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Abstract: Generalized Kelvin-Voigt and Maxwell models using Prony series are one of
the most known models to characterize the behavior of polymers. The simulation software
for viscoelastic materials generally implement only some material models. Therefore, for
the practice of the engineer, it is very useful to have formulas that establish the
equivalence between different models. Although the existence of these relationships is a
well-established fact, moving from one model to another involves a relatively long
process. This article presents a development of the relationships between generalized
Kelvin-Voigt and Maxwell models using the aforementioned series, and their respective
relaxation and creep coefficients for one and two summations. The relationship between
the singular points (maximums, minimums and inflexion points) is also included.
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Introduction

The mathematical models to characterize mechanical properties of the materials are a

permanent issue in engineering research. The simplest and more friendly models for this

proposal are the Kelvin-Voigt and Maxwell models [1-5], because their linearity. Both

models are not equivalent: the first one can explain creep but not relaxation phenomena,

and the second one does the opposite. Both models correspond to materials that show

only one characteristic time. In order to fit a model to materials showing several

characteristic times, generalized linear viscoelastic models are used, connecting several

Kelvin-Voigt or Maxwell elements. Every generalized Maxwell (GM) model has an

equivalent generalized Kelvin-Voigt (GKV) model. These models correspond to the use

of Prony series to adjust creep and relaxation functions. This is a usual option in a variety

of engineering applications involving viscoelastic materials [6—16], and the identification

of the parameters of the material models is nowadays still a challenging issue [17, 18, 27,

28, 19-26].

The practitioner engineer, when using different tools for calculation, must use these

viscoelastic models under a specific form [29]. This fact can be relatively important,

because commercial software is usually implemented with only some specific viscoelastic

models. Therefore, it is necessary for the user to know the conversions procedure to pass

from one model to another. Although the existence of these relationships is a well-known

fact [4, 5, 30-32], it usually implies some numerical methods. A number of these

numerical methods have been developed and published [32-37]. A recent work [37]

offers an interconversion method between the different models by explicit expressions,

except for the determination of the zeros of certain polynomials. For some cases it is

possible to establish quite explicit formulas of interconversion, which are presented in the

consulted literature [4] but only for the simplest cases.
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This work presents the complete set of explicit expressions of the relationships between
GKYV and GM models of order one and two, as well as relaxation and creep coefficients.
To the best of our knowledge, there is not a set of explicit formulas published as we
propose. From this study, it is also possible to study singular points as maximums,

minimums or inflexion points.

These relationships allow to move from one model to another equivalent easily and

quickly.

1. Characterization of Prony series

In this section, the generalized Kelvin-Voigt and Maxwell models as combination of

springs and dashpots are characterized.

In the GKV model, only creep, storage and loss compliances are presented. The other
way round occurs in the GM model, whose values presented are relaxation, storage and
loss moduli. As the number of terms n in the models is increased, the equations found in
the Laplace domain are more complicated to be expressed in the time or frequency
domains. Only in two cases (in GKV model with compliances and in GM model with
moduli), these transformations are simple, since every term in the Laplace domain can be

separately transformed in an inverse exponential in the time domain.

The difficulty arises to pass from the coefficients of the creep function to the relaxation
moduli, for example. Conversely, the same happens when it is interesting to obtain the
compliance coefficients from the relaxation function. In this work, these interconversions
are solved when n =1 or n = 2, in an explicit form. However, in other cases, with n > 2,
the expressions as a function of n in the Laplace domain contain a denominator with a

polynomial equation of degree n. There is no expression to pass easily from Laplace
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domain to time domain when a polynomial equation of degree three or more appears in

the denominator. For this reason, all coefficients are just solved forn=1and n =2,

In the following sub-sections, the explicit expressions to obtain the coefficients of the
relaxation function from the KVG model for n = 1 and n = 2 have been developed. Also,
explicit expressions for the creep coefficients from the GM model up to second order
have been obtained. Moreover, the general expressions of compliances for GKV models

and moduli for GM models are shown.

1.1  Generalized Kelvin-Voigt model

A Kelvin-Voigt element is a set of one spring and one dashpot connected in parallel. The
generalized Kelvin-Voigt model is a series of Kelvin-Voigt elements with a spring, all

them connected in series (figure 1).

ik Dk
Eyp _I_ _I_

Eng

Figure 1 - Generalized Kelvin-Voigt model
of order n

The elastic (E) and viscous (77) parameters are defined as usual:

c=E-¢ (1a)
d
o=n-t (1b)

where o is the stress and ¢ the strain, and the prime indicate the time derivative. The stress
along the model is the same for each block in figure 1, and the total strain of the model

results of the strain summation of every block.
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1.1.1 First order generalized Kelvin-Voigt model

By definition, the GKV model of first order has the representation of figure 2. This is a
material model commonly used, and is also known as linear standard model, or three-

parameter model.

