewiring technique to enhance the alternatives’ comprehensiveness. In the controlled rewiring

alternative, the connections between edges are modified similarly to random rewiring, but,

instead of selecting edges randomly, we base the selection on their betweenness centrality. We

opt for edge betweenness centrality because allows us to sort edges by considering their cen-

trality, and it is not inherently limited to symmetrical networks.

Algorithm 2 Controlled rewiring
Require Graph G = (V, E), number of rewirings n, number of bins b
Ensure: Rewired graph G0 = (V, E)
E0  sort(G.E) . Sort edges by their betweenness value
B  binarize(G.E,b) . Group edges in smaller groups by their
betweeness
for bi 2 B do . Traverse resulting sorted bins
for k  1 to |bi|/2 do . |bi| stands for the number of edges
in the bin bi
ðva;vbÞ  Uð0; jbijÞ . Randomly choose the first edge to rewire
ðvc;vdÞ  Uð0; jbijÞ . Randomly choose the second edge to rewire
if a � Uð0; 1Þ then
G.E(va, vb), G.E(vc, vd)  (va, vc), (vb, vd) . Rewire

operation
else
G.E(va, vb), G.E(vc, vd)  (va, vd), (vb, vc) . Rewire

operation
end if

end for
end for
return G

Traditionally, network literature has assumed full symmetric networks when using

betweenness centrality metrics. However, some recent studies use edge betweenness centrali-

ties to identify critical edges [52], that serve as bridges or bottlenecks in the network, or to

identify community structures in social and biological networks [53], or to test the efficiency

of new topological metrics [54], regardless of whether the relationships in the network are bidi-

rectional or asymmetrical. These studies highlight that edge betweenness centrality can be uti-

lized in directed networks, considering the directionality of edges. This adaptation allows for

the analysis of the importance of edges in facilitating communication or flow within directed

networks, providing valuable insights into the structural significance of edges in asymmetrical

network models. Therefore, in scenarios where the directional relationships between nodes are

crucial, edge betweenness centrality can still offer meaningful centrality assessments in asym-

metrical networks by considering the specific characteristics of directed edges.
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Initially, we divide edges into smaller groups, and the rewiring process begins with the most

outlying group, gradually progressing toward the most central ones. Within each group, ran-

dom rewiring is applied exclusively to the edges. This approach enables precise control over

changes in the network structure, ensuring a consistent degree of distribution and a more sta-

ble centrality of the edges.

For example, in Fig 2(b), the controlled rewiring algorithm selects edges (v4, v6) and (v2, v3)

and swaps them to form (v3, v5) and (v2, v6), respectively, as depicted. Despite the slight modi-

fication in the network’s topology, the degree distribution remains unchanged, meaning that

each node maintains its number of connections. This controlled rewiring technique also

enables us to retain central edges within the network, albeit in a more gradual manner where

they are exchanged or replaced as shown below.

Example. Following the example in Fig 2(b), after controlled rewiring, connections are
swapped only between nodes of similar centrality. Therefore, a manager will still be a manager
and the company’s hierarchy is only subtly altered.

More gradual changes in average edge betweenness centrality

Here, we aim to analyze how the total absolute change in average edge betweenness centrality

is minimized in controlled rewiring compared to random rewiring. The controlled rewiring

algorithm takes a graph G = (V, E), several rewirings n, and bins b and rewires the graph,

ensuring that specific properties, such as edge betweenness centrality, are preserved as much

as possible. Since many topological metrics values are node or edge-wise, to evaluate rewiring

impact, we should analyze their corresponding distribution. Specifically, we study the changes

in the average and standard deviation of edge betweenness centrality. The average edge

betweenness is given by �BðEÞ ¼ 1

jEj

P
e2E BðeÞ. Let E be sorted such that

Bðe1Þ � Bðe2Þ � . . . � BðejEjÞ. Then, following the controlled rewiring algorithm, we divide E
into n bins: b1, b2, . . ., bn. Afterward, for each bin bi, edges within each bin are rewired.

