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Abstract: In the corporate strategy arena, the concept of ecosystems has emerged as a transformative
approach to promote competitive advantage, growth, and innovation. Corporate ecosystems enable
companies to benefit from interconnections among diverse partners, products, and services to
deliver enhanced value to customers. However, the process of ecosystem creation represents a
significant challenge for CEOs, as they must analyze a wide number of alternative sectors, partners,
business cases, and other critical elements. Particularly, as it is a strategic decision, it lies beyond the
traditional approach of risk-return by incorporating other factors, e.g.: the feasibility, desirability and
sustainability of each alternative. This paper investigates how computer-supported optimization
algorithms can help to solve the complex problem faced by CEOs when making these factors to create
a successful and sustainable ecosystem. The paper shows how a CEO can make informed strategic
decisions by identifying the best projects to include in the ecosystem portfolio, balancing financial
risk and return with technical feasibility, customer appeal, and technical considerations.

Keywords: strategic decision making; corporate ecosystems; computers in industry; optimization
algorithms

1. Introduction

Corporate ecosystems refer to networks of organizations—including businesses, sup-
pliers, customers, competitors, and other stakeholders—that collaborate and interact within
a shared environment to achieve common goals or create value [1]. Becoming a relevant
player in such a corporate ecosystem is one of the top priorities of the next CEO agenda [2].
Among the various strategies to achieve corporate growth, CEOs seek to bring a more
complete offer to their customers that evolve from pure industry players to an integral value
proposition by encouraging different forms of collaboration with companies of different
industries. In this ecosystem context, CEOs face the constant challenge of allocating their
limited resources efficiently to a portfolio of strategic projects that reinforces the compet-
itive advantage of the company and supports a sustainable and profitable growth. The
CEO’s decision on which projects to invest in is considered strategic, as it will significantly
impact the organization’s success in the medium and long term [3]. Knowing how to tackle
this strategic decision implies that CEOs understand the portfolio optimization problem
(POP) [4–6], where they will select the project that meets the strategic objectives from a
wide range of candidate projects.

In traditional portfolio optimization, the goal is either to maximize the returns for a
given level of risk or minimize the risk for a given level of returns. In the rich version of
the POP that models ecosystem construction, other strategic metrics need to be considered
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Menold et al. [7]. As Urli and Terrien [8] elaborated in their paper, objectives and constraints
can be of quantitative nature (such as return or risk), or pertain to qualitative measures
(such as the desirability for the customer or the feasibility of the solution). In the dynamic
and interconnected environment of corporate strategy, CEOs must consider a variety of both
quantitative and qualitative factors that influence long-term sustainability and alignment
with the company’s overarching goals [9]. The classical Markowitz model focuses primarily
on minimizing risk while keeping the expected return above a user-defined threshold [10].
While the expected return, as financial viability, remains a crucial aspect, the decision-
making process of creating a corporate ecosystem demands a broader consideration of
factors to ensure alignment with the company’s vision and long-term strategy [11,12].
Drawing insights from various researches, we present a structured overview of the main
factors that guide CEOs in this strategic decision. Key focal points include customer
perception as well as feasibility alignment with sustainability objectives. A visual example
of corporate ecosystems factors is represented in Figure 1.

Figure 1. Corporate Ecosystems Factors.

In particular, we have considered four key factors related to the creation of a corporate
ecosystem according to [7,13]:

• Viability (V) is the financial return. It is generally measured as the expected net
present value of cash flows or the percentage of return according to the investment
amount. Milhomem and Dantas [14] provide an overview of current developments
in methodologies for the project portfolio selection problem (PPSP) to measure risk-
return performance.

• Desirability (D) measures how attractive a project or partnership is to potential cus-
tomers or stakeholders. Several authors are working on measuring this factor, e.g.,
Lopez and Castillo [15], Barnum and Palmer [16] and Benedek and Miner [17].

• Feasibility (F) is the technical consideration of the solution, assessing whether the
ecosystem can realistically be implemented given the current technological, logistical,
and expertise-related resources. Feasibility requires aligning technological capabilities
with strategic objectives, considering logistical constraints, and evaluating the compat-
ibility of potential partnerships or technologies. Menold et al. [7] elaborates on the
importance of measuring feasibility, especially in supply chain management.

• Sustainability (S) encompasses the economical, environmental and social dimensions
(including ethical and governance aspects). Sustainability ensures that the ecosystem
adheres to corporate social responsibility standards and aligns with long-term environ-
mental and social goals. This factor is increasingly crucial in strategic decision making
due to growing regulatory pressures and stakeholder expectations about sustainable
practices. This is a hot topic where Haessler [18] and Chernev and Blair [19] sets
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the importance of considering environmental, social, and governance factors of the
corporate sustainability strategy.