?jrlf{——-

EDK :

W] = |-

Figure 2 — Generalized Kelvin-Voigt model with
n=1

Considering the expressions (1), the Laplace transform leads to:

Eo, - Llgo] = (ElK + M1y 5) - L&] (22)
L[e] = L] + —n - L[] (2b)

And, taking L[o] = E,, - L[£,] one has:

L] = (5 + 57— ) - £Io] ©

E E1K+n1K'S
Then, the mechanical resistance Z, the transfer function of the system, considering the

stress as the input and the strain as the output is:

Z(s) = —+ ——

Eogy  Eigtnig's (4)
Also from expression (3), the differential equation associated to the GKV model with n=1
Is:

N1k d_U _ EogEig EopNig E (5)

o+ =
Eog+E1gx dt  Eou+Eig Eo+E1g dt

The relaxation modulus is the stress response for a constant strain. Thisis L[] = 1/s, in
the Laplace domain. Therefore, the relaxation modulus is the transfer function from strain
to stress. This is the inverse of the product between the mechanical resistance and s.

6
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Through conversion from Laplace domain to time domain, the relaxation modulus for the

GKYV model with n =1 gives:

Y=Y, <1 -y (1 — e"%)> (6a)

where

Yo =Go=Eop Py = —K— 7, = —BK_ (6b)

1=
Eog+E1g Eog+E1g

The creep compliance in the Laplace domain is the strain of the material under a constant
unitary stress: ¢ = 1,t > 0. This means L[g] = 1/s. Therefore, Y(s)-J(s) =
s™2, as it is pointed out in [37]. From (3), and converting from Laplace domain to time

domain, the creep compliance J for the GKV model with n =1 is:

I=Js (1 +ar(1- e‘i)> (7a)

Jo=——iqy =K1, = 2K (7b)

Eog ' 17 BTl T Eig

The frequency response function can be easily found from the expression of the
mechanical resistance (4) just changing the s parameter by iw, where “i” is the imaginary
unit. After algebraic operation, the result is a complex function of w. This function of the
angular frequency w describes the response (strain) of the material under harmonic

stresses. The storage compliance (J’) is the real part of this number.

I =1o(1+72=) (8a)

1+2%2 w2

The loss compliance (J”°) is the absolute value of the imaginary part.

]// — ]0 q1A @ (8b)

1422 w2
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Storage and loss moduli, in the frequency domain, are defined as the real and imaginary
part of the inverse of the creep compliance. This is the response (stress) of the material

under harmonic strains. The storage modulus is:

G' =G, (1— P1 ) (9a)

1412 w2
The loss modulus is:

GII =G D171 @ (gb)

-0 1472 0?2

The tangent of the phase angle is the ratio of loss modulus (9b) to storage modulus (9a):

P17 ©
1474 w2
tand = 1—1p1 (10)

-—BL
1+15w

1.1.2 Second order generalized Kelvin-Voigt model

Adding a new Kelvin-Voigt element, the GKV model with n = 2 (second order) has the

representation of figure 3.

Hl;{ T?E;{
R -

W = -
e

Figure 3 - Generalized Kelvin-Voigt with n
=2
Following a deduction analogous to that of the previous section, for the mechanical

resistance, the GKV model with n = 2 gives:

Z=—t—1 4+ (11)

Eog E1g+N1g's Exptn2gs

The differential equation for the GKV model with n = 2, using Laplace transform,

presents the following form:
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o+ EOK(an"'nZK)+E1Kn2K+E2Kn1K . d_O' NigNag . d?c _
EogE1gtEogE2gtE1kE2 dt EogE1gtEogE2gtE1kE2k dt?
EogE1xE2k Eog(E1gN2g+E2xM1K) . E EopNigNag . d2e (12)
EogE1gtEogE2gtE1kE2g EogE1xtEogE2gtE1kE2k dt EogE1g+tEogE2gtE1gE2 dt?

The creep compliance is Z(s)/s, which is, for the time domain:

]=]0<1+q1<1—e‘i)+q2(1—e‘i)> (13)
where

Jo=15- (142)
g = i—g =12 (14b)
A = Z_i i=12 (14c)

Following the same procedure as explained to obtain the relaxation modulus in section

1.1.1, the relaxation modulus for the GKV model with n = 2 is defined as:

Y=Y0<1—p1<1—e_%)—p2(1—e_%)> (15)

For this model, when analyzing the relaxation coefficients, these coefficients are found
as a function of the auxiliary coefficients used in the previous expressions. Creep

coefficients can be related to spring and dashpot parameters:

YO = EOK (168.)
Cog(Cagg+Csp—C3g)
= 1
P (Gt Cap) (16)
Cog(Cagg—Csx+C3p)
= 1
P2 2C4(C1+Cag) (16¢)
—_r (16d)
1= Cax—Cag
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1
Ty = m (166)

where

Cip = ForbriPzi (17a)

EoE1g+EogEz g +E1Ez

2
CZK _ Eog“(E1g+tEag) (17b)

EogE1g+EoyEz g+ Ex gEag

C3 _ EOK(an"'nZK)+ElK772K+EZK771K (17C)

K 2M1gN2k

\/(EOK(n1K+n2K)+E1Kn2K+E2Kn1K)2_4n1Kn2K(EOKE1K+E0KE2K+E1KE2K)
Cyp, = (17d)

K 27’11(7721(

E 27] +E 27]
s = et Eac T (17¢)
7711{7721{(511(+EZK)

Following the same procedure as explained to obtain the storage modulus in section 1.1.1,

the storage modulus and the loss modulus are:

1 __ b P2
G =Go (1 1+t w2 1+‘r%wz) (18)
" o_ P1T1W P2T2Ww
G" = Go (1+‘t§w2 + 1+‘t§w2) (19)
where
GO = EOK (20)

The storage compliance and the loss compliance are, respectively:

) =)o (14 B + ) (21)

1+23w2  1+A ;w2

J=Jo (s 4 2 ) (22)

1+ %202 1+ 23w?

