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A B S T R A C T

In large urban areas, enhancing the personal care and quality of life for elderly individuals poses a critical
societal challenge. As the population ages and the amount of people requiring assistance grows, so does the
demand for home care services. This will inevitably put tremendous pressure on a system that has historically
struggled to provide high-quality assistance with limited resources, all while managing urgent, unforeseen
additional demands. This scenario can be framed as a resource allocation problem, wherein caregivers must
be efficiently matched with services based on availability, qualifications, and schedules. Given its scale and
complexity, traditional computational approaches have struggled to address this problem effectively, leaving
it largely unresolved. Currently, many European cities emphasize geographical and emotional proximity,
offering a model for home care services based on reduced social urban sectors. This new paradigm provides
opportunities for tackling the resource allocation problem while promoting desirable pairings between
caregivers and elderly people. This paper presents a MaxSAT-based solution in this context. Our approach
efficiently allocates services across various configurations, maximizing caregiver-user pairings’ similarity and
consistency while minimizing costs. Moreover, we show that our method solves the resource allocation problem
in a reasonable amount of time. Consequently, we can either provide an optimal allocation or highlight the
limits of the available resources relative to the service demand.
1. Introduction

The low fertility levels and the increase in life expectancy have con-
sistently transformed the shape of the EU’s age pyramid. In 2020, those
aged 65 years or older accounted for one-fifth of the EU population,
a number expected to rise to 31.3% by 2100 (Statistical Office of the
European Communities. EUROSTAT, 2021). A factor consistently asso-
ciated with aging is the increase in the number of people suffering from
chronic conditions or in a situation of dependency. Life expectancy at
birth has increased over the past decade. However, disability-free life
expectancy has not. This indicates that while people are living longer,
they are not necessarily living healthier lives, leading to an increased
need for care and support as they age (The MOPACT Coordination
Team, 2013). The total age-dependency ratio in Europe is projected to
rise from 55.5% in 2020 to 82.6% by 2100. As a result, most European
countries are already witnessing an increase in dependent people, who
will require varying levels of assistance depending on their condition
and financial stability. Hence, a key societal challenge in the upcoming
years will be ensuring personal care, attention, and quality of life for
older people (Verdugo, Arias, Gómez, & Schalock, 2010).
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This increase in demand for public care comes together with a
declared preference for older people to remain at home (European Com-
mission, 2006). Reliance on elderly housing or parks will, therefore, not
suffice to satisfy people’s health and social needs while prioritizing that
they can stay at their homes. Instead, public resources are dedicated
to promoting properly organized and managed home care services by
assessing dependency levels, allocating extended budgets, and priori-
tizing services based on individuals’ needs and preferences (Strandell,
2020). Many European cities, including Barcelona (Rodriguez-Pereira,
de Armas, Garbujo, & Ramalhinho, 2020), are promoting the so-called
‘‘distributed or virtual nursing home’’ (Fei, 2011). Inspired by the
Nordic model (Holm, Mathisen, Sæterstrand, & Brinchmann, 2017;
Kemp & Hvid, 2012), this model integrates home care within the
standard services provided by the neighborhood by structuring the
service around distributed ‘‘social urban sectors’’ managed by reduced
teams of caregivers (Krinichansky, 2019).

This decentralized approach provides many benefits for both elderly
individuals and caregivers (Bossert, Kretzberg, & Laartz, 2018; Duque,
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Castro, Sörensen, & Goos, 2015). However, issues such as efficiently
allocating specialized workers, including psychologists or physical ther-
apists, collaborating with multiple teams (Da Roit & Le Bihan, 2010;
Ottmann, Allen, & Feldman, 2009; Pavolini & Ranci, 2008), responding
to emergency requests, maximizing the fit between caregivers and older
people, or managing the inherent dynamism of the service remain
unresolved. Moreover, a primary challenge in improving home care
services lies in providing an optimal resource allocation for the complex
interplay between the growing elderly population, their diverse needs,
and the working conditions of caregivers. Caregivers face long work-
ing hours, have small salaries due to budget constraints (FeSP-UGT,
2018), and have difficulties establishing trustful relationships (Lucien,
Zwakhalen, Morenon, & Hahn, 2024). The quality of home care services
is directly related to the job conditions of those who work in this sector.
Hence, any proposal directed at improving a city’s home care services
should ensure their well-being.

This paper presents a novel solution to the home care resource
allocation problem that accommodates the unique needs and prefer-
ences of elderly individuals while concurrently enhancing the working
conditions of professionals within the home care sector. In particular,
we present an approach based on encoding the problem at hand to
MaxSAT, an effective black-box solving method for distinct combina-
torial and optimization problems. The MaxSAT formalism enables the
expression of mandatory constraints as hard clauses while modeling
an optimization function through a set of desirable but non-mandatory
constraints, known as soft clauses. The encoding process involves gen-
erating a MaxSAT formula that encapsulates the original problem,
which is then submitted to a MaxSAT solver. If the solver identifies
a solution that satisfies all hard clauses, this solution can be directly
translated into a corresponding solution for the original problem. If
not, it confirms that the original problem is unsatisfiable, meaning
that at least one hard constraint must be violated. Some examples
of successful application of MaxSAT appear in time-tabling (Bofill
et al., 2022; Bofill, Coll, Giráldez-Cru, Suy, & Villaret, 2022), schedul-
ing (Demirović, Musliu, & Winter, 2019), team formation (Manyà,
Negrete, Roig, & Soler, 2020), feature selection (Li & Manyà, 2021),
circuit design and verification (Li, Xu, Coll, Manyà, Habet, & He, 2022)
or kidney exchange (McCreesh, Prosser, Simpson, & Trimble, 2017).

Resource allocation problems have also been addressed with
MaxSAT methods in a generic form (Zhang, 2002). These problems
are computationally difficult combinatorial problems (NP-hard), and
MaxSAT has proven to be a competitive approach for solving them.
The studies most closely related to our resource allocation problem
include Bofill, Coll, Garcia et al. (2022), Bofill, Coll, Giráldez-Cru
et al. (2022), Zhang (2002). However, none fully address the specific
challenges of our problem. For example, timetabling problems do not
allow for the flexibility of choosing which agent provides a service to
a user. Similarly, the general resource allocation problem overlooks
incompatibilities between services (or tasks) that arise from being
assigned to the same user or overlapping time slots. Additionally, the
quality metrics differ, as prior work focuses primarily on the number
of unscheduled tasks, whereas our approach evaluates other factors.

