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A B S T R A C T   

Flexibility analyses are widespread in chemical engineering to quantify allowed deviations from nominal con-
ditions. Standard approaches to perform flexibility analysis can be hard to apply if process constraints are 
difficult to handle, as it happens in bioprocesses with dynamic constraints. Here, focusing on the computation of 
the traditional flexibility index in problems with complicating constraints, we apply symbolic regression to build 
algebraic expressions of the said complicating constraints, simplifying the flexibility analysis of complex process 
models by enabling the application of state-of-the-art deterministic solvers. Our approach is applied to ethanol 
production in fed-batch operation mode and a chromatographic process. The performance is assessed in terms of 
model building time, predictive accuracy of the model, and the time required to solve the flexibility formulations. 
Overall, our approach, which focuses on computing the original flexibility index proposed in the literature, 
provides an alternative way to analyse the flexibility of processes entailing complicating constraints.   

1. Introduction 

Uncertainty is always present in science and engineering. This un-
certainty can reveal itself in, for example, product demands (Petkov and 
Maranas, 1997), supply chain and scheduling activities (Ehrenstein 
et al., 2019), and even in process design and operation (Pistikopoulos, 
1995). A broad overview of various aspects of uncertainty, specifically 
in the Process Systems Engineering (PSE) field, is given by the works by 
Sahinidis (2004), Li and Ierapetritou (2008a), and Grossmann et al. 
(2014). When uncertainty is not taken into account, designing and 
optimizing process units assuming deterministic values for the uncertain 
parameters can lead to suboptimal solutions or, in the worst case, to 
infeasibilities during operation (Ben-Tal and Nemirovski, 2002; Gross-
mann et al., 1983; Li et al., 2011). Thus, it is common to embed un-
certainty in the specifications of the problem, e.g., in the field of 
pharmaceutical development, the guidelines of the International Coun-
cil for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH) define that critical quality attributes (CQAs) are valid 
within a given acceptable range (US Food and Drug Administration 
(FDA), 2010), considering variations due to uncertain input conditions. 

Accounting for uncertainties in optimization problems during the 
early design, and operation phases is especially important for chemical 

processes. This is because optimal solutions tend to meet process con-
straints and quality requirements as deterministic inequalities or 
equalities, so any perturbation over the nominal conditions, often 
occurring in such processes, may have strong implications on their 
feasibility. There are two main mathematical methods in operations 
research to account for uncertainties in optimization problems, namely 
stochastic programming (Birge and Louveaux, 2011; Ierapetritou and 
Pistikopoulos, 1994; Li and Ierapetritou, 2012; Marti and Kall, 1995; 
Prékopa, 2011; Shapiro et al., 2021) and robust optimization (Ben-Tal 
et al., 2009; Ben-Tal and Nemirovski, 2002; Li and Ierapetritou, 2008b; 
Lin et al., 2004). Li and Grossmann (2021) considered 
chance-constrained programming as another approach for optimization 
problems under uncertainty, yet (arguably) it could also be regarded as a 
generalization of robust optimization, in which distributions are speci-
fied for the uncertainties and a level of probability is defined to satisfy 
constraints (Grossmann et al., 2016). 

The flexibility index is an alternative approach for accounting for 
uncertainties that has been used mainly in process design (Pistikopoulos, 
1995). Developed by the PSE community back in the 1980s (Grossmann 
et al., 1983; Halemane and Grossmann, 1983; Swaney and Grossmann, 
1985a, 1985b), its primary goal is to assess the ability of a design to 
remain feasible against variations in the parameter values during the 
plant operation (Boukouvala et al., 2010; Grossmann et al., 1983). In 
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essence, this is done by quantifying the feasibility level of a given design, 
which is related to whether a process remains feasible or otherwise 
becomes infeasible within a given range. Mathematically, the feasibility 
function can be calculated by solving a min-max-optimization problem, 
which will be discussed in detail later in this work. Grossmann et al. 
(1983) geometrically interpret this feasibility function as the “depth” of 
the feasible region since it quantifies a deviation from the nominal 
constraints. Based on this concept, the authors describe the flexibility 
index (Grossmann et al., 1983; Swaney and Grossmann, 1985a, 1985b), 
which characterizes the size of the region of feasible operation (T) in the 
space of uncertain parameters. This region T should be a subset of the 
entire feasible region (Zhang et al., 2016). In other words, the flexibility 
index describes the maximum range over which the involved uncertain 
parameters can vary (independently) such that the process remains 
feasible (Grossmann et al., 1983; Pulsipher et al., 2019). Alternatively, 
other metrics to quantify process flexibility were put forward. Those 
methods include for example the resilience index (Morari et al., 1985), 
and stochastic measures such as the design reliability (Kubic and Stein, 
1988) and the stochastic flexibility index (Pistikopoulos and Mazzuchi, 
1990; Straub and Grossmann, 1993, 1990). Specifically, the stochastic 
flexibility index was developed to tackle the limitation of the flexibility 
index to address discrete and continuous uncertainties at the same time 
(Straub and Grossmann, 1990), and to enable the use of arbitrary 
probability distributions of the uncertain parameters in the analysis 
(Rogers and Ierapetritou, 2015a). 

The flexibility index can be computed using deterministic mathe-
matical models (Pistikopoulos, 1995; Pulsipher et al., 2019) as long as 
process constraints are described in a closed-form algebraic manner 
(Floudas et al., 2001; Ierapetritou, 2001; Pistikopoulos and Ierapetritou, 
1995; Straub and Grossmann, 1993). Specifically, the main methods to 
quantify the flexibility index include vertex searches (Grossmann et al., 
1983; Swaney and Grossmann, 1985b, 1985a), active set strategies with 
KKT reformulations (Grossmann and Floudas, 1987), or 

branch-and-bound approaches (Ostrovsky et al., 1994) based on the 
evaluation of the lower and upper bounds of the feasibility function. 
Since global optimality cannot be guaranteed using local solvers for such 
bounding methods (Migdalas et al., 1998), a global optimization 
approach was developed using reformulation and relaxation approaches 
for the feasible region (Floudas et al., 2001). We note that some of these 
approaches rely on specific convexity assumptions (Goyal and Ierape-
tritou, 2003, 2002; Grossmann and Floudas, 1987). 

When some constraints are not available in algebraic closed form, 
analysing process flexibility becomes much more complex and a 
straightforward computation of the flexibility index with state-of-the-art 
deterministic solvers is not possible anymore. This might happen, for 
instance, if the only knowledge about the system consists of observations 
of input and output data due to limited process understanding (Bou-
kouvala and Ierapetritou, 2012). Additionally, very complex underlying 
process dynamics (ordinary or partial differential equations) can be 
another reason why constraints are difficult to derive in a closed-form 
manner (Ding and Ierapetritou, 2021). Even if some knowledge about 
the process dynamics can be described by differential equations that 
could be discretized (i.e., orthogonal collocation on finite elements 
Carey and Finlayson 1975), finding a solution might still be challenging 
due to the size of the reformulated optimization problem. 

Several works applied adaptive sampling techniques with Kriging 
interpolation (Krige, 1951), also known as Gaussian process regression 
(Rasmussen and Williams, 2006), to perform flexibility analyses when 
dealing with situations where closed-form models for process con-
straints are inexistent or hard to build (Boukouvala et al., 2011; Bou-
kouvala and Ierapetritou, 2012; Ding and Ierapetritou, 2021; Rogers and 
Ierapetritou, 2015b, 2015a; Wang and Ierapetritou, 2017). Broadly 
speaking, these methods are used to approximate the feasibility func-
tion, namely the function that evaluates the feasibility of the model for 
given values of the decision variables and the parameters. Such 
data-driven strategies can handle process models with non-convex 

Nomenclature 

Abbreviations 
ANN Artificial neural network 
ALAMO Automated learning of algebraic models for optimization 
BMS Bayesian machine scientist 
CPU Central processing unit 
CS Case study 
CQA Critical quality attribute 
FDA Food and drug administration 
ICH International Council for Harmonisation of Technical 

Requirements for Pharmaceuticals for Human Use 
KKT Karush–Kuhn–Tucker 
LHS Latin hypercube sampling 
MCMC Markov-chain Monte Carlo 
ODE Ordinary differential equation 
PDE Partial differential equation 
SR Symbolic regression 

Sets 
E {e | e is a symbolic mathematical expression} 
G {g | g is a non-complicating constraint} 
H {h | h is a complicating constraint} 
I {i | i is a sample} 
J {j | j is a constraint} 
K {k | k is an uncertain parameter} 
N {n | n is a control variable} 
T set of uncertain parameters that maintain the process 

feasible 

Parameters 
d design parameters of the process under consideration 
M big-M reformulation parameter 
Δθmin

k and Δθmax
k maximum upper and lower deviation from a 

nominal point of the uncertain parameter k 
θk and θk lower and upper bounds of the uncertain parameter k 

Variables 
fj process constraint 
f̂ g non-complicating process constraint 
f̃ h complicating process constraint 
sj, sg, and sh slack variables of constraints fj, f̂ g, and ̃fh 

t Time 
u upper bound for the constraint fj 
yj, yg, and yh binary variable of constraints fj, f̂ g, an d ̃fh 

zn control variable n 
δ scaled deviation from nominal point 
θk uncertain parameter k 
θc

k critical value of the uncertain parameter k 
θN

k nominal operating point of the uncertain parameter k 
γe symbolic expression e 
λj, λg, and λg Lagrange multiplier of constraints fj, f̂ g, and ̃fh 

ωi feature vector of sample i used for the model training 
L Lagrange polynomial 
D L description length of Bayesian machine scientist  
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feasible regions (Rogers and Ierapetritou, 2015b, 2015a). Similarly, 
other works substitute the Gaussian process models with neural net-
works (Metta et al., 2021). In a very recent work by Sachio et al. (2023), 
the authors developed a highly flexible framework that performs a 
design space identification followed by a design space analysis. The 
researchers used a Sobol sampling approach with a subsequent 
approximation of the design space by alpha shapes, where the usage of 
alpha shapes was also successfully described in earlier works for feasi-
bility analysis (Banerjee and Ierapetritou, 2005). All the methods 
mentioned in this paragraph approximate the feasibility function with a 
surrogate and they do not rely on the original deterministic flexibility 
index, but rather they use alternative flexibility metrics. 

