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Abstract: The glass transition temperature (Tg) of room-temperature curing epoxy adhesives is
limited by the temperature used during curing. It is already known that the excess of epoxy groups
can undergo a homopolymerization reaction initiated by tertiary amines at elevated temperatures,
resulting in an increase in Tg. However, there is no evidence of this reaction occurring at room
temperature. In the present work, the influence of formulation stoichiometry on Tg and mechanical
properties was investigated. Dynamomechanical, rheological and mechanical properties of epoxy
adhesives were determined by DSC, DMA, rheometer and tensile and shear strength testing. It has
been probed that an excess of epoxy resin combined with a complex curing system composed of a
primary amine, a polymercaptan and a tertiary amine leads to an increase in Tg up to 70 ◦C due
to the homopolymerization reaction that takes place at room temperature. However, as the excess
of epoxy resin is increased, gel time becomes slower. Regarding mechanical properties, it has been
proven that an excess of epoxy resin provides a tighter and tougher material but maintains flexibility
of the stoichiometric formulation, which is meant to enhance the resistance to impact-type forces,
thermal shock and thermal cycling.

Keywords: epoxy adhesives; glass transition temperature; room-temperature curing; mechanical
properties; stoichiometry

1. Introduction

Epoxy resin is a type of reactive prepolymer and polymer containing epoxide groups.
This material has many industrial applications for a variety of purposes [1–6]. It possesses
higher mechanical properties and more thermal and chemical resistance than other types
of resin [7,8]. These resins react either with themselves in the presence of catalysts, or with
many co-reactants such as amines, phenols and thiols, among others [9,10]. These materials
are of great importance in the adhesives field. Epoxy resins can be modified and formulated
with a wide variety of additives, giving rise to a very versatile family of adhesives [11].
Nowadays, a wide variety of epoxy adhesives that meet different requirements are available
in the market.

Since epoxy adhesive systems are mainly used for structural purposes, one of the
properties to be considered is the glass transition temperature (Tg). Tg is the temperature
at which the transition between the glassy and rubbery state of amorphous solids occurs.
Above this value, the polymer behaves like a rubbery material, and below this value, the
polymer chains have relatively low mobility, and the material becomes hard and rigid.
Thus, Tg it is considered an extremely useful yardstick for the reliability of this type of
structural adhesive.

There are several factors contributing to Tg of epoxy adhesives: the chemical struc-
ture of epoxy resin, the type of hardener, the degree of cure and the curing conditions
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(time and temperature (Tcure)) [12–19]. Many studies have been conducted to evalu-
ate the relationship between Tcure and Tg [20–23]. Some have been focused on the
time–temperature–transition (TTT) diagrams of thermoset systems, particularly those
cured by the step polymerization mechanism [24–28]. Oleinik [29] on the other hand,
reported that in aromatic-amine epoxy systems, the curing temperature and the glass
transition temperature can be related by Equation (1). Their studies concluded that the
resulting Tg could not be more than 15–30 ◦C higher than Tcure.

Tg ≈ Tcure + 0.5 ∆Tg (1)

This work led to a long-established rule of thumb that Tg cannot exceed Tcure by more
than 25 ◦C. That is the reason why commercial room-temperature curing epoxy adhesives
always have a Tg limited to 40–50 ◦C. On the other hand, high-temperature curing epoxy
adhesives can reach values up to 160 ◦C [30]. The higher the Tg, the better performance for
these structural adhesive systems; however, high curing temperature cannot be applied to
every substrate. Consequently, the scientific challenge consists of formulating an adhesive
system that can achieve high Tg when curing at room temperature.

Regarding this matter, Fernandez-Francos et al. studied a new dual-cure system based
on epoxy/thiol formulations catalyzed by tertiary amines [31]. The study concluded that
in the presence of excess epoxy groups, thiol-epoxy condensation took place in the first
stage of curing, while excess epoxy homopolymerized in the second stage once the thiol
groups were depleted, thus increasing the Tg of the formulation. However, all these studies
were carried out by high-temperature curing or postcuring processes. Therefore, there
is no evidence to conclude whether this polymerization process also takes place at room
temperature.

In order to study a possible approach to increase the Tg of room-temperature curing
epoxy adhesive formulations without the use of an external heat source, a new formulation
has been proposed. This new formulation consists of a on a nonstoichiometric epoxy
adhesive using a complex curing based on a commercial adhesive developed by Dr. Sails®.