Hence, the main goals of this paper are: (i) to map the major factors of CEOs when
making strategic decisions for the creation of ecosystems; (ii) to explore the benefits of
computer-supported optimization algorithms for creating ecosystems; (iii) to analyze the
results of a case study regarding the application of such algorithms to support decision
making; and (iv) to determine limitations and future areas of study regarding the implemen-
tation of these algorithms in strategic decisions on creating ecosystems. The remaining of
the paper is structured as follows: Section 2 presents a review of the literature to investigate
and synthesize studies on the creation of ecosystems and the use of computer-supported
algorithms in decision-making processes. Section 3 contains the mathematical formulation
of the problem. Section 4 explains the solution approach. Then, the computational experi-
ments and their associated results are presented in Section 5. Lastly, we present our main
findings and further research lines in Section 6.

2. Related Work

This section focuses on achieving insights from the scientific community regarding
the major factors influencing CEOs’ strategic decision making in the creation of corporate
ecosystems alongside an exploration of the current state of artificial intelligence (AI) in
strategic decision-making processes, particularly focusing on the PPSP and POP. To achieve
this, an exhaustive search strategy was implemented, including publications from Elsevier,
Google Scholar, Scopus and Web of Science. Keywords such as: ‘CEO decision making on
corporate ecosystems’, ‘ecosystem creation’, ‘strategic decision-making processes’, ‘mea-
surement of feasibility, desirability and sustainability in strategic projects’, ‘project portfolio
selection problem’, and ‘multi-objective portfolio optimisation’ were employed. To ensure
currency and relevance, we restricted the period to the last five years (from 2019 to 2023).
As a result, 123 publications were initially identified, comprising 10 book chapters, 26 con-
ference proceedings, and 87 articles. Following a rigorous screening process, 47 papers
were selected based on their alignment with the objectives of this study.

2.1. CEOs Deciding the Creation of Ecosystems

Strategic decision making in ecosystem creation requires significant investment in re-
sources and affects long-term profitability and survival of the firm. As defined by Adner [20],
Vera et al. [21] and Shepherd and Rudd [22], this process encompasses a series of rational,
comprehensive, and political tasks, including information gathering, alternative creation,
and selection. While much of the existing literature provides a qualitative review of ecosys-
tem strategies, focusing on the rationale behind CEOs’ shift towards ecosystem models, our
analysis extends deeper into both theoretical and empirical dimensions. Discussions around
ecosystems have often been based on Markowitz portfolio theory, emphasizing the optimal
balance of return and risk. However, Adner and Kapoor [23], Adner [24] has shifted the
focus toward how ecosystems can create collective value beyond mere profitability, enhancing
product depth and customer complementarities. Scholars like Clarysse et al. [25], Jacobides
et al. [26], and Wei et al. [27] further detail the mechanics of ecosystem construction, examining
strategic decisions that emphasize the importance of high-quality partnerships and selective
promotion strategies. Talmar et al. [28] introduced the Ecosystem Pie Model (EPM), which
helps to visualize the ecosystem’s components including value propositions, user segments,
and the roles of various actors and resources. Furthermore, Rodriguez-Garcia et al. [29] have
mapped the integration of AI and the internet of things (IoT) into these strategic processes,
pinpointing a gap in understanding the evolutionary dynamics of ecosystems, including
partner networks, internal capabilities, and governance structures.

The literature also covers strategic portfolio matrices, like the Boston Consulting Group
Matrix and the GE Matrix of McKinsey, which serve as tools for analyzing and selecting
business strategies based on market position and industry attractiveness. Discussions
around non-financial factors such as desirability, particularly concerning user experience,
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are found in works by Griffin [30] and Adikari et al. [31]. Menold et al. [7] and Najmi and
Makui [32] take a look at the feasibility aspects, considering internal business processes and
the environment, highlighting the importance of flexibility, reliability, and responsiveness
in ecosystem management. Sustainability has become a significant focus, integrating
environmental and social governance into strategic frameworks as discussed by Husted
and Allen [33] and Kuhlman and Farrington [34]. This shift towards sustainability is
reflected in modern strategic decisions, incorporating principles of the triple bottom line
and corporate social responsibility to ensure ecosystems are not only profitable, but also
ethically and environmentally sound. This enriched understanding of ecosystem creation
underscores the complexity of CEO decision making in today’s business environment,
where strategic agility and comprehensive analysis are relevant.