Here, we shall develop an alternative approach for flexibility prob-
lems, focusing on the computation of the flexibility index where chal-
lenging process dynamics or hard-to-model process constraints are 
encountered. While more refined flexibility metrics have been proposed 
(Pistikopoulos and Mazzuchi, 1990; Straub and Grossmann, 1990), we 
focus on the original flexibility index metric due to the already existing 
methods for its computation applicable to analytical closed-form 
models, into which we reformulate process models with complicating 
constraints as explained later in the article. In the following, we use the 
term “complicating constraints” to describe hardly accessible or 
completely inaccessible constraints, that is, constraints that are either 
hard to model in algebraic form and/or hard to handle in an optimiza-
tion model. In essence, here we shall replace those constraints with 
algebraic surrogates built with a symbolic regression algorithm (SR). 
These algebraic surrogates are hence subsequently incorporated into the 
original flexibility analysis formulation, thereby simplifying the flexi-
bility analysis. SR algorithms aim to find the model structure and 
associated parameters that fit some data. Compared to algorithms like 
ALAMO or ALVEN that restrict the search to a specific set of functions, 
general SR approaches make use of symbolic expression trees that can 
represent a very large number of plausible algebraic surrogate models 
(Cozad and Sahinidis, 2018). Here, the best model in the symbolic tree 
can be identified following different approaches and applying some 
fitting criteria. These include the formulation and solution of an MINLP 
problem (Cozad and Sahinidis, 2018), where binary variables encode 
the model structure, and continuous ones its parameters, or the appli-
cation of stochastic search approaches (Cranmer et al., 2020; Diveev and 
Shmalko, 2021; Guimerà et al., 2020). For example, Cranmer et al. 
(2020) created the open-source algorithm PySR, a multi-population 
evolutionary algorithm, which is freely available in Python (Cranmer, 
2023, 2020). There are also algorithms that are available as proprietary 
software, such as Eureqa (Schmidt and Lipson, 2009) or TuringBot 
(2023). To build the surrogate models in this work, however, we use an 
SR method developed by Guimerà et al. (2020), based on a 
Markov-Chain Monte Carlo approach to identify the most suitable 
closed-form expression to represent given data. One of the advantages of 
SR is that it does not assume a predetermined model structure or a 
reduced set of alternative model structures (e.g., like in the automated 
learning of algebraic models for optimization (ALAMO) approach 
(Wilson and Sahinidis, 2017), or the above mentioned HDMR approach). 
The user only defines some allowable mathematical operations (i.e., 
addition, multiplication, subtraction, etc.) that are used in a symbolic 
tree to build plausible expressions to explain the data at hand. This 
symbolic tree can be seen as a superstructure of mathematical expres-
sions from which the most suitable one and its associated parameters 
must be identified using specific algorithms. SR was successfully applied 
in many different fields, such as distillation (Ferreira et al., 2019b, 
2019a; McKay et al., 1997), food extrusion process (McKay et al., 1999), 
process control (Keane et al., 1993), or the discovery of physical laws 
(Cranmer et al., 2020; Schmidt and Lipson, 2009). Moreover, the BMS 
was also previously applied by some of us to approximate process sim-
ulations of carbon capture plants (Negri et al., 2022), to model the link 
between energy-related impacts and socioeconomic drivers in 
macro-economic studies (Vázquez et al., 2022), and for surrogate-based 

global optimization of process units and flowsheets by coupling SR with 
deterministic global optimization (Forster et al., 2023). 

Our proposed approach represents an alternative way to handle 
complicating constraints in flexibility problems that does not rely on any 
discretization technique, like those applied to differential equations, 
thereby avoiding adding auxiliary variables that increase the dimen-
sionality of the optimization problem. Additionally, no pre-defined 
model structure is assumed for the surrogate model replacing the 
complicating constraints. Instead, an SR algorithm, the BMS, creates an 
algebraic model from a set of samples of the functions describing the 
complicating process constraints. We show the advantages of this 
approach in two case studies covering a chromatographic column of an 
antibody production process and bioethanol production in fed-batch 
operation mode. To the best of our knowledge, this is the first work 
that combines SR with the initially defined flexibility index problem, 
giving rise to a hybrid optimization problem where some constraints are 
replaced with algebraic surrogates. In the end, the most appropriate 
approach to quantify flexibility performance in the presence of 
complicating constraints will depend on the problem at hand and the 
goal and scope of the analysis, including the selection of the flexibility 
metric to be evaluated. 

The remainder of the article is organized as follows: First, the 
problem statement is described, followed by the methodology. After-
ward, two case studies are introduced, and the results are subsequently 
discussed. Finally, the conclusions of the work are drawn. 

2. Problem statement 

Here, without loss of generality, we shall consider an existing process 
or process unit, where a known and fixed process design (i.e., equipment 
dimensions) is given by variable d. Additionally, there are K uncertain 
parameters θk,k ∈ K, which have a given nominal value of θN

k . Last, there 
are N control variables, with a value zn, n ∈ N, that can be adjusted 
during the operation to regain feasibility. 

Within this process, a set of J process constraints fj, ∀j ∈ J (i.e., 
material balances, process or product specifications or restrictions, etc.) 
need to be considered, as stated in Eq. (1): 

fj(d, z, θ) ≤ 0, j ∈ J (1) 

Considering the above, we want to assess how far the uncertain pa-
rameters θ can deviate from the nominal operating point θN, such that 
the process remains feasible, i.e., we are interested in the flexibility 
index problem as described later in the next section. To quantify the 
flexibility of a process, the feasibility function given in Eq. (2) must be 
assessed. To do so, the min-max-optimization problem shown in Eq. (2) 
must be solved: 

ψ(d, θ) = min
z

max
j∈J

{
fj(d, z, θ)

}
(2) 

In this expression, ψ(d, θ) represents the feasibility function for a 
given design d and a realization of the uncertain parameters θ. However, 
some of the process constraints fj, j ∈ J, might be very challenging to be 
evaluated, or might not even be directly accessible as closed-form 
algebraic equations. As a consequence, they cannot be directly 
included in the formulation given in Eq. (2). Complicating constraints 
might be encountered in complex systems (i.e., involving complex 
process dynamics, with complex unit operations hard to model 
mechanistically). 

Hence, we divide the set of constraints J into two proper subsets G⊂J 
and H⊂J, as shown in Eq. (3). Set G contains process constraints ̂f g, g ∈ G 
that are non-complicating, i.e., clearly defined by an algebraic equation 
that can be easily incorporated into the model described in Eq. (2) and 
handled numerically in an efficient manner. Set H⊂J, on the other hand, 
contains complicating constraints, denoted by ̃fh,h ∈ H, which cannot be 
incorporated directly into the model in a straightforward manner. Note 
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that whether one constraint should be considered complicating or not 
might depend on the specific case and the numerical performance of the 
standard approach. 

f̂ g(d, z, θ) ≤ 0, g ∈ G
f̃ h(d, z, θ) ≤ 0, h ∈ H

(3) 

The idea here is to replace the complicating constraints in Eq. (2) 
with algebraic surrogate models that are constructed by solving an SR 
problem. Herein, we shall identify such a surrogate model without 
assuming a pre-defined model structure, as discussed next. 

3. Methodology 

For the sake of completeness, we will first present the flexibility 
index formulation developed by Grossmann et al. (1983), Halemane and 
Grossmann (1983), and Swaney and Grossmann (1985a, 1985b), which 
is taken as a basis to derive our approach. The reader is referred to these 
works for more details and further mathematical insights. For simplicity, 
during the subsequently shown derivation, we use the set J to describe 
all the constraints, where we split this set into the two subsets G and H – 
as shown in Section 2 – in the very end of the derivation. After that, we 
describe how the surrogate models can be incorporated in the flexibility 
formulation. Last, we discuss how to build these surrogate models and 
assess their performance. 

