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Abstract: The direct activation of diluted CO2 in argon was studied in a co-axial dielectric barrier
discharge (DBD) reactor powered by photovoltaic energy. The influence of the initial CO2 and
argon concentration on the CO2 decomposition to form CO was investigated using a copper-based
catalyst in the discharge zone. It was observed that the CO2 conversion was higher at lower CO2

concentrations. The presence of the diluent gas (argon) was also studied and it was observed how it has
a high influence on the decomposition of CO2, improving the conversion at high argon concentrations.
At the highest observed energy efficiency (1.7%), the CO2 conversion obtained was 40.2%. It was
observed that a way to enhance the sustainability of the process was to use photovoltaic energy. Taking
into account a life cycle assessment approach (LCA), it was estimated that within the best-case scenario,
it would be feasible to counterbalance 97% of the CO2 emissions related to the process.

Keywords: non-thermal plasma; CO2 conversion; DBD; carbon capture and utilization (CCU)

1. Introduction

Nowadays, it is a priority to find and develop technologies to deal with CO2 emissions
in order to mitigate global warming [1]. New alternatives for carbon capture technologies
have been studied and assessed [2–6], but the problem of which is the best alternative for
CO2 as a feedstock is still under study [7–10]. That is why CO2 conversion to valuable prod-
ucts appears to be a great possibility; this leads to the reduction in fossil fuel dependence
and global warming too.

The direct use of CO2 has a great variety of applications, such as its relevance within
soft drinks, to the scope of supercritical CO2 as a solvent, and in other industrial areas,
for instance, welding and refrigeration [7]. Direct dissociation of CO2 and conversion into
other value-added fuels and chemicals provides a potential route for efficient reduction
in CO2 emissions. Variable progress has been made to convert CO2 into other value-
added chemicals, such as CO2 hydrogenation for the synthesis of methane, methanol,
formaldehyde, etc. [8–10].

CO2 conversion, decomposition, or activation into valuable products have been widely
studied through thermo-chemical [11], photocatalysis [12–17], biological [18] or electro-
chemical [19,20] pathways, although these routes are not efficient from an energy perspec-
tive. Alternatively, non-thermal plasma (NTP) can operate under ambient conditions, so it
can offer high energetic electrons which are able to initiate a highly endothermic chemical re-
action under ambient temperature [21]. Different NTP approaches have been broadly stud-
ied such as corona discharge [22,23], gliding arc [24,25], microwave discharge [26,27], and
dielectric barrier discharge (DBD) [28–30]. The latter has drawn more attention for the wide
range of applications and its operability. Among several applications for the DBD approach,
it has been successfully applied for volatile organic compounds treatment [31], wastewater
treatment [32,33], reforming reaction [34], and methanol production [10,11,19,35].
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NTP can operate at room temperature and atmospheric pressure while generating
highly active electrons, with mean electron energy between 1 and 10 eV. This electron
energy is the optimum range in order to activate molecular and atomic species and break
chemical bonds [36]. NTP technologies are advantageous over thermal processes as reaction
rates are higher and a steady state is achieved much faster [22]. On the other hand, the DBD
reactor has the capacity to produce highly energetic electrons and uniform distribution
discharges and is efficient in initiating chemical reactions under room conditions [37–39].
The combination of NTP with the main advantages of DBD reactors enables this system to
be an ideal candidate for CO2 utilization.

Therefore, NTP has high potential as an efficient CO2 utilization process, as it can
overcome the stability of CO2 without the need for the high temperatures required in
thermal catalytic processes. This facilitates quick start-up and shut-down, a promising
feature that enables plasma technology powered by renewable energy to act as an efficient
chemical energy storage [40].

In this work, the study of the conversion of CO2 into CO through a DBD plasma
reactor was developed by a sensitivity analysis for the CO2 flowrate and the concentration
of Ar that was used as a diluent; then, a sustainability assessment was considered for the
suitability of using photovoltaic energy as an energy source to power the DBD plasma reactor.

2. Materials and Methods
2.1. Materials

The following reactants were used: Argon (Ar) (Carburos Metálicos; 99.9997%), Car-
bon dioxide (CO2) (Carburos Metálicos; 99.999%) and the copper/zinc-based catalyst (Alfa
Aesar; copper-based catalyst (pellets, 5.4 mm × 3.6 mm)) with a composition of Al2O3 10%,
CuO 64%, MgO 2% and ZnO 24%.

