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Abstract: The orange (Citrus sinensis) is a fruit of the Citrus genus, which is part of the Rutaceae
family. The orange has gained considerable importance due to its extensive range of applications,
including the production of juices, jams, sweets, and extracts. The consumption of oranges confers
several nutritional benefits, including flavonoids, vitamin C, potassium, beta-carotene, and dietary
fiber. It is crucial to acknowledge that the primary quality criterion employed by consumers and
producers is maturity, which is correlated with the visual quality associated with the color of
the epicarp. This study proposes the implementation of a computer vision system that estimates
the degree of ripeness of oranges Valencia using fuzzy logic (FL); the soluble solids content was
determined by refractometry, while the firmness of the fruit was evaluated through the fruit
firmness test. The proposed method was divided into five distinct steps. The initial stage involved
the acquisition of RGB images. The second stage presents the segmentation of the fruit, which
entails the removal of extraneous noise and backgrounds. The third and fourth steps involve
determining the centroid of the fruit, and five regions of interest were obtained in the centroid
of the fruit of the Citrus Color Index (CII), ranging from 3 × 3 to 11 × 11 pixels. Finally, in the
fifth step, a model was created to estimate maturity, ◦Brix, and firmness using Matlab 2024 and
the Fuzzy Logic Designer and Neuro-Fuzzy Designer applications. Consequently, a statistically
significant correlation was established between maturity, degree Brix, and firmness, with a value
greater than 0.9, using the Citrus Color Index (CII), which reflects the physical–chemical changes
that occur in the orange.

Keywords: Citrus Color Index (CII); degree Brix; firmness; fuzzy logic (FL); maturity; orange

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO),
Mexico is a leading producer of citrus fruits, including lemons, limes, grapefruits, tan-
gerines, mandarins, clementines, and oranges. In 2022, it ranked fourth in the world for
orange production, with 4,850,083.04 tons. About 88% of this production is for domestic
consumption, while the remaining is exported to other countries [1]. The demand for
this fruit is attributed to its versatility in various forms, such as juices, jams, essential
oils, concentrated formulas, and pastes [2–5]. Additionally, this citrus is considered a
functional food due to its nutritional benefits, including flavonoids, vitamin C, phenolic
compounds, carotenoids, and sugars. It also has protective effects against cardiovascular
diseases, hypertension, type 2 diabetes, various types of cancer, asthma, obesity, cognitive
impairment, and depression [6–11]. The agri-food industry gives priority to measuring the
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quality criteria set by the consumer, as color is generally considered to be a quality attribute
associated with ripeness and freshness, and consumers prefer fruits and vegetables that are
uniform in appearance and vivid color [12–16].

Furthermore, the agri-food sector is required to evaluate the organoleptic characteris-
tics of oranges through sensory analysis. This type of analysis is linked to consumer percep-
tion since food is analyzed through the senses using organoleptic properties, such as appear-
ance, smell, aroma, texture, sound, and flavor [17,18]. In addition, the physical–chemical
properties are analyzed to assess the nutritional value of the orange. This includes the
content of nutrients such as fats, vitamins, carbohydrates, proteins, and total acidity, which
is an effective indicator of the quality of the fruit [19–23]. The quality of the orange fruit
is also influenced by climatic conditions and production methods, with the latter being
particularly significant [24]. Traditionally, the quality of oranges was typically assessed
in laboratories using invasive devices, such as high-performance liquid chromatography
(HPLC), refractometers, penetrometers, pH meters, and durometers [25]. These devices
offer versatility, sensitivity, and the ability to separate and identify mixtures, as well as
determine sugar content, acidity, color, and firmness. However, one disadvantage of these
devices is that they require operation by specialized personnel under controlled conditions,
as some devices require the use of solvents for sample analysis, which can be inconvenient
and potentially hazardous [25–30].

Currently, non-invasive methods have been proposed to determine the quality of
oranges based on their color. Therefore, computer vision (CV) is a technique used to
measure color, which is a perceptual phenomenon resulting from the stimulation of the
visual system by the visible spectrum of light reflected or emitted by the sample. It is
important to note that color is not an intrinsic property of the sample, and its perception
is sensitive to changes in the incident light source, which can be used to determine the
ripeness of various fruits, including persimmon, strawberry, pomegranate, tomato, bell
pepper, pineapple, and orange [15,31–34]. These methods have also been used to measure
physicochemical properties, such as pH, total soluble solids (TSS), titratable acidity (TA),
maturity index (MI), total anthocyanin content (TAC), and carotenoids [14,28,35–38]. These
properties can be determined using the color space models RGB, HSV, CIE L*a*b*, and
CIE XYZ, along with the indices CI = a/b, CCI = (1.00 × a)/(L × b), CR = 200[(1.277X
− 0.213Z)/Y − 1]. It should be noted that the CII is one of the most important indi-
cators as to when the crop should be harvested or what treatment should be applied
to it [14].