2.2. AI in Strategic Decision Making for Ecosystems

The strategic application of AI in ecosystem management, particularly through the
PPSP and POP, is a rapidly evolving field with extensive literature exploring its complexities
Trunk et al. [35], Adesina et al. [36] . The methodologies for these problems are generally
categorized into two main types: standard methods, which include tools like multi-criteria
decision trees and the analytical hierarchy process, and advanced quantitative methods.
These sophisticated approaches are designed to address the difficulties of multi-objective
decision making in complex environments. For example, Mehrez and Sinuany-Stern [37]
described PPSP as a search for utility functions that encapsulate various organizational
goals. Rao [38] utilized goal programming in conjunction with a DELPHI process to map
decision-maker preferences, highlighting the effort required to align strategic objectives
with practical outcomes. The introduction of decision support systems like PROSEL by
Rădulescu and Rădulescu [6] further aimed to improve the quality of the selection of the
project portfolio.

Innovations continued with the analytic network process [39] and the strategic portfo-
lio management tool [40], which incorporate complex analytical models to refine decision-
making processes. Techniques such as fuzzy logic [41] and mathematical programming
models [42] integrate stochastic elements and simulations to manage complexity effectively.
Recent developments have seen the rise of simheuristic algorithms, as discussed by Chica
et al. [43]. These algorithms combine metaheuristics with simulation techniques, allowing
decision makers to handle uncertainties and achieve high-quality solutions in unpredictable
environments. Metaheuristics, as described by Glover and Kochenberger [44], provide
feasible solutions within acceptable time frames for complex problems, demonstrating their
utility in strategic ecosystem management. Applications of metaheuristics in finance are
considered in and Doering et al. [45]. This diverse array of models and methods under-
scores a significant trend towards integrating more intricate, data-driven approaches to
optimize ecosystem creation and management, reflecting a shift towards more adaptive,
robust strategic planning tools that cater to the dynamic needs of modern businesses.

2.3. Gaps on the Application of AI in Strategic Decision Making

Despite the scientific literature identifies and utilizes various strategic decision models
and tools for ecosystem creation, significant gaps remain. Advances in AI for strategic
decision making in ecosystem creation could be applied with particular models and visual-
izations. The EPM, inspired by Ron Adner’s work [20], highlights the need for decision
models that dynamically adapt to changing market conditions, regulatory changes, and
technological disruptions. Furthermore, existing AI applications lack comprehensive met-
rics to accurately measure the effectiveness of ecosystem strategies and often fail to account
for complex interdependencies [46]. Additionally, the complexity of AI tools poses barriers
for non-technical decision makers, suggesting a need for more user-friendly designs to
make AI more accessible [47]. Simplifying user interfaces and improving the interpretability
of AI outputs are essential steps toward making advanced AI tools more accessible and
actionable for strategic decision making.
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Based on the reviewed literature, Table 1 highlights the contribution of our article and
how our approach differs from previous related papers.

Table 1. Comparative Analysis of References and Contributions.

Reference

Focus on
Financial
Metrics
(Risk-

Return)

Includes
Strategic

Ecosystem
Factors

Dynamic
Decision
Models

Incorporates
AI Usability

Empirical
Validation

Integration
of ESG
Factors

Broader
Strategic

Alignment

Yang and Yan
[1] Yes Yes No No No Yes Yes

Autio [2] Yes Yes Yes No No No Yes

Buehring and
Bishop [3] Yes Yes Yes No No No Yes

He et al. [4] Yes No Yes Yes No No No

Loke et al. [5] No No Yes Yes No No No

Sumar and
Karlsson [9] Yes Yes Yes No Yes No Yes

Markowitz
[10] Yes No No No No No No

Adner
[20], Adner
and Kapoor

[23]

No Yes Yes No No No Yes

Jacobides
et al. [26] No Yes No No No No Yes

Wei et al. [27] No Yes Yes No No No No

Milhomem
and Dantas

[14]
Yes No No No No No No

Trunk et al.
[35] No Yes Yes Yes No No No

Adesina et al.
[36] No Yes Yes Yes No No No

Danesh and
Ryan [40] No Yes Yes Yes No No Yes

Talmar et al.
[28] No Yes Yes Yes No No No

This paper Yes Yes Yes Yes Yes Yes Yes

Foundational studies, such as the work of Markowitz [10], primarily address financial
metrics like risk and return without considering broader strategic factors. Adner [20], Adner
and Kapoor [23], Autio [2] and Jacobides et al. [26] emphasize ecosystem creation but focus
on viability and desirability, overlooking feasibility and sustainability as critical dimensions.
Similarly, He et al. [4] as well as Milhomem and Dantas [14] explore financial viability but
do not integrate qualitative factors or ESG considerations. In contrast, Yang and Yan [1] and
Kuhlman and Farrington [34] delve into sustainability, but their work does not incorporate
quantitative optimization or ecosystem-specific dynamics. The contributions of Urli and
Terrien [8], West et al. [12] and Adesina et al. [36] emphasize AI-driven optimization and
dynamic decision models, yet they lack practical insights into usability for non-technical
decision-makers and fail to align these tools with strategic corporate goals.
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3. Mathematical Model