The tangent of the phase angle is the ratio of loss modulus (19) to storage modulus (18):

10
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PIT1® | P2T2w

1+715 w2 1+75w?2 (23)

tand =
1o(—p1 \_(_p2
1475 w2 1+73 w2

1.1.3 Generalized Kelvin-Voigt model with n elements

This subsection is devoted to the general case (Fig. 1) with n Kelvin-Voigt elements. The
elastic (E) and viscous (#7) parameters are defined as usual (1). The stress along the model
is the same for each block in figure 3, and the total strain of the model results of the strain

summation of every block.
E=¢g + X1 & (24a)
c=0;, i=0..n (24b)
For every block, i = 1... n, the stress is:

de; .
o=Eo & =E, -&+n; dgt; i=1..n (25)

Taking Laplace transformation of expressions (24-25) and combining them, one can
define the mechanical resistance Z, the transfer function of the system (considering the

stress as the input and the strain as the output).

Z(s):f[_d:L_}_ n 1 (26)

[o] Eogx =1 Eigtnigs

Coming back to time domain, one can obtain the following differential equation:

Bdo Cd?¢  Dd3c yd*1l¢ zd"

ctiatiwe i T i Taae T
bde @ cd? dd3e yd*le zd"e

—E -—t——t-— = -— 27
+Adt+Adt2+Adt3+ +Adt"1+Adt" ( )

The constant values in (27) can be found in Appendix A.1.

11
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The creep compliance in the Laplace domain is the strain of the material under a constant
unitary stress: ¢ = 1,t > 0. This means L[o] = 1/s. From (26), and converting from

Laplace domain to time domain, the creep compliance J for the GKV model results:

J=To(1+Xit1q: - [1—exp(=t/2)]) (28)
where
Jo = i (29a)
4 =7 (290)
A = Z_i (29c)

As in previous sections, the frequency response function can be found from the expression
of the mechanical resistance (26). The storage compliance (J’) is the real part of this

number.

1 =Jo (14 2 2=) (30)
The loss compliance (J) is the absolute value of the imaginary part.

no__ n qiti'w
J"=Jo Ziza 1520 (31)

12
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1.2 Generalized Maxwell model

A Maxwell element is a set of one spring and one dashpot connected in series. The
generalized Maxwell model (also known as Maxwell-Wiechert model) is a set of n

Maxwell elements with a spring, all them connected in parallel (figure 4).

Eeo
E]-M' ”j-M'
E; o N2y,
I
Enp LEST
AW
I

Figure 4: Generalized Maxwell model.

The elastic (E) and viscous (1) components are defined as usual (1). The strain along the
model is the same for each block in figure 4, and the total stress of the model results of

the stress summation of every block.

13
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1.2.1 First order generalized Maxwell model

The generalized Maxwell model with n = 1 has the representation of figure 5. It is also

known as Zener model.

Eiy, My

—\W

Figure 5: GM model n = 1.

The mechanical resistance Z is the transfer function of the system, considering the stress

as the input and the strain as the output.

2() = (Buyy + M)_l (32)

ElM +T]1M'S

The differential equation for the GM model with n = 1, leads to:

UESYRRCA g4 m de
O+ g = Beoyy £+E1M(E°°M+E1M)dt (33)

As in the previous section, the relaxation modulus can be determined by the relationship
Z(s)-Y(s) =1/s:

Y =Y, <1 -1 <1 —e %>> (34)

Also, the storage modulus and the loss modulus are the real and imaginary parts of Y (iw).

G' =G, (1 —#) (35)
G" = G, fiél:; (36)
where

Yo = Go = Eop, + Eq,, (37a)

14
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= M 37b
b1 Eeong+Eing (37b)
M1
Tl =M (37C)
Eqp

The tangent of the phase angle is the ratio of loss modulus (36) to storage modulus (35).

p11.'21 w
1474 w2
tand = # (38)

- 2
147§

w2

Since J(s) = Z(s)/s and J(iw) = J'(w) +1i-]"(w), the creep compliance, the storage

compliance and the loss compliance are:

] =1y (1 +a(1-e ‘)) (39

1 _ q1
I =Jo (1 + 1+,1§w2) (40)
n )\
J" =0 1z (41)
where
1
o = e 22
E
@ =t (42b)
1 1
b= (2 4 ) )

15
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1.2.2 Second order generalized Maxwell model

The GM model with n = 2 has the representation of figure 6.