In this work, we discuss a MaxSAT encoding for the resource allo-
cation problem in the city of Barcelona. We validate our approach in a
simulated environment designed in collaboration with the local home
care services company Suara Serveis, SCCL. Our results demonstrate
that by leveraging distributed social urban sectors, we can reduce
problem dimensionality and provide a closed solution at a local level
that meets user demands and safeguards the well-being of caregivers.

The remainder of this paper is organized as follows. First, Section 2
introduces the resource allocation problem in home care services by
discussing the case of Spain and provides an overview of the existing
theoretical framework for solving it. Section 3 discusses our problem
statement. Section 4 describes our proposed method and its implemen-
tation. Experimental results for our numerical experiments are reported
in Section 5, where we describe the applicability of our proposed
technique in a well-established scenario. Finally, the paper ends with
a summary of our conclusions and points out directions for further

research.

2 
2. Background

Home health and social home care services in Spain are separately
organized and function independently. Home health services are in-
cluded as part of the Primary Health Care services and are organized by
the Department of Health. In contrast, social home care, including per-
sonal and domestic care, is under the Department of Welfare (European
Observatory on Health Systems and Policies, 2013). The most impor-
tant national regulation in Social Care is set through the Dependency
Law, which recognizes moderately and highly dependent individuals
who are in a particularly vulnerable situation and require support to
carry out the basic day-to-day tasks and financial services to ensure
they are fully able to exercise their rights as citizens (European Com-
mission, 2016). General policy issues regarding this law are discussed
at the national government level, while the responsibility to implement
this policy is transferred to the regional and local authorities.

Municipalities assess and determine the level of dependency of
people protected by the Dependency Law, allocating budgets and or-
ganizing personal and domestic care. Priority is given to providing
services that cover the needs of individuals with difficulties managing
basic day-to-day tasks independently. In practice, services are provided
by a network of authorized public and private providers (Jones Lang
LaSalle (JLL), 2020; Price Waterhouse Coopers, 2010). Determining
how resources are allocated at the different levels is a complex task
of meeting the care demands of service users, with the local conditions
and the availability and circumstances of caregivers, altogether ensur-
ing a cost-effective system (Fraser, Lisa, Laing, Lai, & Punjani, 2018).
Therefore, providing quality home care requires a careful balance to
grant a personalized service tailored to the specific needs of each indi-
vidual while ensuring adequate job conditions for caregivers (Healey,
Hignett, & Gyi, 2024).

Given the impact of optimal allocation on the quality of the service,
a substantial amount of literature has focused on understanding the
decision-making process in the described context. Most papers have
studied this problem from a macro perspective. They have examined,
for example, how central authorities distribute work among local pro-
viding units (Davies et al., 2015), how funds are allocated to these
units, and how allocation patterns influence the outcome (Anderson,
Hsieh, & Su, 1998). On a more micro level, there has been consider-
able debate as to how personal budgets are determined in terms of
individuals’ eligibility for social care (Challis, Xie, Hughes, & Clark-
son, 2016), or what the spending behavior of local authorities is on
individual cases in different European countries (Asthana, 2012; de
Andres-Pizarro, 2004; Rogero-Garcia, 2009). However, no solution has
completely managed to match supply and demand optimally. This is
partly due to the size of the resulting problem and the large number of
constraints. The allocation problem has traditionally been formulated
from the city or country perspective. A matter that has received less
attention is understanding the mechanisms for allocating resources in
smaller, controlled environments, such as social urban sectors (Fraser,
Estabrooks, Allena, & VickiStranga, 2009).

2.1. Resource allocation in distributed home care services

In recent years, several European cities (Rodriguez-Pereira et al.,
2020), have started to promote a new model for delivering home
care services based on the notion of a ‘‘distributed or virtual nursing
home’’ (Fei, 2011). Here, the home of a dependent elderly receives
all the services of a room in a nursing center, while the neighborhood
provides all the standard services that a residential care home would
otherwise offer. Tasks are distributed among so-called ‘‘social urban
sectors’’ (Krinichansky, 2019), each managed by a team of caregivers
who establish a close relationship with the people they attend.

In this context, home care case managers (CMs) in each urban
sector are responsible for allocating available resources and scheduling

tasks weekly. Here, ‘allocation’ specifically refers to the process of
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matching human resources – caregivers – with the needs of the elderly
people. This form of resource allocation differs from traditional budget
allocation, focusing instead on the assignment of personnel rather than
financial resources. CMs in social urban sectors work under a fixed
budget, manage a regular team of caregivers, and provide service to
a stable population of older adults. CMs’ decisions shape the system’s
structure and directly affect the quality of the service provided to these
individuals and the work pressure on caregivers.

This model has many advantages for elderly individuals, allowing
them to remain in the comfort of their homes, sustain social con-
nections, and enjoy a more serene lifestyle (Duque et al., 2015). It
also has several advantages for caregivers, who benefit from a more
stable work environment and the opportunity to self-organize daily
tasks within small, agile teams focused on a controlled group of elderly
residents (Bossert et al., 2018). However, this system still displays
allocation problems for specialized workers, such as psychologists or
physical therapists, who collaborate with several teams simultaneously.
This can inadvertently increase stress for these professionals, who must
commute to different places to perform their tasks. Furthermore, if not
designed with sufficient flexibility, the system may introduce inefficien-
cies by narrowly focusing on the reality of individual urban sectors,
potentially overlooking broader considerations. This could result in
variations in service quality and working conditions for caregivers
across diverse areas in the same city. Hence, the need to address the
issue of optimal resource allocation persists.

The allocation problem in this context can be reduced to a user-
caregiver matching problem, where both collectives’ needs must be
considered to reach an optimal solution. In other words, we can treat
this problem as deciding which caregivers visit which user at what time
to provide which service, under a given set of constraints, to optimize
some defined criteria (Di Mascolo, laure Espinouse, & Hajri, 2017).
This formulation effectively discards issues related to commuting and
transportation. The allocation problem thus defined can be studied at
different time scales: we can distinguish between short-term (daily),
midterm (weekly), and long-term (monthly) allocation problems. In
this work, we are interested in the weekly allocation of resources
because it is the time frame used by CMs to organize the caregiver’s
working schedule. This problem has been reviewed in the literature
under different lenses (Fikar & Hirsch, 2017; Trautsamwieser & Hirsch,
2010), including graph theory (Martinez, Espinouse, & Di Mascolo,
2024). Most previous work has tackled the problem from an operations
research approach by studying the situation as a vehicle routing prob-
lem with time windows (Cheng & Rich, 1998). This approach overlooks
several real-world aspects, including patient preferences and synchro-
nization constraints. Consequently, aligning home care resources with
specific needs remains a substantial challenge (Da Roit & Le Bihan,
2010; Ottmann et al., 2009; Pavolini & Ranci, 2008).