The CEOs problem described above can be modeled as a rich POP, where CEOs are
optimizing for conflicting objectives (risk minimization and return maximization), while
aiming certain levels of desirability, feasibility, and sustainability. Consider a set of n
projects, P = {1, 2, . . . , n}. For each project i ∈ P, CEOs must decide how much to invest in
it, denoted by xi, which represents the percentage of the total available budget invested
in project i. The investment can range from 0% (no investment) to 100% of the budget,
i.e., xi ∈ [0, 1] for all i ∈ P. The objective is to minimize the risk of the portfolio, which
includes only the projects with a positive investment. A binary variable, zi ∈ {0, 1}, takes
the value 1 if project i has been selected by the CEO to be included in the portfolio, and 0
otherwise. The risk is measured in terms of the covariance matrix of the project investments.
Additionally, the expected returns of the selected projects must exceed a given threshold
R > 0. The problem also considers the following constraints:

• Desirability constraint: The desirability level of the portfolio must meet a predefined
threshold, D > 0.

• Sustainability constraint: The sustainability level of the portfolio must meet a specific
threshold, S > 0.

• Technical feasibility constraint: The portfolio must meet a certain technical feasibility
level, T > 0.

• Budget constraint: The total percentage of the budget invested across all projects
should not exceed the available budget.

• Portfolio size constraint: The number of projects in the portfolio must be within
user-defined limits, nmin and nmax.

• Minimum/maximum investment constraints: If project i is included in the portfolio,
a minimum investment li > 0 must be made, and at most a maximum investment
ui ≥ li is allowed.

Let σij represent the covariance between projects i and j for all i, j ∈ P. Additionally,
for each project i ∈ P, let ri > 0 denote the expected return, di > 0 the desirability value,
si > 0 the sustainability value, and ti > 0 the technical feasibility value. The rich version of
the POP to minimize risk can be formulated as follows:

Minimize:
n

∑
i=1

n

∑
j=1

xixjσij (minimize risk) (1)

Subject to:

n

∑
i=1

xiri ≥ R (return constraint) (2)

n

∑
i=1

dixi ≥ D (desirability constraint) (3)

n

∑
i=1

sixi ≥ S (sustainability constraint) (4)

n

∑
i=1

tixi ≥ T (technical feasibility constraint) (5)

n

∑
i=1

xi ≤ 1 (budget constraint) (6)
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nmin ≤
n

∑
i=1

zi ≤ nmax (portfolio size constraint) (7)

lizi ≤ xi ≤ uizi ∀i ∈ P (minimum/maximum investment constraint) (8)

zi ∈ {0, 1} ∀i ∈ P (binary decision variables for project selection) (9)

xi ≥ 0 ∀i ∈ P (non-negativity constraint) (10)

The solution to the problem will be presented using a Pareto frontier, where each
curve represents the risk-return combination of projects for a given set of values associated
with the desirability, sustainability, and technical feasibility constraints. At each point on
the frontier, there is a precise allocation of projects, along with their specific investment
percentages. One of the key contributions of our paper is that it allows CEOs to understand
the impact of improving one objective at the expense of another. This enables the quan-
tification of trade-offs, showing the cost in terms of risk and return when incorporating a
more desirable, sustainable, or feasible project into the portfolio of projects for constructing
the ecosystem.

4. Solving Approach

The mathematical model proposed in the previous section is a mixed-integer quadratic
programming problem. It can be solved with exact optimization algorithms, which are
available in different commercial and open source software. In our case, we have modeled
the problem using Pyomo, a Python-based and open-source optimization modeling lan-
guage (https://www.pyomo.org/, accessed on 3 December 2024). Once modeled, we have
solved it using the Gurobi optimization engine (https://www.gurobi.com/, accessed on 3
December 2024).

The process begins by initializing the problem parameters required for the optimization
problem, such as desirability, technical feasibility, and sustainability thresholds (Listing 1).

Listing 1. Define problem parameters.

