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A B S T R A C T

Identifying suitable kinetic models for bioprocesses is a complex task, particularly when interpretable models are 
sought. Classical machine learning algorithms are gaining wide interest to simulate complex bioprocesses that 
are hard to describe via first principles. However, they often rely on a priori assumptions of the model structure 
and lead to mathematical expressions that are hard to interpret. In this work, we apply an alternative approach 
based on symbolic regression to identify bioprocess models without assuming a pre-defined model structure. We 
obtain algebraic expressions for the kinetic rates from data consisting of concentration profiles. The model 
training was performed following a two-step approach that allows avoiding the iterative integration of differ
ential equations for the parameter estimation step. The proposed procedure was found from numerical examples 
to slightly outperform neural network benchmarks. Moreover, the obtained algebraic expressions for the rate 
equations facilitate the model interpretation and enable the direct application of optimization algorithms.

1. Introduction

In recent years, modelling has gained significant attention in the 
bioprocesses industry, spearheaded by the improvements in mathe
matical tools that can be used for analysis and optimization (Mowbray 
et al., 2023; Narayanan et al., 2021). Mathematical modelling can 
support scientists, engineers, or other subject matter experts in 
designing experiments (Sadino-Riquelme et al., 2020), predicting and 
monitoring processes (Del Rio-Chanona et al., 2019; Rivera et al., 2007), 
and reducing development and production costs (Narayanan et al., 
2021, 2020). Modelling complex bioprocesses, however, is a challenging 
task, particularly when first principles formulations are sought (Mercier 
et al., 2014; Petsagkourakis et al., 2020; Zhang et al., 2020). These 
models are nevertheless being increasingly demanded by the market, in 
which the number of new products originating from bioprocesses is 
increasing very rapidly (Narayanan et al., 2023).

Bioprocess modelling requires experimental measurements to cali
brate an in-silico model by minimizing the mismatch between experi
mental observations and in-silico predictions. A common approach relies 
on well-established mathematical formalisms derived from first princi
ples, such as mass or energy balances. Kroll et al. (2017) provide a 
workflow for the generation of mechanistic process models, where the 
authors start from material balances for a certain target variable and 
expand the models in a mechanistic manner with new states and 

interactions. They used their method in a mammalian cell culture pro
cess to model the viable cell count. A more recent work by Sha et al. 
(2018) provides stoichiometric and kinetic models and some commonly 
used mathematical approaches to describe cell systems.

An alternative to purely mechanistic modelling approaches are data- 
driven strategies. These methods enable model building without relying 
on expert knowledge (Kahrs and Marquardt, 2007; Taylor et al., 2021). 
Here, the structure of the model is given by the surrogate modelling 
approach of choice. For example in the area of process control, Willis 
et al. (1995) applied an artificial neural network (ANN) to model the 
biomass concentration in a fermentation process. In a more recent work, 
Tonner et al. (2017) used Gaussian process models to describe the mi
crobial growth in bioprocesses and interrogated the obtained models to 
investigate perturbation effects in the systems under study. As a bridge 
between purely deterministic and purely data-driven methods, hybrid 
modelling approaches, where mechanistic knowledge is combined with 
a surrogate component, have also gained popularity (von Stosch et al., 
2014). This approach has been applied to a wide range of problems in 
science and engineering. For example, Zhang et al. (2013) proposed a 
hybrid kinetic mechanism where quasi-steady-state species are sepa
rated from the kinetic ODEs. Gnoth et al. (2010, 2008, 2007) integrated 
ANNs in kinetic models to approximate unknown behaviours of the 
microorganisms. More recently, hybrid frameworks for modelling bio
processes have been put forward by Zhang et al. (2019), and Mowbray 
(2023) and colleagues. Moreover, in earlier works (Forster et al., 
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2023a), a method for building models that are based on canonical ki
netic representations (i.e., S-system (Savageau, 1970, 1969a, 1969b)) 
was studied, where observed concentration data and a pre-defined ca
nonical form for the rate expression were used to identify a suitable 
model structure and simultaneously estimate its parameters.

A key point in all the modelling approaches above is to define the 
model structure whose parameters will be calibrated via parameter 
estimation methods. Ideally, the model structure and its parameters 
should be simultaneously determined, since the choice of a specific 
model structure limits the accuracy of the model. However, in practice 
the model structure is first defined, hopefully through a mechanistic 
derivation of first principles, but sometimes through a surrogate 
formalism. Once the structure is chosen, its parameters are calibrated by 
solving a parameter estimation problem where the parameter values are 
the decision variables, and the objective function is often given by the 
mismatch between in-silico and experimental observations. Works that 
optimize both the model structure and its parameters are quite scarce. A 
well-known example in the Process Systems Engineering (PSE) literature 
is the ALAMO approach for the automated learning of algebraic models 
(Wilson and Sahinidis, 2017). This algorithm creates closed-form sur
rogate models by solving a mixed-integer programming (MIP) problem 
where binary variables model the selection of specific algebraic terms 
from a set of allowable functions and continuous ones the associated 
parameters. Designed for dynamic systems, Brunton et al. (2016) pro
posed the SINDy (Sparse Identification of Nonlinear Dynamics) algo
rithm, which was successfully applied to different systems. By using 
sparse regression techniques, SINDy provides the user with an appro
priate rate model for the ODE. Sun and Braatz (2020) developed an al
gorithm that combines nonlinear feature generation followed by sparse 
regression to learn interpretable nonlinear models, called algebraic 
learning via elastic net (ALVEN). Other works, such as those by Willis 
and von Stosch (Willis and von Stosch, 2017), use a problem-tailored 
approach for extracting ODEs from process data by formulating a 
hybrid semi-parametric modelling framework using mixed integer pro
gramming and multivariate rational functions. These modelling 
methods have the advantage of only requiring data and, therefore, can 
be set up without any expert knowledge about the system. Nonetheless, 
they assume a set of basis functions that must be combined linearly to 
form the algebraic expressions sought, which constrains the feasible set 
of plausible mathematical models that could explain given data.