3.1. Fundamentals of feasibility and flexibility 

Consider the formulation in Eq. (4) that aims to calculate the feasi-
bility function ψ(d, θ) of a given design d and a specific realization of θk,

k ∈ K, where some control variables zn, n ∈ N are present (Grossmann 
et al., 1983; Halemane and Grossmann, 1983; Swaney and Grossmann, 
1985a, 1985b): 

ψ(d, θ) = min
z

max
j∈J

{
fj(d, z, θ)

}
(4) 

Using an upper bound u for the constraints fj, j ∈ J, we can refor-
mulate the min-max formulation into the following single-level 
problem: 

ψ(d, θ) = min
z,u

u

s.t. fj(d, z, θ) ≤ u, ∀j ∈ J
(5) 

Formulation (5) seeks the smallest u such that each constraint fj re-
sults in a value less or equal to u. Overall, a value of ψ(d, θ) ≤ 0 means 
the process is feasible for a given realization of d and θ. On the other 
hand, ψ(d, θ) > 0 implies that the process is infeasible for these specific 
values of d and θ. 

The feasibility formulation seeks the worst value of ψ(d, θ) over the 
entire uncertain parameters space θ ∈ T. This problem can be formu-
lated as the following tri-level optimization model, which provides the 
feasibility test function χ(d) given in Eq. (6). 

χ(d) = max
θ∈T

ψ(d, θ)
= max

θ∈T
min

z
max

j∈J

{
fj(d, z, θ)

} (6) 

In formulation (6), if χ(d) ≤ 0, the process is feasible for the entire 
space of the uncertain parameters Θ. Using formulation (5) given above 
for the feasibility function ψ(d,θ), the feasibility test problem in Eq. (6) 
can be reformulated as a bilevel optimization problem shown in Eq. (7) 

χ(d) = max
θ

ψ(d, θ)
s.t. ψ(d, θ) = min

z,u
u

s.t. fj(d, z, θ) ≤ u, ∀j ∈ J
θ ∈ T

(7) 

Grossmann et al. (1983) proposed an approach to quantify and 
identify the largest possible uncertainty set θ ∈ T, such that the process 

is still feasible over the entire range of θ. The authors described this as 
the flexibility index problem, which is given in Eq. (8) 

FI = max
δ∈R0≤

δ

s.t. χ(d) = max
θ

ψ(d, θ) ≤ 0 (8)  

where, FI represents the flexibility index, and δ should be a nonnegative 
real number (R≥0). The newly introduced variable δ scales the uncer-
tainty set T, which is therefore subsequently denoted by T(δ). In other 
words, δ can be regarded as a scaled deviation from a nominal point θN, 
such that the realization of θ results in a feasible solution. The goal is to 
maximize the mentioned set T(δ), under which there exists the possi-
bility of recovering feasibility through the control variable z. In their 
original work, Swaney and Grossmann (1985a, 1985b) showed that the 
bilevel problem given in Eq. (8) can be reformulated. Instead of 
searching for the largest possible set T(δ) by maximizing δ, the authors 
showed that it is equivalent to looking for the minimum δ such that the 
solution is located precisely on the boundary (ψ(d, θ) = 0). In other 
words, one is looking for the constraint that is closest to the nominal 
operating point. This reformulation can therefore be expressed as shown 
in Eq. (9) 

FI = min
δ∈R0≤

δ

s.t. χ(d) = max
θ

ψ(d, θ) = 0 (9) 

The flexibility index problem shown in Eq. (9) ensures that the 
feasibility function is precisely zero. Using the definition of the feasi-
bility test problem given in Eq. (7), the flexibility index problem can be 
reformulated as follows: 

FI = min
δ∈R0≤

δ

s.t. χ(d) = max
θ

ψ(d, θ) = 0
s.t. ψ(d, θ) = min

z
u

fj(d, z, θ) − u + sj = 0, ∀j ∈ J
θ ∈ T(δ)

(10) 

Where the inequality constraints of problem (7) are expressed as 
equality constraints using nonnegative slack variables, sj. The resulting 
flexibility index problem is challenging due to the non-differentiability 
of max-min-max (or min-max-min) functions. To tackle this challenge, 
we can substitute the innermost optimization problem with its Kar-
ush–Kuhn–Tucker (KKT) conditions (Grossmann et al., 2014). The 
Lagrange function L (d, θ) of this innermost problem can be formulated 
as follows: 

L (d, θ) = u +
∑

j

(
λj
(
fj(d, z, θ) − u+ sj

))
(11) 

Where λj represents the Lagrange multipliers for constraint fj. Sub-
sequently, the corresponding stationary (12) and complementarity (13) 
conditions for problem (10) therefore read as follows: 

∂L (d, θ)
∂u

= 0 = 1 −
∑

j
λj

∂L (d, θ)
∂zn

= 0 =
∑

j
λj

∂fj(d, z, θ)
∂zn

, ∀n ∈ N

∂L (d, θ)
∂λj

= 0 = fj(d, z, θ) − u + sj, ∀j ∈ J

(12)  

λjsj = 0, ∀j ∈ J
λj, sj ≥ 0, ∀j ∈ J (13) 

In 1987, Grossmann and Floudas (1987) described how problem (10) 
can be reformulated into a mixed-integer nonlinear program (MINLP) by 
applying an active set strategy where some constraints might be inactive 
in the optimal solution. The usage of active set methods requires making 
discrete choices on the complementarity conditions λjsj. Therefore, it is 
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necessary to introduce binary variables yj ∈ {0,1} that establish 
whether a constraint is active (yj = 1) or not (yj = 0). Furthermore, the 
KKT complementarity conditions are formulated using the following two 
inequalities in Eq. (14). 

sj ≤ M
(
1 − yj

)
, ∀j ∈ J

λj ≤ yj, ∀j ∈ J (14)  

where, M represents a large enough parameter that acts as the upper 
bound for the slack variables sj. Properly selecting M is one of the main 
drawbacks of this method since it is hard to define tight bounds for the 
Lagrange multipliers. If M is too small, the solution obtained with the 
reformulation in Eq. (14) will not coincide with the optimum of the 
original problem, since this value would act as an active constraint. On 
the other hand, an excessively large M often causes numerical in-
stabilities (Cococcioni and Fiaschi, 2021). Consequently, its value must 
be selected in accordance with the problem, which might not be easy. In 
addition to the transformations mentioned above, another constraint 
could be added that enforces the number of potential sets of active 
constraints to be lower or equal to |N| + 1, where |N| stands for the 
number of control variables z (Grossmann and Floudas, 1987). For 
specific mathematical details, the reader is referred to the original work 
of Grossmann and Floudas (1987), and the more recent works by Ochoa 
and Grossmann (2020) and Pulsipher et al. (2019). 

Although there are several options to describe the set T(δ), in this 
work, we restrict our approach and the discussed case studies to a 
rectangular form of T(δ). Therefore, the constraint θ ∈ T(δ) given in Eq. 
(10) can be expressed by the two inequality constraints shown in Eq. 
(15). The reader is referred to the work of Pulsipher et al. (2019), which 
addresses the case of an ellipsoidal form of T(δ). 

θN
k − δΔθmin

k ≤ θk

θk ≤ θN
k + δΔθmax

k
(15) 

Using the above-shown reformulation techniques and assumptions, 
the reformulated flexibility index problem can be expressed as shown in 
Eq. (16) 

FI = min
δ

δ

s.t. fj(d, z, θ) − u + sj = 0, ∀j ∈ J
∑

j
λj = 1

∑

j
λj

∂fj(d, z, θ)
∂zn

= 0, ∀n ∈ N

sj ≤ M
(
1 − yj

)
, ∀j ∈ J

λj ≤ yj, ∀j ∈ J
∑

j
yj ≤ |N| + 1

θ ∈ T(δ)

λj ≥ 0, ∀j ∈ J

sj ≥ 0, ∀j ∈ J

δ ≥ 0

(16)  

3.2. Flexibility index formulation with complicating constraints 

As already said, here we define as complicating constraints those that 
are either hard to model explicitly or lead to complex expressions hard 
to handle numerically. Such a situation might arise, for example, in 
dynamic systems with constraints on temporal profiles, or in process 

models with complex unit operations whose behaviour is hard to model 
mechanistically. In the former case, discretization methods such as 
orthogonal collocation (Carey and Finlayson, 1975) might be applied, 
but this will likely result in complex models posing numerical challenges 
(i.e., convergence problems, entrapment in low-quality local optima, 
etc.). On the contrary, by non-complicating constraints, we mean con-
straints that are directly accessible as standard algebraic expressions. To 
be able to use the flexibility index formulation in Eq. (16), we will follow 
the approach depicted in Fig. 1. 