In what follows, we study the resource allocation problem in a con-
crete example: the city of Barcelona. To describe the nuances of this sce-
nario, we have consulted Suara Serveis, SCCL, a private home care com-
pany that offers service in different organizational areas throughout the
city. Suara plays a crucial role in the delivery of the ‘Servei d’Atenció
Domiciliària’ (Home Care Service) as part of the city’s ‘Vilaveïna’ pro-
gram. Suara’s extensive experience and large operational scale within
the region made it an essential partner in this research, providing valu-
able insights and practical data that informed our resource allocation
models.

3. Problem statement

Barcelona aims to establish itself as a model for person-centered
care, as outlined in the Barcelona 2021–2025 Health Plan (Baltaxe
et al., 2019; Rodriguez-Pereira et al., 2020). This plan redefines the
provision of home care services, presenting a detailed description of
the proposed care model (Sanitary Consortium of Barcelona, 2021a).
The 2021–2025 Health Plan is, in turn, implemented through the
 i

3 
Table 1
Users Features.

Feature Example value Feature Example value

ID 4 Gender Female
Age 86 Religion Catholic
Languages Spanish Race Latin-American
Location 41◦25’27‘‘N 2◦08’14’’E

Table 2
Service Features.
Feature Example value

ID 37
User 4
Type Physio
Time Slot 8:00–11:00

‘‘Programa d’Atenció Domiciliària’’ (PADES) (Sanitary Consortium of
Barcelona, 2021b) program for home health care and personal as-
sistance. PADES allocates resources across diverse organizational ar-
eas or social sectors within the urban landscape and establishes the
governance framework among the system’s various local agents and
participating companies. Based on insights gathered through close col-
laboration with one of such companies, we here present a formulation
of the resource allocation problem for the city of Barcelona.

We conceptualize caregivers as a network of agents collaborat-
ing to address a global problem that surpasses individual capabili-
ties (Cruz-Cunha, Miranda, & Goncalves, 2013). The optimization of
agent allocations is inherently interdependent, necessitating collabo-
rative efforts among them. We model this network in terms of the
following elements:

Users. In home care programs, users are represented by the set of
features shown in Table 1. These features include variables such as
age, gender, languages spoken, religion, or race that characterize each
individual and which can later be used to estimate the similarity
between users and caregivers.

Inclusion of the race attribute is guided by expert recommendations
to enhance cultural and linguistic compatibility between caregivers and
users, which is crucial for effective and sensitive care delivery. This
consideration aims to respect the diverse cultural backgrounds of the
users and improve their comfort and care quality. As discussed below,
this attribute is used exclusively to ensure that the matching process
respects and supports the cultural and linguistic needs of the users.

Services. A service corresponds to a user’s need at a given time. For
example, someone might require assistance with cooking between 6 pm
and 8 pm. Analogously to users, services are also represented by a set
of characterizing features. In particular, a service is described by the
elements in Table 2. Note that a given user may require different types
of services during the week. Hence, the relationship between users and
services is not one-to-one.

Agents. Finally, agents are characterized by the features included in
Table 3. Agents have a work schedule, represented by their Availability,
uring which they can be assigned several services one at a time. These
ervices may require specific qualifications, including Basic, Nurse, CPR,
Physio or Doctor. An optimal resource allocation solution should keep
rack of worked hours to minimize overtime.

The three elements above define the constituents of the home care
ystem and the resource allocation problem. To fully characterize this
roblem, however, we must understand its constraints better. Findings
rom discussions with teams of caregivers at the chosen company indi-
ate that the perceived ‘‘favorability’’ of the system depends primarily
n three factors: Similarity, Stability , and Cost.

imilarity. Considering the preferences of agents and users is crucial
hen developing efficient home care resource allocation systems. Sim-

larity refers to the resemblance in profiles between caregivers and
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Table 3
Agent Features.

Feature Example value Feature Example value

ID 2 Qualifications Physio, CPR
Age 51 Religion Atheist
Location 41◦27’41‘‘N 2◦09’24’’E Languages Spanish, Catalan
Gender Male Availability 13:00–20:00
Race Caucasian

seniors, encompassing gender, shared languages, and age proximity.
A match between a caregiver and an older adult with comparable
attributes is considered more advantageous than one with divergent
characteristics.

Stability. The continuity of care, which consists of always assigning
he same caregiver to a given user or limiting the number of caregivers
ssigned to a user, significantly contributes to service quality. Stability
s therefore a crucial factor. When an elderly individual consistently
eceives care from the same caregiver, it allows them to develop a
ersonal relationship. Hence, situations where the same caregiver-
lderly pairings are frequent, are viewed more favorably than those
here older people are regularly assigned to new caregivers.

ost. Finally, in any business activity, Cost plays an important role.
he primary cost in this scenario is attributed to caregivers’ payroll.
he payment structure adheres to an eight-hour workday, ensuring
aregivers receive compensation for a full eight hours, even if they
ork fewer hours. Conversely, overtime is acknowledged and rewarded

f caregivers exceed the standard working hours. Aligning caregivers’
eekly schedules to mitigate costs associated with compensating for
dditional hours proves to be a challenging task.

Based on these findings, we formulate the resource allocation prob-
em as follows:

efinition 1. Given a set of users, services, and agents, the Home Care
ptimal Resource Allocation Problem (HCORAP) consists in providing
n assignment of agents to services such that all services are attended,
tability is prioritized through consistent caregiver-user pairings, simi-
arity is promoted by accommodating the preferences of caregivers and
sers, and costs are minimized by mitigating caregiver extra working
ours.

In what follows, we present a scalable solution to the HCORAP
ased on a MaxSAT encoding approach. We address this problem
eekly, aligning with the standard timeframe when CMs allocate qual-

fied caregivers to the required services. We show that by focusing on
he weekly perspective, we can reduce the size and complexity of the
roblem, making it more manageable for exact solvers to handle within
reasonable amount of time.