2. Materials and Methods
2.1. Chemicals

Diglycidyl ether of bisphenol-A (DGEBA) (Araldite® PY 302-2, Huntsman, Pamplona,
Spain) with an equivalent molecular weight of 170 g/eq was used as the base epoxy
resin. It is a highly crystallization-resistant, low-viscosity liquid epoxy resin with superior
chemical resistance. It presents a viscosity between 6500–8000 mPa-s−1 and a density of
1.17 g/cm3. The basic chemical structure of epoxy resin used in this investigation is shown
in Figure 1. Aradur® 90, Hunstman, Pamplona, Spain polymercaptan with tertiary amine
was also supplied by Huntsman. It presents a viscosity between 10,000–160,000 mPa.s−1,
a H+ active equivalent of 200 g/Eq and a gel time against Araldite GY 302-2 of 4–5 min.
Ethylenediamine was purchased from Aldrich. All chemicals were used as received.
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Figure 1. Chemical structures of epoxy prepolymer. Figure 1. Chemical structures of epoxy prepolymer.

Dr. Sails®, Sailing Technologies, Barcelona, Spain commercial adhesive was supplied
by Sailing Technologies S.L. Dr. Sails® is a commercial two-component adhesive capable of
curing underwater. The main chemical in component 1 is Araldite PY 302-2® and the main
chemical in component 2 is Aradur 90®. It was designed to be used in a 1:1 proportion.
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2.2. Formulation and Cure Schedules

Adhesive formulations were prepared by mixing Dr. Sails® commercial epoxy adhe-
sive epoxy at fixed ratios shown in Table 1.

Table 1. Formulations and cure schedules.

Sample Weight Ratio Epoxy/Crosslinker Cure Time

D01 (Reference) 1:1 r.t. (1 week)
D02 1.5:1 r.t. (1 week)
D03 2:1 r.t. (1 week)
D04 4:1 r.t. (1 week)

2.3. Kinetic Analysis of the Curing Process Using Differential Scanning Calorimetry (DSC)

Calorimetric studies were carried out using Mettler Toledo DSC equipment, Barcelona,
Spain. Samples were analyzed using perforated aluminum capsules under an inert at-
mosphere (N2) with a flow rate of 50 mL/min. Dynamic experiments to determine the
curing enthalpies of the prepared mixtures were carried out at a heating rate of 10 ◦C/min
between 30 ◦C and 300 ◦C.

2.4. Curing Time Analysis

Curing time characterization was made with a AR2000 rheometer (TA Instrument),
Cerdanyola, Spain using a 20 mm steel plate. The gap was set at 300 microns. An oscillatory
procedure was applied using a constant strain of 5% at 1 Hz. Analyses were carried out
isothermally at 25 ◦C.

Gel time was determined as the crossing between the G′ and G′ ′ curves; at this point,
the system stores the same or a very similar amount of energy to that dissipated.

2.5. Viscoelastic Properties of the Cured Material

A TA instrument dynamic mechanical analyzer (DMA) Q800 apparatus (TA Instru-
ments, Cerdanyola, Spain) was used in this study, along with a 3-point bending clamp.
Tested specimens were rectangular-shaped, 60 mm × 15 mm × 2 mm. The linear vis-
coelastic region (LVR) of the material was determined by an amplitude sweep test, from
10 to 60 µm at a constant temperature of 25 ◦C. Tg was determined using a temperature
ramp test from 30 to 100 ◦C with a heating rate of 5 ◦C/min, an amplitude of 30 µm and a
frequency of 1 Hz. The tan δ peak was used as a viscoelastic parameter to calculate the Tg
of each formulation.

2.6. Tensile Testing

Tensile tests were conducted following ASTM D638 standard protocol [32] and using
ZwickRoell Z030 equipment, Sant Cugat del Vallès, Spain. Complete curing of the adhesive
was achieved by keeping the samples at room temperature for one week. Probes were
prepared with a 4 mm thickness. Results of maximum tensile strength were reported.

2.7. Shear Testing

UNE-EN 22643 test standard protocol [33] was followed for shear testing. Assays
were performed using ZwickRoell Z030 equipment, Sant Cugat del Vallès, Spain. Complete
curing of the adhesive was achieved by keeping the samples at room temperature for one
week. The adhesive thickness of the bonded specimens was 1.5 mm. Results of tensile
shear strength were reported.