Another approach for identifying closed-form expressions is 

symbolic regression (SR), which is based on the principles of genetic 
programming (Keane et al., 1993; Koza, 1994). In contrast to the main 
tools mentioned above, such as ALAMO, SINDy, or ALVEN, SR methods 
represent mathematical equations as expression trees (Cozad and Sahi
nidis, 2018). Employing a defined search procedure (i.e., mainly sto
chastic algorithms (Diveev and Shmalko, 2021) like a genetic algorithm 
(Cranmer et al., 2020) or Markov-Chain Monte Carlo (Guimerà et al., 
2020)), SR simultaneously identifies the tree structure and involved 
parameters in order to optimally represent observed data (Cozad and 
Sahinidis, 2018; Neumann et al., 2020). While previous approaches 
specified the basis functions, SR only requires a pool of allowed opera
tors, and the functions are created from the available pool and given 
data. SR has been successfully applied in various fields, for example, 
McKay et al. (1997) used an SR approach to model a vacuum distillation 
column and a chemical reactor system. In a later work, the authors 
applied SR to develop a model of a food extrusion process (McKay et al., 
1999). Vladislavleva et al. (2013) used an available software package 
named DataModeler (2023) to predict energy outputs of wind farms by 
considering weather data. Schmidt and Lipson (2009) discovered 
physical laws from experimental data using SR to identify nonlinear 
relationships. In recent contributions, researchers used SR to discover 
new perovskite catalysts (Weng et al., 2020) and to recover a variety of 
physical expressions (Udrescu and Tegmark, 2019). Other works resul
ted in commercially available SR software, such as Eureqa (Schmidt and 
Lipson, 2009) or TuringBot (2023). Cranmer et al. (2020) implemented 
an open-source SR algorithm named PySR (Cranmer, 2020) in Python 
that was applied to cosmology problems. Similarly, Guimerà et al. 
(2020) developed the Bayesian machine scientist (BMS), a SR algorithm 
based on a Markov-Chain Monte Carlo approach. These approaches were 
applied in kinetic modelling for heterogeneous catalysis (de Servia et al., 
2023), process design (Ferreira et al., 2019a, 2019b; Negri et al., 2022), 
process optimization (Forster et al., 2023b; Forster et al., 2023c) or to 
model links between energy-related impacts and socioeconomic drivers 
(Vázquez et al., 2022).

Here, we apply SR techniques for kinetic model building in bio
processes. In contrast to previous works that developed fully black-box 
or hybrid models based on standard surrogates (e.g., ANN and GPs) 
(Del Rio-Chanona et al., 2019; Gnoth et al., 2010), here we apply SR to 
find a suitable kinetic expression and associated parameters. Specif
ically, our approach combines the BMS with a two-step decomposition 
algorithm inspired by the works of Miró (2014), Voit and Almeida 

Nomenclature

Abbreviations
ANN Artificial neural network
BMS Bayesian machine scientist
LHS Latin hypercube sampling
ODE Ordinary differential equation
SR Symbolic regression

Sets
E {e| Set of mathematical expressions}
I,J {i, j| Set of components}
U {u| Set of discrete sample points}

Parameters
t0, tf Initial and final time
X0,i Initial concentration of metabolite/species i
μ Mean of a particular property
σ2 Variance of a particular property
γe Mathematical expression identified by the BMS
θ Generic model parameters

Variables
BMSi and ANNi BMS or ANN models for species i
p Probability
Rxni Generic reaction term (production or consumption of 

species i)
Xi Concentration of metabolite/species i (used as continuous 

variables in ODE expressions)
Xi,u Concentration of metabolite/species i at time tu
X̂i,u Model predictions of the concentration of metabolite/ 

species i at time tu
Ẋi,u Derivatives of metabolite/species i at time tu
̂̇Xi,u Model predictions of the derivatives of metabolite/species i 

at time tu
Xi,u Mean of the experimental data points of species i at time tu
t and tu Time and sampled time point
ζi Function to smooth noisy concentration profile for species i
ζ̇i Derivative of function to approximate derivative profile for 

species i
D L Description length (objective function of the BMS)
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(2004), Michalik et al. (2009), and Brendel et al. (2006). The goal is to 
identify reaction rates from observed concentration profiles of species, 
where the rate equation is determined via SR. de Servia et al. (2023)
recently applied also SR using pySR (Cranmer, 2020) for heteroge
neously catalyzed reactions. However, we here focus on bioprocesses 
and instead use the BMS for SR (Guimerà et al., 2020). Numerical ex
amples show that the BMS can identify closed-form surrogate rate ex
pressions and lead to a similar performance relative to ANN-benchmark 
models. Following the successful application of the BMS in other prob
lems, including the approximation of process simulations (Negri et al., 
2022), process optimization (Forster et al., 2023b), and the investigation 
of energy-related impacts and socioeconomic drivers in macro-economic 
studies (Vázquez et al., 2022), here we show that it can also be used to 
find kinetic expressions that explain given data precisely.

The remainder of this article is organized as follows: First, the 
problem statement is described in detail. Subsequently, the proposed 
methodology is discussed. Afterward, the case studies are introduced, 
and the results are summarized. Finally, the conclusions of the work are 
drawn.

2. Problem statement

Without loss of generality, in this work, we consider a generic ideal 
batch reactor with constant volume V and different species i ∈ I taking 
part in some reactions. The mass balance of such a system can be 
described by expression (1). In this description, Xi might be the con
centration of microbial cells or of a given species in the bioreactor, and 
X = [X1,X2,⋯,Xi] represents the vector of all metabolite concentrations. 
On the left-hand side of the equation, dXi/dt (or Ẋ), refers to the accu
mulation term. 

d
dt

Xi = Ẋi = Rxni(X), ∀i ∈ I (1) 

The Rxni(X) term represents an expression that is unknown to the 
modeler and that depends on the concentration of all the species (state 
variables) collected in vector X. This is a common situation arising in 
bioprocess development, because the underlying metabolic pathways in 
such systems can be very complex (Guillén-Gosálbez et al., 2013; Mer
cier et al., 2014; Petsagkourakis et al., 2020; Zhang et al., 2020). This 
complexity is given by the potentially large feedback loops between a 
wide range of species and the nonlinear nature of these interactions. In 
this work, we will approximate Rxni(X) using a symbolic regression 
method that generates an algebraic expression without assuming any 
pre-defined structure of that reaction rate. Hence, here we do not rely on 
any canonical formalism to derive the kinetic model.

The goal, then, is to find a suitable expression for Rxni(X) in Eq. (1)
such that the mismatch between the model predictions and the experi
mental observations is minimized. Note that in this work, we assume 
that neither the structure of Rxni(X) nor the involved parameters are 
known, unlike in a standard parameter estimation problem as discussed 
by Voit and Almeida (2004) or Brendel et al. (2006). Therefore, herein, 
we aim to find both, the rate expressions and their parameters simul
taneously by only using the available concentration measurements. It is 
worth to mention that in the subsequently proposed approach, the 
modelling of a rate in the form Rxni(X) for a species i is only possible for 
species that can be measured in the sampled data. If no data is available 
for species i, a parameter estimation and, therefore, a model building for 
such a species is not directly possible. Such a case might be encountered 
if some species have a shorter lifetime than the sampling frequency. 
Consequently, our modelling approach focuses on species that can be 
sampled, not on non-sampled or hidden species. The section that follows 
introduces our approach.

3. Methodology

In time-series-related problems, the concentrations (subsequently 
also called states) Xi are often considered to be continuous in time, i.e., 
Xi(t). However, usually only discrete concentration values are available 
at the sampling times. Therefore, we consider a discrete notation based 
on a series of time points u ∈ U. The complete profile of one species i can 
therefore be described by expression (2). 