. MaxSAT encoding

Given a set of Boolean propositional variables (i.e. they can take
alue true or false): a literal is a variable 𝑥 or its negation ¬𝑥; a
lause is a disjunction of literals, of the form 𝑙1 ∨ ,… , ∨ 𝑙𝑛; a Boolean
ormula in Conjunctive Normal Form (Boolean formula from now on)
s a conjunction of clauses (also denoted as a set of clauses). Given
n assignment of truth values to variables: a literal 𝑥 is satisfied if

and only if variable 𝑥 takes value true, while a literal ¬𝑥 is satisfied
if an only if variable 𝑥 takes value false; a clause is satisfied if at least
one of its literals is satisfied; a Boolean formula is satisfied if all its
clauses are satisfied. The Boolean Satisfiability problem (SAT) is the
problem of finding whether there exists an assignment that satisfies a
given Boolean formula.

MaxSAT, short for Maximum Satisfiability, is the optimization ver-
sion of SAT. There exist many variants of MaxSAT. The most basic one
consists of finding an assignment that satisfies the maximum number of
4 
clauses in a given Boolean formula. In this paper, though, we consider
the Weighted Partial MaxSAT problem (Kügel, 2010), to which we will
refer just as MaxSAT for simplicity. In the weighted partial setting, a
formula consists of a set of hard clauses, and a multi-set of weighted soft
clauses, where the weights are positive integers. The problem consists
of finding a truth assignment to all variables such that all hard clauses
are satisfied, and the sum of weights of unsatisfied soft clauses is
minimized. Further information about other MaxSAT variants, solving
techniques, and applications can be found in Li and Manyà (2021).

The resource allocation problem often involves combinatorial op-
timization, where factors such as user needs, caregiver qualifications,
and service requirements must be considered simultaneously. MaxSAT
is well-suited for handling such combinatorial optimization problems
efficiently. In this case, we aim to find an optimal resource allocation
based on similarity, stability, and cost, as described above. MaxSAT
allows encoding these criteria as constraints and goals in the opti-
mization problem, enabling the search for solutions that maximize the
satisfaction of these criteria in a given objective function.

When formulating the MaxSAT problem for the case of Barcelona,
we divide the municipal home care service system into smaller territo-
rial areas called ‘‘Àrees Bàsiques de Salut’’ (ABS). This implies that each
individual problem refers to a manageable number of users, services,
and agents. MaxSAT solvers can handle such moderate instances of
combinatorial optimization problems within a reasonable time. Hence,
this paper shows how MaxSAT can solve the HCORAP for one particular
ABS. This method can later be expanded to other units and, thus, solve
the optimization on a city level without requiring significant compu-
tational efforts. Moreover, as the requirements change, the MaxSAT
encoding can be easily modified or extended to accommodate new
constraints or objectives without requiring significant changes to the
solution approach.

We start by identifying the parameters of the problem. Next, we
introduce the main variables of the encoding and the auxiliary vari-
ables with their corresponding definition constraints, followed by the
constraints of the HCORAP. Finally, we define the objective function
and provide the weighted soft constraints that define it. We highlight
that the size of our encoding is polynomial in the size of the HCORAP
instance, since most constraints introduce a constant number of vari-
ables and linear-size clauses, with the only exceptions of atMostOne and
cardinality constraints, whose size is also polynomial as stated when
they are introduced.

4.1. Parameters

Table 4 presents an overview of our resource allocation problem’s
critical parameters. These parameters dictate the assignment of agents
to services and encapsulate fundamental aspects such as the number
of users (𝑈), the total amount of services (𝑆), and the number of
agents tasked with delivering these services (𝐴). In addition, temporal
constraints are represented by the total time slots in a week (𝑇𝑆) and
the corresponding matrices indicating agent (𝑇𝑆𝐴) and service (𝑇𝑆𝑆)
availability across these time slots. The table further elaborates on
parameters essential for comprehensively modeling the resource allo-
cation problem, ensuring stability (𝑆𝐸𝑄), suitability of agent-service
assignments (𝑟), or penalization due to extra working hours (𝑃 ). Finally,
we consider parameters dedicated to the total working hours (𝐻𝑁) and
the allowed number of extra hours (𝐻𝐸) per agent.

4.2. Variables and definition constraints

All variables in a MaxSAT formulation are Boolean, i.e., they can
have a value of 0 or 1 (false or true). Therefore, they represent decisions
to be made in our optimization problem. The solution to our problem
can be interpreted from an assignment to the main variables of our
formulation:
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Table 4
Parameters of the problem.

Parameter Definition

𝑈 Number of users.
𝑆 Total amount of services.
𝑆𝑈 List of services of users. We denote by 𝑆𝑈 (𝑖) the set of services of

user 𝑖 ∈ 1,… ,𝑈 .
𝐴 Number of agents.
𝑇𝑆 Total time slots in a week.
𝑇𝑆𝐴 𝐴 × 𝑇𝑆 matrix of Booleans ({0, 1}), where 𝑇𝑆𝐴(𝑎, ℎ)=1 iff agent 𝑎

can work at time slot ℎ.
𝑇𝑆𝑆 𝑆 × 𝑇𝑆 matrix of Booleans, where 𝑇𝑆𝑆(𝑠, ℎ)=1 iff service 𝑠 can be

done at time slot ℎ.
𝑆𝐸𝑄 List of sets of services that ideally should be performed by the

same agent (for instance, all the meals of a particular user should
ideally be done by the same agent). This list of sets will allow us
to deal with the consistency of the solution.

𝑟 𝐴 × 𝑆 matrix of values in {0, 1, 2, 3, 4}, where 𝑟(𝑎, 𝑠) is the reward
of assigning agent 𝑎 to service 𝑠. Reward 0 means that the agent
cannot do that service. This reward measure accounts for the
similarity of the solution.

𝑃 Integer value stating the penalization of each extra hour. This
penalization measure accounts for the cost of the solution.

𝐻𝑁 List of working hours per agent. We denote by 𝐻𝑁(𝑎) the number
of working hours of the agent 𝑎 ∈ 1,… ,𝐴.

𝐻𝐸 List of allowed extra working hours per agent. We denote by
𝐻𝐸(𝑎) the number of allowed extra working hours of the agent
𝑎 ∈ 1,… ,𝐴.