3. Results and Discussion

Before studying the curing mechanism, the curing behavior of epoxy was analyzed
by FTIR. The FTIR spectra are presented as Supplementary Information (Figures S1–S4).
Briefly, two characteristic absorptions of the oxirane ring of epoxy were observed in the
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range between 3500 cm−1 and 700 cm−1. The first one, at 911 cm−1, is attributed to the C-O
deformation of the oxirane group. The second band is located at approximately 3057 cm−1

and is attributed to the C-H tension of the methylene group in the epoxy ring, although it
is also related to asymmetrical and symmetrical C-H stretch of aromatic ring. The presence
of these two peaks at the spectre states that the epoxy resin has not reacted yet. However,
once the epoxy resin starts curing, the oxirane ring concentration decreases, and this was
observed in the spectra as the decrease in the two characteristic absorption bands until all
oxirane rings are depleted, as can be seen in Figures S2–S4.

3.1. Kinetic Analysis of Curing Process by DSC

Kinetic analysis of the reactions that take part in the studied systems were analyzed by
DSC. The aim of the present study is to develop a complex curing system able to generate
enough heat to activate the homopolymerization of the excess of epoxy resin.

Stoichiometric mixtures of Araldite®PY302-2 epoxy resin with ethylenediamine on
one hand and Araldite®PY 302-2 epoxy resin with Aradur®90 on the other hand were
studied in order to determine characteristic exotherm peaks of epoxy-amine and epoxy-
thiol crosslinking reactions. As shown in Figure 2, the first exothermic peak (A) that appears
around 80 ◦C corresponds to the crosslinking reaction between epoxy and thiol crosslinker.
A second exothermic transition (B) was observed at around 120 ◦C, probably due to the
presence of tertiary amines in the curing system. However, it seems that the heat released
by this reaction is negligible compared to the heat released in the first peak; thus, it can
be considered a secondary reaction. The crosslinking reaction described by the epoxy
formulated with amine crosslinkers (curve (C) in Figure 2) presents a significant exothermic
maximum peak at around 120 ◦C.

Polymers 2023, 15, x FOR PEER REVIEW 4 of 12 
 

 

Briefly, two characteristic absorptions of the oxirane ring of epoxy were observed in the 

range between 3500 cm−1 and 700 cm−1. The first one, at 911 cm−1, is attributed to the C-O 

deformation of the oxirane group. The second band is located at approximately 3057 cm−1 

and is attributed to the C-H tension of the methylene group in the epoxy ring, although it 

is also related to asymmetrical and symmetrical C-H stretch of aromatic ring. The presence 

of these two peaks at the spectre states that the epoxy resin has not reacted yet. However, 

once the epoxy resin starts curing, the oxirane ring concentration decreases, and this was 

observed in the spectra as the decrease in the two characteristic absorption bands until all 

oxirane rings are depleted, as can be seen in Figures S2–S4. 

3.1. Kinetic Analysis of Curing Process by DSC 

Kinetic analysis of the reactions that take part in the studied systems were analyzed 

by DSC. The aim of the present study is to develop a complex curing system able to gen-

erate enough heat to activate the homopolymerization of the excess of epoxy resin. 

Stoichiometric mixtures of Araldite®PY302-2 epoxy resin with ethylenediamine on 

one hand and Araldite®PY 302-2 epoxy resin with Aradur®90 on the other hand were stud-

ied in order to determine characteristic exotherm peaks of epoxy-amine and epoxy-thiol 

crosslinking reactions. As shown in Figure 2, the first exothermic peak (A) that appears 

around 80 °C corresponds to the crosslinking reaction between epoxy and thiol cross-

linker. A second exothermic transition (B) was observed at around 120 °C, probably due 

to the presence of tertiary amines in the curing system. However, it seems that the heat 

released by this reaction is negligible compared to the heat released in the first peak; thus, 

it can be considered a secondary reaction. The crosslinking reaction described by the 

epoxy formulated with amine crosslinkers (curve (C) in Figure 2) presents a significant 

exothermic maximum peak at around 120 °C. 

 

Figure 2. Curing schedule analysis by DSC for epoxy-amine and epoxy-thiol. 

Once the curing profiles of the reactions involved in the curing of epoxy systems were 

described and identified, different formulations (D01, D02, D03, D04) were studied in or-

der to determine differences in between stoichiometric and nonstoichiometric formulation 

reactions (Figure 3). 

Figure 2. Curing schedule analysis by DSC for epoxy-amine and epoxy-thiol.