Xi,u ∈
[
Xi,0,Xi,1,Xi,2,⋯,Xi,|U|

]
, ∀i ∈ I (2) 

From such a sampled array, we are interested in searching for a suitable 
model for the rate expression that can predict the time-dependent evo
lution by using the initial conditions at time t0. This model-building task 
is typically formulated as a general dynamic optimization problem. In 
such an optimization problem, the sum of squared residuals (SSR) be
tween the observed data point Xi,u and the model prediction X̂i,u is 
minimized, by optimizing the values of some unknown model parame
ters θ. The problem can therefore be formulated as given in (3): 

min
β

SSR =
∑

i∈I

∑

u∈U

(
Xi,u − X̂i,u

)2

s.t. ̂̇Xi,u = M i
(
Xj,u, θ

)
,∀i ∈ I, j ∈ I, u ∈ U

X̂i,0 = Xi.0,∀i ∈ I

= X̂, ̂̇X ∈ R+

(3) 

In (3), the predicted derivative ̂̇Xi,u of species i at time point u is 
calculated by a model M i(X, θ) with some trainable parameters θ that 
well approximate the underlying reaction rate Rxni(X). The model 
building process to approximate Rxni(X) ≈ M i(X, θ) is discussed below. 
The initial conditions Xi,0 are usually known values. However, finding 
the concentration profiles Xi,u for a given system requires solving the 
ODEs, either simultaneously or sequentially. In this context, stiff ODEs 
can often make numerical integration very difficult and inefficient (Tjoa 
and Biegler, 1991). Moreover, effectively handling the existence of bi
nary variables in this approach would remain challenging.

Michalik et al. (2009) and Voit and Almeida (2004) proposed 
alternative approaches to simplify the dynamic problem shown above 
based on a reformulation of the original model in the derivative space 
instead of the state space. This reformulation is given in (4). 

min
β

SSR =
∑

i∈I

∑

u∈U

(

Ẋi,u −
̂̇Xi,u

)2

s.t. ̂̇Xi,u = M i
(
Xj,u, θ

)
,∀i ∈ I, j ∈ I, u ∈ U

X̂i,0 = Xi.0,∀i ∈ I

= X̂, ̂̇X ∈ R+

(4) 

To solve the problem given in (4), the derivatives Ẋi,u have to be ob
tained from the discrete time profiles of the observed state variables Xi,u. 
Such derivates can then be subsequently used to train a suitable kinetic 
model M i(X, θ). This strategy avoids integrating the dynamic system in 
(3), at the expense of performing the regression in the space of reaction 
rates, which poses some challenges concerning the computation of de
rivatives leading to low errors in the original dynamic space of state 
variables. This is because the derivatives determined experimentally can 
be affected by experimental errors, which may lead to good predictions 
in the reaction rates space but poor in the original states variables space.

The method of choice follows an incremental approach for building 
the surrogate model, as shown in Fig. 1, where the details of the steps are 
given below in section 3.1.

The discussed procedure starts with collecting noisy concentration 
data Xi,u for different species i and times u. To smooth out the noise in the 
measurements, a univariate function in time ζi(t) is fitted to the data. In 
the second step, this identified function ζi(t) can be derived analytically 
and the derivatives ζ̇i,u can be evaluated at the experimental time 
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points. Third, the state values Xi,u are linked to the calculated derivatives 
ζ̇i,u by an appropriate model found via SR. The model, therefore, ap
proximates the Rxni(X) term given in Eq. (1). Last, the trained models 
can be incorporated into a system of ODEs, which is solved using specific 
initial conditions. In the following subsection, these four steps are dis
cussed in more detail.

3.1. Incremental approach for model building

The procedure is schematically shown in Fig. 1. There are several 
possible ways to derive data numerically. A comparison of three possible 
methods to derive a noisy sinusoidal signal is given in Fig. 2. The 
simplest method is the differentiation via forward finite differences. The 
main disadvantage of this approach is the amplification of noise during 
the derivation process. Therefore, a smoothing step is preferred before 
differentiating noisy data, for example using a Savitzky-Golay filter 
(Savitzky and Golay, 1964). Here, however, we used instead a 

polynomial or a univariate BMS to fit a function ζi(t) to the noisy data, as 
given in (5). The polynomial approach was successfully demonstrated in 
an earlier work by the authors (Forster et al., 2023a). The symbolic fit 
using the univariate BMS was inspired by de Servia et al. (2023), where 
the authors demonstrated an approach for fitting and deriving the 
observed data. In the present work, we adapted this approach and use a 
different toolbox. The methods that are discussed in here are imple
mented in Python and available on GitHub (https://github.com/forster 
tim/udiff). 

Xi(t) ≈ ζi(t) =

{
pi,1 + pi,2t + ⋯ + pi,q+1tq

u

BMSi(t)
, ∀i ∈ I (5) 

In the case of the polynomial approach, the unknown parameters p have 
to be regressed to the noisy data, while when using the BMS the structure 
and parameters are both to be found. Both, the polynomial and the 
algebraic expression identified by the BMS are univariate in time. In 
both cases, the resulting expressions can subsequently be derived 
analytically, as given in (6). The derivatives can be evaluated at the 
experimental time points tu,u ∈ U. 

Ẋi(t) ≈ ζ̇i(t) =
d
dt

ζ(t), ∀i ∈ I (6) 

Steps 1 and 2: Fitting univariate function and estimating de
rivatives. In the case of the polynomial approach, we defined a set of 
polynomial degrees q ∈ Q. The different polynomials are fit to the noisy 
data and the corresponding Bayesian information criteria (BICs) are 
calculated. The polynomial with the lowest BIC is subsequently differ
entiated analytically as given above. In the case of the univariate BMS, 
we defined a threshold for the coefficient of determination (R2). The 
BMS is trained with a given number of steps (discussed in more detail 
below). If the R2-threshold is not reached, then the training steps are 
doubled. This procedure is repeated for a given number of times at most. 
After that, the identified algebraic expression can be derived analyti
cally. As shown in Fig. 2 (b), the approximated derivatives are more 
accurately calculated by the smoothing methods given in (5) and (6)
compared to forward finite difference differentiation. However, the first 
and last sample points might still comprise some error even after 
applying such smoothing techniques. To reduce this noise impact 
further, one possibility is to disregard the initial and last sample points 
for the subsequently discussed model training, as done in other works 
(Willis and von Stosch, 2017).

An in-depth analysis of how the derivative approximation methods 
perform under different noise levels and data set sizes is given in the 
supplementary information section S1. The results summarized in 
Fig. S1 show that the symbolic estimation approach given in (5) seems to 
work well suited even in presence of noise and scarce data sets.

Step 3: Building the rate expression. Rate expressions map some 
discrete states Xi,u to the obtained derivatives ζ̇i,u. The identified model, 
therefore, is intended to predict the changes in concentration of the 
species at a given time. To identify this model, we use an SR tool, the 
BMS. Upon model training, the BMS identifies an algebraic expression 
that approximates the reaction term as given in (7). To benchmark our 
results, we compare them to those from an ANN, as shown in (8). The 
reason for this choice is that ANNs are generally regarded as good 
approximators (Psichogios and Ungar, 1992). Additional details on the 
symbolic regression tool are discussed below in section 3.2. 