The agri-food industry is confronted with the necessity to integrate low-cost, precision
technology that enables the identification of quality criteria such as the maturity of fruits.
In this context, a methodology is proposed that determines the degree of maturity, firm-
ness, and ◦Brix content of orange fruit using various thresholds of the Citrus Color Index
(CCI) and non-invasive methods. The determination of these will be carried out through
computer vision and a fuzzy inference system (FIS).

Figures 1 and 2 show the distribution of degrees Brix and firmness in the four stages of
maturity of the set of samples used for the development of this work. This analysis allowed
us to establish that the grouping of the samples encompasses different stages of maturity of
the Valencia orange. This describes a variation in sugars and firmness at different stages
of ripeness.
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Figure 1. Samples of oranges in different degrees of ◦Brix.
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Figure 2. Samples of oranges in different degrees of firmness.

2. Materials and Methods
2.1. Samples

A total of 75 samples of oranges Valencia were purchased from a local store in Irapuato,
Guanajuato, Mexico. The citrus fruits were selected for their color and size in order to
have samples at different stages of maturity. The oranges were classified into four classes
according to the color present in their epicarp, as shown in Figure 3: Class 1 was composed
of 17 green samples; Class 2 of 24 samples with green and yellowish-green regions; Class 3
consisted of 17 fruits with pale yellow to bright orange regions. In Class 4, 17 samples were
identified, displaying a bright orange to dull orange region. This classification facilitates the
development of the implementation of computer vision systems with artificial intelligence
(IA) through the use of RGB, Cie-L*a*b, and HSV color space models [14]:
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The samples were mapped in the RGB, Cielab, and HSV color space models to verify
the accuracy of their classification, as shown in Figures 4–6. The color green is indicative of
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samples belonging to Class 1, yellow to samples of Class 2, orange to samples of Class 3,
and brown to the samples of Class 4.
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2.2. Refractometer

In the traditional agro-food industry, the refractometer is employed as an optical
instrument for measuring the degree Brix in a variety of products, including fruits. The
degrees Brix is calculated based on the refractive index (RI) of the liquid sample under
examination. The refractive index (RI) is defined as the ratio between the speed of light in a
vacuum and the speed of light in each medium. The RI is dependent upon the wavelength
of light and the temperature of the sample liquid [39,40]. Juice extraction from the samples
was performed using a Black and Decker model CJ650 citrus juicer. Approximately 10 mL
of juice was extracted from each sample for direct measurement of its Brix content using a
digital Brix refractometer (Deosdum, mod. t1cq6gki47) with a range of 0 to 55% [41].

2.3. Fruit Penetrometer

The firmness of the fruits is highly useful in determining the ripening stages of the
orange. Traditionally, this criterion is employed to ascertain the traceability of the product
throughout its production, harvest, and transport. It is important to note that the proper
management of firmness helps to prevent mechanical damage such as distortion, bruises,
and cracks, which could otherwise affect the commercialization of the orange [42]. Firmness
measurements were conducted utilizing a GY3 brand penetrometer with an 8 mm head.
This instrument has a capacity of 0.5–12 kg/cm2, a resolution of 0.1 kg/cm2, an accuracy of
±2%, and a diameter of Ø 11.1 mm. The test was carried out with a 10 mm perforation of
the epicarp of the fruit in the equatorial region [43].

2.4. General Structure of Computer Vision System

Figure 7 shows the proposed methodology for predicting the sugar content and
firmness of the orange. The first step of the proposed methodology involved the acquisition
of image samples utilizing a computer vision system (VCS) and software Matlab 2024. The
acquired images were recorded in a resolution of 480 × 640 × 3 pixels in the JPG format
using a Logitech C920 HD Pro Webcam with full high-definition resolution at 1080 p and a
frame rate of 30 fps. The second step involved the segmentation of the orange and entailed
the elimination of image noise that corresponded to areas smaller than 20,000 pixels. The
third step was the calculation of the centroid of the sample. The fourth step is to obtain
regions of CII. The fifth step was to generate the CCIs using sub-regions of 3 × 3, 5 × 5,
11 × 11, 21 × 21, and 31 × 31. The final step is to utilize the CII to generate a prediction of
the Brix content and firmness.
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2.5. Image Acquisition, Capture, and Segmentation

Figure 8 presents the proposed method for removing noise from the captured image,
which was integrated into three stages. The first step is the capture of the image of the
sample with a size of (480 × 640 × 3) pixels in JPG format. In the second step, the
segmentation of the orange is carried out using a mask based on the RGB model with
10 <= R <= 255, 0 <= G <= 255, and 0 <= B <= 255, with a range between 0 and 255; finally,
the binarization of the image sample and the identification of the connected components of
the image are carried out. We identify and label all the blobs that make up the binarized
image and then eliminate them, similarly to all spots with areas less than 20,000 pixels.
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This process is dependent on the number of regions of interest (ROI) and the image indices
with a connectivity of 8.
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Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the
captured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample
and discrimination of areas.