1 from pyomo . environ import ConcreteModel , RangeSet , Var , NonNegativeReals , Object ive ,
minimize

2 from pyomo . environ import Expression , Constraint , Binary , SolverFactory , value , Param
3 import numpy as np
4
5 # D e f i n e p a r a m e t e r s
6 n_min = 1
7 n_max = num_assets
8 min_xi = 0 . 0
9 max_xi = 1 . 0

10 big_M = 1 e20
11
12 des_threshold = 0 . 0 # d e s i r a b i l i t y t h r e s h o l d
13 fea_ thresho ld = 0 . 0 # t e c h n i c a l f e a s i b i l i t y t h r e s h o l d
14 sus_threshold = 0 . 0 # s u s t a i n a b i l i t y t h r e s h o l d
15 np . random . seed ( 4 2 ) # s e t t h e s e e d t o a s p e c i f i c v a l u e f o r r e p r o d u c i b i l i t y
16 a = 7 # e a c h a s s e t l e v e l i s random be tween a and b
17 b = 10 # b > a
18 d e s _ l e v e l s = a + ( b − a ) * np . random . rand ( num_assets )
19 f e a _ l e v e l s = a + ( b − a ) * np . random . rand ( num_assets )
20 s u s _ l e v e l s = a + ( b − a ) * np . random . rand ( num_assets )

Subsequently, we generate the optimization model using Pyomo v6.8.2., defining the
objective function and the constraints (Listing 2).

https://www.pyomo.org/
https://www.gurobi.com/
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Listing 2. Objective function and constraints.

1 # G e n e r a t e t h e Pyomo−Gurobi model
2 model = ConcreteModel ( ) # d e f i n e t h e Pyomo model
3 model . I = RangeSet ( 1 , num_assets ) # d e f i n e s e t o f i n d e x e s
4 model . x = Var ( model . I , domain=NonNegativeReals ) # d e f i n e v a r i a b l e s
5
6 # D e f i n e t h e o b j e c t i v e f u n c t i o n
7
8 def p o r t f _ r i s k _ r u l e ( model ) :
9 p_r isk = sum(sum( cov_matrix [ i − 1 ] [ j −1] * model . x [ i ] * model . x [ j ] for j in model . I ) for

i in model . I )
10 return p_r isk
11
12 # E x p r e s s i o n s t o compute p o r t f o l i o o b j e c t i v e s
13 model . p o r t f _ r i s k = Objec t ive ( r u l e= p o r t f _ r i s k _ r u l e , sense=minimize )
14 model . p o r t f _ r e t u r n = Expression ( expr=sum( avg_returns [ i −1] * model . x [ i ] for i in model . I ) )
15 model . por t f_des = Expression ( expr=sum( d e s _ l e v e l s [ i −1] * model . x [ i ] for i in model . I ) )
16 model . p o r t f _ f e a = Expression ( expr=sum( f e a _ l e v e l s [ i −1] * model . x [ i ] for i in model . I ) )
17 model . por t f_sus = Expression ( expr=sum( s u s _ l e v e l s [ i −1] * model . x [ i ] for i in model . I ) )
18
19 # Budget c o n t r a i n t
20 model . sum_weights_cons = Constra int ( expr = sum( model . x [ i ] for i in model . I ) <= 1 . 0 )
21
22 # Return t h r e s h o l d c o n s t r a i n t
23 model . re turn_threshold = Param ( i n i t i a l i z e = 0 . 0 , mutable=True )
24 model . return_cons = Constra int ( expr = model . p o r t f _ r e t u r n >= model . re turn_threshold )
25
26 # P o s i t i v e w e i g h t s c o n s t r a i n t
27 model . low_weight_cons = Constra int ( model . I , r u l e=lambda model , i : model . x [ i ] >= 0)
28
29 # P o r t f o l i o d e s i r a b i l i t y l e v e l c o n s t r a i n t
30 model . des_cons = Constra int ( expr = model . por t f_des >= des_threshold )
31
32 # P o r t f o l i o t e c h n i c a l f e a s i b i l i t y l e v e l c o n s t r a i n t
33 model . fea_cons = Constra int ( expr = model . p o r t f _ f e a >= fea_ thr esho ld )
34
35 # P o r t f o l i o s u s t a i n a b i l i t y l e v e l c o n s t r a i n t
36 model . sus_cons = Constra int ( expr = model . por t f_sus >= sus_threshold )
37
38 # C a r d i n a l i t y c o n s t r a i n t s
39 model . i s _ a s s e t _ s e l e c t e d = Var ( model . I , within=Binary )
40 for i in model . I : # i n i t i a l i z e t h e b i n a r y v a r i a b l e
41 model . i s _ a s s e t _ s e l e c t e d [ i ] = 0
42
43 def i s _ a s s e t _ s e l e c t e d _ r u l e _ 1 ( model , i ) : # i f x [ i ] > 0 then i s _ a s s e t _ s e l e c t e d [ i ] == 1
44 return model . x [ i ] <= model . i s _ a s s e t _ s e l e c t e d [ i ]
45 model . i s _ a s s e t _ s e l e c t e d _ c o n s _ 1 = Constra int ( model . I , r u l e= i s _ a s s e t _ s e l e c t e d _ r u l e _ 1 )
46
47 def i s _ a s s e t _ s e l e c t e d _ r u l e _ 2 ( model , i ) : # i f x [ i ] == 0 then i s _ a s s e t _ s e l e c t e d [ i ] == 0
48 return model . i s _ a s s e t _ s e l e c t e d [ i ] <= model . x [ i ] * big_M
49 model . i s _ a s s e t _ s e l e c t e d _ c o n s _ 2 = Constra int ( model . I , r u l e= i s _ a s s e t _ s e l e c t e d _ r u l e _ 2 )
50
51 def c o u n t _ s e l e c t e d _ a s s e t s _ r u l e ( model ) :
52 return sum( model . i s _ a s s e t _ s e l e c t e d [ i ] for i in model . I )
53 model . num_selected_assets = Expression ( r u l e= c o u n t _ s e l e c t e d _ a s s e t s _ r u l e )
54 model . p o r t f _ s i z e _ l b _ c o n s = Constra int ( expr = model . num_selected_assets >= n_min )
55 model . por t f_s ize_ub_cons = Constra int ( expr = model . num_selected_assets <= n_max )
56
57 # Minimum and maximum i n v e s t m e n t c o n s t r a i n t s
58 model . up_weight_cons = Constra int ( model . I , r u l e=lambda model , i : model . x [ i ] <= max_xi )
59
60 def s e l e c t e d _ a s s e t _ m i n _ i n v e s t _ r u l e ( model , i ) :
61 return model . x [ i ] >= min_xi * model . i s _ a s s e t _ s e l e c t e d [ i ]
62 model . se le c te d _a s se t _m i n_ i nv e s t _ co n s = Constra int ( model . I , r u l e=