2.2. Experimental Setup

Figure 1 shows the experimental setup used in this work. Briefly, a cylindrical quartz
tube, length: 250 mm; outer diameter: 25 mm; inner diameter: 24 mm, (Vidrasa, Ripollet,
Barcelona, Spain) was used to generate the plasma discharge. A copper rod (Broncesval,
Ripollet, Barelona, Spain) with an outer diameter of 5 mm was used as the internal electrode
(anode) and the outer electrode (cathode) was a copper mesh of 160 mm, which was
wrapped around the quartz tube, as shown in Figure 1. The resulting discharge gap
was 10 mm. An amount of 40 g catalyst sandwiched between quartz wool was placed
in the discharge area zone. NTP was generated by an AC high voltage power supply
with a frequency, duty cycle, and voltage controller: Plasma Drive PVM500/DIDRIVE10
(Amazing1, Mont Vernon, NH, USA). The AC high-voltage power supply was connected
to a photovoltaic (PV) system in order to provide the electricity needed to carry out the
experimental tests. The PV system, which consisted of one solar panel Tecnosun 150 W, was
placed outside to receive sunlight, using two batteries Rolls 6 V and 480 Ah and CC/AC
inverter model Victron Energy Phoenix 12/1200. All the CC system worked at 12 V and
was controlled by a regulator STECA PR 2020 regulator. In this work, the necessary energy
to run the tests was provided directly from the PV panels. The energy consumption was
continuously determined with a wattmeter. A multi-channel oscilloscope Promax 0D-610
100 MHz (Promax, L’Hospitalet de Llobregat, Barcelona, Spain) was used to monitor the
voltage, frequency and current intensity during the experiences. The amount of CO2 and Ar
in the reactor was controlled with 2 flowmeters EL-FLOW® (Bronkhorst, Nijverheidsstraat,
Ruurlo, The Netherlands).
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equipped with an Agilent HP-PLOT Molesieve 19095P-MS0 column and a thermal con-
ductivity detector (TCD). The injection, oven, and detector temperatures were 100 °C, 60 
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Figure 1. DBD system includes the photovoltaic power generation (solar panel (A), batteries (B),
inverter (C), solar regulator (D)), electric signal amplifier (E), oscilloscope (F), volumetric flowmeters
(G), copper rod inner electrode (H), wattmeter (I), copper mesh outer electrode (J) and PTFE reactor
ends (K). The DBD reactor (L) is filled with catalyst pellets.

2.3. CO2 Conversion into CO Experiments

All the experiments were performed at maximum voltage (32 kV), minimum frequency
(20 kHz) and minimum duty changing flowrates of CO2 and Ar. All the volumetric
flowrates used in this study are given under normal conditions. The power used in all
experiments was around 50 W. The total time for each experiment was 30 s once the steady
state was reached. Samples were collected in Tedlar bags for further analysis. The samples
were analyzed with a gas chromatograph (Agilent 7020A, Santa Clara, CA, USA) equipped
with an Agilent HP-PLOT Molesieve 19095P-MS0 column and a thermal conductivity
detector (TCD). The injection, oven, and detector temperatures were 100 ◦C, 60 ◦C, and
250 ◦C, respectively. All the experiments were carried out in triplicate and the average
values are shown in the figures with the standard deviation as error bars.

2.4. Environmental Sustainability Assessment

The environmental sustainability of the process using PV energy was studied by
calculating the carbon footprint. The carbon footprint was assessed with the software
SimaPro 9.0 (Amersfoort, The Netherlands) using a Life Cycle Assessment (LCA) approach.
For the LCA, the Ecoinvent v3.6 database and the ILCD 2011 Midpoint methodology
were used considering two different scenarios. The first scenario considers the supply of
electricity from the electrical network and the second scenario considers the electricity
provided by a PV system.

To determine the percentage of the CO2 emissions compensated (ECco2), Equation (1)
was used.

ECco2 (%) =
ConCO2 + PCO

Eelectricity
× 100 (1)

where ConCO2 (g CO2-eq/h) was the CO2 converted into CO in the DBD reactor and PCO
(kg CO2-eq/h) was the CO2 emission that is related to the industrial production of the
generated CO with a conventional process such hydrocarbon reforming. Finally, Eelectricity
is the emission of CO2 (g CO2-eq/h) produced by the electrical consumption, which was
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measured with a wattmeter. The emission factors to produce electricity (from the electrical
network or PV systems) and for the industrial production of CO were extracted from Ecoinvent.