Therefore, we introduce the two proper subsets G⊂J and H⊂J for the 
non-complicating and complicating constraints, respectively. With this, 
the original flexibility index problem given in Eq. (16) is reformulated as 
given by Eq. (17), while inheriting the assumptions of Eq. (16): 

FI = min
δ

δ

s.t. f̂ g(d, z, θ) − u + sg = 0, ∀g ∈ G

f̃ h(d, z, θ) − u + sh = 0, ∀h ∈ H
∑

g
λg +

∑

h
λh = 1

∑

g
λg

∂f̂ g(d, z, θ)
∂zn

+
∑

h
λh

∂f̃ h(d, z, θ)
∂zn

= 0, ∀n ∈ N

sg ≤ M
(
1 − yg

)
, ∀g ∈ G

sh ≤ M(1 − yh), ∀h ∈ H

λg ≤ yg, ∀g ∈ G

λh ≤ yh, ∀h ∈ H
∑

g
yg +

∑

h
yh ≤ |N| + 1

θ ∈ T(δ)

λg ≥ 0, λh ≥ 0, ∀g ∈ G, h ∈ H

sg ≥ 0, sh ≥ 0, ∀g ∈ G, h ∈ H

δ ≥ 0

(17) 

As stated in Section 2, f̂ g, g ∈ G represent the non-complicating 
constraints, whereas the complicating constraints are denoted by f̃ h,

h ∈ H. Due to the introduction of the two subsets G and H, also the slack 
variables sj, the Lagrange multipliers λj, and the binary variables yj must 
be split into the two respective subsets. This requires adjusting the 
indices in formulations (16) and (17). It is worth mentioning that this 
split of J into G and H, does not alter the total number of constraints 
involved in the problem. 

As discussed in the introduction, a situation with complicating or 
unknown constraints was also addressed in the works by Rogers and 
Ierapetritou (2015b, 2015a), where the authors modelled the feasible 
region boundaries using surrogate models. These trained surrogates 
could then be used to approximate the stochastic flexibility index 
(Straub and Grossmann, 1993), which can consider probabilistic infor-
mation. The authors overcome the challenge of not having available 
closed-form expressions for process constraints by using a Kriging binary 
classification method, which allows to iteratively approximate the 
feasible region. With the trained classification models, the authors 
evaluated a range of uncertain parameter combinations and assessed if 
these realizations were either feasible or infeasible. However, our 
approach differs from these works in several ways. First and foremost, 
Rogers and Ierapetritou (2015a, 2015b) used their surrogate model to 
evaluate the stochastic flexibility index (Straub and Grossmann, 1990), 
which measures the probability of feasible operation, while we use the 
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surrogate to incorporate it into the originally proposed deterministic 
flexibility index formulation (Grossmann et al., 1983; Halemane and 
Grossmann, 1983; Swaney and Grossmann, 1985a, 1985b). Hence, we 
quantify the original flexibility index, which measures the maximum 
allowable perturbation of parameters within which the process remains 
feasible, so probabilistic information is not considered in the calcula-
tions. Second, we do not use any classification approach, but rather a 
regression approach. The output of the surrogate model in our work is a 
continuous variable that determines the value of the constraint for given 
values of the decision variables and parameters. Third, instead of 
approximating the entire feasible region with the surrogate, we only 
approximate individual complicating constraints, while keeping the 
non-complicating constraints in the formulation. To solve formulation 
(17), the complicating constraints ̃fh and their respective derivatives will 
be replaced by algebraic surrogate models, as discussed next. In this 
manner, the structure of the original flexibility index problem is kept. 

3.3. Incorporation of algebraic surrogate models for the complicating 
constraints 

We include algebraic models substituting the complicating con-
straints to solve the flexibility formulation shown in Eqs. (16) or (17) 
using state-of-the-art deterministic solvers. To be able to use off-the- 
shelf optimization solvers, we follow the procedure described in Sec-
tion 2 and graphically summarized in Fig. 1. The first step is the iden-
tification of complicating constraints. These constraints, described by ̃fh,

h ∈ H, are then separated from the other non-complicating constraints as 
shown in Fig. 1. Once separated, we use a surrogate model approxi-
mation, Fh, as a simplification for the complicating constraints f̃ h. The 
original flexibility index problem in Eq. (17) is therefore reformulated 
into the hybrid expression (18) that combines the main backbone of the 
flexibility index problem with a data-driven surrogate model defined for 
the complicating constraints, as shown below. 

FI = min
δ

δ

s.t. f̂ g(d, z, θ) − u + sg = 0, ∀g ∈ G

Fh(d, z, θ) − u + sh = 0, ∀h ∈ H
∑

g
λg +

∑

h
λh = 1

∑

g
λg

∂f̂ g(d, z, θ)
∂zn

+
∑

h
λh

∂Fh(d, z, θ)
∂zn

= 0, ∀n ∈ N

sg ≤ M
(
1 − yg

)
, ∀g ∈ G

sh ≤ M(1 − yh), ∀h ∈ H

λg ≤ yg, ∀g ∈ G

λh ≤ yh, ∀h ∈ H
∑

g
yg +

∑

h
yh ≤ |N| + 1

θ ∈ T(δ)

λg ≥ 0, λh ≥ 0, ∀g ∈ G, h ∈ H

sg ≥ 0, sh ≥ 0, ∀g ∈ G, h ∈ H

δ ≥ 0

(18) 

As visible in Eq. (18), the complicating constraint f̃ h(d, z, θ) was 
replaced by an adequate surrogate model Fh(d, z, θ). Other than that, 
expression (18) does not differ from expression (17). 

3.4. Surrogate model building 

This subsection explains the individual steps involved in the surro-
gate model generation in detail. The model building follows a similar 
procedure as described in a previous work by the authors (Forster et al., 
2023), where we assume that a mapping of the uncertain parameters to 
the process response is possible. First, ̃fh is evaluated at different points. 
Second, SR tools are applied to define a constraint Fh using a closed-form 

Fig. 1. Overview of the discussed procedure in Sections 3.2 and 3.3. After the constraints f j are defined (top left white box), which are subsequently split into 

complicating (red, ̃f h) and non-complicating (green, f̂ g) constraints (top central box with blue background). In step 1, the complicating constraints are approximated 
by using surrogate models. In step 2, the available algebraic information about the non-complicating constraints are used (lower boxes in blue background). Last, the 
information is combined to solve the flexibility index problem (right boxes with yellow background) For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.. 
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algebraic surrogate model that fits the generated data points precisely (i. 
e., Fh approximates the given process constraint ̃fh accurately). Last, the 
performance of the obtained surrogate model is assessed by suitable 
metrics. 

3.4.1. Step 1: data generation 
A schematic overview of the data generation and model-building 

process is given in Fig. 2. We simulate the desired case study in Py-
thon by changing some independent variables (degrees of freedom) and 
observing the response of the dependent variables. To map these inde-
pendent variables (also called the features of the model) to the observed 
response (also called the target of the model), we describe the feature 
vector wi = [z, θ], where i ∈ I refers to the set of samples. The feature 
vector ωi consists of the control variables zn, n ∈ N and the uncertain 
parameters θk, k ∈ K. The target vector is denoted as f̃ h(wi), or f̃ h,i in 
short. Therefore, the sampling matrix is generated with the desired 
number of samples |I| using, without generality loss, the Latin hypercube 
sampling (LHS). 

The resulting dataset I is split into two proper subsets as shown in Eq. 
(19): 

I := ITR ∪ ITE

ITR ∩ ITE = ∅ (19)  

where, ITR and ITE represent the training and test subsets, respectively. 
The training subset is later used for model training, whereas the test 
subset is used for model testing. 

3.4.2. Step 2: surrogate model building 
After preprocessing the data, we proceed to find an expression in the 

form of a surrogate model Fh(d, z, θ) that accurately maps the above- 
described feature vector ωi to the corresponding targets f̃ h,i. Herein, 
since we apply an SR algorithm, we do not rely on any aprioristic 
assumption on the structure for Fh(d,z,θ). As mentioned, SR aims to find 
a suitable mathematical expression for the observed data by represent-
ing the appropriate expressions in a symbolic tree. An example of such a 
search is schematically shown in Fig. 3. 

Fig. 3 (a) visualizes the space of all possible mathematical expres-
sions γ, which is described by E. Starting from one symbolic tree rep-
resentation γe,e ∈ E, we perform changes in the tree that lead to different 
mathematical expressions. One example of such a tree evolution is 
shown in Fig. 3 (node replacement). Another adaptation would be the 
elementary tree replacement (i.e., exchanging the complete sub-tree 
(x3 +x4) by another sub-tree). Based on this tree evolution, a defined 
performance metric can be calculated for each resulting expression. This 
metric aims to quantify how well the expression fits the observed data. 
The SR algorithm then proceeds to search the space of expressions, 
seeking the expression with the best goodness of fit. This search is sto-
chastic, as in other evolutionary algorithms (Costa and Oliveira, 2001; 
Guimerà et al., 2020). 