2.6. Citrus Color Index (CII) Extraction

The Citrus Color Index employed the methodology proposed by [44,45]. This descrip-
tor facilitated the identification of the four classes that divided the samples according to
their epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated
by converting the color space model from RGB to CIE-L*a*b and then applying the ratio
CII = (1000 a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions
of 3 × 3, 5 × 5, 11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it
was necessary to calculate the centroid of the fruit. This enabled the determination of the
five values (CCI) for each ROI. Table 1 presents the calculated CCI for each sub-region of
3 × 3, 5 × 5, 11 × 11, 21 × 21, and 31 × 31.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

eliminate them, similarly to all spots with areas less than 20,000 pixels. This process is de-

pendent on the number of regions of interest (ROI) and the image indices with a connec-

tivity of 8. 

 

Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the cap-

tured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample and 

discrimination of areas. 

2.6. Citrus Color Index (CII) Extraction 

The Citrus Color Index employed the methodology proposed by [44,45]. This descriptor 

facilitated the identification of the four classes that divided the samples according to their 

epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated by con-

verting the color space model from RGB to CIE-L*a*b and then applying the ratio CII = (1000 

a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions of 3 × 3, 5 × 5, 

11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it was necessary to 

calculate the centroid of the fruit. This enabled the determination of the five values (CCI) 

for each ROI. Table 1 presents the calculated CCI for each sub-region of 3 × 3, 5 × 5, 11 × 

11, 21 × 21, and 31 × 31. 

 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange 

fruit. 

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit. 

ROI 

(pixels) 

CCI 

Class 1 

 

Class 2 

 

Class 3 

 

Class 4 

 
3 × 3 −3.25 0.406 2.59 3.68 

5 × 5 −3.30 0.461 2.58 3.67 

11 × 11 −3.32 0.534 2.62 3.83 

21 × 21 −3.22 0.6109 2.71 3.76 

31 × 31 −3.20 0.6250 2.745 3.79 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange fruit.

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit.

ROI
(Pixels)

CCI

Class 1

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

eliminate them, similarly to all spots with areas less than 20,000 pixels. This process is de-

pendent on the number of regions of interest (ROI) and the image indices with a connec-

tivity of 8. 

 

Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the cap-

tured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample and 

discrimination of areas. 

2.6. Citrus Color Index (CII) Extraction 

The Citrus Color Index employed the methodology proposed by [44,45]. This descriptor 

facilitated the identification of the four classes that divided the samples according to their 

epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated by con-

verting the color space model from RGB to CIE-L*a*b and then applying the ratio CII = (1000 

a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions of 3 × 3, 5 × 5, 

11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it was necessary to 

calculate the centroid of the fruit. This enabled the determination of the five values (CCI) 

for each ROI. Table 1 presents the calculated CCI for each sub-region of 3 × 3, 5 × 5, 11 × 

11, 21 × 21, and 31 × 31. 

 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange 

fruit. 

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit. 

ROI 

(pixels) 

CCI 

Class 1 

 

Class 2 

 

Class 3 

 

Class 4 

 
3 × 3 −3.25 0.406 2.59 3.68 

5 × 5 −3.30 0.461 2.58 3.67 

11 × 11 −3.32 0.534 2.62 3.83 

21 × 21 −3.22 0.6109 2.71 3.76 

31 × 31 −3.20 0.6250 2.745 3.79 

Class 2

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

eliminate them, similarly to all spots with areas less than 20,000 pixels. This process is de-

pendent on the number of regions of interest (ROI) and the image indices with a connec-

tivity of 8. 

 

Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the cap-

tured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample and 

discrimination of areas. 

2.6. Citrus Color Index (CII) Extraction 

The Citrus Color Index employed the methodology proposed by [44,45]. This descriptor 

facilitated the identification of the four classes that divided the samples according to their 

epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated by con-

verting the color space model from RGB to CIE-L*a*b and then applying the ratio CII = (1000 

a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions of 3 × 3, 5 × 5, 

11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it was necessary to 

calculate the centroid of the fruit. This enabled the determination of the five values (CCI) 

for each ROI. Table 1 presents the calculated CCI for each sub-region of 3 × 3, 5 × 5, 11 × 

11, 21 × 21, and 31 × 31. 

 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange 

fruit. 

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit. 