Although the original edges in bi have similar betweenness centrality values

(Bðva; vbÞ � Bðvc; vdÞ), new resulting edges (va, vc) and (vb, vd) (or (va, vd) and (vb, vc)) may

have distinct betweenness centrality values. That is because the rewiring can create or elimi-

nate some shortest paths, thus affecting rewired edges betweenness centrality. However, we

have empirically observed that average edge betweenness centrality changes are lower after

controlled rewiring than after random rewiring. Therefore, jD�BCRðEÞj � jD�BRRðEÞj, being

D�BCRðEÞ the average betweenness variation for the controlled rewiring, and D�BRRðEÞ for the

random rewiring. Nevertheless, a single application of network rewiring does not fully explore

the solution space. In contrast, Markov Chain Monte Carlo (MCMC) methods offer a probabi-

listic framework that can significantly enhance the effectiveness of rewiring algorithms by pro-

viding robust mechanisms for sampling and exploring several solution spaces. By integrating

MCMC into the provided rewiring algorithms, researchers can explore diverse configurations

of edge rewiring while targeting specific network metrics, such as rewiring edge betweenness

centrality. Additionally, applying MCMC provides insights into the robustness and reliability

of network rewiring algorithms by observing metrics mean and standard deviation distribu-

tions over the simulations to analyze the range of possible network evolutions after controlled

or random rewiring. To this end, we design an MCMC experiment that repeats the same

experiment for 100 simulations, each making enough iterations to swap all the edges in the

network only once.

Example. In Fig 2(b), we apply controlled rewiring by swapping the most peripherical edges,
(v4, v6) and (v2, v3), displayed in orange. In this example, edge betweenness values are relatively
high for certain edges, particularly (v1, v4) and (v1, v7). These high values indicate that these
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edges are critical for maintaining the shortest paths within the network. Comparing the original
and rewired edge betweenness centrality values, we can draw the following conclusions: the origi-
nal graph has an average edge betweenness of 5.00. Note that the igraph edge betweenness func-
tion does not normalize the values of edge betweenness as other packages do. After rewiring
edges, the resulting graph exhibits an average mean edge betweenness of 4.75. Contrarily, the
rewired graph generated through random rewiring (Fig 2(a)) has a higher average edge between-
ness (5.63), indicating that the rewiring has introduced new critical edges or increased the impor-
tance of existing ones, particularly edges like (v1, v6) and (v4, v6).

To check if these differences are significant, we have executed 100 simulations using the con-
trolled and random rewiring methods and computed their corresponding p-value using the
Expanded Quadratic Assignment, explained in the next section. We depict the metric differences
in Fig 3(a), where we observe that controlled rewiring appears to make more minor changes to
the average edge betweenness. When analyzing the p-values in Fig 3(b), we observe that con-
trolled rewiring generates models that do not present significant differences compared to the orig-
inal network. Although the models generated using random rewiring are also not significant, we
detect that the p-value decreases faster when using this alternative. However, we want to stress
that in this small example, the significance of the difference is influenced by the network size.

Before testing the described alternatives in real data sets, we benchmark them against sev-

eral Power Law networks of different sizes generated at random. The primary rationale is that,

after performing controlled rewiring, the average edge betweenness centrality changes should

be more gradual than after random rewiring. To statistically validate this idea, we generate the

random networks according to the parameters of the well-known Enron Email Data set [55].

By using the function Fit from the Python powerlaw package [56, 57], we retrieve the exponen-

tial parameters of that network for in- and out-degree distribution [58, 59]. Later, with the

function Static_Power_Law of igraph, we have generated a series of random Power Law net-

works. We repeated the same process for various network sizes to check possible divergent

results caused by network size. However, all trials presented similar behaviors even though the

results may vary depending on the network density and whether it is directed or undirected.

Therefore, for brevity, we only include a few of them in Fig 4. In black, we depict the original

edge betweenness centrality, the blue line corresponds to the average edge betweenness cen-

trality for 100 simulations along different numbers of random rewirings, and finally, the

orange line pots the average edge betweenness centrality for controlled rewirings. The shad-

owed areas represent the standard deviation after 100 simulations.