Rxni(X) ≈ M i(X) = BMSi(X), ∀i ∈ I (7) 

Rxni(X) ≈ M
benchmark
i (X) = ANNi(X), ∀i ∈ I (8) 

Step 4: Solving the ODE model with the built rate expressions. The 
fully trained models can be incorporated into the ODE in (1), resulting in 
the ODEs given in (9) for the BMS approach, and in (10) for the ANN 
approach. 

Fig. 1. Overview of the approach for building a rate expression. In the first 
step, a function ζi(t) is fit to data points for each species i. The functions ζi(t) are 
then derived analytically (step 2). In step 3, models (BMS or an ANN) are 
trained to map the states to the calculated derivatives ζ̇i,u. Last, in step 4, the 
models are incorporated into a system of ODEs which can be solved with 
appropriate initial conditions.
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d
dt

Xi = BMSi(X), ∀i ∈ I (9) 

d
dt

Xi = ANNi(X), ∀i ∈ I (10) 

These ODEs can be solved for the initial conditions Xi,0, i ∈ I and 
considering an integration period t =

[
t0, tf

]
.

3.2. Background to the Bayesian machine scientist

In this work, we do not assume any pre-defined model structure to 
search for suitable rate expressions. Upon model training, the BMS 
returns an algebraic closed-form expression, which can subsequently be 
incorporated into the system of ODEs to be integrated. We now provide 
an overview of how the BMS works. For further information, the reader 
is referred to the original paper (Guimerà et al., 2020). The algorithm 
identifies a suitable mathematical expression by searching through a 
space of expressions represented as symbolic trees. To perform the 
search through this space of expressions, several allowable moves from 

an initial tree can be done by the algorithm.
The space of possible mathematical expressions γ is described by E. 

Starting from one symbolic representation γe,e ∈ E, we perform changes 
in the tree leading to different mathematical expressions. One example 
of such a tree evolution is shown in Fig. 3 (a). The addition of the two 
main terms in γ1 is replaced by a multiplication, which leads to the 
expression γ2. A further replacement of the addition in γ2 leads to the 
expression γ3, which explains the observed data points (black circles) 
better than γ1 or γ2. Another adaptation would be the elementary tree 
replacement (i.e., exchanging the complete sub-tree (β+δ) by another 
sub-tree). For each resulting expression, a goodness-of-fit metric can be 
calculated. The SR algorithm then proceeds to search the space of ex
pressions, seeking the expression with the best goodness of fit. This 
search is stochastic, as in other evolutionary algorithms (Costa and 
Oliveira, 2001; Guimerà et al., 2020).

The BMS can provide closed-form algebraic expressions from data 
based on a set of user-defined mathematical operations (i.e., addition, 
subtraction, multiplication, etc.). In the algorithm, a conditional prob
ability p(γe|D) is assigned to each expression γe, e ∈ E (the space of 
symbolic trees shown schematically in Fig. 3 (b)) used to fit some data D, 

Fig. 2. (a) Noisy measurements (circles) together with the underlying sinusoidal ground truth (dashed line). (b) Comparison of numerical differentiation methods. 
The dashed black line represents the cosinusoidal ground truth of the derivative (covered up by the other approaches). The blue pentagons with the solid line 
represent the derivatives by forward finite differences. The orange diamonds with the dotted line represent the derivatives obtained by the polynomial approach 
discussed above. The green crosses with the dashed-dotted line represent the derivatives of the BMS approach. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Several equations are represented as symbolic trees. From γ1 = (x1 +α) + (β+δ), a node replacement can be performed to reach γ2 = (x1 +α) × (β+δ). A 
further node replacement can be done to obtain the equation γ3 = (x1 × α)× (β+δ). The expression for γ3 (green line) ends in the best possible model to fit the data 
(black circles) compared to γ1 (blue line) and γ2 (red line) in the lower part of the figure. (b) The space E of all possible expressions γe is schematically shown as a 
dashed polygon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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which is calculated according to Bayes Theorem (Bishop, 2006; Murphy, 
2013), given by (11): 

p(γe|D) =
p(D|γe)p(γe)

p(D)
(11) 

Where p(D) represents the marginal likelihood of some data D. p(D) is 
independent of γe and therefore acts as a normalization constant. 
Marginalizing over the parameters ϕe associated with expression γe 
(Murphy, 2013), the numerator in (11) can be expressed as an integral 
over the space of all possible parameter values Φe (Guimerà et al., 2020). 
The description length D L (γe) then describes the resulting integral 
(Guimerà et al., 2020; Hansen and Yu, 2001; Murphy, 2013), given in 
equation (12). 

D L (γe) = − log
[

1
p(D)

∫

Φe

dϕep(D|γe,ϕe)p(ϕe|γe)p(γe)

]

(12) 

Computing the numerical value of the integral included in the descrip
tion length is challenging (Guimerà et al., 2020; Murphy, 2013). It has 
been shown (Grünwald, 2007; Murphy, 2013) that the entire metric can 
be approximated through the Bayesian information criterion (BIC) and 
the prior of the corresponding symbolic expression γe, as shown in (13): 

D L (γe) ≈
BIC(γe)

2
− log(p(γe) ) (13) 

Therefore, the plausibility of observing an expression γe conditioned on 
some data D is quantified by the description length D L (γe). In other 
words, during the stochastic search, the description length (i.e., a metric 
measuring the plausibility of observing an expression γe) serves as 
objective function which is being minimized. As visible in expression 
(13), to compute the description length, the prior knowledge about 
expression γe is required as p(γe). Guimerà et al. (2020) used a pre- 
defined corpus of equations from Wikipedia. After parsing the publicly 
available equations, the number of operations were counted that were 
present in the expression. Based on this information, they created 
distributional information about operators in equations, which were 
subsequently used as the prior distributions p(γe) (Guimerà et al., 2020).

According to Grünwald (2007), D L (γe) can be understood as an 
encoded length of the expression γe (number of natural units). A Markov 
chain Monte Carlo (MCMC) (Hastings, 1970) algorithm is used to 
explore the space E of expressions, where the number of MCMC itera
tions is defined by the user. After evaluating the description length of 
each expression D L (γe) – which represents the goodness-of-fit metric 
and therefore the objective function – the BMS keeps the most plausible 
one, representing the expression with the shortest description length 
(the best goodness-of-fit).

3.3. Model performance metrics

For assessing the performance of the models, an arbitrary set of 
initial conditions can be used to integrate the ODE, comparing the 
simulated and experimental profiles values. After training the models on 
dedicated training runs, separated test runs were used to assess their 
performance. A detailed description of how the data is generated and 
split into training and test sets is shown in Section 4.