s e l e c t e d _ a s s e t _ m i n _ i n v e s t _ r u l e )

Finally, we choose Gurobi 12.0 as the optimization solver and use it to find the optimal
solution for each return threshold (Listing 3).

Once the algorithm finalizes, the results are printed and visualized in a Pareto graph.
The code prints a Pareto curve containing 2000 points. Each point contains the optimal
portfolio allocation for a given configuration of parameters.
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Listing 3. Solve the optimization problem.

1 # Choose a s o l v e r e n g i n e
2 s o l v e r = SolverFactory ( ’ gurobi ’ )
3
4 # C o n s t r u c t t h e P a r e t o f r o n t i e r
5 r e s u l t s = [ ]
6
7 k = 0
8 for threshold in r e t ur n_ t hr es ho l ds :
9 k = k + 1

10
11 # R e s e t s e l e c t e d a s s e t s from t h e model
12 for i in model . I : # r e s e t a l l i s _ a s s e t _ s e l e c t e d t o 0
13 model . i s _ a s s e t _ s e l e c t e d [ i ] = 0
14 model . re turn_threshold = threshold # u pd a t e t h e r e t u r n t h r e s h o l d p a r a m e t e r
15
16 # Find o p t i m a l p o r t f o l i o f o r d e f i n e d r e t u r n t h r e s h o l d
17 s o l v e r . so lve ( model )
18
19 # E x t r a c t t h e s o l u t i o n i n f o r m a t i o n
20 opt_weights = [ round ( value ( model . x [ i ] ) , 4 ) for i in model . I ]
21 r i s k = round ( value ( model . p o r t f _ r i s k ( ) ) , 6 )
22 exp_return = round ( value ( model . p o r t f _ r e t u r n ) , 6 )
23 des = round ( value ( model . por t f_des ) , 1 )
24 fea = round ( value ( model . p o r t f _ f e a ) , 1 )
25 sus = round ( value ( model . por t f_sus ) , 1 )
26 n _ s e l e c t e d = value ( model . num_selected_assets )
27
28 # Save s o l u t i o n i n f o r m a t i o n in d i c t i o n a r y
29 r e s u l t s . append ( { ’ Return ’ : exp_return , ’ Risk ’ : r i sk , ’ Desirab ’ : des , ’ Feas ib ’ : fea ,
30 ’ Sustainab ’ : sus , ’N s e l e c t e d ’ : n_se lec ted , ’ Weights ’ : opt_weights } )

5. Computational Experiments and Results

The proposed Pyomo-Gurobi algorithm is executed in Python. We use a standard
personal computer, manufactured by ASUSTeK COMPUTER INC. in Taipei (Taiwan), with
an Intel Core i7 CPU at 2.5 GHz and 12 GB RAM with Windows 10 to run all tests.