Fig 3. (a) Average edge betweenness centrality of the Fig 2 network example for 100 simulations along three

controlled rewirings (orange) and three random rewirings (dark blue). Means are plotted in lines, and the standard

deviation in shadowed areas (b) p-value by performing the Expanded Quadratic Assignment Procedure of the Fig 2

network example for 100 simulations along different numbers of rewirings. Means are plotted in lines, and the

standard deviation is in shadowed areas.

https://doi.org/10.1371/journal.pone.0309005.g003
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The evolution of the average edge betweenness centrality versus the number of rewirings

illustrates two distinct behaviors: controlled rewiring induces moderate variations in average

edge betweenness centrality. In contrast, random rewiring leads to more sparse values. By

comparing both lines, it is possible to identify that the induced changes in controlled rewiring

imply a more gradual variation across the different graph configurations when we increase the

number of rewirings.

Besides, we want to highlight that the impact of graph configuration on rewiring strategies

is notable. For example, when comparing the observed metric changes in left (directed) and

right (undirected) columns in Fig 4, random rewiring, for example, often produces early

sharper increases in edges betweenness centrality for directed graphs even with few rewired

edges.

Expanding the statistical tests

The main contribution of this research is the combination of rewiring methods with the

expansion of the Quadratic Assignment Procedure (QAP) to assess the statistical significance

of network topologies. The expanded version of this statistical test integrates a new approach,

incorporating modifications to the adjacency matrix based on the previously explained meth-

ods. This expanded algorithm aims to calculate the resulting topological metrics, the optimal

QAP assignment matrix, and its respective p-values while considering the changes made to the

network structure.

Before expanding the QAP, we also expanded the Mantel test, as explained in the Appendix,

by randomly modifying the values in the adjacency matrix based on the chosen alteration

method (random or controlled rewiring). The algorithm returns the correlation coefficients,

Fig 4. Average edge betweenness centrality of different random Power Law network for 100 simulations along

different numbers of rewirings. Means are plotted in lines, and the standard deviation is in shadowed areas.

https://doi.org/10.1371/journal.pone.0309005.g004
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the p-value, and the recalculated metric measures. However, when comparing a modified net-

work to the original one, the initial correlation coefficient will always be 1, and the changed

coefficient will always be 0, as discussed in the limitations section. Therefore, the Expanded

Mantel test does not provide more exhaustive results, but further improvements can be

achieved by expanding the Quadratic Assignment Procedure (QAP).

The Expanded Quadratic Assignment Procedure (EQAP) is an algorithm that iterates s
times to find the optimal assignment matrices O, compute their corresponding p-value p, and

determine the metric measures M based on the adjacency matrix A of G. The EQAP (Algo-

rithm 3) starts by calculating the optimal assignment matrix applied to the matrix A and itself.

Then, the adjacency matrix A undergoes random changes within each iteration according to

the specified Δ method. Then, the selected M metric is computed and stored. After that, the

optimal assignment cost function is applied to the modified matrix A0 and A, determining the

optimal assignment value ok. If ok is greater than or equal to the initial objective function value

o, the counter is incremented by 1. This enables the comparison of objective function values

between the original and modified matrices. Upon completion of all iterations, the p-value is

obtained by dividing counter by n. Finally, the algorithm returns the optimal assignment

matrices O, their p-value p, and the metricsM.