• Main variables 𝑥𝑎,𝑠,ℎ represent whether an agent 𝑎 is assigned to
a service 𝑠 at time-slot ℎ:

𝑥𝑎,𝑠,ℎ ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆},∀ℎ ∈ {1..𝑇 𝑆} (1)

We introduce auxiliary variables to simplify constraints and improve
he efficiency of our optimization model. These variables facilitate the
epresentation of complex logical conditions using Boolean expressions.
elow, we define and describe the auxiliary variables utilized in our
odel, together with the constraints that enforce the consistency of

heir values with those of other variables in the model:

• Assignment variables (𝑦𝑎,𝑠) state whether an agent 𝑎 is assigned
to service 𝑠, without any information about the time-slot:

𝑦𝑎,𝑠 ↔
⋁

ℎ∈{1..𝑇 𝑆}
𝑥𝑎,𝑠,ℎ ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆} (2)

• Service Count variables (𝑤𝑎,𝑖) state whether agent 𝑎 is assigned
at least 𝑖 services.

𝑤𝑎,𝑖 ↔
∑

𝑠∈{1..𝑆}
𝑦𝑎,𝑠 ≥ 𝑖 ∀𝑎 ∈ {1..𝐴},∀𝑖 ∈ {1..𝐻𝑁(𝑎)+𝐻𝐸(𝑎)+1}

(3)

• Service Time-Slot variables (𝑠𝑢𝑠,ℎ) state whether a service 𝑠 is
done at time slot ℎ:

𝑠𝑢𝑠,ℎ ↔
⋁

𝑎∈{1..𝐴}
𝑥𝑎,𝑠,ℎ ∀𝑠 ∈ {1..𝑆},∀ℎ ∈ {1..𝑇 𝑆} (4)

• Sequence Assignment variables (𝑠𝑠𝑎,𝑞) state whether agent 𝑎 is
assigned to some service of a specific sequence of services 𝑞:

𝑠𝑠𝑎,𝑞 ↔
⋁

𝑠∈𝑆𝐸𝑄(𝑞)
𝑦𝑎,𝑠 ∀𝑎 ∈ {1..𝐴},∀𝑞 ∈ {1..|𝑆𝐸𝑄|} (5)

• Distinct Agent Count variables (𝑐𝑞,𝑖) state whether the services
of sequence 𝑞 are done by at least 𝑖 distinct agents:

𝑐𝑞,𝑖 ↔
∑

𝑎∈{1..𝐴}
𝑠𝑠𝑎,𝑞 ≥ 𝑖 ∀𝑞 ∈ {1..|𝑆𝐸𝑄|},∀𝑖 ∈ {1..|𝑆𝐸𝑄(𝑞)|} (6)

In formulating Constraints (3) and (5), we assume that all the sum-
ands refer to variables we have defined: there are more services than
5 
otal working hours per agent 𝑎 (𝑆 > 𝐻𝑁(𝑎)+𝐻𝐸(𝑎), (3)), and there
re equal or more agents that services per sequence 𝑞 (𝐴 ≥ |𝑆𝐸𝑄(𝑞)|,
5)). Cases not satisfying these assumptions imply that variables 𝑤𝑎,𝑖
nd 𝑐𝑞,𝑖 are trivially false.

All the previous Constraints but (3) and (5) are trivially convertible
o a set of clauses (disjunctions), which is the language that MaxSAT
olvers admit. On the other hand, Constraints (3) and (5) reify a vari-
ble with a cardinality constraint, which we translate to clauses using
orting network encoding (Asín, Nieuwenhuis, Oliveras, & Rodríguez-
arbonell, 2011). Broadly speaking, this encoding takes a set of 𝑛

variables {𝑥1,…, 𝑥𝑛} as input and introduces a corresponding set of 𝑛
new variables {𝑦1,…, 𝑦𝑛}. Hard clauses are then added to ensure that
𝑦𝑖 is true if and only if the number of true variables in {𝑥1,…, 𝑥𝑛} is at
east 𝑖. This encoding process results in the introduction of 𝑂(𝑛𝑙𝑜𝑔2(𝑛))
ariables and clauses.

.3. Hard constraints

To ensure the correct allocation of resources in our optimization
odel, we impose a set of hard constraints that govern the assignment

f agents to services within specified time slots. These constraints are
ssential for maintaining the integrity of the allocation process and
nsuring compliance with operational requirements. Here, we outline
he critical hard constraints utilized in our model:

• Service Assignment constraints ensure all services must be per-
formed exactly by one agent and at one-time slot. The conjunction
of two constraints expresses this:

– All services must be performed by at most one agent and at
most at one-time slot:

𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒({𝑥𝑎,𝑠,ℎ|∀𝑎 ∈ {1..𝐴},∀ℎ ∈ {1..𝑇 𝑆}}) ∀𝑠 ∈ {1..𝑆}

(7)

– All services must be performed at least at one-time slot:
⋁

ℎ∈{1..𝑇 𝑆}
𝑠𝑢𝑠,ℎ ∀𝑠 ∈ {1..𝑆} (8)

• Agent and Service Simultaneity constraint guarantees agents
cannot do multiple services simultaneously. In other words, at
most one service is done by an agent and time-slot:

𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒({𝑥𝑎,𝑠,ℎ|𝑠 ∈ {1..𝑆}}) ∀𝑎 ∈ {1..𝐴},∀ℎ ∈ {1..𝑇 𝑆} (9)

• User Service Simultaneity constraint restricts a user from being
assisted in multiple services simultaneously. In other words, at
most one service per user and time slot:

𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒({𝑠𝑢𝑠,ℎ|𝑠 ∈ {1..𝑆𝑈 (𝑖)}}) ∀𝑖 ∈ {1..𝑈},∀ℎ ∈ {1..𝑇 𝑆}

(10)

• Agent Availability constraint establishes that agents only per-
form services at their allowed time slots:

¬𝑥𝑎,𝑠,ℎ ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆},∀ℎ ∈ {1..𝑇 𝑆} 𝑠.𝑡. 𝑇𝑆𝐴(𝑎, ℎ)=0

(11)

• Service Time Slot Availability constraint states that services
can only be done at allowed time slots:

¬𝑥𝑎,𝑠,ℎ ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆},∀ℎ ∈ {1..𝑇 𝑆} 𝑠.𝑡. 𝑇𝑆𝑆(𝑠, ℎ)=0

(12)

• Agent Qualification constraint implies that agents cannot do
services for which they are not qualified:

¬𝑥 ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆},∀ℎ ∈ {1..𝑇 𝑆} 𝑠.𝑡. 𝑟(𝑎, 𝑠)=0 (13)
𝑎,𝑠,ℎ
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• Agent Working Hour constraint indicates that agents cannot
work more than their maximum working hours, including extra
hours:

¬𝑤𝑎,𝑚 ∀𝑎 ∈ {1..𝐴},where 𝑚=𝐻𝑁(𝑎)+𝐻𝐸(𝑎)+1 (14)

The atMostOne Constraints (7), (9) and (10), meaning that at most
one of the input variables can be true, are translated to a set of binary
clauses of the form (¬𝑥 ∨ ¬𝑦) for all pairs of different input variables
𝑥, 𝑦. This method introduces 𝑂(𝑛2) clauses, being 𝑛 the size (number
of variables) on the atMostOne constraint. There also exist ways of
translating atMostOne constraints with a linear number of clauses but
at the expense of introducing fresh variables. Since we have small
enough atMostOne constraints in our instances, the quadratic encoding
is preferable for its simplicity.