The performance is assessed via the root mean squared error (RMSE) 
and the coefficient of determination (R2), defined as given in Eqs. (14)
and (15). These metrics can be calculated for both the training and test 
sets, obtaining the training and test errors, respectively. They can be 
calculated for the concentration (state) space or the derivative space. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

i∈I

∑

u∈U

(
X̂i,u − Xi,u

)2
√

(14) 

R2 = 1 −
SSR
SST

= 1 −

∑
i∈I
∑

u∈U
(
X̂i,u − Xi,u

)2

∑
i∈I
∑

u∈U
(
Xi,u − Xi,u

)2 (15) 

In these relationships, the predictions by the model are described by X̂i,u. 
The experimental data points and the mean of the experimental data 
points of the data are described by Xi,u and Xi,u, respectively. Variables 
SSR and SST denote the sum of squares of residuals and the total sum of 
squares (proportional to the variance of the data), respectively. The 
error metrics in (14) and (15) can be calculated for the state and de
rivative variables.

3.4. Implementation details

All calculations were carried out on an Intel®Core™ i7-8700 CPU 
and 16 GB of RAM. To construct the sampling dataset, we used Python 
3.10 with NumPy v1.24.3 and pyDOE v0.3.8. For the BMS training, the 
hyperparameter values are those given in the original article of the BMS 
(Guimerà et al., 2020), i.e., 5 % probability of root replacement, 45 % 
probability of node replacement, and 50 % probability of elementary 
tree replacement. The allowed unitary operations included exp(x),
log(x), x2, x3, and 

̅̅̅
x

√
, while the binary operations consisted of 

+, − , Ã⋅,×, and xa. The maximum number of MCMC steps was chosen to 
be 104. The neural network training was performed with Scikit-learn 
v1.0.2 (Pedregosa et al., 2011). A grid search with a 3-fold cross- 
validation was performed to tune and find appropriate hyper
parameters for this benchmark model. Parameters considered during the 
grid search were the hidden layer size, the activation function, the 
learning rate, and the initial learning rate. Details of this grid search and 
the settings of the fixed hyperparameters are given in Section S3 of the 
supporting information.

4. Case studies

Subsequently, two different case studies are presented. We employed 
Latin hypercube sampling (LHS) together with the bounds given in 
Table 1 to generate different initial conditions, with each set of initial 
conditions representing a different batch. For each case study shown 
below, 13 batch runs were simulated in total. From those, 10 batches 
were used to train the models and 3 were taken as test batches. We 
added normally distributed noise (NumPy) with a mean of μ = 0 and a 
variance of σ2 = 0.2 to the profiles obtained from integrating the 
different batches to create more realistic data (more significant noise 
level in lower numerical ranges to resemble measurement errors). For 
the two case studies, several scenarios were considered, which are 
summarized in Fig. 4. To study the influence of the amount of data 
available, we generated profiles with 40 and 20 time points per batch. It 
is worth to be mentioned that the time spans of the subsequently 
introduced case studies are 80 h and 180 h, respectively. A sampling rate 
of 20 points within this time frame results in one sample every two hours 
and every approximately 9 h. Indeed, it should be kept in mind that a 
reduction of the sampling frequency will result in a reduction in accu
racy of the derivative approximation, which is discussed in more detail 

Table 1 
Lower and upper bounds used for generating the training and test sets. With 
those bounds and a Latin Hypercube Sampling approach, different initial con
ditions were generated. These were used to solve the systems of ODEs in (16) and 
(17) to create different batch runs.

CSI CSII

Species B S P B C N P

Lower bound 0.1 50 0 216 108 450 17
Upper bound 0.4 90 0 264 132 550 21
Unit g/L g/L g/L mg/L mg/L mg/L mg/L

T. Forster et al.                                                                                                                                                                                                                                  Chemical Engineering Science 300 (2024) 120606 

6 



in the supporting information section S1. To calculate the derivatives 
from the data, the polynomial fit or symbolic regression fit, both 
described in (5), were used. Hence, four different scenarios for each case 
study were explored. The resulting scenarios are described by the ab
breviations Poly-20, Poly-40, SR-20, and SR-40, depending on the 
number of points per batch and the method for derivative approximation 
(Fig. 4). As an example, CSI-Poly-40 describes the scenario of CSI with 
the polynomial approach for the derivative calculation and 40 samples 
per batch and species. The case studies are also collected and published 
on GitHub (https://github.com/forstertim/insidapy).

4.1. Case study I

A bioprocess is considered where some bacteria produce a specific 
product while consuming a substrate. The variables B, S, and P (all in g/ 
L) represent the biomass, substrate, and product concentration, respec
tively. These species are summarized in the vector X = {B, S,P}. The 
process is modeled in batch mode and adapted from Turton et al. (2018): 

dB
dt

= ϕ⋅B 

dS
dt

= −
1

YB,S
⋅ϕ⋅B 

dP
dt

=
YP,S

YB,S
⋅ϕ⋅B 

ϕ = ϕmax⋅
S

KS + S
⋅

Ω
(
A1,T,EA,1

)

1 + Ω
(
A2,T, EA,2

)⋅
(

1 −
B

Kϕ + B

)

(16) 

In these mass balances, ϕ (1/h) models the growth rate. Yi,j represents 
the yield coefficient of species j with respect to species i. The expressions 
Ω(A,T,EA) represent Arrhenius reaction rates that depend on the tem
perature T and temperature-independent pre-factors and activation en
ergies EA,1, EA,2, A1, and A2, respectively. The parameters Ks and Kϕ 

represent half-saturation constants. Data was generated for the interval 
t = [0, 80] hours. The values of the parameters are given in Table S3 of 

the supporting information. As mentioned in Section 3.1, the first two 
and last five points (polynomial approach) or the first two and last two 
points (BMS approach) were excluded for model training.

4.2. Case study II

Here, we focus on a bioprocess studied by Del Rio-Chanona et al. 
(2019). The system of ODEs in (17) is based on a Monod model, a Lo
gistic model, and a Luedeking-Piret model (Zhang et al., 2015), where 
cell growth, cell decay, and substrate uptakes are considered. For a 
detailed description, the reader is referred to the work of Del Rio- 
Chanona et al. (2019). 

dB
dt

= μ N
N + KN

C
C + KC

P
P + KP

B − μdB2 

dC
dt

= − YC1

(

μ N
N + KN

C
C + KC

P
P + KP

B − μdB2
)

− YC2B 

dN
dt

= − YN1

(

μ N
N + KN

C
C + KC

P
P + KP

B − μdB2
)

− YN2B 

dP
dt

= − YP1

(

μ N
N + KN

C
C + KC

P
P + KP

B − μdB2
)

− YP2B (17) 

In this system, the variables B, C, N, and P represent the biomass, carbon, 
nitrogen, and phosphate concentrations, respectively (all in mg/L). 
These species are summarized in the vector X = {B,C,N, P}. The pa
rameters KN, KC, and KP represent the half-velocity coefficient of the 
corresponding substrates, where the parameters Yi1 and Yi2 are growth- 
dependent and growth-independent yield coefficients of the species i =

{C, N, P}. The biomass growth and death are given by μ and μd. The 
concentration of the biomass is divided by 1000 so that the originally 
reported parameter values can be used (Zhang et al., 2015). The time 
window investigated corresponds to t = [0, 180] hours. The values of the 
parameters are given in Table S4 of the supporting information. As in 
CSI, the first two and last five points (polynomial approach) or the first 
two and last two points (BMS approach) were excluded for model 
training.