3. Results and Discussion
3.1. Influence of CO2 Flowrate

Low CO2 rates of decomposition have been found in the literature using pure CO2,
whereas the use of Ar has been reported to be a good option due to the use of a diluent gas
(gas to be ionized) increases CO2 conversion. When Ar is used, the main reaction pathway
in the NTP zone involves Ar excitation and charge/energy transfer from excited Ar atoms
to CO2 molecules [41]. Mei et al. [28] reported that Ar dilution is beneficial over other
gases such as N2 and He. They observed that CO2 conversion increases with increasing Ar
concentrations. The reason is that by decreasing the dielectric strength of the gas mixture,
more energy is available for CO2 molecules in the discharge. In addition, the available
electrons may excite CO2 molecules contributing to reaching higher conversions due to the
lower number of CO2 molecules with respect to the Ar atoms. Mei et al. [28] also reported
selectivities for CO2 conversion into CO in high Ar concentrations between 90–98% that
increased at increasing Ar concentration. For that reason, Ar was used as diluent gas in this
work. At the studied conditions, when voltage was applied between the two electrodes
in the DBD reactor, NTP discharges were produced within the plasma reactor, as Figure 2
shows. It was observed randomized discharge points within the DBD plasma reactor that
continuously changed. The NTP was fast generated or stopped by switching on or off the AC
high voltage power supply, quickly reaching the steady state as suggested by Pou et al. [40].
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Two important outcomes to check the performance of the reaction are the CO2 con-
version and the energy efficiency (ï). The CO2 conversion (%) was determined with the
following equation:

CO2 Conversion (%) =
CCO2,in −CCO2,out

CCO2,in
× 100 (2)

where CCO2,out is the molar concentration (%) of CO2 in the outlet stream and CCO2,in
is the molar concentration (%) of CO2 in the inlet stream of the DBD reactor. From the
chromatography analysis, it was found that a selectivity of almost 100% for CO was reached
for all the tests (no other peaks different from CO or CO2 were observed). From these
results, it was considered that CO was the major product and the stoichiometric conversion
of CO2 into CO was achieved. So, the conversion and yield obtained were almost the same.
This point has also been reported in previous works [28,40] where selectivities to CO higher
than 95% were observed. Carbon deposition over the catalyst was not detected after CO2
decomposition with NTP. It must be highlighted that the CO selectivity did not present
any dependence on other parameters studied in this work, such as CO2 or Ar flowrates.
Other works shown in Table 1 reported selectivities ranging from 48 to 96%. Therefore, the
influence of plasma operational parameters on the NTP process will only be discussed in
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terms of CO2 conversion and energy efficiency. The energy efficiency of the NTP process
was calculated using the following equation:

ï(%) =
FCO2·CO2Conversion·∆HCO

60× 22.4·PE
× 100 (3)

where FCO2 is the volumetric flowrate of CO2 in the inlet stream (mL/min), ∆HCO is the
reaction enthalpy of pure CO2 decomposition into CO (283.1 kJ/mol [42]) and PE is the
electric power used to carry out the reaction (W).

Table 1. Comparison of DBD plasma-assisted conversion of CO2.

Flowrate
(mL/min)

Diluent
Gas

Power
(W) Packed Material CO2 Conv.

(%)

CO
Select.

(%)

CO
Yield
(%)

η

(%) Ref

30 Ar 2.4 Glass beads 19.5 86 16.8 17.0 [39]
150 - 55 Molecular sieves 5A 25 63 15.8 - [44]
60 - 28 BaTiO3 38.3 - - 17.0 [45]
50 - 50 BaTiO3 28 96 26.9 7.2 [46]
30 - 2.4 5% ZnO + g-C3N4 12 70 8.4 31.1 [16]
30 - 2.2 15% CuO/Al2O3 15.7 48 7.5 45.2 [43]
30 - 2.2 15% CuO/CeAl 13.5 59 7.8 38.9 [43]
9 Ar 50 CuO/ZnO/Al2O3 40.2 >99 40.2 1.7 This work

The effect of the CO2 flowrate on the CO2 conversion and energy efficiency was
evaluated. In Figure 3, it can be observed how the CO2 conversion decreased by increasing
the CO2 flowrate in the inlet. According to previous research [40], it has been proved
that the generated NTP is more uniform at high Ar concentrations. In addition, at lower
CO2 flowrates, the residence time in the reactor was higher and this would increase the
probability that a NTP discharge could affect a CO2 molecule. This behavior has also been
described using a fluidized bed NTP reactor with Cu/γ-Al2O3 powder-based catalyst [40].
The maximum CO2 conversion in this work was 74.2% and it was obtained at the lowest
CO2 flowrate. This conversion was much higher than the one obtained by Ray et al.
(maximum conversion of 15.7%) utilizing a packed DBD plasma reactor with Ni and Cu
oxide supported γ-Al2O3 as catalyst [43]. Other works (Table 1) reported conversions
ranging between 12–38.3%. In addition, the maximum conversion obtained in this work is
much higher than the previous results obtained by our research group with a fluidized bed
reactor and a Cu/γ-Al2O3 catalyst (a maximum conversion of 40% was reached) [40].