4.4. Soft constraints

Soft constraints are crucial in formulating the objective function
within our optimization framework. The objective function aims to
strike a balance between maximizing the similarity and stability of
resource allocation assignments while minimizing the associated costs.
The objective function that our formulation maximizes, as expressed
in Eq. (15), consists of three main components:

similarity + stability - cost (15)

where:

similarity:
∑

𝑎∈{1..𝐴},𝑠∈{1..𝑆}
𝑟(𝑎, 𝑠) ⋅ 𝑦𝑎,𝑠 (16)

stability:
∑

𝑞∈{1..|𝑆𝐸𝑄|},𝑖∈{1..|𝑆𝐸𝑄(𝑞)|}
(1 − 𝑐(𝑞, 𝑖)) (17)

cost:
∑

𝑎 ∈ {1..𝐴},
𝑖 ∈ {𝐻𝑁(𝑎)+1..𝐻𝐸(𝑎)}

𝑃 ⋅𝑤𝑎,𝑖 (18)

In addition to hard constraints, which must be all satisfied, MaxSAT
also allows the definition of weighted soft constraints as ⟨𝑐, 𝑤⟩, where
the weight (positive integer) 𝑤 is the reward of satisfying clause 𝑐. We
use these soft clauses to express optimization problems. MaxSAT aims
to maximize the weight of the satisfied soft constraints while satisfying
all hard ones.

• Similarity constraint, represented by Eq. (16), quantifies the
extent to which the allocated resources align with the preferences
and qualifications of agents for each service. To incorporate this
aspect into the optimization process, we utilize weighted soft
constraints in Constraint (19), denoted as ⟨𝑦𝑎,𝑠, 𝑟(𝑎, 𝑠)⟩, where the
weight 𝑟(𝑎, 𝑠) reflects the reward associated with satisfying the
constraint that agent 𝑎 is assigned to service 𝑠.

⟨𝑦𝑎,𝑠, 𝑟(𝑎, 𝑠)⟩ ∀𝑎 ∈ {1..𝐴},∀𝑠 ∈ {1..𝑆} (19)

• Stability constraint is also accounted by the objective function
as outlined in Eq. (17). This term adds one to the optimization
function each time an agent is not participating in a sequence of
services. To enforce stability, we introduce Constraint (20) of the
form ⟨¬𝑐𝑞,𝑖, 1⟩.

⟨¬𝑐𝑞,𝑖, 1⟩ ∀𝑞 ∈ {1..|𝑆𝐸𝑄|},∀𝑖 ∈ {1..|𝑆𝐸𝑄(𝑞)|} (20)

• Cost constraint captures the monetary expenses incurred due
to resource allocation decisions, particularly concerning extra
working hours, as depicted in Eq. (18). This term subtracts the
penalization cost each time an agent works an additional hour.
However, MaxSAT does not allow soft clauses with negative
 a
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weights. To handle this aspect, we first transform the cost term
to the equivalent term in Eq. (21).

∑

𝑎 ∈ {1..𝐴},
𝑖 ∈ {𝐻𝑁(𝑎)+1..𝐻𝐸(𝑎)}

𝑃 −
∑

𝑎 ∈ {1..𝐴},
𝑖 ∈ {𝐻𝑁(𝑎)+1..𝐻𝐸(𝑎)}

𝑃 ⋅ (1 −𝑤𝑎,𝑖)

(21)

The left-hand side term of Eq. (21) can be precomputed since it
does not include any MaxSAT variable and represents the cost
when all agents work all their allowed extra hours. The cost of
an extra hour is canceled by the right-hand side term each time
an agent is not working an extra hour. This Constraint (22) is
expressed as ⟨¬𝑤𝑎,𝑖, 𝑃 ⟩, where 𝑃 becomes the reward associated
with each extra hour not worked by an agent within their allowed
range.

⟨¬𝑤𝑎,𝑖, 𝑃 ⟩ ∀𝑎 ∈ {1..𝐴},∀𝑖 ∈ {𝐻𝑁(𝑎)+1..𝐻𝐸(𝑎)} (22)

5. Experiments

This section presents our experiments to validate our methodology
and analyze its performance.1

5.1. Instance generation

As previously discussed, the setting described here was designed
with a home care services company in the Barcelona metropolitan area.
Discussions with this company to understand the real-life situation
led to the design of the following instance generation process, which
ensures the generation of realistic instances for the HCORAP, consid-
ering various factors such as user needs, agent qualifications, service
availability, and geographical constraints.

1. Configuration Parameters: The instance generation process
takes three arguments from the command line: the number of
users (𝑈), the number of agents (𝐴), and a parameter (𝑉 ), such
that 𝑆 = 𝑈×𝑉 , where, 𝑆 represents the total number of services.

2. Random generation: Given a configuration (𝐴,𝑈, 𝑉 ), the fol-
lowing data is generated at random:

(a) Agent Generation: Information for agents is generated,
including their age, qualifications, location, region, gen-
der, languages spoken, and race. The availability of agents
over time slots is also determined randomly.

(b) User Generation: Information for users is generated, in-
cluding age, location, gender, languages spoken, and race.

(c) Service Generation: Services are created with attributes
such as the user assigned to, the type of service, and
the time slots during which they are available. We forbid
having services that can only be done in one time slot to
avoid generating trivially unsatisfiable instances.

3. Similarity Score Computation: A similarity score is computed
for each combination of agent, user, and service based on various
factors such as qualifications, age difference, gender, language
proficiency, race, and distance between agent and user locations.

4. Quantile Calculation: The similarity scores are converted into
quantiles (𝑟) to categorize them into four levels (1 to 4). Recall
that, in case an agent 𝑎 is not qualified to provide a service 𝑠,
𝑟(𝑎, 𝑠) = 0.