Ey M2y
'
UUU | |

Fiqure 6: GM model n =2

The mechanical resistance of the GM model withn =2 is:

Z=(E, + ZmMms o Feyleys - 43

Eiytnipys Exytn2pS

The differential equation for this model, using Laplace transform, shows the following

expression:
EvpymeytE2yfiy do | NiyNzy d?c _ Ecopm
ot E1pE2y a t EipyEzpy dt2 M et E1pEzy (ExyMap + E2pfy) +

d LSV
M1y + UzM) 5T (B 4 By + Eyy) -5 (44)

E1p B2y dt2

The relaxation modulus, the storage modulus and the loss modulus, are defined as

follows:
_t _t
Y=Y0<1—p1<1—e T1>—p2(1—e T2>> (45)
1 __bi P2
G =Go (1 1+73 w2 1+‘r%(u2) (46)
G" = GO (11111131::2 + 1112:52:))2) (47)
where

16
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YO=GO=EOOM+E1M+E2M (488.)
EiM .
pi=—"""1— ,i=12 (48Db)
EwopytE1pyTE2 )y
_ Ny ;o
T, =— ,l= 1,2 (48C)
EiM

For this model, when analyzing the creep coefficients, these coefficients are found as a
function of auxiliary coefficients used in the previous expressions. Creep coefficients can
be related to spring and dashpot parameters. The creep compliance, the storage

compliance and the loss compliance are:

1=Jo<1+q1(1—e‘i)+qz(1—e‘i)> (49)
]’ - ]0 (1 + 1+jll%w2 + 1+Z§w2) (50)

]u :]0 ( q1410 + ‘hlzw) (51)

1+3w2 | 1+A2w?
The tangent of the phase angle is the ratio of loss modulus (47) to storage modulus (46):

P11 w + P2T2w

2,2 2,2

_ 1+t{w? 14150
tand = 1 ) (52)

- 2.2 2
1+T7w 1+75

w2

with
Jo=Cypy +Coyy (53a)
__ Copy(CapytCspy—Cap)
a1 = 2C4 0 (C1pg+Capp) (53b)
__ Cop(Capy=CspytCap)
a2 = 2C40,(C1pg+C2pp) (53c)
Ay =— (53d)
L Cap—Capy
Ay = ——— (53¢)
27 CaptCay
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where
1

Ciy = o (54a)
Eq,,+E

Cppy = ——— U2 (54b)

M Eoopg(Eoo py+E1p+E2 )
E E +E. +Eq1,,E: +

C3M — ooM( 1m2m zMVI1M) 1M zM(ﬂ1M 7721\4) (54C)

2771M7]2M(EOOM+51M+E2M)

2
J(EooM(EanZM+EZMnlM)+E1MEZM(771M+772M)) _4‘EooMElMEZMnanZM(EooM+E1M+EZM)

M anMnZM(EooM+ElM+EZM)

(54d)

Ey yE +
CSM _ EayEay (M1 +72p) (54¢)
N1pM2p(E1prtEzp)

1.2.3 Generalized Maxwell model with n elements

The mechanical resistance of the GM model, in the frequency domain, is defined as

follows:

7 = (Buyy + By Lt (55)

i= 1ELM+771M

The differential equation of the GM model, using Laplace transforms, presents the

following form:

Bdo A cd?c @ Dd3¢ yd" ¢ zd"%

o _ _ _ — =

+Adt+Adt2+Adt3+ +Adt"1+Adt”
bde @ cd? dd3e yd®*le zd"e

Seto— oo 2 i 56
+Adt+Adt2+Adt3+ +Adt"1+Adt” ( )

The values of the constants in (56) can be found in Appendix A.1.2.

The relaxation modulus, the storage modulus and the loss modulus for the GM model are

defined by the next equations:
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t
V= (1-Sm(1-e75)) (57)
6" = Go(1-2 (52=)) (58)
GII — GO n PiTiw (59)

=1 1+‘ri2(u2

where

—_ Ewm
Pi = gyt E (60b)
T =g (60c)
2 Plots

It is possible to plot the relaxation modulus vs time, or the creep compliance vs time, for
every viscoelastic model. Also, it is possible to plot storage/loss modulus/compliance and
phase angle in the frequency domain. These plots, for each viscoelastic material model,
related to a differential equation (27, 56), have some characteristics that can be

determined and can allow to recognize the kind of model one is dealing with.

It is worth noting that the plots for GKV and GM models with n = 1 and with n = 2 are
the same, as a function of either relaxation or creep coefficients, regardless of whether
they are subsequently expressed as a function of the creep or relaxation coefficients. The
reason is that although the dispositions of springs and dashpots are different for each
model, the general expression for moduli and compliances for this number of terms is

identical, expressed as relaxation or creep coefficients, respectively.
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In order to draw the plots, first of all the mechanical parameter in question is represented

as a function of time or frequency. So, a general plot is represented without any fixed

values in both axes. The coefficients of the equations are expressed in a general way.