Once the curing profiles of the reactions involved in the curing of epoxy systems were
described and identified, different formulations (D01, D02, D03, D04) were studied in order
to determine differences in between stoichiometric and nonstoichiometric formulation
reactions (Figure 3).

The results obtained showed the different reactions occurring for each tested for-
mulation. When the ratio between the crosslinker’s active groups and epoxy groups is
stoichiometric (D01), two separated reaction peaks are detected. The first one corresponds
to the reaction between the epoxy and thiol crosslinkers, and the second to the reaction with
the amine crosslinkers. As the epoxy ratio in the formulation increases, the appearance
of a third peak is detected at around 130 ◦C, overlapped with the amine curing peak.
This phenomenon indicates that a third reaction is taking place during the curing, and
such a reaction can only be due to the homopolymerization of the excess of DGEBA (as
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indicated in Scheme 1). There are no other compounds in the formulation able to give rise
to a reaction.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. Curing schedule results by DSC analysis. 

The results obtained showed the different reactions occurring for each tested formula-

tion. When the ratio between the crosslinker’s active groups and epoxy groups is stoichio-

metric (D01), two separated reaction peaks are detected. The first one corresponds to the reac-

tion between the epoxy and thiol crosslinkers, and the second to the reaction with the amine 

crosslinkers. As the epoxy ratio in the formulation increases, the appearance of a third peak is 

detected at around 130 °C, overlapped with the amine curing peak. This phenomenon indi-

cates that a third reaction is taking place during the curing, and such a reaction can only be 

due to the homopolymerization of the excess of DGEBA (as indicated in Scheme 1). There are 

no other compounds in the formulation able to give rise to a reaction. 

Initiation 

 
Propagation 

 
Chain transfer 

 
Termination 

Figure 3. Curing schedule results by DSC analysis.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 12 
 

 

Once the curing profiles of the reactions involved in the curing of epoxy systems were 

described and identified, different formulations (D01, D02, D03, D04) were studied in 

order to determine differences in between stoichiometric and nonstoichiometric 

formulation reactions (Figure 3). 

 

Figure 3. Curing schedule results by DSC analysis. 

The results obtained showed the different reactions occurring for each tested 

formulation. When the ratio between the crosslinker’s active groups and epoxy groups is 

stoichiometric (D01), two separated reaction peaks are detected. The first one corresponds to 

the reaction between the epoxy and thiol crosslinkers, and the second to the reaction with the 

amine crosslinkers. As the epoxy ratio in the formulation increases, the appearance of a third 

peak is detected at around 130 °C, overlapped with the amine curing peak. This phenomenon 

indicates that a third reaction is taking place during the curing, and such a reaction can only 

be due to the homopolymerization of the excess of DGEBA (as indicated in Scheme 1). There 

are no other compounds in the formulation able to give rise to a reaction. 

Initiation 

 
Propagation 

 
Chain transfer 

 

 

Polymers 2023, 15, x FOR PEER REVIEW 6 of 12 
 

 

Termination 

 

Scheme 1. Homopolymerization of epoxy excess by a tertiary amine. 

The overall heat released during the whole curing process of D01, D02 and D03 

formulations is higher than 170 J.g−1, except for the D04 formulation, which does not even 

reach the 100 J. g−1 (Table 2). The higher the ratio of DGBEA/crosslinker, the lower the heat 

released during the reaction; thus, not enough temperature is achieved for 

homopolymerization. When DGEBA is too much in excess, the system diffuses the 

generated heat, and despite still having quite a number of epoxy groups to react, the 

achieved temperature is not enough. However, D03 formulation seems to exhibit a perfect 

balance to release enough heat to produce a homopolymerization reaction. 

DGEBA epoxy resin, crosslinkers and expected networks formed after stoichiometric and 

nonstoichiometric formulations reactions are shown in Figure 4. In case, there are reactive 

groups left after the room-temperature curing stage; the postcuring of the adhesive would 

enhance the mechanical properties of the material. Otherwise, the cured formulation would 

remain unaffected, keeping similar mechanical properties and the same Tg. 

 

Figure 4. DGEBA epoxy resin, crosslinkers and expected network structures after the stoichiometric 

and nonstoichiometric curing process. 

Table 2. DSC analysis results. 