1 The implementation and the set of instances used in this experiments are
vailable at https://github.com/jordicollcaballero/HCORAP.
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Table 5
For each configuration (𝐴,𝑈, 𝑉 ): number of optimally solved instances (or unsatisfiability certified); average solving time in seconds;
number of unsatisfiable instances.
𝑆 = 𝑈 × 𝑉 A = 10 A = 15 A = 20 A = 25

#𝑐 time #𝑢𝑛 #𝑐 time #𝑢𝑛 #𝑐 time #𝑢𝑛 #𝑐 time #𝑢𝑛

120 = 30 × 4 50 11.51 24 50 31.86 5 50 51.91 0 50 61.11 0
150 = 30 × 5 49 25.23 29 50 77.47 8 50 83.58 1 50 93.96 1
160 = 40 × 4 46 40.45 29 50 109.40 11 50 103.69 1 50 114.66 0
200 = 40 × 5 44 77.17 33 48 134.97 13 48 158.34 3 50 157.71 1
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5. Output Generation: The instance information is generated in
a specific format, including the number of users (𝑈), services
(𝑆), agents (𝐴), time slots (𝑇𝑆), lists of services per user (𝑆𝑈),
sequences of services per user (𝑆𝐸𝑄), availability of agents per
time slot (𝑇𝑆𝐴), availability of services per time slot (𝑇𝑆𝑆), sim-
ilarity scores (𝑟), penalization parameter (𝑃 ), maximum working
hours per agent (𝐻𝑁), and allowed extra working hours per
agent (𝐻𝐸). This is the input data of the MaxSAT encoding, as
defined in Section 4.1.

.2. Experimental setup

We systematically varied the number of agents (𝐴), the number of
sers (𝑈), and the number of services per user (𝑉 ), to evaluate the
erformance of our resource allocation algorithm. Each configuration
epresents a unique combination of 𝐴 and 𝑆 = 𝑈 × 𝑉 , with 𝐴 taking

values of 10, 15, 20, and 25, 𝑈 taking values of 30 and 40, and 𝑉
taking values of 4 and 5. For each setting, we generated 50 instances
at random. Here we report average metrics over each configuration.

All experiments were run on a cluster of compute nodes equipped
with Intel Xeon E-2234 CPU @ 3.60 GHz processors, where each
execution was given a time limit of 1 h and 16 GB of memory.
We ran preliminary experiments using different versions of the top
solvers participating in the weighted exact track of MaxSAT Evaluation
2023 (Berg, Jarvisalo, Martins, & Niskanen, 2023), namely WMax-
CDCL (Li, Xu, Coll, Manyà, Habet, & He, 2021; Li et al., 2022) and
EvalMaxSAT (Avellaneda, 2023). EvalMaxSAT is a SAT-based and core-
based MaxSAT solver, i.e. it implements an algorithm that achieves
optimization by querying a SAT solver as an oracle multiple times to
identify unsatisfiable subsets of soft clauses, which are relaxed after
each iteration. On the other hand, WMaxCDCL achieves optimization
by a novel approach that combines a Branch-and-Bound procedure to
early prune the search tree with clause learning. The solver with the
best performance in our setting turned out to be EvalMaxSAT, thus we
use this solver in our experiments.

5.3. Efficiency evaluation

By varying the three parameters 𝐴, 𝑈 , and 𝑉 , we can assess the time
required by the system to give an answer under various conditions and
understand how changes in the number of agents, users, and service-
to-user ratios impact the efficiency of our system and the feasibility of
the problem.

The obtained results are displayed in Table 5. For each configura-
tion, this table reports the number of instances where the allocation
problem was optimally solved or unsatisfiability was certified (#𝑐), the
average solving time in seconds over the certified instances (𝑡𝑖𝑚𝑒),
and the number of instances that were found to be unsatisfiable (#𝑢𝑛).
As depicted, varying the number of agents (A) from 10 to 25 across
different configurations leads to changes in the number of optimally
solved instances, solving times, and unsatisfiable instances. Notably, as
the number of agents increases, there is a trend of increased solving
time with a decrease in the number of unsatisfiable instances.

The number of optimally solved instances or certified unsatisfi-
ability indicates the allocation system’s effectiveness under different

configurations. It reflects the system’s ability to allocate resources to
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eet all service needs within the specified constraints. Moreover, the
axSAT solver finds some solution for all feasible instances, even for

hose whose optimal was not certified within the given time limit.
The average solving time in seconds represents the computational

fficiency of the allocation system. It indicates how quickly the system
an generate optimal solutions or determine unsatisfiability for each
onfiguration. Generally, shorter solving times are desirable, implying
uicker decision-making and allocation processes which ease the task
f CMs.

The number of instances found to be unsatisfiable highlights the
hallenges encountered by the allocation system in meeting all service
eeds within the constraints imposed by the configuration. Higher num-
ers of unsatisfiable instances indicate limitations in resource availabil-
ty or conflicts between service requirements and agent capabilities.
pecific trends can be observed across different configurations of the
llocation system. For example, increasing the number of agents (𝐴)
enerally leads to more optimally solved instances. Similarly, varia-
ions in the ratio of services to users (𝑉 ) may impact the system’s
erformance. Configurations with higher ratios may lead to more unsat-
sfiable instances due to increased service demand relative to available
esources.

Fig. 1 illustrates the relationship between the average solving time
nd the number of services (𝑆) across different numbers of agents (𝐴).
he average solving time increases as the number of services increases.
otably, the solving time for configurations with more agents (𝐴 = 20

and 𝐴 = 25) tends to exhibit higher values than configurations with
fewer agents (𝐴 = 10).

5.4. Results evaluation

Table 6 presents the quality of the obtained resource assignments.
Each cell in the table contains the average values over the satisfiable
instances of the corresponding (𝐴, 𝑈 , 𝑉 ) configuration of three key
metrics: similarity (𝑠𝑖𝑚.), stability (𝑠𝑡𝑎.), and 𝑐𝑜𝑠𝑡. For the sake of
interpretability, results are also displayed in Fig. 2.

Regarding similarity, we observe that as the number of services
per user increases, the average similarity value also tends to increase
across all agent configurations. This suggests that the optimization al-
gorithm successfully allocates agents to services to maximize similarity,
regardless of the number of agents involved.

As for the similarity metric, we observe a trend of increasing con-
sistency values as the number of services per user grows. This indicates
that the optimization algorithm effectively maintains consistency in
agent assignments, even with varying numbers of agents.