Once the plot is represented, the maximums and minimums are found with the first order

derivative of the mathematical expression, set equal to zero (appendix A.2.1.1 and

A.2.2.1). The inflexion points are found with the second order derivative of the previous

mathematical expression also set equal to zero (appendix A.2.1.2 and A.2.2.2).

Relaxation moduli and creep compliances have not either maximums, nor minimums or

inflexion points. In these cases, the characteristic points are just at zero and at infinite

time.

It is important to emphasize that, for models of order greater than two, the determination

of the relative extrema and inflexion points depends on the obtaining of the roots of a

polynomial of grade greater than four. This avoids getting analytical expressions for these

models.

2.1 Modelswithn=1

Figure 7 shows a sketch of the characteristic plots of relaxation modulus and creep

compliance along the time (equations 6a, 7a, 34, 39). Both curves are monotonic. The

initial values and the limit values for time tending to infinity are characteristics of the

model.
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Figure 7: Relaxation modulus/creep compliance vs time:
characteristic values. Models with n = 1.

Figure 8 (top, left) shows the plot of the storage modulus vs frequency (equations 9a, 35):
there is one inflexion point and the limits at infinity are also determined. The plot of the
loss modulus vs frequency (equations 9b, 36) has also one inflexion point and one
maximum (Fig. 8, top, right). The loss modulus tends to zero when the frequency tends
to infinity. The plots of the storage and loss compliances (equations 8a, 8b, 40, 41) have

a quite similar structure (Fig. 8, bottom).
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Figure 8: Storage/loss modulus (top) and compliance (bottom)
vs frequency: characteristic values. Models with n = 1. The
horizontal axes are in logarithmic scale.

tan o

Figure 9: Phase angle vs frequency: characteristic values. Models with n
= 1. The horizontal axes is in logarithmic scale.

Finally, figure 9 plots the phase angle along the frequency (equations 10, 38). This plot
22
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has also a maximum and one inflexion point (and another theoretical one for frequency

zZero).

2.2 Plotswithn=2

The general plots between the different mechanical properties versus time or frequency

are represented in figures 10-12, for the cases when there are two summations in the

corresponding Prony series. Figure 10 shows the relaxation modulus and the creep

compliance versus time (equations 13, 15, 45, 49). Both curves are monotonic and have

a simple value when time tends to infinity.

Y

n Relaxation modulus i Creep compliance

O ki c W

\iﬁﬂl—Pl \f

—p2) u

Y
L d

Figure 10: Relaxation modulus/creep compliance vs time:

characteristic values. Models with n = 2.

From the expression of the storage modulus (equations 18, 46), one can calculate the limit

values at frequency zero and tending to infinity. The function is strictly increasing so

there are no relative extrema. There are three inflexion points (Fig. 11, top, left) that can

be calculated by setting the second derivative of equations 18 and 46 equal to zero. This

leads to the fourth grade equation (A.10 found in appendix A.2.2.2, set equal to zero).
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9 titd(p1+p2)—p1TE+Do 7]

44 3 4 3(P1T%+P2T§ )—p175-p27%) 2 4 (T%—Tg)(m‘f%—m‘f%) .
ve 37272 2 2 ve 2.2 2 2 X 14 2 2
1313 (p173+p27%) 1313 (p173+p27%) T172(P17T2+D2771)
plT%-}-pZT% _— (61)

37173 (P173+P2T)

where x = w?. This equation can be solved in explicit form. The resulting frequencies

for the inflexion points are (appendix A.3.2):

Winfli = v Xi+1 ,i=1,2,3. (623.)

Gi,nﬂi = GO (1 + plz + Pz ) (62b)

2 2
1470 1+4T30ina 2

,a Storage modulus h' & Loss modulus
Infl. 2
infl. 3
Infl. 1
¥o(l—p: —p2)
- -
ey L
c Storage compliance d L ]
F Y 055 compliance
Py
i ‘,..-r-"'fu“ +g1 +4g2)
Infl. 1 nfl. 2
Infl. 3
Infl. 3 /
Infl. 1
Infl 2
.IFI u
@ w

Figure 11: Sketches of typical graphs of storage/loss modulus (top) and
compliance (bottom) vs frequency for models with n = 2. The arrows mark the
inflexion points. The horizontal axes are in logarithmic scale.
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The loss modulus (figure 11, top, right) has two maximums and one minimum, with three
inflexions points (equation A.6 in appendix A.2.2.1). The maximums and the minimum
can be localized by deriving the expression (19, 47) and their frequencies are the roots of

the cubic equation:

pl‘rl‘rﬁ(21§—T§)+p2‘cz‘rf(2‘r§—‘r§)xz +p171(7§—215)+p21’2(T%—ZT%) _ P1T1tPaty

3
x> + =
riri (p172+D271) riri (p172+D271) riri (p172+D271)

(63)

where x = w?. This equation can be solved in explicit form. The resulting frequencies

are (appendix A.3.1):

Wmax1 = VX1 < Wmax2 = VX3 (648.)
P1T1 W i P2l W i .