ROI 

(pixels) 

CCI 

Class 1 

 

Class 2 

 

Class 3 

 

Class 4 

 
3 × 3 −3.25 0.406 2.59 3.68 

5 × 5 −3.30 0.461 2.58 3.67 

11 × 11 −3.32 0.534 2.62 3.83 

21 × 21 −3.22 0.6109 2.71 3.76 

31 × 31 −3.20 0.6250 2.745 3.79 

Class 3

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

eliminate them, similarly to all spots with areas less than 20,000 pixels. This process is de-

pendent on the number of regions of interest (ROI) and the image indices with a connec-

tivity of 8. 

 

Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the cap-

tured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample and 

discrimination of areas. 

2.6. Citrus Color Index (CII) Extraction 

The Citrus Color Index employed the methodology proposed by [44,45]. This descriptor 

facilitated the identification of the four classes that divided the samples according to their 

epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated by con-

verting the color space model from RGB to CIE-L*a*b and then applying the ratio CII = (1000 

a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions of 3 × 3, 5 × 5, 

11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it was necessary to 

calculate the centroid of the fruit. This enabled the determination of the five values (CCI) 

for each ROI. Table 1 presents the calculated CCI for each sub-region of 3 × 3, 5 × 5, 11 × 

11, 21 × 21, and 31 × 31. 

 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange 

fruit. 

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit. 

ROI 

(pixels) 

CCI 

Class 1 

 

Class 2 

 

Class 3 

 

Class 4 

 
3 × 3 −3.25 0.406 2.59 3.68 

5 × 5 −3.30 0.461 2.58 3.67 

11 × 11 −3.32 0.534 2.62 3.83 

21 × 21 −3.22 0.6109 2.71 3.76 

31 × 31 −3.20 0.6250 2.745 3.79 

Class 4

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

eliminate them, similarly to all spots with areas less than 20,000 pixels. This process is de-

pendent on the number of regions of interest (ROI) and the image indices with a connec-

tivity of 8. 

 

Figure 8. The proposed method in orange fruit for the removal of small blobs from the image of the cap-

tured sample: (i) real image; (ii) binarization of the image; and (iii) segmentation of the sample and 

discrimination of areas. 

2.6. Citrus Color Index (CII) Extraction 

The Citrus Color Index employed the methodology proposed by [44,45]. This descriptor 

facilitated the identification of the four classes that divided the samples according to their 

epicarp color. The CCI values ranged from −5.8183 to 4.5321. The CII was calculated by con-

verting the color space model from RGB to CIE-L*a*b and then applying the ratio CII = (1000 

a*)/(L* b*). Figure 9 shows the ROI used to obtain each CCI, with dimensions of 3 × 3, 5 × 5, 

11 × 11, 21 × 21, and 31 × 31, respectively [44]. To determine the areas, it was necessary to 

calculate the centroid of the fruit. This enabled the determination of the five values (CCI) 

for each ROI. Table 1 presents the calculated CCI for each sub-region of 3 × 3, 5 × 5, 11 × 

11, 21 × 21, and 31 × 31. 

 

Figure 9. Representation of the sub-regions of the Citrus Color Index (CCI) of Valencia orange 

fruit. 

Table 1. Comparison of sub-regions of interest (ROI) and Citrus Color Index (CCI) in orange fruit. 

ROI 

(pixels) 

CCI 

Class 1 

 

Class 2 

 

Class 3 

 

Class 4 

 
3 × 3 −3.25 0.406 2.59 3.68 

5 × 5 −3.30 0.461 2.58 3.67 

11 × 11 −3.32 0.534 2.62 3.83 

21 × 21 −3.22 0.6109 2.71 3.76 

31 × 31 −3.20 0.6250 2.745 3.79 

3 × 3 −3.25 0.406 2.59 3.68

5 × 5 −3.30 0.461 2.58 3.67

11 × 11 −3.32 0.534 2.62 3.83

21 × 21 −3.22 0.6109 2.71 3.76

31 × 31 −3.20 0.6250 2.745 3.79



Appl. Sci. 2024, 14, 5953 7 of 18

2.7. Fuzzy Estimator

Fuzzy logic (FL) is one of the disciplines of computational intelligence that studies
the adaptive mechanisms that enable or facilitate intelligent behavior in a complex and
changing environment. It may be argued that it employs the value space of falsehood
(0), truth (1), and multi-valued between 0 and 1 [46]. Consequently, fuzzy inference
systems (FIS) have been integrated to assist in reducing uncertainty in the determination of
physicochemical variables of fruits [20]. As a part of this, the following FIS architecture was
proposed, which is shown in Figure 10. It uses as descriptors the orange sub-regions used
to determine the different CCI and as outputs the class, sugar, and firmness. The proposed
system architecture comprises three fuzzy systems that estimate the variables maturity,
degrees Brix, and firmness.
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Figure 10. Proposed fuzzy inference system.