 First Peak Second Peak 

Sample ΔHexo (J.g−1) T°max (°C) ΔHexo (J.g−1) T°max (°C) 

D01 127.2 78 74.3 106 

D02 99.3 79 79.4 107 

D03 76.7 77 10.,7 124 

D04 48.8 77 49.5 128 

3.2. Rheological Analysis of Curing Process 

The differences detected during the curing process by thermal analysis could imply 

differences in the rheology of the product, which might affect aspects such as wettability, 

sagging or working time, among others. Thus, it is necessary to monitor the rheology of 

the new formulations while curing. 
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The overall heat released during the whole curing process of D01, D02 and D03 for-
mulations is higher than 170 J·g−1, except for the D04 formulation, which does not even
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reach the 100 J·g−1 (Table 2). The higher the ratio of DGBEA/crosslinker, the lower the
heat released during the reaction; thus, not enough temperature is achieved for homopoly-
merization. When DGEBA is too much in excess, the system diffuses the generated heat,
and despite still having quite a number of epoxy groups to react, the achieved temperature
is not enough. However, D03 formulation seems to exhibit a perfect balance to release
enough heat to produce a homopolymerization reaction.

Table 2. DSC analysis results.

Sample First Peak Second Peak
∆Hexo (J·g−1) T◦max (◦C) ∆Hexo (J·g−1) T◦max (◦C)

D01 127.2 78 74.3 106

D02 99.3 79 79.4 107

D03 76.7 77 10.,7 124

D04 48.8 77 49.5 128

DGEBA epoxy resin, crosslinkers and expected networks formed after stoichiometric
and nonstoichiometric formulations reactions are shown in Figure 4. In case, there are
reactive groups left after the room-temperature curing stage; the postcuring of the adhesive
would enhance the mechanical properties of the material. Otherwise, the cured formulation
would remain unaffected, keeping similar mechanical properties and the same Tg.
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3.2. Rheological Analysis of Curing Process

The differences detected during the curing process by thermal analysis could imply
differences in the rheology of the product, which might affect aspects such as wettability,
sagging or working time, among others. Thus, it is necessary to monitor the rheology of
the new formulations while curing.

As it can be seen in Figure 5, the higher the DGBEA content in the formulation, the
higher the gel time. For the stoichiometric formulation (D01), the gel time is achieved
readily, i.e., the reaction occurs very fast, and the material reaches a good consistency
(G′ > G′ ′). As the amount of DGBEA increases, a delay in achieving the gel time is detected.
The reaction occurs slower; however, it is important to point out that the G′ value achieved
is almost identical for the formulations D01, D02 and D03. In these systems, the rheological
curves show a two-stage reaction: a first stage with a very fast increase in G′ due to the
high reactivity of the components of the curing system; and a second stage, where the
increase of G′ becomes slower, that can be attributed to the homopolymerization of the
excess of epoxy thanks to the heat released during the first stage. As it can be observed,
D04 presented a significant low G′ value, due to the fact that the heat released during
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the crosslink was not enough to activate the homopolymerization. Since the ratio of the
crosslinker is significantly lower, the crosslink density obtained is very low, and thus the G′

value is also minimal.
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3.3. Thermomechanical Characterization by DMA

DMA analysis was performed for the cure adhesive formulations in order to study the
viscoelastic characteristics. If the reaction hypotheses raised up to this point are correct,
DMA analysis will show significant changes on Tg.

The structural differences of the studied formulations will have a direct influence
on the Tg of the final product. In order to gain insight over the structure built-up for
the nonstoichiometric formulations, a DMA characterization was performed on the cured
samples after one week kept at room temperature. It should be noted that the D04 mixture
did not fully harden at room temperature during the period of one week, and therefore
could not be measured.

Results obtained showed that as the epoxy resin content is increased in the formulation,
the Tg of the final product moves towards higher temperatures without the need to increase
the cure temperature (Figure 6). The value obtained for D01 is 40 ◦C, while for D02 and
D03 they are 58 ◦C and 70 ◦C, respectively. Thus, an increase of 30 ◦C in the Tg is achieved
by doubling the ratio of epoxy in the formulation. It has to be taken into account that the
studied curing reaction takes place at room temperature.

As stated before, most of the epoxy formulations developed to obtain high Tg have
to go through a high-temperature curing process. In the present case, such a step is not
required because further heating does not lead to further reaction. Proof of this is that the
sample referenced as D03 was cured at 80 ◦C for 2 h, followed by a postcuring at 120 ◦C for
1 h, with almost no change in Tg values obtained (72 ◦C, Figure 7).

It can be observed by the DMA results obtained (Figure 7) that the variation of Tg is
almost insignificant. The peak moves slightly to the right; however, the change observed
would not justify the addition of a postcure step for this type of adhesive. The reaction is
complete when the adhesive is cured at room temperature, and there is no need to add a
post-treatment step, which supposes an added value for this type of product.
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tions (80 ◦C for 2 h and postcuring at 120 ◦C for 1 h).