I,I;aXi =Gy 2 rznaXl + 2 r;aXl =12 (64b)
1+T{ Wk 1+T5 WAk

Wmin = VX2 (64C)

T{ Wi Ty Wi

Ginn = Go (223min 4 Perzomn ) (64d)

1+71Whin 1+75Whin

From (19, 47), using equation A.11 (in appendix A.2.2.2) set equal to zero, where x =

w?, one obtains the following expression:

3((12-13)(P1T2—P2T 3((173+713) 37, T, (D1 T2+P2T
4 (@Z-5) (172 z1))x3+((11 5)—3717T2(P172 z1))x2+

X
315 (D1 T2+D2T1) 7373 (P1T2+P2T1)
P1Ti+P273 -9 13T (P1T1+P2T2) P1T3+p273 =0 (65)
7375 (P1T2+D2T1) 1313 (P1T2+D2T1)

The inflexion points correspond to the roots of equation 65. This leads (see appendix

A.3.2) to the next frequencies for the three inflexion points (Fig. 11, top, right):

We'infl1 = VX2 Wg'inflz = /X3 5 Wg'inflz = VX4 (66a)
P1T1W 11, : D2ToWArr; : .

6" (g ) = Go (e POl ) =103 (66b)
1+74 Wl infl i 1+7, Wellinfl i
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where the roots of x;, i = 2,3,4 have explicit expressions (equations A.20-22); note that
the first root, x; (A.19) is always negative. Figure 11 (bottom, left), shows the sketch of
a typical graph for the storage compliance. This graph is defined by three inflexion points.
By deriving (21, 50) twice (A.12, in appendix A.2.2.2), and setting equal to zero, the

following polynomial equation is obtained:

INA%(q1+q2)—q1 A% +q2A% 3(q1A%+q213 )—q1A5—q, A2 AZ-7% A2—qy23
x4+( 122(q1+92)—q125+q, 1)x3+ (CI1 114> z) q1142—A42 1)x2+( 1 z)(fh 1—42 2)

32325(q145+q22%) 2523(q1A5+q243) A125(q145+q22%)
qyl%"“]zl% —_ 67
14)'4- ).2 12 - ( )
3A145(q1A2+4247)

where x = w?. Solving this equation (see appendix A.3.2), the inflexion points of the

graph are:

Wilinfl1 = VX2 Wpfinflz = /X3 Wlinflz = VX4 (68a)
(o)) = <1+ “___ ) =123 68b
]( ]’mfl) Jo 1+/112w1'inf1i2 1+’122“’1’inf1i2 (68b)

Figure 11 (bottom, right) is the loss compliance vs frequency. The curve has two
maximums, one minimum and three inflexion points. Deriving the equations 22 and 51

(see A.8, appendix A.2.2.1), and setting equal to zero, the resulting polynomial equation

is as follows:
x3 + qllz(2}\%—}\%)4'(]211(2}\%—}\%)xz + qlll(}L%—z}L%)‘Fquz(}L%—Z}L%) _ q1/11+q212 —
A3A3(q122+42241) A323(q122+4221) A3A3(q122+4221)
(69)

where x = w?. This allows finding the maximums and minimum. The resulting values

are:
Wy max1 = VX1, Wp''min = VX2; W)'imax2 = /X3 (70a)
QA1 11 Q220 11
" _ J i J i R ;
J" (@) =Jo <1+/_112w]”i2 + 1+122w]”i2) ;1 = max1, min, max2 (70b)
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With a second derivation of equations 22 and 51, (A.13, appendix A.2.2.2) one obtains:

3((A2-23)(q112—q21 3((q1A3+q223)-31115(q1 A2 +q2 1
x4+ ((A3-23)(q142-q> 1))x3 n ((q123+4223)-31122(q1 22 +4q2 1))x2 n

2222(q1A2+q211) 2323(q122+q221)
G A3+ 23-92323 (@ Aa+aads) G _ (71)
2323(q122+q2241) A323(q122+4221)

where x = w?. The inflexion points are:

Wy'infll = VX253 Wyllinflz = /X35 Wy'infl3 = VX4 (72a)
]u( ) J Qg Q2ha@prrig =123 (72b)
Wqrr; ) = =
J""infl i 0 1+}\%w;”inﬂi 1+}\%w;”inﬂi ] i)

The typical curve of the tangent of the phase angle vs frequency has also two maximums,
one minimum and three inflexion points (figure 12). The first derivative of equations 23

and 52 leads to the polynomic equation (where x = w?):

tan &

Infl. 2

Infl. 3

Infl. 1

Y

L1

Figure 12: sketch of a typical graph of the tangent
of phase angle vs frequency for models with n = 2.
The arrows mark the inflexion points. The
horizontal axes are in logarithmic scale.
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P172 (273 -5 (1-p1))+P271 (273 -T2 (1-D2)) +P102T1 T2 (11 +72)) X2 +
‘[1‘[2(1)1‘[2+p2‘[1)

x3 +

P1T3+D2T3 —2T1T2(P1T2(1-p1)+P2T1 (1-P2) ) +P102 (T2 (312, —T1)+73 (311 -T2))
T1T2 3(P1T2+P271)

x +

P1D02(T1+72)—p171(1-p1)—p272(1-p3)
=0 7
313 (P1T2+D2T1) (73)