Algorithm 3 Expanded Quadratic Assignment Procedure (EQAP)
Require: Adjacency matrix A, modification algorithm Δ, number of
changes n, topological metric M, number of simulations s
Ensure: Recalculated metrics M, Optimal cost objective functions O,

p-value p
o  Cost(A,A) . Compute the initial value of the cost objective
function
counter  0 . Initialize counter
M, O  [], [] . Create empty lists
for k  1 to s do . Number of simulations
A0  Δ(A, n) . Apply the number of changes
M.add(M(A0)) . Add the recalculated topological metric
ok  Cost(A,A0) . Compute the resulting cost objective function

with the modified matrix
O.add(ok) . Add the recalculated objective function
if ok � o then . Consider only simulations with a resulting cost

function greater or equal than o
counter  counter + 1

end if
end for
p counter

s . Calculate the p-value
return O, p, M

An illustrative scheme about the functioning of EQAP is depicted in Fig 5. Researchers can

explore the impact of different rewiring mechanisms on network properties, enhancing their

understanding of the underlying network structure and its significance [13], as summarized in

Table 2.

More gradual changes in statistical significance

Here, we benchmark the EQAP against some random networks before testing it with real data

sets. The main rationale is that the new statistical test should not detect any statistical signifi-

cance in network topologies after controlled rewiring. In contrast, it might be possible to detect

it after random rewiring.

Using the same synthetic networks as in the previous section, Fig 6 displays a detailed com-

parison of rewiring strategies focused on the stability of the p-value, which represents a
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probability of obtaining random results at least as extreme as the observed results, under the

assumption that the null hypothesis is true. We observe that controlled rewiring helps to main-

tain certain graph properties, leading to a more stable p-value. In contrast, random rewiring

causes significant fluctuations in graph properties, resulting in a more rapid decay of the p-

value. These decreases reflect the unpredictable nature of random changes, which correspond

to significant network property alterations.

Due to its constricted changes, controlled rewiring offers greater predictability and reli-

ability, making it easier to anticipate the effects of rewiring. This strategy is ideal for

Fig 5. Expanded Quadratic Assignment Procedure scheme. The following pipeline is repeated for several simulations and modifications: (a) The first

step is to modify the original network with the explained methods in Fig 2, i.e., random rewiring or controlled rewiring. In this scheme, we show the

controlled rewiring example. (b) The second step is to build the adjacency matrices of the original and the modified networks. We will use them to

calculate the objective function. (c) The third step is to measure the described topological metrics to assess the impact of the modifications and the

objective function for both networks. (d) Finally, we can calculate the p-value by comparing the minimum of the objective function of the modified

network to the value for the original one. All p-values for the different simulations are aggregated at last to build the results chart.

https://doi.org/10.1371/journal.pone.0309005.g005

Table 2. Comparison of the capabilities between the existing statistical test and the expanded methods.

Mantel Test QAP EQAP

Assesses similarity or dissimilarity between networks ✓ ✓ ✓

Compares networks based on structure ✓ ✓ ✓

Evaluates consistency of network metrics ✓ ✓ ✓

Examines relationships with external variables ✓ ✓ ✓

Provides robust method for testing association X ✓ ✓

Allows altering edges while keeping nodes fixed X X ✓

Generates reference models for significance assessment X X ✓

Explores impact of different rewiring mechanisms X X ✓

https://doi.org/10.1371/journal.pone.0309005.t002
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scenarios where the integrity of the network’s structure needs to be preserved, such as in ref-

erence model analysis. Conversely, random rewiring provides less predictability and reli-

ability, making it suitable for exploratory contexts where the goal is to understand the

effects of random changes or generate diverse graph configurations, such as in certain

simulations.

One may consider that the p-value could reach a significance level below 0.05 by adding

more rewirings. However, our analysis intends to demonstrate the behavior of the p-value

with a controlled amount of rewiring, ensuring that each edge is altered at most once to main-

tain the integrity of the network’s structure. Excessive rewiring, which would significantly

change the network, is beyond the scope of our current analysis.

Numerical experiments

In what follows, we bridge the gap between theory and practice by using the Enron-Email and

the UK Faculty datasets and computing the statistical significance of the modified versions and

some selected topological metrics. Previously, we tested the expanded statistical tests with a

synthetic Reference Model to empirically validate the utility of the proposed methodology.

Our implementation is coded in Python 3.10. For reproducibility, we have created an open-

source library on GitHub [60]. This library combines different functions of the Python igraph
package to assess the statistical significance of the topological descriptors introduced before.