As mentioned in the introduction, several SR algorithms are avail-
able to identify algebraic surrogates. Without loss of generality, we use 
the approach developed by Guimerà et al. (2020), the BMS, to simplify 
the complicating constraints f̃ h(d, z, θ). The BMS uses statistical prior 
information about the mathematical operations in the equations, and it 
is straightforward to implement, working out-of-the-box and allowing 
interconnection with the Python environment without need of extensive 
coding. This easy implementation facilitates its application in different 
fields and case studies. Moreover, we note that the BMS was already 
successfully applied to build process models (Forster et al., 2023; Jog 
et al., 2023; Negri et al., 2022). The BMS can provide closed-form 
algebraic expressions from data based on a set of user-defined mathe-
matical operations (i.e., addition, subtraction, multiplication, etc.). We 
next provide a high-level overview of how the BMS works. For further 
information, the reader is referred to the original paper (Guimerà et al., 
2020). 

A conditional probability p(γe|D) is assigned to each expression γe 
that is used to fit some data D. This probability is calculated according to 
Bayes Theorem (Bishop, 2006; Murphy, 2013): 

p(γe|D) =
p(D|γe) p(γe)

p(D)
(20)  

where, p(D) represents the marginal likelihood of some data D. p(D) is 
independent of γe and therefore only acts as a normalization constant. 
Marginalizing over the parameters ϕe associated with expression γe 
(Murphy, 2013), the numerator in Eq. (20) can be expressed as an in-
tegral over the space of all possible parameter values Φe (Guimerà et al., 
2020). This marginalization is then described by the description length 
D L (γe) (Guimerà et al., 2020; Hansen and Yu, 2001; Murphy, 2013): 

D L (γe) = − log[p(D|γe) p(γe)]

= − log

⎡

⎣
∫

Φe

p(D|γe, ϕe) p(ϕe|γe) p(γ)dϕ

⎤

⎦ (21) 

The computation of this integral is challenging (Guimerà et al., 2020; Fig. 2. Schematic representation of the data generation and surrogate model 
building procedure. 
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Murphy, 2013). It was shown (Grünwald, 2007; Murphy, 2013) that 
under certain assumptions, the description length can be approximated 
through the Bayesian information criterion (BIC) and the prior of the 
corresponding symbolic expression γe: 

D L (γe) ≈
BIC(γe)

2
− log(p(γe)) (22) 

The description length, and, therefore, this final equation can be 
interpreted as the plausibility of observing an expression γe, conditioned 
on some data D. According to Grünwald (2007), D L (γe) can also be 
understood as an encoded length of the expression γe (number of natural 
units). 

In the applied SR approach (Guimerà et al., 2020), a Markov chain 
Monte Carlo (MCMC) (Hastings, 1970) algorithm is used to explore the 
space E of expressions, where the number of MCMC iterations is defined 
by the user. After evaluating the description length of each expression 
D L (γe), the BMS keeps the most plausible one, representing the 
expression with the shortest description length (the best 
goodness-of-fit). 

3.5. Surrogate model performance 

The performance of the surrogate model is assessed by calculating 
several metrics for both the training and test data sets, STR and STE. Here, 
to this end, the root mean squared error (RMSE), mean absolute error 
(MAE), and the coefficient of determination (R2) were used: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

a∈A
(̃f h(wi) − Fh(wi))

2

√

MAE =
1
n
∑

a∈A
|̃f h(wi) − Fh(wi)|

R2 = 1 −
SSR
SST

= 1 −

∑
a∈A(F(wi) − f̃ h(wi))

2

∑
a∈A

(
f̃ h(wi) − μf̃ h

)2

(23) 

In Eq. (23), the predictions by the model are described by Fh(wi)

using the given input vector wi of one sample i. The observed response ̃fh 

and the mean of the observed process responses are described by ̃fh(wi)

and μf̃ h
, respectively. As already mentioned, both the model predictions 

Fh(wi) and the observed response f̃ h(wi) are calculated by using input 
data from the training or test set. Variables SSR and SST denote the sum 
of squares of residuals and the total sum of squares (proportional to the 
variance of the data), respectively. In addition to these performance 
metrics, the time required for both the model training and for solving the 
flexibility index problem is reported as a central processing unit (CPU) 
time. Lastly, both the solver and model status are reported. 

3.6. Software implementation 

All calculations were carried out on an Intel®Core™ i7-8700 CPU 
and 16 GB of RAM. We used Python v3.10 with NumPy v1.23.5, SciPy 
v1.9.3, and pyDOE v0.3.8 to construct the sampling dataset. The algo-
rithm provided by Guimerà et al. (2020) was used to train the BMS. The 
symbolic equation generated by the BMS was incorporated into the 
flexibility index problem, which was solved using Pyomo (Bynum et al., 
2021; Hart et al., 2011) v6.4.4 interfacing with the solver BARON 
(Sahinidis, 1996) v22.7.23. 

4. Case studies 

We apply the hybrid flexibility approach discussed above to two case 
studies (CS). The first covers a protein-A chromatographic process; the 
second is a bioprocess in fed-batch operation mode. The CS and corre-
sponding data generation processes are described in the following. 

4.1. Fed-batch bioreactor for ethanol production (CS-I) 

We consider a bioreactor in a fed-batch operation mode. The model 
was taken from the dynamic optimization examples demonstrated on 
APmonitor.com (Hedengren et al., 2014). A schematic representation of 
the reactor is given in Fig. 4. The reactor is equipped with a liquid feed, 
an air supply (with a submerged aerator), a heating/cooling jacket, and 
a temperature probe inside the reactor. 

In the reactor, microorganisms grow and produce ethanol by 
consuming oxygen and glucose. To describe the dynamic evolution of 
the species, the system of ODEs given in Table 1 is used together with the 
corresponding parameters indicated in Table 2. 

One major goal is to that the final ethanol concentration reaches at 
least a user-defined lower bound E. The control variable here is the 
temperature of the cooling agent, that is, z = Tc. Furthermore, the un-
certain parameters θ are the glucose concentration in the feed (Sin) and 
the temperature within the reactor (T). The constraints of this problem 
can therefore be formulated as given in Eq. (41). 

Fig. 3. (a) The space E of all possible expressions γe is schematically shown as a dashed polygon. (b) A representation of an initial mathematical expression γ(x)
= (x1 +x2) + (x3 +x4) as a symbolic tree (red). (c) A root node replacement is performed (grey node) to reach the green symbolic expression in (c). Performing 
another node replacement (grey node), the blue symbolic tree is reached (d), representing γ(x) = (x1 /x2)× (x3 + x4). The fitting visualization of the three ex-
pressions is shown in (e), together with the observed data as circles (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.). 

Fig. 4. Schematic representation of a bioreactor used in case study I.  
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f1 : E − E ≤ 0
f2 : Tc − Tc ≤ 0
f3 : Tc − Tc ≤ 0
f4 : Sin − Sin ≤ 0
f5 : Sin − Sin ≤ 0
f6 : T − T ≤ 0
f7 : T − T ≤ 0
J := {1, 2, 3, 4, 5, 6, 7}

(41) 

The ethanol concentration needs to be assessed, which is not 
straightforward. We add the first constraint to the set of complicating 
constraints H = {1}, namely, we define f̃1 = f1 = E − E. The other 
constraints are added to the set of non-complicating constraints G = {2,
3, 4, 5, 6, 7}. As mentioned above, this could for example be done by 
discretizing the differential equations appropriately (i.e., by applying 
orthogonal collocation on finite elements). However, one disadvantage 
is that the dimensionality of the resulting optimization problem would 
be very large due to the addition of many auxiliary variables (Carey and 
Finlayson, 1975; Guillén-Gosálbez et al., 2013). To circumvent such 
possible limitations, the ethanol concentration at the reactor outlet shall 
be modeled with the BMS. Therefore, F (Sin,T,Tc) represents a trained 
BMS model that maps the features Sin,T, and Tc to the final ethanol 
concentration E in the reactor. Hence, the constraint f̃1 = E − E is 
reformulated by using a closed-form algebraic expression, leading to F1 

= E − F (Sin,T,Tc). The formulation in Eq. (42) then provides the entire 
reformulated problem. It is worth mentioning again that ̃f1 describes the 
original complicating constraint, whereas F1 describes the reformulated 
complicating constraint where a surrogate equation is included to 
facilitate the calculations. 

F1 : E − F (Sin,T, Tc) ≤ 0
f2 : Tc − Tc ≤ 0
f3 : Tc − Tc ≤ 0
f4 : Sin − Sin ≤ 0
f5 : Sin − Sin ≤ 0
f6 : T − T ≤ 0
f7 : T − T ≤ 0
H := {1}, G := {2, 3, 4, 5, 6, 7}

(42) 

Table 1 
System of ordinary differential equations used for simulating the bioreactor 
discussed in the case study I. The corresponding parameters are shown in 
Table 2.  