Table 2 presents five models proposed for training with 10 epochs. The models were
developed using Matlab’s Fuzzy Logic and Neuro-Fuzzy Designer Apps, which enabled
us to classify the samples according to their degree of maturity. The primary distinction
between the proposed models is the number of sub-regions used for input and the amount
of membership function (MF) of the triangular type. Model 1 employed a 3 × 3 sub-region,
three membership functions, and an error rate of 0.766. Model 2 employed a 3 × 3 and
5 × 5 sub-region, six membership functions, and an error rate of 0.705. Concerning Model 3,
it is observed that it employed three different sub-region sizes, including 3 × 3, 5 × 5,
and 11 × 11, in addition to nine membership functions, with an error of 0.623. Model 4
employed the aforementioned sub-regions in conjunction with 21 × 21 and 12 membership
functions, resulting in an error of 0.613. Model 5 employed the 3 × 3, 5 × 5, 11 × 11, 21 × 21,
and 31 × 31 sub-regions, along with 15 membership functions, resulting in an error of 0.172.
The triangle membership function was selected for its simplicity of implementation and
low computational cost.
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Table 2. Fuzzy models’ architecture is proposed to estimate the maturity of orange fruit.

Input Number of MF Epochs MSE

ROI of CII Triangle

Model 1 3 × 3 3 10 0.766

Model 2 3 × 3, 5 × 5 6 10 0.705

Model 3 3 × 3, 5 × 5, 11 × 11 9 10 0.623

Model 4 3 × 3, 5 × 5, 11 × 11, 21 × 21 12 10 0.613

Model 5 3 × 3, 5 × 5, 11 × 11, 21 × 21, 31 × 31 15 10 0.172

Table 3 presents the architecture of Models 6 to 10, which predict the degree Brix
of oranges. These models share similar characteristics with maturity models, including
inputs and membership functions. Table 3 shows that the mean square error varies in the
prediction of the physicochemical variable content using the set of oranges, Valencia.

Table 3. Fuzzy models’ architecture proposed to estimate the Brix grade of orange Valencia.

Input Number of MF Epochs MSE

ROI of CII Triangle

Model 6 3 × 3 3 10 1.738

Model 7 3 × 3, 5 × 5 6 10 1.416

Model 8 3 × 3, 5 × 5, 11 × 11 9 10 1.109

Model 9 3 × 3, 5 × 5, 11 × 11, 21 × 21 12 10 0.582

Model 10 3 × 3, 5 × 5, 11 × 11, 21 × 21, 31 × 31 15 10 0.293

Table 4 shows the architecture of Models 11 to 15, which predict the firmness of
oranges. These models have similar characteristics to the models for maturity and Brix,
including inputs and membership functions.

Table 4. Fuzzy models’ architecture is proposed to estimate the firmness of orange Valencia.

Input Number of MF Epochs MSE

ROI of CII Triangle

Model 11 3 × 3 3 10 1.207

Model 12 3 × 3, 5 × 5 6 10 1.021

Model 13 3 × 3, 5 × 5, 11 × 11 9 10 0.888

Model 14 3 × 3, 5 × 5, 11 × 11, 21 × 21 12 10 0.602

Model 15 3 × 3, 5 × 5, 11 × 11, 21 × 21, 31 × 31 15 10 0.381

2.8. Fuzzification

The fuzzification process involves transforming the input variables into fuzzy plane
values. In other words, each input value is evaluated following the corresponding member-
ship functions, thereby generating a degree of fuzzy set membership. Table 5 presents a
comparison of the architectures, demonstrating that the fuzzy inference systems comprising
5 CCI sub-regions and 15 membership functions have the lowest errors, namely, 0.1, 0.289,
and 0.250. Moreover, a strong correlation of the variables of 0.98 for maturity and degree is
observed in the case of firmness, with a correlation coefficient of 0.97.
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Table 5. The selection of membership functions for the proposed architectural design.

MF MSE Coefficient of Determination (R²)

Maturity Degree Brix Firmness Maturity Degree Brix Firmness

Trimf 0.172 0.293 0.381 0.96 0.9881 0.91

Trampmf 0.405 0.872 0.614 0.80 0.89 0.81

Gbellmf 0.118 0.340 0.283 0.98 0.98 0.96

Gaussmf 0.132 0.289 0.319 0.97 0.98 0.95

Gauss2mf 0.100 0.423 0.250 0.98 0.97 0.97

Subsequently, an evaluation was conducted to assess the efficacy of different mem-
bership functions, including triangular, trapezoidal, bell, Gaussian, and a combination of
two Gaussians, as shown in Table 5. Upon analysis of Table 5, it was determined that the
Gaussian membership function is optimal for estimating the Brix content of the orange,
with a mean squared error (MSE) of 0.289 and a coefficient of determination (R2) of 0.98.
In contrast, the combination of two Gaussian functions is most suitable for estimating
maturity and firmness. In the case of maturity, the error is 0.1, with an R2 value of 0.98. For
firmness, the error was 0.25, with an R2 value of 0.97.