Moreover, we added a calculation of the p-values to compare the obtained metrics to the initial

ones to complete the analysis. Finally, the library also includes functions to recreate the figures

of this article.

Fig 6. p-value by performing the Expanded Quadratic Assignment Procedure of different random Power Law

networks for 100 simulations along different numbers of rewirings. Means are plotted in lines, and the standard

deviation is in shadowed areas.

https://doi.org/10.1371/journal.pone.0309005.g006
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Datasets

The Enron-Email dataset is a collection of 520,900 emails between 184 users published by the

US Department of Justice [61]. It is a temporal record of internal communication within an

organization dealing with a dire crisis that threatens its existence. Interpersonal contact

increased and spread throughout the network during the crisis because previously isolated per-

sonnel started talking to each other, avoiding formal communication channels. Since the data-

set collected single emails, two nodes may have multiple-edge connections. For this reason, we

used function simplify from igraph to remove self-loops and multiple edges. This network con-

sists of 184 nodes and 3,010 edges.

The UK Faculty friendship network consists of 81 nodes and 817 edges, representing the

personal friendship among the faculty members of a UK university. This social network repre-

sents tie strength between individuals with directed and weighted connections. Relationships

were measured with a questionnaire, where the items formed a reliable scale [62].

Statistical significance

In Fig 7, we observe the p-values obtained by performing the Expanded Quadratic Assignment

Procedure with the different rewiring alternatives. We display the evolution of p-values for 100

simulations, along with 1,500 rewirings for each. In black, we display the 1/n curve. Despite

the permutation curve being useless to protect researchers against Type I errors, we depict it in

the graphs for ease of results’ interpretation. In blue, we show the p-values after random rewir-

ing. In orange, after controlled rewiring.

The p-values for the EQAP after 1,500 rewirings on the Enron-Email and 400 on the UK

Faculty networks are displayed in Fig 7(a) and 7(b), respectively. It is worth noting that the

number of rewirings is contingent on the number of edges within the chosen network since it

entails modifications within a specific set of edges E. Since both networks contain different

amounts of edges, we have set the corresponding number of alterations proportional to the

number of edges.

The p-value obtained from the EQAP quantifies the evidence against the null hypothesis,

which states no relationship or similarity between the matrices. The implications of rewiring,

whether random or controlled, on the EQAP p-value depend on how the rewiring procedure

affects the similarity between the matrices being compared. After random rewiring, the p-

value obtained from the EQAP quickly decreases to a significance level below 0.05. This rapid

decrease in p-value makes the random rewiring alternative sensitive when randomly switching

Fig 7. p-value by performing the Expanded Quadratic Assignment Procedure for the Enron-Email network (a), the

UK Faculty network (b) networks. For both graphs, the solid line represents the mean after 100 simulations, and the

shadowed band shows the standard deviation.

https://doi.org/10.1371/journal.pone.0309005.g007
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central edges. Again, the generated reference models do not prevent researchers from rejecting

a true null hypothesis.

On the contrary, controlled rewiring modifies the network based on edge betweenness cen-

trality. In this scenario, the p-value never reaches a significance level below 0.05. The p-value

obtained from the EQAP after applying the controlled rewiring increases or decreases depend-

ing on how the rewiring impacts the similarity between the original network and the reference

models. For the Enron-Email network, we observe a significant decrease in the first changes,

followed by a smooth increase and, later, another decrease when changes affect the most cen-

tral nodes, never reaching significant differences. For the UK Faculty network, the p-value is

very close to 1 when rewiring the more peripherical edges, whereas it halves its value when

reaching the most central ones.

These results are also consistent with the behavior observed in the topological metrics, as

we will show in Figs 8 and 9.