5. Results and discussion

Below, the results of the BMS are compared to the ones obtained with 
the ANN. A summary of the obtained coefficients of determination (R2) 
for the model training and testing is given in Table 2. The performance 
metrics are displayed for the different scenarios (as visualized in Fig. 4), 
while results are also depicted in Fig. 6 for CSI and Fig. 7 for CSII. These 
plots show the calculated derivative values against the model pre
dictions for both modelling approaches (BMS and ANN). Additional 
results are given in Section S5 of the supporting information.

In general, both models achieve similar performance in both the 
derivative and the state (concentration) space, with our approach often 
outperforming the ANN, but not by much, as discussed next. Recall that 
the models should not only train well in the derivative space but also 
after integration since we are interested in predicting concentration 
profiles. Therefore, we focus first on the model with best performance in 
the state space of the unseen test batches (in Table 2, the highest R2 

value of the test set is highlighted in bold). The best-performing models 
are identified by the BMS in most scenarios, although the differences 
with the ANN are small. The only exception where the ANN outperforms 
the BMS is in CSI-SR-40, although also there, differences are marginal, as 
also seen in Fig. 5 displaying the state space predictions for this scenario. 
In addition to the data given in Table 2, Fig. 5 shows one of the test 
batches results for the models identified in scenarios CSI-Poly-40 (top 
row) and CSI-Poly-20 (bottom row). As shown in this figure, the models 
are well able to predict the evolution of the concentration, even if a 

Fig. 4. An overview of the organization of the case studies is shown sche
matically. For each of the base case studies discussed below, batches with either 
20 or 40 samples were generated. Then, either the polynomial or symbolic 
regression approach was applied to calculate the derivatives.
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lower sampling frequency was used (20 vs. 40 samples). From the results 
shown in Table 2, having fewer data points per batch does not signifi
cantly impact the performance of the models. Also, there was no clear 
difference in performance when comparing the two differentiation 
approaches.

Considering the reaction rates space, both models lead to very 
similar performance in all scenarios. Interestingly, although trained only 
in the derivative space, both models can predict well after integration. 
This would support the assumption that the rate expressions can be well 
approximated by both models. At this point, it is worth mentioning that 
– although it was never observed during the calculations of the present 
work – the challenge of stiff ODEs might be encountered. Since the 
model is identified in the derivative space and then incorporated into an 
ODE that is subsequently integrated, the occurrence of such stiff ODE 
systems might not be fully circumventable by the presented approach. 
However, the analysis of stiffness and stability was out of scope of this 
present work and might be the focus of a future study.

Although both models seem to perform similarly throughout the case 
studies, there is one significant advantage of using BMS. After identifi
cation of the rate expression, the model is provided in analytical form 
and can be, arguably, interpreted more easily than purely data-driven 
models. For CSI (CSI-Poly-40), the most plausible expressions obtained 
by the BMS for the ODE system are given in (18) as an example. Addi
tionally, the corresponding estimated values of the parameters in (18)
are given in Table 3. The identified BMS models with the corresponding 
estimated model parameters for the other scenarios are summarized in 
Section S6 of the supporting information. 

dB
dt

= a0

⎛

⎜
⎝(S⋅B)

a1+

(
a2

a2+P

)⎞

⎟
⎠ (18) 

Table 2 
The coefficients of determination (R2, unitless) are shown for the training and testing runs (notation: train/test) for the two case studies and their respective scenarios. 
For each case scenario, the best-performing approach in terms of state-space performance is indicated in bold text. The CPU times for the model training are indicated 
as mean values of the times for training models of the different species. In the ANN case, the time for the grid search is included. The raw values of the CPU times are 
indicated in Section S5 of the supporting information.

CS Derivative Method CPU model training [s] BMS 
State R2

BMS 
Derivative R2

ANN 
State R2

ANN 
Derivative R2

BMS ANN

I Poly-40 7271 88 0.961 / 0.999 0.995 / 0.995 0.837 / 0.986 0.992 / 0.994
SR-40 4132 88 0.977 / 0.900 0.979 / 0.990 0.959 / 0.990 0.982 / 0.988
Poly-20 5803 59 0.998 / 0.995 0.997 / 0.996 0.994 / 0.994 0.996 / 0.996
SR-20 8167 57 0.993 / 0.989 0.981 / 0.986 0.988 / 0.984 0.983 / 0.988

II Poly-40 9384 130 1.000 / 1.000 0.995 / 0.995 0.996 / 0.998 0.958 / 0.989
SR-40 9275 162 1.000 / 1.000 0.995 / 0.997 0.997 / 0.999 0.973 / 0.993
Poly-20 2120 155 1.000 / 1.000 0.986 / 0.986 0.996 / 0.996 0.885 / 0.901
SR-20 4492 151 1.000 / 1.000 0.997 / 0.994 0.999 / 0.999 0.971 / 0.978

Fig. 5. The concentration profiles of the three species in CSI are shown together with the model predictions. The black circles represent the observed noisy data. The 
dashed orange line represents the ANN predictions, whereas the blue solid line represents the BMS predictions. It is worth mentioning the model predictions are only 
shown for the experimental time points that were used for model training, since some initial and last samples were removed from the training, as discussed in Section 
3.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dS
dt

= a2 + a0 − a1
(
P+BS⋅a1

)
⋅S

(
1

S⋅P

)a0

(19) 

dP
dt

= −

(
a2(B⋅P)a1

Sa0

)((a2

P

)
+

a0

S + (aS
1)

)

(20) 

After the model training and the deployment for predicting the time 
dependency of the concentration profiles, one can analyse the obtained 
ODEs to gather some qualitative knowledge from those closed-form 
expressions. This will be shown with the example of the biomass 
growth and the substrate consumption. It is worth to be mentioned that 
this analysis is done on a conceptual and qualitative level to extract 
some knowledge and trends about the underlying system.

Considering the growth of the biomass B in Eq. (18), all three species 
– B, S, and P – seem to influence the change in biomass concentration. 

Fig. 6. The observed values are plotted against the model prediction values for CSI. The columns represent the different scenarios of the case study. The top row 
shows the results obtained from the BMS predictions, whereas the bottom row shows the results from the neural network. Blue points represent the training data, 
whereas red points correspond to the test data. The black line represents the values where the observed value corresponds to the model predictions. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The observed values are plotted against the model prediction values for CSII. The columns represent the different scenarios of the case. The top row shows the 
results obtained from the BMS predictions, whereas the bottom row shows the results from the neural network. Blue points represent the training data, whereas red 
points correspond to the test data. The black line represents the values where the observed value corresponds to the model predictions. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Parameter values of the most plausible algebraic models identified by the 
Bayesian machine scientist (BMS) for CSI-Poly-40.