Regarding stability, we note that the average stability values remain
relatively stable across varying numbers of agents for each service
configuration. This stability indicates that the algorithm effectively
maintains stability in service assignments, regardless of the complexity
of the allocation problem.

Finally, the average cost values across all configurations are consis-
tently low. Additionally, there is a slight upward trend in cost values
with increasing numbers of services, reflecting the potential increase in

resource utilization as the workload expands.
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Fig. 1. Solving time across different numbers of services and agents.
Fig. 2. Optimality of similarity (a), stability (b), and cost (c) values across different numbers of services and agents.
Table 6
For each configuration (𝑈 , 𝐴, 𝑉 ): average similarity value; average stability value; average cost value.
𝑆 = 𝑈 × 𝑉 A = 10 A = 15 A = 20 A = 25

sim. con. cost sim. con. cost sim. con. cost sim. con. cost

120 = 30 × 4 407.12 37.88 0.00 428.51 38.56 0.00 449.48 39.82 0.00 457.86 39.10 0.00
150 = 30 × 5 509.95 54.10 0.10 540.19 56.19 0.00 561.94 56.04 0.00 574.45 57.86 0.06
160 = 40 × 4 555.12 51.18 0.18 574.82 51.15 0.31 602.33 52.84 0.00 612.46 52.92 0.00
200 = 40 × 5 688.55 74.00 0.45 718.74 74.03 0.03 750.49 74.47 0.04 765.04 76.06 0.00
6. Discussion

As the European population ages, public administrations are faced
with new challenges. Europeans now live longer and under the worst
conditions. While a minority of individuals can provide for themselves,
a large percentage of the population will need to rely on the public
system to provide quality assistance during the final years of their
lives. Home care services are meant to play an essential role in the
future welfare society by prolonging the time older people remain at
home and, therefore, reducing the costs of institutionalization. Given
the increasing demand, many European cities are already promoting
new models to organize and manage home care services in large
metropolitan areas. In the case of Barcelona, the current system pivots
around so-called social urban sectors that prioritize geographical and
emotional proximity for caregivers and older people.

In this model, a reduced team of caregivers assists individuals in a
particular geographical area with their everyday tasks. A case manager
in each area is charged with matching needs with resources to ensure
an optimal allocation of caregivers to services each day of the week.
While this process has been improved with time and experience, it
still suffers from several inefficiencies that directly impact the service
quality. Aiding decision-making in this context requires a profound
understanding of the needs, constraints, and dynamics of this rapidly
changing environment.

Needs here are related to the demands of the dependent individuals,
which may include assistance with personal and instrumental activities
8 
of daily living such as housekeeping, meal preparation, laundry, or
medication reminders. Constraints refer to the working conditions of
caregivers and the desirability of individual caregiver/service pairings.
Caregivers have a fixed schedule. When assigned to specific services,
allocation is done in terms of the similarity between the person pro-
viding and receiving the service, the stability of the pairing in time,
and the duration and timing of the service. Desirable pairings are those
where the caregiver and older people share common attributes that are
consistent in time.

The results presented in this study provide valuable insights into
the performance of our proposed algorithmic allocation system for
service allocation problems, leveraging a MaxSAT-based approach. Our
experiments, conducted across various configurations of the number of
agents and the number of services, reveal several significant findings.

Firstly, analyzing the objective function components – similarity,
stability, and cost – provides further insights into the algorithm’s
behavior. As the number of services increases, the average similarity
and stability values tend to increase, indicating a better match between
agents and services and improved consistency in service allocations.
This trend suggests that the MaxSAT-based algorithm optimizes service
allocations to maximize similarity and stability objectives, which are
crucial for ensuring high-quality service delivery.

Secondly, the average cost values remain relatively stable across
different configurations of agents and services, with only slight fluc-
tuations observed. This indicates that the algorithm effectively bal-
ances the trade-off between maximizing similarity and stability while
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minimizing costs associated with service allocations. The MaxSAT for-
mulation allows for the incorporation of soft constraints, enabling
the algorithm to navigate the complex trade-offs inherent in service
allocation problems and generate solutions that balance competing
objectives.

Thirdly, concerning the computational efficiency of the algorithm,
we observe a clear trend of increasing solving time with higher services.
This trend is consistent across all configurations tested, indicating
that the algorithm’s running time scales with the size of the problem
instance. While this increase in solving time is expected due to the
larger search space, it underscores the need for efficient algorithms to
handle real-world service allocation scenarios involving many agents
and services. The utilization of MaxSAT offers advantages in terms of
scalability and flexibility in handling complex optimization problems,
making it a suitable choice for addressing the challenges posed by
large-scale service allocation problems.

Finally, the results of our experiments demonstrate the MaxSAT-
based algorithm’s effectiveness in addressing service allocation prob-
lems. The algorithm offers promising practical applications in health-
care, logistics, and smart cities by achieving optimal or near-optimal
solutions while considering the trade-offs between similarity, stability,
and cost. Future research directions may involve refining the algorithm
to handle larger problem instances efficiently, exploring different for-
mulations of the objective function to capture additional aspects of
service quality, and conducting real-world evaluations to validate its
performance in diverse application scenarios.

7. Conclusions

In this paper, we have proposed and validated a MaxSAT-based
setting to tackle the issue of resource allocation in home care services.
We have formalized the allocation problem as optimizing an objective
function with hard and soft constraints. From the experiments, we
conclude that MaxSAT is a viable alternative to classical methods
for optimizing allocations, even in complex environments with cost
penalties and interdependent similarity and stability rewards. Given the
vital role that home care services will play in the upcoming years, and
particularly the importance of optimal resource allocation systems in
large urban areas, the proposed research can significantly enhance the
quality of life for older people.

As future work, it is imperative to address the challenge of idle and
overtime work commonly observed in the home care sector. While the
Agent Working Hour constraint in our model is designed to prevent
caregivers from exceeding their maximum allowable working hours,
we recognize that exceptional situations may arise that necessitate
flexibility. Building upon our validated MaxSAT-based approach for
resource allocation, future research could integrate algorithms that
account for each caregiver’s total working hours at the end of each
month, considering both emergencies or unforeseen spikes in demand
that require immediate attention. By incorporating mechanisms to com-
pute and compensate for excess or shortage of hours, our framework
can evolve into a comprehensive solution addressing both optimization
and fairness concerns within the home care service domain. Such en-
hancements will not only optimize resource allocation but also ensure
equitable distribution of workload among caregivers, ultimately leading
to improved efficiency and satisfaction in service delivery.
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