Topological metrics of real data

After testing our method on random synthetic networks, we repeated the analysis with the

Enron-Email and the UK Faculty networks. In Fig 8, we display the metrics of the Enron-

Email network for 100 simulations, along with 1,500 rewirings for each. We create a chart for

each metric using the two randomization alternatives. In black, we display the metric results

for the original network, corresponding to the metric for the network after permutations. In

dark blue, we show the results of the metrics after random rewiring. In orange, after controlled

rewiring. The metrics for the UK Faculty network are also presented in Fig 9. In this instance,

a total of 400 rewirings were conducted.

The analysis underscores the diverse impacts on network metrics, such as assortativity,

average closeness, and average local clustering brought by the two randomization alternatives.

Random rewiring prompt discernible shifts in metrics, with some experiencing reduction and

others augmentation.

Metrics like average betweenness and local clustering show declines due to the loss of cen-

tral nodes, consequently affecting path lengths and triangle counts. This loss instigates notable

Fig 8. Topological metrics of the Enron-Email network for 100 simulations along 1,500 controlled rewirings

(orange), 1,500 random rewirings (dark blue). Averages are plotted in lines and the standard deviation in shadowed

areas.

https://doi.org/10.1371/journal.pone.0309005.g008
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alterations in network cohesion and clustering coefficients, observed consistently in randomly

rewired networks. Negative assortativity experiences a decline, indicating an inclination

toward increased heterogeneity.

These fluctuations can disrupt information flow or community structures within the net-

work, potentially impacting resilience or functional segregation. However, the abruptness of

these changes impedes a comprehensive understanding of their implications.

One primary disadvantage of random rewiring is its potential to induce abrupt and less

controlled alterations in network topology. While it provides a means to explore variations in

network structure, this alternative lacks precision in targeting specific areas or nodes within

the network for modification. As a result, the insights derived from random rewiring might

not offer a comprehensive understanding of how particular changes impact the network’s

behavior or functionality in a targeted manner.

In contrast, the controlled rewiring presents gradual insights into metrics’ average alter-

ations. It primarily targets peripheral edges before affecting core ones, systematically influenc-

ing metrics’ average. This alternative surpasses random rewiring by inducing sustained

alterations in various metrics, notably in central nodes.

This way, controlled rewiring prevents false positives, as shown in Fig 7, and offers a finer

granularity in comprehending network changes, exceeding the effects observed through ran-

dom alternatives. Its efficacy lies in capturing subtle network modifications, particularly in

central nodes, resulting in non-significant deviations from the original network’s structure.

Discussion

As a result of the conducted experiments, our reference model analysis demonstrates that the

combination of the Expanded Quadratic Assignment Procedure (EQAP) controlled rewiring

method does not erroneously detect statistically significant relationships within random net-

works. The EQAP is a novel method for comparing networks, supported by the use of con-

trolled rewiring to ensure the validity of the statistical tests. While controlled rewiring is

indeed crucial for generating networks that are structurally similar to the original, it is not

merely an illustration of EQAP’s usefulness. Instead, controlled rewiring represents a novel

Fig 9. Topological metrics of the UK Faculty network for 100 simulations along 400 controlled rewirings

(orange), 400 random rewirings (dark blue). Averages are plotted in lines and the standard deviation in shadowed

areas.

https://doi.org/10.1371/journal.pone.0309005.g009
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randomization alternative that we need to incorporate alongside EQAP to achieve robust net-

work comparisons. This result validates the effectiveness of the proposed method in prevent-

ing false positives or Type I errors, such as incorrectly inferring network effects where none

exist (e.g., mistakenly attributing an outcome to network topology) [17, 18]. In contrast to tra-

ditional permutation methods, which often yield incorrect conclusions when comparing a net-

work to a version of itself, the methods outlined in this article are gradual. They offer reference

models that alter the original network without causing significant changes. This distinction

enhances the reliability of our approach.