Physical meaning Equation  

Specific growth rate μ = μmax
S

KSX + S
Oliq

KOX + Oliq

(

1 −

E
Emax

)
1

1 + exp(− (100 − S))
μmax = [(a1(T − k1))(1 − exp(b1(T − k2)))]

2 

Emax = Emaxb +
EmaxT

1 − exp(− b2(T − k3))

qE = aEμ+ bE 

(24) 

Non-growth ethanol 
products bE = c1exp

(

−
AP1

T

)

− c2exp
(

−
AP2

T

)
(25) 

Ethanol consumption qS =
μ

YXS
+

qE

YES 

(26) 

Oxygen consumption qO =
qO,max

YXO

Oliq

KOX + Oliq 

(27) 

Biomass deactivation Kd = Kdb +
KdT

1 + exp(− b3(T − k4))

(28) 

Oxygen saturation Osat = Z
OgasRT

KH 

(29) 

Oxygen mass transfer kla = (kla)0(1.2)
T− 20 (30) 

Total volumes V = Vl + Vg (31) 
Liquid volume dVl

dt
= Q (32) 

Total biomass dXt

dt
= μXv +

Q
Vl

(Xt,in − Xt)
(33) 

Viable biomass dXv

dt
= (μ − Kd)Xv +

Q
Vl

(Xv,in − Xv)
(34) 

Glucose dS
dt

=
Q
Vl

(Sin − S) − qSXv 
(35) 

Ethanol dE
dt

=
Q
Vl

(Ein − E)+ qEXv 
(36) 

Liquid oxygen dOliq

dt
=

Q
Vl

(Osat − Oliq) + kla(Osat − Oliq) − qOXv 
(37) 

Gas oxygen dOgas

dt
=

Fair

Vg
(Ogas,in − Ogas) −

Vlkla
Vg

(Osat − Oliq)+

OgasQ
Vg 

(38) 

Temperature dT
dt

=
Q

Vl(Tin − T)
−

Tref

Vl
Q+ qOXv

ΔH
MWOρCp,br

−

KTAT(T − Tc)

VlρCp,br 

(39) 

Cooling agent dTc

dt
=

Fc

Vcj
(Tc,in − Tc)+

KTAT(T − Tc)

VcjρcCp,c  

(40)  

Table 2 
Parameters used in the ordinary differential equation system given in Table 1.  

Parameter Physical meaning Value Unit 

a1 Ratkowsky parameter 0.05 ◦C− 1 h− 0.5 

aE Growth-associated parameter for ethanol 
production 

4.5 – 

AP1 Activation energy parameter for ethanol 
production 1 

6 ◦C 

AP2 Activation energy parameter for ethanol 
production 2 

20.3 ◦C 

b1 Exponential scaling parameter for the 
maximum specific growth rate 

0.035 ◦C− 1 

b2 Exponential scaling parameter for the 
growth inhibitory ethanol concentration 

0.15 ◦C− 1 

b3 Exponential scaling parameter for the 
specific death rate 

0.4 ◦C− 1 

c1 Constant decoupling factor for ethanol 
production 

0.38 gE gX
− 1 h− 1 

c2 Constant decoupling factor for ethanol 
production 

0.29 gE gX
− 1 h− 1 

k1 Parameter in the maximum specific 
growth rate 

3 ◦C 

k2 Parameter in the maximum specific 
growth rate 

55 ◦C 

k3 Parameter in the growth-inhibitory 
ethanol concentration expression 

60 ◦C 

k4 Temperature at the inflection point of the 
specific death rate sigmoid curve 

50 ◦C 

Emaxb Temperature-independent product 
inhibition constant 

90 g L− 1 

EmaxT Maximum value of product inhibition 
constant due to temperature 

90 g L− 1 

Kdb Basal specific cellular biomass death rate 0.025 h− 1 

KdT Maximum value of specific cellular 
biomass death rate due to temperature 

30 h− 1 

KSX Glucose saturation constant for the 
specific growth rate 

5 g L− 1 

KOX Oxygen saturation constant for the 
specific growth rate 

0.0005 g L− 1 

qO,max Maximum specific oxygen consumption 
rate 

0.05 h− 1 

YES Theoretical yield of ethanol on glucose 0.51 gE gS
− 1 

YXO Theoretical yield of biomass on oxygen 0.97 gX gO
− 1 

YXS Theoretical yield of biomass on glucose 0.53 gX gS
− 1 

Cp,br Heat capacity of the mass of reaction 4.18 J g− 1◦C -1 

Cp,c Heat capacity of the cooling agent 4.18 J g− 1◦C -1 

ΔH Heat of reaction of fermentation 518,000 J molO− 1 

Tref Reference temperature 20 ◦C 
KH Henry’s constant for oxygen in the 

fermentation broth 
200 atm L mol− 1 

Z Oxygen compressibility factor 0.792 - 
R Ideas gas constant 0.082 L atm 

mol− 1◦C− 1 

(kla)0 Temperature-independent volumetric 
oxygen transfer coefficient 

100 h− 1 

KT Heat transfer coefficient 360,000 J h− 1 

m− 2◦C− 1 

ρ Density of the fermentation broth 1080 g L− 1 

ρc Density of the cooling agent 1000 g L− 1 

MW Molecular weight of oxygen 32 g mol− 1  
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The goal of the flexibility analysis is to quantify and identify the 
largest possible uncertainty set θ ∈ T(δ), such that the process is still 
feasible over the entire range of θ. In other words, one should assess how 
far the glucose inlet concentration and the reactor’s temperature can 
deviate from the nominal operating point such that the process is still 
feasible (all the constraints still hold). 

To find F , the ODE system given in Table 1 was solved for different 
feature vectors ωi = [Sin,T,Tc], i ∈ I with |I| = 250 samples using the 
explicit Runge–Kutta method of order 5 (Dormand and Prince, 1980). 
After simulating for each ωi, the final ethanol concentration was ob-
tained. The sampling procedure discussed above (Fig. 2) was applied, 
where the upper and lower bounds selected for the LHS are displayed in 
Table 3. The resulting dataset A was randomly split to |ITR| = 200 
training (80 %) and |ITE| = 50 testing (20 %) samples. 

To train the BMS, several unary (exp(x),log(x), x2,x3,
̅̅̅
x

√
) and binary 

(+ , − , ÷, × ,xy) operators were allowed to be selected. In addition, 
the number of MCMC steps was fixed to 15× 103. The model was 
allowed to contain up to eight parameters. 

4.2. Protein-A affinity chromatography (CS-II) 

This case study consists of a loading process of antibodies onto a 
protein-A affinity chromatographic column. A schematic representation 
of the different steps in chromatography is given in Fig. 5. First, the 
column is packed with the desired material (resin). Second, an equili-
bration is performed, which makes the column ready to be deployed. 
During the loading phase, the antibody mixture is added to the top of the 
column. Depending on the loading time (tload), the antibody concentra-
tion in the feed (cin), and the flowrate (Q), some of the product might be 
lost. Subsequently, the washing step is used to collect the desired 
product. The elution step terminates the entire operation. 

We focus exclusively on the loading phase of the entire procedure. 
The loss ratio (LR) is the relationship between the mass of the leaked 
product relative to the total amount of protein fed. With this, the 
deterministic constraints of the problem can be formulated as given in 
Eqs. (43)–(53), which was adapted from Ref. Baur et al. (2016), where 
the corresponding parameters were taken from the same work (Baur 
et al., 2016; Ding and Ierapetritou, 2021). 

∂c
∂t

= −
Q

Acolϵ
∂c
∂x

+ Dapp
(

∂2c
∂x2

)

− ζ
∂q
∂t

(43)  

Dapp = V̂
(

dp

2

)
Q

Acolϵ
(44)  

∂q
∂t

= km(q* − q) (45)  

q* =
Hc

1 + Hc
qsat

(46)  

km = kmax

(

C1 +(1 − C1)

(

1 −
q

qsat

)C

2

)

(47)  

[
∂c
∂x

]

x=L
= 0 and

[
∂q
∂x

]

x=L
= 0 (48)  

c(t = 0) = c0 and q(t = 0) = q0 (49)  

LR =

∫ tload
0 c(x, t)dt
∫ tload

0 cindt
≤ LR (50)  

Q ≤ Q ≤ Q (51)  

cin ≤ cin ≤ cin (52)  

tload ≤ tload ≤ tload (53) 

e:inline-figure))"^?^(1)[?tal=1]> The system given in Eqs. (43)–(49) 
describes the partial differential equations (PDE) for the dynamic evo-
lution of the concentration profiles, which can be expressed in terms of 
concentration in the liquid phase (c) and in the adsorbed phase (q). The 
parameters of the PDE system are given in Table 4. 