3.4. Mechanical Characterization
3.4.1. Tensile Strength

Figure 8 shows representative data from the tensile tests. Apparent differences in
stress values can be observed between samples. While D01 adhesive formulation has
a tensile strength at break of 5 MPa, D03 adhesive formulation obtains a higher value,
reaching 14 MPa. More detailed values can be observed in Table 3. Thus, D03 formulation
has a higher ability to resist load under stress or deformation due to the homopolymer-
ization reaction of the excess of the epoxy resin that creates a stiffer polymer network.
However, elongation of D01 and D03 formulations remains unchanged. This phenomenon
is attributed to the fact that what varies from the stoichiometric to the nonstoichiometric
formulation is the epoxy resin quantity, and neither the amount nor the type of crosslinker.
The curing system of this adhesive formulation is designed to obtain flexible epoxy adhe-
sives with enhanced toughness. It is noticeable that for the off-stoichiometric formulation,
toughness is increased by 56%, thus confirming the structural hypotheses made.
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Table 3. Results of bulk tensile strength of samples D01 and D03.

Sample Max. Tensile Strength (MPa) Elongation Young’s Modulus (MPa)

D01 4.9 ± 0.63 23.5 ± 1.4 15.8 ± 1.1
D03 14.3 ± 1.5 23.2 ± 2.7 59 ± 2.3

3.4.2. Lap Shear Strength

Lap shear adhesion strength of the formulations was also measured in order to evalu-
ate whether the adhesion of the thermoset adhesive varies or not. Both the D01 and D03
adhesive formulations show an adhesive failure. As shown in Figure 9, while the D01
adhesive bond achieves a lap shear strength of 2 MPa, the D03 nonstoichiometric formula-
tion doubles the value. Hydroxyl groups (OH) are responsible for the chemical adhesive
property in epoxy groups, and that hydroxyl group concentration influences the durability
of the adhesive bond formed between epoxy adhesive and metallic surfaces. Previous liter-
ature has also reported that the shear strength depends on the interaction of the functional
groups of epoxy with the substrate [34,35]. Thus, more hydroxyl groups indicate a better
adhesive property. This is exactly what it is achieved by nonstoichiometric formulation.
The higher the epoxy content, the more hydroxyl concentration in the final polymeric
structure, as they do not intervene as reagents in the homopolymerization reaction.
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4. Conclusions

A complex curing system cured at room temperature and based on stoichiometric
and nonstoichiometric thiol/amine-epoxy formulations catalyzed by tertiary amines was
studied in this work. Firstly, in the presence of an excess of epoxy groups (nonstoichiometric
system), thiol-epoxy and amine-epoxy condensation takes place, while the excess of epoxy
homopolymerizes in the second stage. The curing rate of the second reaction that takes place
at room temperature is much lower than thiol/amine-epoxy condensation reaction curing
rate. This difference should be explained by the different reaction mechanism undergone by
the two reactions, since on one hand, epoxy-amines and epoxy-thiols suffer a step growth
polymerization mechanism that processes rapidly at the start. On the other hand, the excess
of epoxy resin undergoes a chain polymerization mechanism catalyzed by the tertiary amine
that requires high initiator content in order to be activated rapidly [36–38]. The difference
in the reaction rate between both processes indicates that it may be possible to separate the
two curing stages for custom-tailoring the final material before the homopolymerization
reaction finishes.

A ratio between the epoxy resin and crosslinker was optimized to generate enough
exotherm to activate the homopolymerization (D03 formulation), which increases the Tg of
the product without requiring any post-treatment. This formulation gave rise to an epoxy
adhesive formulation with a Tg of 70 ◦C, maximizing the sustainable operating temperature
of the material, and breaking the stablished thumb rule of Tg ≈ Tcure + 25 ◦C. Regarding
mechanical properties, the product developed is tighter and tougher but maintains flexi-
bility of the stoichiometric formulation (D01), which is meant to enhance the resistance to
impact-type forces, thermal shock and thermal cycling.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym15020252/s1, Figure S1: Epoxy resin FTIR-ATR spectrum,
Figure S2: D001 formulation FTIR-ATR spectrum, Figure S3: D002 formulation FTIR-ATR spectrum,
Figure S4, D003 FTIR-ATR spectrum.
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