The maximums and minimum are:

Wian § maxl — VX1; Wtan§ min — VX2; Wtan§ max2 — +/ X3 (74a)

P1T1Wtan§i , P272@tanéi
1+12 w?2 + 1+tiwl .
1 2™tand i

tan § (Weans ) = | — sl —=1a ; i = max1, min, max2 (74b)

2, 2
1+ Wtansi

2,2
1+12W¢ansi

The second derivative of equations 23 and 52 gives the following equation:

3(1172(P171 (1+D2)+D2T2(14P1)) - T3 P2 (1-D2) 1301 (1-p1)) X3 +
1275 (p1T2+P271)

x* +

30 3p1(1-p2)+723p2 (1-p ) +T172(P172(4p1 +3p2—3) +p2 71 (4p2 +3p1—3)) X2 +
T1T2(p1T2+p2T1)

[Tfm(1—pz)2+T§pz(1—p1)2+p1pzrlrz(1§(1—pz)+T§(1—p1)) n
313 (P1T2+D2T1)

p171(p2(10+p1—p2)—9(1-p1)) +p272(p1 (10+p, —p1)-9(1— Pz))] +
T1T2(p1T2+P2T1)
+ 1 77 (1— +po75(1— + T1T2(T1+7T
3(P1 p2—1)((P173(1—p2)+P273 (1-p1))+P1P2T1 T2 (T1472)) -0 (75)
T1T2(p1T2+P2T1)
The inflexion points are:
Wian §infll = VX2 5 Wiansinfl2 = A/ X35 @Wtansinfl3 = VX4 (76a)
P1T1Wtan §infli , P2T2%tan §infli
141202, <. -+1+r§w2 e
tan 8 (@eansinn o) = | otapginns WEapsnac | =123 (76b)

1-

1""':1(“’tar1 §infli 1""[2("tan §infli
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Relationships between generalized Kelvin-Voigt and Maxwell models and

relaxation and creep coefficients.

The equivalence of generalized Kelvin-Voigt and Maxwell models of the same order is

well known. Nevertheless, unfortunately, it is not easy to find the algebraic expressions

of this equivalence. In this section, these expressions are determined and presented in a

closed form, up to second order models. Moreover, the relaxation coefficients for the

moduli equations and the creep coefficients for the compliance equations are also found.

Furthermore, explicit formulas are presented for the parameters of the material models

(GKV and GM) from relaxation or creep coefficients. These relationships, up to second

order models, can be found in Appendix B.1 and B.2.

In the diagram of figure 13, an application of the formulas developed in this work is

shown, by way of example. In this case, starting from a Dynamic mechanical analysis

(DMA) test, the parameters of the relaxation model can be obtained. This is carried out

using the equations and their corresponding expressions in appendix A. From these

relaxation parameters, by means of the interconversion expressions of the table shown in

appendix B, the parameters corresponding to the creep test can be obtained. In addition,

with the same table, the parameters of the material models are obtained, whether they are

of the generalized Maxwell model or the generalized Kelvin-Voigt model.
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Figure 13 — Flowchart of an application: obtaining the creep and relaxation
parameters, as well as the GM and GKV material models, from a DMA test.
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4 Conclusions

The GKV and GM models of the same order are related to each other. These relationships
can be helpful for the practitioner engineer, because computational simulators are
implemented with just some specific combinations of springs and dashpots. The explicit
relationships between the GKV and GM models, up to order two, are found. Moreover,
explicit formulas are found for the position of the characteristic points (maxima, minima

and inflexion points) of the storage and loss compliances/moduli.

The interconversion formulas for models of order 1 and 2 have also been developed. The
complete set of interconversion formulas between GKV, GM, relaxation coefficients and

creep coefficients have been presented.

Therefore, the practitioner engineer can easily have a simple guide to change from one

model to another if necessary.
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Appendix A
A.1 Constants of differential equations.

A.1.1 Constants of equation (27) in the text
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A nj nj
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Z_EOK i=1an

A.1.2 Constants of equation (56) in the text.
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A.2 Derivatives of Prony series

In this appendix, the mathematical expressions of the first and second order derivatives

of Prony series are shown.

A.2.1 Derivatives as a function of time
A.2.1.1 First order derivatives

Mathematical expressions to calculate maximums or minimums in relaxation modulus
and creep compliance as a function of time, using Prony series, are shown in equation
A.l and A.2, respectively.

t

t
=JoZitiye M (A2)

A.2.1.2 Second order derivatives

Mathematical expressions to calculate inflexion points in relaxation modulus and creep
compliance as a function of time, using Prony series, are shown in equation A.3 and A.4,

respectively.

t

d2 —-
021 1_e ti (A3)

d

= JoThaizze % (A4)

A.2.2 Derivatives as a function of frequency

A.2.2.1 First order derivatives
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Mathematical expressions to calculate maximums or minimums in storage modulus, loss

modulus, storage compliance, loss compliances and tangents of the phase angle as a

function of frequency, using Prony series, are shown in equations A.5-9, respectively.

piTiw
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A.2.2.2 Second order derivatives

(A5)

(A.6)

(A7)

(A.8)

(A.9)

Mathematical expressions to calculate inflexion points in storage modulus, loss modulus,

storage compliance, loss compliances and tangents of the phase angle as a function of

frequency, using Prony series, are shown in equations A.10-14, respectively.
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A.3 Roots of polynomial equations

In this appendix, the resolution of cubic and quartic polynomial equations is presented.