Parameter Rate equation for CSI

dB/dt dS/dt dP/dt

a0 4.164⋅10− 3 5.343⋅10− 2 − 1.797⋅100

a1 8.285⋅10− 1 2.072⋅10− 2 4.059⋅10− 1

a2 − 1.086⋅10− 1 2.302⋅10− 2 4.175⋅10− 3
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These findings can be interpreted using the underlying ground truth 
model in (16), which was used to generate the noisy data. In this un
derlying ground truth model the product concentration P is not involved 
in the rate equation of the biomass. Nevertheless, the BMS equation 
takes also P into account in (18). However, taking a closer look at the 
exponent in this equation, namely a1 + (a2/(a2 + P)), one can observe 
Monod-type similarities with an asymptotic behaviour. The value of this 
entire exponent converges towards a given value a2, which is displayed 
in Fig. 8 (a).

Although the BMS considers the product in the identified model 
expression for dB/dt, the effect of a change in P is more significant in the 
beginning and becomes less important throughout the reaction (when 
the product is formed, and its concentration increases). In other words, 
the main influences on dB/dt result from the part a0(S⋅B), for most of the 
reaction time, since the exponent has more or less a similar value around 
≈ 0.8 (Fig. 8 (a)) during most of the time, which is in-line with the 
underlying ground truth equation in (16) (no impact of P). Fig. 8 (b) 
displays the true change of biomass (ϕ⋅B) as a function of the substrate 
and biomass concentrations. Considering two specific values of the 
biomass (i.e., 0.02 or 0.30 g/L), the growth can be shown as a function of 
the substrate. In case of low biomass availability (blue dashed line), the 
growth seems to be less dependent on the substrate, whereas in case 
more biomass is available (black dotted-dashed line), the substrate 
concentration shows a greater impact on the growth. In such a case, as 
expected, as soon as the substrate level drops, a significant decrease in 
growth rate can be observed (right part of Fig. 8 (b) for the black dotted- 
dashed line). The predicted time series profiles by the BMS given in 
Fig. 5 show a good accuracy also in the beginning and at the end of the 
process operation, for which the mentioned significant drop in the 
growth needs to be captured. The BMS was able to describe such trends 
without the need of chemical or biological background knowledge. If the 
growth predicted by the BMS – the right-hand side of equation (18) – is 
visualized (Fig. 9), a similar trend can be observed, although slight 
numerical discrepancies are observable compared to the underlying 
system in Fig. 8 (b).

A similar analysis can be performed for example for the identified 
equation of the substrate consumption rate, given in (19). The BMS 
identified an expression where all state variables show an inhibiting 
influence on the rate of S. In other words, the consumption of the sub
strate is enhanced by increasing the concentration of the other species in 
the system. Due to the closed-form availability of the model, a deeper 
analysis of the rate equation is possible, which is showcased by a further 
decomposition of the identified expression into individual terms, 
namely h1, h2, and h3 given below. Compared to the pure ANN, this 
poses an advantage since knowledge about a system can be extracted. 

h1 = a2 + a0 (21) 

h2 = a1⋅P⋅S

(
1

S⋅P

)a0

(22) 

h3 = a1⋅BS⋅a1 ⋅S

(
1

S⋅P

)a0

(23) 

Since h1 only consists of constants, this term is disregarded for the time 
being, as no metabolite influences it. Considering the terms h2 and h3, it 

is observable that the constant a1 and the part S

(
1
/S⋅P

)a0 

is the same for 
both terms. In case one is interested in the significance of the individual 
parts, the numerical ratio of the two terms will matter, since both terms, 
h2 and h3 have the same sign and therefore the same impact on the 
consumption of the substrate. Creating such a ratio ψ = h2/h3 = P/BSa1 

will result in the following consumption rate of the substrate (still dis
regarding h1): 

dS
dt

≈ − a1⋅P⋅S

(
1

S⋅P

)a0

− a1⋅BS⋅a1 ⋅S

(
1

S⋅P

)a0

≈ − a1⋅P⋅S

(
1

S⋅P

)a0

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
h2

− a1⋅
P
ψ⋅S

(
1

S⋅P

)a0

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
h3

(24) 

With this, one can observe that if ψ >1, it results in a case where 

Fig. 8. (a) The exponent in equation (18) is shown as a function of the product concentration P. In (b), the biomass growth ϕ⋅B given by the underlying system in 
equation (16) is visualized as a function of the substrate concentration S and the biomass concentration B. Additionally, in (b), two scenarios are highlighted by the 
blue dashed (constant biomass of 0.02 g/L) and black dotted-dashed lines (constant biomass of 0.30 g/L), for which the growth is shown as a univariate function of 
the substrate concentration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The biomass growth identified by the BMS equation is visualized as a 
function of the substrate concentration S and the biomass concentration B (for 
the indicated concentration of the product). Similarly to Fig. 8, two scenarios 
are highlighted by the blue dashed (constant biomass of 0.02 g/L) and black 
dotted-dashed lines (constant biomass of 0.30 g/L), for which the growth is 
shown as a univariate function of the substrate concentration. (For interpreta
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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h3 < h2. On the other hand, if ψ <1, the case h3 > h2 is obtained. Visu
alizing the value of ψ for different ranges of the biomass and substrate 
concentration and a given value of the product concentration (P) in 
Fig. 10, one can observe how the terms change their numerical relevance 
compared to each other (which term has more impact on the substrate 
concentration). With growing product concentration P, the value of ψ 
starts to grow as well (ψ≫1), leading to higher contributes by the term 
h2.

The obtained closed-form expressions models bring not only the 
advantage of being able to extract some knowledge on the system’s 
behaviour. Due to the algebraic form of the models, another useful 
benefit is the possibility to calculate the gradients analytically. This 
opens the opportunity to include these models for example in deter
ministic optimization algorithms, where the objective functions and 
constraints need to be available in closed-form manner (Bongartz and 
Mitsos, 2019; Misener and Floudas, 2014; Smith and Pantelides, 1999; 
Tawarmalani and Sahinidis, 2002).

Despite the above-discussed advantages the closed-form analytical 
equations provide, there are also disadvantages, where the high CPU 

times for the BMS model training is one of the main drawbacks. 
Considering the averaged CPU times for the BMS training in Table 2, the 
models required at least 35 min (CSII-Poly-20) and at most 156 min 
(CSII-Poly-40). The exact CPU times are documented in Tables S7–S9 in 
Section S5 of the supporting information. As discussed in earlier works 
(Forster et al., 2023b; Negri et al., 2022; Vázquez et al., 2022), the BMS 
in general requires significantly more training time than the benchmark 
surrogates (i.e., ANN and GP). This is because the latter are based on a 
fixed canonical formalism and highly efficient algorithms, such as those 
implemented in the used Python packages Scikit-learn (Pedregosa et al., 
2011). Also, the BMS algorithm was originally designed by the authors 
to only allow the number of MCMC steps as a stopping criterion 
(Guimerà et al., 2020), which limits the ability of the algorithm to find 
models with better description length. Regarding this, the evolution of 
the description length, given in expression (13), is shown in Fig. 11 as a 
function of the number of executed MCMC steps.