Table 6 shows the linguistic variables used by the maturity classification model; these
are “LCCI 3 × 3” Low Citrus Color Index 3 × 3, “MCCI 3 × 3” Medium Citrus Color Index
of 5 × 5, “HCCI 3 × 3” High Citrus Color Index of 3 × 3, “LCCI 5 × 5” Low Citrus Color
Index of 5 × 5, “MCCI 5 × 5” Medium Citrus Color Index of 5 × 5, “HCCI 5 × 5” High
Citrus Color Index of 5 × 5, “LCCI 11 × 11” Low Citrus Color Index of 11 × 11, “ MCCI
11 × 11” Medium Citrus Color Index of 11 × 11, “HCCI 11 × 11” High Citrus Color Index
of 11 × 11, “LCCI 21 × 21” Low Citrus Color Index of 21 × 21, “MCCI 21 × 21” Medium
Citrus Color Index of 21 × 21, “HCCI 21 × 21” High Citrus Color Index of 21 × 21, “LCCI
31 × 31” Low Citrus Color Index of 31 × 31, “MCCI 31 × 31” Medium Citrus Color Index
of 31 × 31, and “HCCI 31 × 31” High Citrus Color Index of 31 × 31, which are shown in
Figure 11.
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Figure 11. Membership functions used in the proposed model maturity of oranges Valencia. Low
Citrus Color Index: (a) 3 × 3, (b) 5 × 5, (c) 11 × 11, (d) 21 × 21, and (e) 31 × 31 data.

Tables 7 and 8 present the linguistic variables employed in the Brix and firmness
prediction model and are identical to those employed in the maturity prediction model. This
is important to note that the principal distinction between the models is the range of values
that are considered and the type of membership function, as shown in Figures 12 and 13.
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Table 6. Gaussian2mf membership functions parameters of maturity of oranges Valencia.

Gaussian2mf

Low Medium High

LCCI 3 × 3 = (0.842, −7.306, 0.845, −4.329) MCCI 3 × 3 = (0.842, −2.344, 0.876, 0.647) HCCI 3 × 3 = (0.846, 2.613, 0.842, 5.594)

LCCI 5 × 5 = (0.83, −7.219, 0.833, −4.278) MCCI 5 × 5 = (0.832, −2.318, 0.827, 0.625) HCCI 5 × 5 = (0.831, 2.583, 0.832, 5.522)

LCCI 11 × 11 = (0.810, −7.033, 0.810, −4.171) MCCI 11 × 11 = (0.810, −2.262, 0.815, 0.607) HCCI 11 × 11 = (0.805, 2.512, 0.810, 5.370)

LCCI 21 × 21 = (0.755, −6.347, 0.758, −3.677) MCCI 21 × 21 = (0.755, −1.898, 0.829, 0.796) HCCI 21 × 21 = (0.759, 2.548, 0.755, 5.221)

LCCI 31 × 31 = (0.720, −5.941, 0.720, −3.396) MCCI 31 × 31 = (0.720, −1.700, 0.759, 0.861) HCCI 31 × 31 = (0.725, 2.542, 0.720, 5.084)

Table 7. Gaussian membership functions parameters of degree Brix of oranges Valencia.

Gaussian

Low Medium High

LCCI 3 × 3 = (2.108, −5.817) MCCI 3 × 3 = (2.106, −0.844) HCCI 3 × 3 = (2.084, 4.127)

LCCI 5 × 5 = (2.081, −5.748) MCCI 5 × 5 = (2.058, −0.851) HCCI 5 × 5 = (2.058, 4.068)

LCCI 11 × 11 = (2.026, −5.602) MCCI 11 × 11 = (1.998, −0.827) HCCI 11 × 11 = (1.997, 3.967)

LCCI 21 × 21 = (1.889, −5.012) MCCI 21 × 21 = (1.892, −0.541) HCCI 21 × 21 = (1.869, 3.914)

LCCI 31 × 31 = (1.801, −4.668) MCCI 31 × 31 = (1.833, −0.395) HCCI 31 × 31 = (1.778, 3.840)

Table 8. Gaussian2mf membership functions’ parameters of firmness of oranges Valencia.