5.1. Creation of the Database for the Experiment

In order to validate the correctness and effectiveness of our algorithm we have used a
realistic database, which is described in Chang et al. [48] for the risk-return variables. These
authors constructed five test data sets considering the stocks involved in five different
capital market indices drawn from around the world. Specifically, he considered Hang Seng
(Hong Kong), DAX 100 (Germany), FTSE 100 (UK) and S&P 100 (USA). The indices have
been extensively used in computational experiments by scholars within the related body of
research Tasgetiren and Suganthan [49] and Lu and Vasko [50]. The data were sourced from
Datastream to obtain weekly price data for the stocks in these indices with a time frame
from March 1992 to September 1997. The data cleaning process was run to eliminate stocks
with missing values from the analysis. Return is calculated as the average of 52 periods,
each of which covers one week, covering a period of 5.5 years. This approach smooths out
erratic fluctuations and provides a solid perspective on company returns. Risk is measured
through standard deviation, making it possible to identify variability in investment returns.
With the data of returns and risk we have calculated the respective covariance matrix. As a
result, there were 291 values available for each stock to compute returns and covariances.
The datasets varied in size, ranging from 31 to 225 stocks. All the test problems are publicly
available from OR-Library (https://people.brunel.ac.uk/~mastjjb/jeb/info.html, accessed
on 19 October 2024).

Due to the fact that there is no public and objective information on the desirability,
feasibility and sustainability factors, we have decided to use a random creation of these
variables. The values will be generated with the NumPy 2.1 library of Python. The
establishment of corresponding thresholds will be a discretion of the user (CEOs). In this
paper we use 3 different thresholds for each variable and for the 5 indices.

https://people.brunel.ac.uk/~mastjjb/jeb/info.html
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5.2. Analysis of Results

Figures 2–5 show the results after applying our approach to the four datasets of
the different capital markets. The results are shown in a curve that encapsulates the
Pareto-optimal solutions derived from the optimization process, considering the delicate
equilibrium between risk and return within the specified ecosystem. The Pareto curve
is formed by 2000 points, each point on the curve signifies a distinct project portfolio
with specific weights assigned to individual projects. In each graph there are four Pareto
curves, one just considering the risk-return and the other three reflecting the application of
constraints for the different threshold’s’ values of desirability, feasibility and sustainability.
In practice, this means that the Pareto’s curves provide a visual representation of the trade-
off in terms of risk-return when adding the different constraints. Note that the algorithm
displays the surface map associated with tri-dimensional Pareto curves, where the first axis
representing risk, the second axis representing return and the third axis is the combination
of different values of desirability, feasibility and sustainability. Notably, the third axis,
representing the confluence of strategic factors, introduces a layer of complexity in the
decision-making process, as it transcends the conventional risk-return paradigm. The
figures demonstrates that as the level of desirability increases (the ability of the portfolio to
meet strategic objectives), the algorithm recommends portfolios with slightly higher risk
but significantly improved return. This illustrates that the inclusion of desirability as a
constraint shifts the balance towards higher-yielding portfolios, even though the associated
risk also rises.

Figure 2. Experiment 1.
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Figure 3. Experiment 2.

Figure 4. Experiment 3.
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Figure 5. Experiment 4.

The initial analysis focuses on the calculation of the efficient frontier just considering
the approach of risk-return (unconstrained). The goal is to determine the efficient project
allocation as if it was a financial portfolio, without considering the strategic factors. As a
CEO, this is a starting point to understand the maximum potential returns available in the
ecosystem portfolio and the associated risks. The unconstrained Pareto curve serves as a
baseline depiction of the inherent dynamics between risk and return within the ecosystem.
This curve, meticulously crafted from 2000 points, encapsulates the spectrum of achievable
optimal solutions. The curvature of this curve delineates the unfettered interplay between
risk mitigation and return enhancement, offering decision makers an unobstructed view
of the landscape of possibilities. Moreover, to test the effectiveness of our algorithm, we
first used them to find the unconstrained efficient frontier. Adopting this approach has the
advantage that the curve can be exactly calculated by the algorithm and the results can be
compared with the optimal benchmark solutions provided by Chang et al. [48]. Figure 3
shows that as risk tolerance increased, the algorithm selected higher-risk, higher-return
projects. Low risk tolerance resulted in more diversified portfolios while high risk tolerance
led to more concentrated portfolios with potentially higher returns.