To compare the case studies, the description lengths were scaled to a 
range between zero and one. For CSI, it can be observed in Fig. 11 (top) 
that after around 800 MCMC steps, the description length does not 
significantly change. A similar picture is observed in Fig. 11 (bottom) for 
CSII, where the most significant decline in the description length was 
achieved in the first 2000 MCMC steps. The only exception can be 
observed in the scenario CSII-SR-40, where the description length de
clines gradually. These observations imply that the models identified 
after those steps perform similarly in terms of training predictions.

6. Conclusion

In this work, we investigated the use of machine learning to identify 
kinetic models of bioprocesses without assuming a pre-defined model 
structure. A symbolic regression algorithm, the Bayesian machine sci
entist, was employed to generate suitable models considering their error 
and level of similarity with a predefined corpus of equations. The model 
training was performed following a two-step approach, thus avoiding 
the iterative integration of differential equations, by using two methods 
to calculate derivatives, i.e., polynomial fitting and univariate symbolic 
regression. Also, the influence of the sample size was studied.

Our approach was applied to two different case studies to showcase 
its capabilities. Our method performed slightly better than ANNs, while 
leading to analytical expressions that can be more easily analysed. 
However, the BMS leads to higher computational times, which might be 
reduced in the future as symbolic regression algorithms reach higher 
maturity levels. Future work should focus on guiding the SR algorithm 
more efficiently towards equations that are more likely to explain the 
data precisely, for example by using tailored standard kinetic equations 
during the training of the SR algorithm.

Fig. 10. The contour plots of the numerical ratio ψ are shown for three different levels of the product concentration P, which are [0, 7.5, 15] g/L. The colours of the 
contour represent the value of ψ.

Fig. 11. The scaled mean description lengths are visualized for each MCMC 
step for CSI (top) and CSII (bottom). The mean results from averaging the 
description lengths of the different BMS models obtained for each species of 
each scenario (Poly-40, SR-40, Poly-20, SR-20).
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Servia, M.Á. de C., Sandoval, I.O., Hellgardt, K., Kuok, K., Hii, Zhang, D., Chanona, E.A. 

del R., 2023. The Automated Discovery of Kinetic Rate Models – Methodological 
Frameworks.

Del Rio-Chanona, E.A., Cong, X., Bradford, E., Zhang, D., Jing, K., 2019. Review of 
advanced physical and data-driven models for dynamic bioprocess simulation: case 
study of algae–bacteria consortium wastewater treatment. Biotechnol. Bioeng. 116, 
342–353. https://doi.org/10.1002/bit.26881.

Diveev, A., Shmalko, E., 2021. Machine Learning Control by Symbolic Regression, 
Machine Learning Control by Symbolic Regression. Springer International 
Publishing, Cham. https://doi.org/10.1007/978-3-030-83213-1.

Ferreira, J., Pedemonte, M., Torres, A.I., 2019a. A Genetic Programming Approach for 
Construction of Surrogate Models, in: Computer Aided Chemical Engineering. 
Elsevier, pp. 451–456. https://doi.org/10.1016/B978-0-12-818597-1.50072-2.

Ferreira, J., Torres, A.I., Pedemonte, M., 2019b. A Comparative Study on the Numerical 
Performance of Kaizen Programming and Genetic Programming for Symbolic 
Regression Problems, in: 2019 IEEE Latin American Conference on Computational 
Intelligence (LA-CCI). pp. 1–6. https://doi.org/10.1109/LA- 
CCI47412.2019.9036755.

Forster, T., Vázquez, D., Guillén-Gosálbez, G., 2023c. Global optimization of symbolic 
surrogate process models based on Bayesian learning, in: Kokossis, A.C., Georgiadis, 
M.C., Pistikopoulos, E. (Eds.), Computer Aided Chemical Engineering, 33 European 

Symposium on Computer Aided Process Engineering. Elsevier, pp. 1241–1246. 
https://doi.org/10.1016/B978-0-443-15274-0.50198-0.

Forster, T., Vázquez, D., Cruz-Bournazou, M.N., Butté, A., Guillén-Gosálbez, G., 2023a. 
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Bayesian symbolic learning to build analytical correlations from rigorous process 
simulations: application to CO2 capture technologies. ACS Omega 7, 41147–41164. 
https://doi.org/10.1021/acsomega.2c04736.

Neumann, P., Cao, L., Russo, D., Vassiliadis, V.S., Lapkin, A.A., 2020. A new formulation 
for symbolic regression to identify physico-chemical laws from experimental data. 
Chem. Eng. J. 387, 123412 https://doi.org/10.1016/j.cej.2019.123412.

T. Forster et al.                                                                                                                                                                                                                                  Chemical Engineering Science 300 (2024) 120606 

12 

https://doi.org/10.1016/j.ces.2024.120606
https://doi.org/10.1016/j.ces.2024.120606
https://doi.org/10.1002/aic.16507
https://doi.org/10.1016/j.ces.2006.04.028
https://doi.org/10.1016/j.ces.2006.04.028
https://doi.org/10.1016/S0098-1354(00)00653-0
https://doi.org/10.1007/s10107-018-1289-x
https://doi.org/10.1002/bit.26881
https://doi.org/10.1016/j.compchemeng.2022.108108
https://doi.org/10.1016/j.compchemeng.2022.108108
https://doi.org/10.1002/aic.18110
https://doi.org/10.1002/aic.18110
https://doi.org/10.3182/20070604-3-MX-2914.00035
https://doi.org/10.3182/20070604-3-MX-2914.00035
https://doi.org/10.1007/s00449-007-0163-7
https://doi.org/10.1007/s00253-010-2608-1
https://doi.org/10.1007/s00253-010-2608-1
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0105
https://doi.org/10.1186/1752-0509-7-113
https://doi.org/10.1186/1752-0509-7-113
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1198/016214501753168398
https://doi.org/10.1198/016214501753168398
https://doi.org/10.2307/2334940
https://doi.org/10.1016/j.cep.2007.02.031
https://doi.org/10.1016/j.cep.2007.02.031
https://doi.org/10.1007/BF00175355
https://doi.org/10.1016/j.procbio.2017.07.017
https://doi.org/10.1016/S0098-1354(96)00329-8
https://doi.org/10.1016/S0098-1354(96)00329-8
https://doi.org/10.1016/j.tibtech.2014.03.008
https://doi.org/10.1021/ie8015472
https://doi.org/10.1021/ie8015472
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0170
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0170
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0170
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0170
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1002/bit.28262
https://doi.org/10.1002/bit.28262
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0185
https://doi.org/10.1002/biot.201900172
https://doi.org/10.1002/biot.201900172
https://doi.org/10.1016/j.chroma.2021.462248
https://doi.org/10.1016/j.chroma.2021.462248
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0200
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0200
http://refhub.elsevier.com/S0009-2509(24)00906-0/h0200
https://doi.org/10.1021/acsomega.2c04736
https://doi.org/10.1016/j.cej.2019.123412


Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., Édouard, D., 2011. Scikit-learn: machine 
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