Q, cin, and tload are the adjustable flow rate, the inlet antibody con-
centration, and the loading time, respectively. Their lower and upper 
bounds are indicated by Q, cin, tload,Q, cin, and tload, respectively, which 
are represented in Eqs. (51)–(53). LR represents the loss rate, which is 
the relationship between the mass of leaked product relative to the total 
amount of product fed during the loading phase. LR is a user-defined 
upper bound for the loss rate. The entire system can be rewritten more 
compactly, as shown in Eq. (54). 

f1 : LR − LR ≤ 0
f2 : Q − Q ≤ 0
f3 : Q − Q ≤ 0
f4 : cin − cin ≤ 0
f5 : cin − cin ≤ 0
f6 : tload − tload ≤ 0
f7 : tload − tload ≤ 0
J := {1, 2, 3, 4, 5, 6, 7}

(54) 

This entire differential system in Eqs. (43)–(49) and the integrals in 
Eq. (50) are not trivial – and computationally expensive – to be incor-
porated into the optimization problem. Again, one option would be to 
apply an appropriate discretization method to the differential equations, 
which would increase the problem dimensionality and potentially lead 
to convergence issues, as discussed in CS-I. We, therefore, add the first 
constraint to the set of complicating constraints H = {1}, describing it 
by ̃f1 = f1 = LR − LR. The other constraints are added to the set of non- 
complicating constraints G = {2,3,4,5,6,7}. A BMS model is used that 
maps the features cin, tload, and Q to LR. Hence, the constraint ̃f1 = LR −

LR is reformulated by using a closed-form algebraic expression, leading 
to F1 = F (cin,tload,Q) − LR. The entire reformulated constraints are then 
given by the formulations shown in Eq. (55). Again, it is worth 
mentioning again that ̃f1 describes the original complicating constraint, 
whereas F1 describes the reformulated complicating constraint 
including the algebraic surrogate equation. 

F1 : F (cin, tload,Q) − LR ≤ 0
f2 : Q − Q ≤ 0
f3 : Q − Q ≤ 0
f4 : cin − cin ≤ 0
f5 : cin − cin ≤ 0
f6 : tload − tload ≤ 0
f7 : tload − tload ≤ 0
H := {1}, G := {2, 3, 4, 5, 6, 7}

(55) 

Here, the flexibility analysis aims to assess how far the inlet con-
centration of the antibody and the loading time of the column can 
deviate from the nominal operating point such that the process is still 
feasible (all the constraints still hold). 

To find a suitable model for F , the PDE system given in Eqs. (43)– 
(49) was solved for several samples (|I| = 250 samples) of the feature 
vector ωi = [cin,a, tload,a, Qa], i ∈ I. For each run, a spatial discretization 

Table 3 
Upper and lower bounds for the features Sin,T, and Tc. The bounds were used to 
create the samples for case study I by applying a Latin hypercube sampling 
structure.  

Feature Lower bound Upper bound Unit 

Sin 0 20 g L− 1 

T 15 35 ◦C 
Tc 20 40 ◦C  
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along the column length with 100 grid points was performed using a 
first-order central finite differences method. Subsequently, the resulting 
system of ordinary differential equations (ODE) was solved at each 
spatially discretized point using the explicit Runge–Kutta method of 

order 5 (Dormand and Prince, 1980). After simulating for each ωi, the 
concentration profile was obtained integrating the expression in Eq. 
(50), and therefore a value for LR, could be numerically calculated. The 
number of spatial discretization points was fixed at 100. The sampling 
procedure discussed above (Fig. 2) was applied, where upper and lower 
bounds for the LHS are displayed in Table 5. The resulting dataset A was 
randomly split to |ITR| = 200 training (80 %) and |ITE| = 50 testing (20 
%) samples. 

To train the BMS, several unary (exp(x),log(x), x2,x3,
̅̅̅
x

√
) and binary 

(+ , − , ÷, × ,xy) operators were allowed to be selected. In addition, 
the number of MCMC steps was fixed to 20× 103. The model was 
allowed to contain up to three parameters. 

5. Results and discussion 

5.1. Surrogate model generation 

The results of the surrogate model training and testing for CS-I and 
CS-II are given in Table 6. In addition, visualizations of the model per-
formances are shown in Fig. 6, where predicted values are plotted 
against observed ones. The corresponding closed-form expressions with 
the highest plausibility (lowest description length), and their estimated 
parameters are shown in Tables 7 and 8. 

In general, both trained models can explain the variance in the data 
sufficiently well when considering R2 values greater than 0.9 as accep-
tance criterion based on earlier works (Forster et al., 2023). The BMS 
was run using the maximum number of MCMC iterations as the stopping 
criterion, as indicated in Section 4. This led to CPU times of 0.8 h for CS-I 
and 2.7 h for CS-II. The low discrepancy between the R2 values of the 
training and testing results indicates that the BMS is well-regularized 
and, therefore, less prone to overfitting, which is in line with the au-
thors’ expectations (Guimerà et al., 2020). 

Fig. 5. Schematic representation of the five different steps in a chromatographic procedure. The loading phase (marked by the dashed green area) is the step of 
interest for this case study (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Table 4 
Parameters used for the chromatography model discussed in case study II. The 
corresponding model equations shown in Eqs. (43)-(49) were adapted from Baur 
et al. (2016). The parameters were taken from Baur et al. (2016) and Ding and 
Ierapetritou (2021).  

Parameter Physical meaning Value Unit 

Lcol Column length 10 cm 
Acol Crossectional area of the column 0.2 cm2 

dp Average particle diameter 0.0044 cm 
ϵ Void fraction 0.368 – 
V̂ Intercept of reduced Van-Deemter equation 35.13 – 
H Partition coefficient 246.8 – 
qsat Saturation concentration in the adsorbed phase 94.72 mg mL− 1 

kmax Maximum mass transfer rate 0.18 min− 1 

C1 Pore blockage coefficient 1 0.6245 – 
C2 Pore blockage coefficient 2 2.071 – 
c0 and q0 Initial values of the liquid and adsorbed phases 0 mg mL− 1  

Table 5 
Upper and lower bounds for the features cin,tload, and Q. The bounds were used to 
create the samples for case study II by applying a Latin hypercube sampling 
structure.  

Feature Lower bound Upper bound Unit 

cin 0.5 2.2 mg/mL 
tload 1/60 20 min 
Q 0.001 20 mL/min  

Table 6 
The training performance criteria are summarized for the Bayesian machine scientist (BMS). Each row represents one case study (CS). The CPU time (in hours) needed 
for the model training is shown in the left part of the table. The error metrics (root mean squared error, mean absolute error, coefficient of determination) are shown for 
the training and testing data (format: training/testing). The error units are given in squared brackets. The identified algebraic expressions are indicated in Table 7, 
whereas the corresponding model parameters are reported in Table 8.  

CS CPU training RMSE MAE R2 

I 0.8 h 0.467 / 1.811 [g/L] 0.383 / 0.656 [g/L] 0.996 / 0.913 [-] 
II 2.7 h 0.014 / 0.012 [-] 0.009 / 0.008 [-] 0.998 / 0.998 [-]  
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In addition to the previous performance criterion (R2 > 0.9), Fig. 6 
shows that the surrogate models perform satisfactorily both in the 
training and test sets, where the model responses are very close to the 
outcome of the theoretical models. However, what can be observed for 
CS-II is that the risk of over or underprediction increases for low values 

of LR (higher spread of the training and testing points for values below 
around LR = 0.5). For CS-I, one can find most data points between 45 g/ 
L and 80 g/L, where only one training sample was at 0 g/L. This point 
resulted from the LHS sampling and was not removed for training the 
BMS. 

Regarding the surrogate models in Table 7, the BMS identified 
nonlinear expressions with all variables included as features. We recall 
that the model training considers the control variables and the uncertain 
parameters as features (inputs for the surrogates). This is required to 
adjust the control variables depending on the realization of the uncer-
tain parameters, as done in the flexibility index problem. 

The identified surrogate expressions were then incorporated into the 
hybrid formulation given in Eq. (18), as already discussed. 

5.2. Incorporation of surrogate models in the flexibility index problem 

The results of the case studies CS-I and CS-II are summarized in 
Table 9. Schematic representations of these solutions are given in Fig. 8. 

Table 9 shows that in both case studies, the optimal control variable 
z* will be chosen at one of the bounds (z* = 23.0 ◦C for CS-I and z* = 4.0 
mL/min for CS-II). Additionally, the first constraint F1 was active in both 
cases. These are the constraints that were modeled using the BMS sur-
rogates. Active surrogate constraints were expected, since the control 
variable influences those constraints. In other words, the optimizer tries 
to maximize the distance from the nominal operating point to a 
constraint. The F1 constraints (surrogates) are influenced by the control 
variable. The optimizer adapts the control variable to shift the surrogate 
constraint away from the nominal operating point. This is done until the 
control variable cannot be adjusted anymore when it reaches its bound. 
In the chosen scenarios, the control variable impacts only the surrogate 
constraints with the relationship F1,CS− I ∝ F (Sin,T,Tc) in CS-I and 
F1,CS− II ∝ F (cin, tload,Q) in CS-II. A visualization of how the control 
variable influences the surrogate constraints is schematically given in 
Fig. 7. 

The resulting flexibility index δ* can for example be used to compare 
two process designs in order to elucidate which one is more flexible. For 
example, a comparison of two different process designs for CS-II is 

Fig. 6. Observed vs. predicted (OVP) values for the two different case studies 
are shown. Blue points represent the training data, whereas red points corre-
spond to the test data. The black line represents the values where the observed 
value corresponds to the model predictions (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of 
this article.). 

Table 7 
The most plausible closed-form expressions for each case study (CS) identified 
by the Bayesian machine scientist (BMS) are shown. The corresponding esti-
mated parameter values are reported in Table 8. The variable descriptions for 
each case study are given in Section 4.  