The second analysis focuses on the impact of incorporating strategic factors—desirability,
feasibility, and sustainability—on risk-return. The goal is to introduce a new variable to the
strategic-decision process and to quantify how increasing these factors can lead to a reduction
in the total reward collected. The constrained Pareto curve manifests itself as a result of the
algorithm’s operation under the influence of strategic constraints: desirability, feasibility, and
sustainability thresholds act as guiding principles, shaping the curvature of the Pareto frontier.
This constrained curve, intricately woven with the same 2000 points, reflects the trade-offs
introduced by strategic considerations. The curvature of the surface indicates the non-linear
relationship between these three constraints, emphasizing that decision makers must carefully
balance these factors when selecting optimal ecosystem portfolios.

From Figure 4 we observe a negative correlation between sustainability and return:
as the sustainability constraint tightens, the portfolio composition shifts—we move away
from high-return projects and prioritize projects that are more aligned with long-term
environmental and social goals. This suggests that portfolios that prioritize sustainability
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are likely to achieve lower financial returns compared to those with fewer sustainability
constraints. However, the figure also highlights that beyond a certain threshold, the
reduction in returns becomes marginal, indicating that the impact of sustainability on
returns is non-linear.

Experiment 4 at Figure 5 demonstrates the complex trade-offs inherent in strategic
decision making when multiple constraints are in play. The portfolios near the top of
the z-axis (higher sustainability) generally exhibit lower returns but those with a higher
feasibility score maintain relatively stable returns. The figure highlights that portfolios
with moderate levels of sustainability and high feasibility tend to be the most balanced
options, offering reasonable returns while remaining practically implementable. On the
other side, extreme portfolios (high in one dimension, low in others) often had higher but
riskier returns.

Managerial Insights

The model assessment framework improves risk mitigation, enabling CEOs to evaluate
not just financial risk-return but also strategic factors associated with potential partnerships
or investments. These insights support a balanced approach to resource allocation, where
high-return opportunities can be pursued with greater confidence, knowing that they align
with the company’s long-term resilience. The comparison between these unconstrained
and the different constraint curves shows the impact of incorporating strategic variables
on the portfolio optimization. A decision maker presented with Figure 2 has an explicit
pictorial representation of the possibilities open to them, and the trade-offs involved. Points
on the constrained Pareto curve represent solutions that not only optimize risk and return
but also adhere to predefined thresholds of desirability, feasibility, and sustainability. By
allowing a lower constraint, the ecosystem can yield more return or lower risk, resulting
in a higher reward. However, maximizing the return-risk reward leads to a convergence
in the top-right part of the curve, as there is typically only one project that achieves that
specific reward. Reducing the risk-return reward results in various combinations of projects,
leading to different curves and providing decision makers with flexibility in optimizing
their portfolio based on their strategic priorities. For example, in Figure 2 of the port1
dataset, we see how for a minimum level of desirability (7.4) and the same return each time
that we want solutions with a higher expected return we need to accept more risk. This
can be quantified as the difference among the red line (maximum feasibility) and the green
or yellow lines (lower feasibility). If the CEO were to prefer a portfolio easier to make it
feasible, the return achieved will be lower.

6. Conclusions

We address a significant gap in the strategic management literature by employing
computer-supported methods to enhance CEO decision making in the creation of corporate
ecosystems. Drawing inspiration from He et al. [4] work on the portfolio optimization
problem, our paper introduces a realistic and rich variant applied to strategic decision mak-
ing. We have demonstrated that optimization algorithms can provide a valuable support in
managing extensive datasets and complex decision-making scenarios efficiently. As a re-
sult, our findings can be summarized as follows: (i) computer-supported strategic decision
making allows for quantifying trade-offs and reducing the time required for analysis; (ii)
beyond financial metrics, our approach incorporates feasibility, desirability, and sustainabil-
ity, which enables CEOs to optimize their utility functions considering multiple conflicting
goals; (iii) the methodology provides valuable visualizations that aid in understanding the
various trade-offs and benefits of potential strategies and ecosystem configurations.

Looking ahead, future research will focus on: (i) enhancing data collection by in-
corporating practical considerations and modeling stochastic returns with probability
distributions; (ii) addressing biases in datasets and capturing subjective human mean-
ing; (iii) integrating temporal dynamics of market maturity and its impacts on strategic
decisions; (iv) analysing synergies among ecosystem players to capture interconnected
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relationships that drive strategic value beyond isolated metrics and (v) engaging with
key stakeholders, partners, and customers to align the optimization processes with the
real-world dynamics of corporate ecosystems.
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