Gaussian2mf

Low Medium High

LCCI 3 × 3 = (0.842, −7.306, 0.842, −4.329) MCCI 3 × 3 = (0.842, −2.344, 0.822, 0.645) HCCI 3 × 3 = (0.807, 2.654, 0.842, 5.594)

LCCI 5 × 5 = (0.832, −7.219, 0.832, −4.278) MCCI 5 × 5 = (0.832, −2.318, 0.870, 0.644) HCCI 5 × 5 = (0.831, 2.597, 0.832, 5.522)

LCCI 11 × 11 = (0.810, −7.033, 0.813, −4.170) MCCI 11 × 11 = (0.810, −2.262, 0.908, 0.660) HCCI 11 × 11 = (0.807, 2.490, 0.810, 5.370)

LCCI 21 × 21 = (0.755, −6.347, 0.774, −3.671) MCCI 21 × 21 = (0.755, −1.898, 0.878, 0.821) HCCI 21 × 21 = (0.764, 2.55, 0.755, 5.221)

LCCI 31 × 31 = (0.720, −5.941, 0.722, −3.395) MCCI 31 × 31 = (0.720, −1.700, 0.720, 0.869) HCCI 31 × 31 = (0.687, 2.558, 0.720, 5.084755)
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Figure 12. Membership functions used in the proposed model degree Brix of oranges Valencia:
(a) membership functions for Low Citrus Color Index 3 × 3 data; (b) membership functions for Low
Citrus Color Index 5 × 5 data; (c) membership functions for Low Citrus Color Index 11 × 11 data;
(d) membership functions for Low Citrus Color Index 21 × 21 data; and (e) membership functions
for Low Citrus Color Index 31 × 31 data.
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Figure 13. Membership functions used in the proposed model firmness or oranges Valencia: (a) mem-
bership functions for Low Citrus Color Index 3 × 3 data; (b) membership functions for Low Citrus
Color Index 5 × 5 data; (c) membership functions for Low Citrus Color Index 11 × 11 data; (d) mem-
bership functions for Low Citrus Color Index 21 × 21 data; and (e) membership functions for Low
Citrus Color Index 31 × 31 data.

• Inference

An essential component of the FIS is the knowledge base. This is composed of rules
associated with knowledge, perception, experience, and the ambiguity of the expert, which
is challenging to capture with exact values. The set of rules is of the IF-Else type with AND.
This was implemented with the scalar product between arguments [47,48]. The results
were delivered to each output variable, corresponding to the respective output weights,
WMi (weight associated with the rule of inference about the ripeness of the orange), WBi
(weight associated with the inference rule on the Brix degree of the orange), and WFi
(weight associated with the inference rule about the firmness of the orange).

Three rules of the 243 inference rules and their respective weights for each of the two
fuzzy systems maturity, degree Brix, and firmness are shown in Appendix A.

• If (CCI 3 × 3 is LCCI 3 × 3) and (CCI 5 × 5 is LCCI 5 × 5) and (CCI 11 × 11 is LCCI
11 × 11) and (CCI 21 × 21 is LCCI 21 × 21) and (CCI 31 × 31 is LCCI 31 × 31) then
(Maturity is WMi).

• If (CCI 3 × 3 is LCCI 3 × 3) and (CCI 5 × 5 is LCCI 5 × 5) and (CCI 11 × 11 is LCCI
11 × 11) and (CCI 21 × 21 is LCCI 21 × 21) and (CCI 31 × 31 is LCCI 31 × 31) then
(Brix is WBi).

• If (CCI 3 × 3 is LCCI 3 × 3) and (CCI 5 × 5 is LCCI 5 × 5) and (CCI 11 × 11 is LCCI
11 × 11) and (CCI 21 × 21 is LCCI 21 × 21) and (CCI 31 × 31 is LCCI 31 × 31) then
(Firmness is WFi).

2.9. Defuzzification

Defuzzification is the conversion process that results from a real value variable [48].
This conversion process was carried out using Equations (1)–(3), which used 243 inference
rules. Figure 14 shows the Takagi–Sugeno fuzzy model, wherein WMi, WBi, and WFi rep-
resent the weights of the outputs fuzzy rule. ZMi is associated with output-level maturity,
ZBi corresponds to output-level degree Brix, and ZFi is related to output-level firmness.
It should be noted that the subscript i indicates the rule number used to calculate the
weighted average of the maturity, degree Brix, and firmness using the weights and output
levels. These levels depend on the input variables and the weights of the membership
function. N represents the number of fuzzy rules.

Maturity =
∑N

i=1 WMi×ZMi

∑N
i=1 WMi

(1)
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DegreeBrix =
∑N

i=1 WBi × ZBi

∑N
i=1 WBi

(2)

Firmness =
∑N

i=1 WFi × ZFi

∑N
i=1 WFi

(3)
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3. Results

Figures 15 and 16 show the outcomes of the proposed fuzzy maturity classification
models. The results demonstrate that Model 5, which employed the five CCI regions,
presented the highest correlation with R2 of 0.98 and an error of 0.01. It is noteworthy that
Model 4, which employs only four CCI regions, exhibited a slightly inferior result, with an
R2 of 0.95 and an error of 0.406. In the case of Model 3, it demonstrated a good correlation
of 0.79 and errors of 0.168. The correlation coefficient for Model 2 and Model 1 was 0.51, 30
with an error of 0.40 and 0.585.