CS Prediction 
target 

Identified expression 

I E = E(Tc,Sin,T)
z = [Tc]

θ = [Sin ,T]

a1 +
a4 + Tc

Tc + a7

a3

T
(Sin + a1)+ a7T2

c
a0

(− Sin + a4a5)a1 

II LR = LR(cin,Q,

tload)

z = [Q]

θ = [cin, tload]

a0

⎛

⎜
⎝

tload

(
a

tload/cin

a1
0

)
tload +

a1

exp(cina0 )

⎞

⎟
⎠

−

(
a2(a0Q)

a2

a0

)(
Q
cin

+ a1

)

Table 8 
Parameter values of the most plausible surrogate model identified by the 
Bayesian machine scientist (BMS) for each case study (CS). The corresponding 
model equations are given in Table 7.  

Parameter CS 

I II 

a0 1.411 0.894 
a1 66.686 24.458 
a2 1.000 -1.844 
a3 4.123 – 
a4 -17.508 – 
a5 -1.922 – 
a6 1.000 – 
a7 -17.503 –  

Table 9 
Results summary of the case studies CS-I and CS-II.   

CS-I CS-II 

θN [10.0 g/L, 30.0 ◦C] [1.5 g/L, 8.0 min] 
M 20 500 
z and z 23.0 ◦C and 28 ◦C 4.0 mL/min and 12.0 mL/min 
Δθmin

k , k ∈ K [1 g/L, 1 ◦C] θN
k − θk 

Δθmax
k , k ∈ K [1 g/L, 1 ◦C] θk − θN

k 

δ* 3.228 0.811 
θ* [13.23 g/L, 33.23 ◦C] [2.07 g/L, 13.67 min] 
z* 23.0 ◦C 4.0 mL/min 
Active constraints F1, f2 F1, f4 

CPU 0.9 s 1.5 s  
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shown in the supplementary information Section S1. By using a longer 
and narrower column (design d2) compared to the one given in Section 
4.2 (design d1), the flexibility is reduced (δ*

d1
= 0.811 vs. δ*

d2 
= 0.389). 

The result is visualized in Fig. S1. Although such visualizations as in 
Fig. 7 cannot be done for higher dimensional case studies, the entire 
procedure can be applied in the same manner. 

For both case studies, decreasing the control variable – the cooling 
temperature in Fig. 7 (a) and the flow rate in Fig. 7(b) – will increase the 
size of the feasible region. Considering for example CS-II, increasing the 
flow rate would decrease the time the antibodies would require to reach 
the column outlet. Therefore, a larger amount of product will be lost, 
which increases the loss rate during the loading phase. Keeping this fact 
in mind, one can observe that for lower flow rates, a higher loading time 

and higher antibody concentration would be possible, meaning these 
uncertain parameters (tload and cin) can deviate more from a nominal 
operating point, making the process feasible. This manifests in the larger 
feasible region given in Fig. 7(b). Similar behavior can be observed for 
CS-I. The surrogate model predicts a higher ethanol production with a 
decreased jacket temperature Tc. Therefore, the deviation on the reactor 
temperature and the feed concentration can be larger such that the 
process remains feasible, which again manifests in the higher feasible 
region visible in Fig. 7(a). 

Fig. 8 visualizes the results given in Table 9, where the surrogate and 

Fig. 7. Projection of the constraints onto the uncertain parameter plane for 
case studies CS-I (a) and CS-II (b). The feasible region is shown in shaded light 
blue color. The constraints in dashed lines represent the bounds of the un 
certain parameters. The solid lines represent the surrogate constraint which can 
be influenced by the control variable z. Decreasing the value of z increases the 
size of the feasible region (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.). 

Fig. 8. Graphical representation of the solution for the flexibility index prob-
lem for CS-I (a) and CS-II (b). The feasible region is shown in shaded light blue 
color. The constraints in dashed lines represent the bounds of the uncertain 
parameters. The solid lines represent the surrogate constraint which can be 
influenced by the control variable z. The chosen nominal operating point θN 

(blue diamond) lies within the set T(δ) (blue box). As shown in Table 9, the 
surrogate constraints F1 are the active constraints, which is why T(δ) touches 
F1 constraint (red circle) (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.). 
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control constraints are active. Having chosen a nominal operating point 
θN, the optimal value of theta in the optimum is called critical theta θc 

(red circles in Fig. 8), which indicates the scaled distance at which the 
process will hit the first bound. In other words, going beyond the set of 
parameters values θc ([13.23 g/L, 33.23 ◦C] for CS-I and [2.07 g/L, 
13.67 min] for CS-II), will lead to the violation of the surrogate 
constraint, resulting in an infeasible process. 

The flexibility problems were solved quickly, namely, in 0.9 s and 1.5 
s, for CS-I and CS-II, respectively. Another advantage of having the 
algebraic surrogate becomes evident when the entire problem must be 
modified for any reason. For example, when the nominal operating point 
has to be changed, no re-training of the surrogate model is required since 
the training of the surrogates of the complicating constraints is decou-
pled from the flexibility index problem. This makes the adjustment of 
nominal operating points or bounds very simple because the solution 
time of the optimization problem is within seconds. 

6. Conclusions 

This work introduced a new approach to compute the flexibility 
index in problems with complicating constraints. Our approach com-
bines the originally described deterministic formulation of the flexibility 
index problem with a symbolically regressed surrogate model that 
simplifies the modelling of the complicating constraints. The symbolic 
regression algorithm, the BMS, assumes no aprioristic model structure, 
thereby enabling the accurate representation of process constraints hard 
to model and/or handle numerically. The resulting hybrid flexibility 
approach was applied to protein-A chromatography and an ethanol 
production process in fed-batch operation mode. The surrogate equa-
tions could accurately reproduce the complicating constraints, as evi-
denced by their ability to explain the data variance, making them 
suitable for simplifying such equations in the deterministic flexibility 
formulation. One drawback of the applied regression tool is the signif-
icant training time required for model building, which might be 
improved in the future as faster SR algorithms become available. 

Nevertheless, having a closed-form expression at hand pays off in 
several aspects: The first is that global solvers can be used, which can 
guarantee global optimality compared to heuristics or stochastic solvers. 
Additionally, the surrogate model training is decoupled from the flexi-
bility index problem. This makes the study of different process condi-
tions very simple because the solution time of the optimization problem 
is often within seconds using existing approaches to compute the flexi-
bility index of fully analytical process models. However, we stress that 
our method focuses on the traditional flexibility index, so more complex 
flexibility metrics would require alternative methods. In the end, the 
most suitable approach for a given flexibility problem will depend on its 
features and the goal and scope of the analysis. Future work will focus on 
exploring alternative symbolic regression algorithms and a wider range 
of applications within chemical engineering and beyond. 
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Vázquez, D., Guimerà, R., Sales-Pardo, M., Guillén-Gosálbez, G., 2022. Automatic 

modeling of socioeconomic drivers of energy consumption and pollution using 
Bayesian symbolic regression. Sustain. Prod. Consum. 30, 596–607. https://doi.org/ 
10.1016/j.spc.2021.12.025. 

Wang, Z., Ierapetritou, M., 2017. A novel feasibility analysis method for black-box 
processes using a radial basis function adaptive sampling approach. AIChE J. 63, 
532–550. https://doi.org/10.1002/aic.15362. 

Wilson, Z.T., Sahinidis, N.V., 2017. The ALAMO approach to machine learning. Comput. 
Chem. Eng. 106, 785–795. https://doi.org/10.1016/j.compchemeng.2017.02.010. 

Zhang, Q., Grossmann, I.E., Lima, R.M., 2016. On the relation between flexibility 
analysis and robust optimization for linear systems. AIChE J. 62, 3109–3123. 
https://doi.org/10.1002/aic.15221. 

T. Forster et al.                                                                                                                                                                                                                                  

https://doi.org/10.1002/aic.690310413
https://doi.org/10.1002/aic.690310413
https://doi.org/10.1016/j.spc.2021.12.025
https://doi.org/10.1016/j.spc.2021.12.025
https://doi.org/10.1002/aic.15362
https://doi.org/10.1016/j.compchemeng.2017.02.010
https://doi.org/10.1002/aic.15221

	Algebraic surrogate-based flexibility analysis of process units with complicating process constraints
	1 Introduction
	2 Problem statement
	3 Methodology
	3.1 Fundamentals of feasibility and flexibility
	3.2 Flexibility index formulation with complicating constraints
	3.3 Incorporation of algebraic surrogate models for the complicating constraints
	3.4 Surrogate model building
	3.4.1 Step 1: data generation
	3.4.2 Step 2: surrogate model building

	3.5 Surrogate model performance
	3.6 Software implementation

	4 Case studies
	4.1 Fed-batch bioreactor for ethanol production (CS-I)
	4.2 Protein-A affinity chromatography (CS-II)

	5 Results and discussion
	5.1 Surrogate model generation
	5.2 Incorporation of surrogate models in the flexibility index problem

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Supplementary materials
	References