A.3.1 Roots of the cubic equation X3 +ax*+bx+c=0

4 2
1 (-2"3+v3i)(a?-3b)+2°/3(~1+V3i)H?~4Ha
X, = E( - ) (A.15)
4 2
1 (2"/3(=14v3i)(a?-3b)-2"/3(1+V3i)H? —4Ha
X, = E( ) ) (A.16)
4 2
1 (2*/3(a?-3b)+2%/3H2-2H
Xy = g< (a )H “) (A.17)
where

H =V —2a3 + 9ab — 27c + 3V3V—a?b? + 4b3 + 4a3c — 18abc + 27¢2  (A.18)

A.3.2 Roots of the quartic equation x* + ax3 + bx* +cx +d =0

__3a+V3Hs ﬁ. 2 __2H3 3 3v3(a3-4ab+8c)
X === \/Ba 8b T, 4H, + — m (A.19)
_ 3a+v3 Hy @_ 2 __2H3 3 3v3(a3-4ab+8c)
Xp=———F—+ \/3a 8b T 4H, + — m (A.20)
_ 3a—V3 H, _ @_ 2 __2H3 3 3v3(a3-4ab+8c)
X3 =———— "1, \/3a 8b T 4H, + — m (A.21)
__3a—V3H, ﬁ_ 2 __2H3 3 3v3(a3-4ab+8c)
Xy =———F—+ \/Ba 8b T, 4H, + BT E— (A.22)
where
H, = —4(b? — 3ac + 12d)3 + (2b3 — 9b(ac + 8d) + 27(c? + a?d))? (A.3)
H, = 2b3 — 9abc + 27c¢? + 27a*d — 72bd + /H,; (A.24)
H; = V2 (b? — 3ac + 124d) (A.25)

36



Post-print — Available in https://dau.url.edu/

This is a post-print (final draft post-refeering)

Published in final edited form as
IQS Albert Serra Aguila, Josep M. Puigoriol Forcada, Guillermo Reyes Pozo and Joaquin Menacho. Viscoelastic models revisited:
characteristics and interconversion formulas for generalized Kelvin—Voigt and Maxwell models.
En: Acta Mechanica Sinica, 2019. Vol.35 no.6, pp.1191-1209.

Disponible a: https://doi.org/10.1007/s10409-019-00895-6

H, = J3a2 —8b + 3 + 3321, (A.26)
2
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Appendix B

B.1 Relationships withn =1

GM parameters relaxation creep coefficients GKYV parameters
coefficients
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B.2 Relationships with n =2

Albert Serra Aguila, Josep M. Puigoriol Forcada, Guillermo Reyes Pozo and Joaquin Menacho. Viscoelastic models revisited:
characteristics and interconversion formulas for generalized Kelvin—Voigt and Maxwell models.

GM parameters relaxation coefficients creep coefficients par(zinf(\a{ers
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Table 2: relationships for models with n =2
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With the auxiliary constants:

a) Case “GM parameters known” (1% row in the table) (equations 54 in the text):

1
C,, =—
1pm EooM
Co —=_ E1p+Ezy
2M EOOM(E°°M+E1M+E2M)
a
C3 =

M znanZM(EooM+ElM+E2M)

\/az—4E°°ME1ME2M7]1M172M(E°°M+E1M+E2M)

C4_ =

M 2771M7]2M(EOOM+51M+EZM)

C _ E1pE2 0 (M1pg+M2p0)
SM NipM2p (E1pr+E2pp)

where

a = EOOM(EanZM + EZMnlM) + E1ME2M(771M + 7721\/[)

b) Case “Relaxation coefficients known” (2" row in the table):

1
Cp=—t
IR 7 vy(1-p1-p2)
P1tD2
Cy, = — 2tz
2R Yo(1-p1-p2)
C3R = B
2T1T2

C, = VB2—4717,(1-p1-D2)
b =

R 2T1T2
C. = P1T1+D2T2
SR ™ 1,7,(p1+p2)

where
B=1.(1-pz) +72(1—py)
¢) Case “Creep coefficients known” (3" row in the table):

1

C, =—2
e ™ jo(1+qi+az)

— q1tqz
2¢ 7 Jo(1+q1+42)
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§=2(1+qp)+24,(1+qy)

d) Case “GKV parameters known” (4" row in the table) (equations 17 in the text):

ClK =

CZ =

C3 =

Cyp =

CSK =

where
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