Figures 17 and 18 present the results of the proposed fuzzy Brix degree prediction
models. It should be noted that the strongest statistical correction was 0.98 with an error
of 0.082, which corresponds to Model 10. Likewise, Model 9 presented slightly inferior
results with a statistical correlation R2 of 0.92 and an error of 0.558. Alternatively, Models 7
and 8 demonstrated satisfactory correlations of 0.85 and 0.72, respectively, accompanied
by relatively minor errors of 1.072 and 1983, respectively. Conversely, Model 1 exhibited a
comparatively low correlation of 0.54 and an error of 3.275.
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Figure 17. Predictions of the fuzzy inference systems of degree Brix.
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Figure 18. Mean square error of the predictions of the fuzzy inference systems of degree Brix.

Figures 19 and 20 present the outcomes of the proposed fuzzy firmness prediction
models. It is noteworthy that the most significant statistical correction was 0.95, accom-
panied by an error of 1.456, which corresponds to Model 15. Similarly, Models 14 and 13
exhibited satisfactory correlations of 0.88 and 0.74, respectively, accompanied by relatively
minor errors of 0.916 and 0.543, respectively. In the case of Models 11 and 12, the correlation
was below 0.7 and the errors were 0.916 and 1.456, respectively.
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4. Discussion

This work makes a significant contribution by proposing the implementation of a
vision system that determines maturity, firmness, and sugar content in a non-invasive
manner. It should be noted that the computer vision (CV) system was calibrated using a
refractometer, penetrometer, and the Citrus Color Index parameter. Table 10 shows several
mathematical models proposed using fuzzy logic. From this, it can be seen that Models 5,
10, and 15 presented a statistical correlation value greater than or equal to 0.95, indicating a
very strong correlation between the Citrus Color Index (CCI) and maturity, Brix degrees,
and firmness. In comparison with the results proposed by [48,49], Maturity Classification
Model 5 presented a better result than its proposal with fuzzy logic and slightly lower
than the one proposed with neuronal. It is noteworthy that your proposal employs the
pixels of the sample. In the context of Brix degree prediction, Model 10 yielded superior
outcomes compared to the approach proposed by [31]. Among the methodologies that
leverage spectral information, Model 10 identified a statistical correlation exceeding 0.9.
Regarding firmness, the model proposed by [50] exhibited comparable results to Model 15,
which utilized the weight loss and CCI variables.

Table 9. Comparison of the different models.

Models Technique Input Output R2 Error Mean
Square (MSE)

Model 5 Fuzzy
CCI(3 × 3), CCI(5 × 5),

CCI(11 × 11), CCI(21 × 21),
CCI(31 × 31)

Maturity 0.98 0.01

Model 10 Fuzzy
CCI(3 × 3), CCI(5 × 5),

CCI(11 × 11), CCI(21 × 21),
CCI(31 × 31)

◦Brix 0.98 0.082

Model 15 Fuzzy
CCI(3 × 3), CCI(5 × 5),

CCI(11 × 11), CCI(21 × 21),
and CCI(31 × 31)

Firmness 0.95 1.456
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Table 10. Comparison of the different models.

Models Technique Input Output R2 Error Mean
Square (MSE)

Villaseñor-Aguilar
et al. (2020) [34]

Artificial neuronal
network fuzzy

GAROI, YAROI, OAROI,
and RARO

Maturity
◦Brix

Maturity
◦Brix

1
0.6327
0.88
0.891

0
0.3888

-
0.484

Li et al. (2020) [49] SNV-VABPLS Spectra Total soluble
solids (TSS) 0.82 0.5764

Li et al. (2020) [50]
Multi-region
combination

models
Spectra Total soluble

solids (TSS) 0.8687 0.3445

Olmo et al.
(2000) [51] Linear regression Weight losses Firmness 0.95 -

5. Conclusions

This work proposes a novel classification system for evaluating the ripeness of oranges
using computer vision. The proposed architecture enables the correlation of physico-
chemical changes in the orange, as evidenced by alterations in its epicarp color, sugar
concentration, and firmness. This was reflected in the results of fuzzy models 5, 10, and
10, which used five values from the Citrus Color Index as descriptors with dimensions
of 3 × 3, 5 × 5, 11 × 11, 21 × 21, and 31 × 31. For these models, a statistical correlation
greater than 0.9 was achieved in determining the degree of maturity, Brix degrees, and
firmness. This proposal has the advantage that it employs a low-cost camera and is a
non-invasive method that can be implemented in real-time applications. In future works, it
is planned to incorporate the analysis of other variables, including pH, acidity, ascorbic
acid, and carotenoids.
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Appendix A

Listed below are the inference rules and weights for each of the fuzzy systems,
which you can consult at the following link: https://drive.google.com/file/d/1xpfRYI2
tIjIHhHZss5LMV12X8VhAImax/view?usp=sharing (accessed on 28 June 2024).
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