The combination between EQAP and controlled rewiring, which can be understood as a

modified version of the configuration mode, emerges as a promising standard for evaluating

the statistical significance of complex real-world networks due to its accurate approach. One of

its primary strengths lies in its capacity to disentangle the contributions of individual charac-

teristics and network connections in shaping model outcomes. Delving into whether observed

outputs emanate from individual traits or the intricate web of connections among nodes offers

valuable insights into the true influencers driving network dynamics and outcomes. The texti-

tasis on highly connected nodes’ significant impact on outcomes underscores the critical role

played by network structure in shaping conclusions. By recognizing the weight of these influ-

ential nodes, the provided method prompts researchers to delve deeper into understanding

network structures and their implications for accurately interpreting outcomes. Moreover,

controlled rewiring’s ability to yield stable and convergent results within a few iterations signi-

fies its efficiency and reliability, offering researchers dependable and consistent results without

requiring extensive computational resources.

Furthermore, our approach advocates for gradual network transformations (reference

models) to monitor metric changes, textitasizing resampling strategies that capture intricate

network complexities beyond tabular data. Ultimately, the metrics used in our study offer a

more refined tool for capturing complex relationships than conventional statistical measures.

Due to this, it offers a comprehensive approach to studying network dynamics, allowing

researchers to investigate both the significance of dyadic relationships and the effects of struc-

tural changes on network properties. There are different types of hypotheses that the combina-

tion of QAP and controlled rewiring can address:

• Impact of structural changes on dyadic relationships: Researchers can use EQAP to assess

the similarity or dissimilarity between networks before and after controlled rewiring. This

allows them to test hypotheses about how specific alterations in network topology influence

the strength and significance of dyadic relationships between the two networks [63, 64].

• Identification of critical edges: Using EQAP, researchers can identify critical edges and

nodes significantly affecting network structure and dynamics. Hypotheses related to the

importance of specific edges or nodes in facilitating communication or flow within the net-

work can be tested by systematically rewiring edges and observing changes in network prop-

erties [65, 66].

• Network resilience and robustness: The integrated methodology can assess hypotheses

related to network resilience and robustness to perturbations. Researchers can investigate

how different controlled rewiring strategies impact the network’s ability to resist disruptions

or maintain functionality [21, 67].

• Emergence of structural patterns: Researchers can explore the emergence of structural pat-

terns or configurations by applying EQAP. Hypotheses about the formation of clusters, com-

munities, or motifs in response to specific changes in network topology can be tested by

analyzing similarities or dissimilarities between networks [68, 69].
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• Optimization of network structure: The EQAP enables researchers to test hypotheses related

to network optimization and efficiency. By systematically rewiring edges to optimize specific

network properties, researchers can assess how changes in network topology affect the

strength and significance of dyadic relationships and overall network performance [70, 71].

However, we must acknowledge some caution regarding edge betweenness, which is a valu-

able centrality measure in network analysis, but its interpretation in directed graphs is complex

and context-dependent. In undirected graphs, edge betweenness straightforwardly indicates

critical paths for connectivity. However, in directed graphs, the measure’s meaning varies with

the nature of the relationships, such as resource flows or transactions. High betweenness in

resource flow networks might highlight bottlenecks, while in transactional networks, it could

signify key transactional pathways. Analysts must consider these relational contexts to avoid

misinterpretation and draw accurate conclusions about network vulnerabilities and optimiza-

tion opportunities.

Conclusions

This article textitasizes the crucial role of network structure in influencing processes within it,

noting the pitfalls of overlooking its impact on drawing accurate conclusions about causes and

consequences. Using a user-friendly Python library, the article introduces the Expanded Qua-

dratic Assignment Procedure (EQAP), a novel statistical tool designed for precise test calcula-

tion and interpretation. Illustrated through real-world examples from organizational and

social networks, the methodology demonstrates efficacy in analyzing complex networks,

ensuring researchers protect against Type I errors when exploring intricate network metrics

reliant on topology complexities, such as centrality or clustering coefficients. Although the

proposed method is valid indistinctively for directed and undirected networks, further statisti-

cal developments are needed. Future steps involve extending the application of our approach

to various network types, including weighted, temporal, or multiplex networks. Additionally,

we want to incorporate percolation model simulations into the generation of synthetic net-

works to ensure their structural similarity to the original network.
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