The CO2 flowrate shows an effect on the energy efficiency of the process, as can be
observed in Figure 4. The maximum CO2 energy efficiency obtained in this study was
1.55%, using an Ar flowrate of 1 L/min and a CO2 flowrate of 9 mL/min. This value was
similar to the results obtained with a fluidized bed reactor (1.3–2.0%) [40]; however, still
less efficient than other works published in the literature working with DBD reactors that
obtained energy efficiencies ranging from 7 to 45.2% (Table 1). The main reason to explain
these differences in energy efficiency is caused by the different operational conditions (use
of diluent gas, CO2 flowrate, catalyst, and power discharge). Probably, the amount of
energy applied (power discharge) related to the CO2 flowrate used is too high compared
with the literature. When the CO2 flowrate increased too much, the energy efficiency was
affected by a lower CO2 conversion, as observed previously in Figure 3.
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The formation of active species in the DBD reactor is entirely dependent on the initial
concentration of reactants and the specific input energy (SIE). The SIE (kJ/L) was calculated
with the following equation:

SIE =
PE·60
FCO2

(4)

With a catalyst, not only the concentration of the reactants but also the reduced electric
field enhances inside the plasma zone, which in turn generates more chemically reactive
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species and significantly contributes to the activation of CO2. The conversion rate of CO2
was determined from Equation (5) [16].

ln
(

CCO2, in

CCO2, out

)
= SIE·k + c (5)

The conversion rate is expressed by k, and c stands for the intercept. Figure 5 reports
the lineal increment of ln(CCO2,in/CCO2,out) as a function of SIE. The decomposition rate
observed was of 0.0014 L/kJ. This value was lower than the value obtained by Ray et al. [43],
who obtained a maximum conversion rate of 0.02889 L/kJ using 15% CuO/Al2O3 catalyst
and without Ar dilution. They worked with lower SIE values which can also affect the
conversion rate. So, it is plausible that the difference between conversion rates is caused by
differences in the operational conditions.
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3.2. Influence of Argon Flowrate

In the previous section, it was revealed that at lower CO2 flowrates the residence
time in the DBD plasma reactor was higher, thus, improving CO2 conversion. Another
important variable of the process is the use of Ar as a diluent gas. For that reason, it was
studied the influence of the Ar flowrate on the CO2 conversion into CO. This study was
also carried out at different CO2 flowrates (so at different CO2 concentrations), and the
results are shown in Figure 6.

Figure 6 shows how the conversion increases linearly with increasing Ar flowrates as
reported in other works [39,40]. During the experiments, it was observed that at higher Ar
flowrates, the NTP generated was more uniform and with a higher number of discharges inside
of the reactor. This explains why at a high Ar flowrate the conversions obtained are higher.
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cycle. The experiments were performed at different CO2 flowrates.

3.3. Environmental Impact Using Photovoltaic Energy to Power the DBD Reactor

The assessment of the ECco2 was performed considering two different scenarios. The
first scenario uses the electricity mix of Spain to run the DBD reactor, whereas the second
scenario considers the current configuration of this work, supplying energy with a PV
system. In Figure 7, it can be seen how the first scenario represents a lower compensation
of CO2 emissions (between 7–13%). It can be noticed that it shows a similar tendency to the
energy efficiency plot (Figure 4), as they are correlated; therefore, with this first scenario,
the emissions derived from the electricity mix are much higher than those which can be
counterbalanced by the CO2 captured and the CO produced during the DBD reaction.
According to the Ecoinvent database, the emission factors related to the consumption of
1 kWh with the electricity mix of Spain and the production of 1 kg of industrial CO would
be estimated as 0.131 kg of CO2-eq and 1.51 kg of CO2-eq, respectively.
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The optimal experiment (highest energy efficiency) was at a CO2 flowrate of 9 mL/min.
In this experiment, the CO2 converted to CO (CCO2) was 0.43 g CO2-eq/h, whereas the
emission avoided by the production of CO (PCO) was 0.41 g CO2-eq/h. The energy
consumption was 0.11 kWh per each gram of CO2 transformed into CO. The emission
related to the electricity consumption (Eelectricity) considering the electricity mix of Spain
was 6.42 g CO2-eq/h.

Taking into account the PV system scenario, the ECco2 rose up to 97% (Figure 7). This
shows how the combination of the NTP process with PV systems significantly enhances
the sustainability perspectives of the process. This increase would be justified by the
lower emission factors related to the production of 1 kWh using PV panels (Ecoinvent
database→ 0.018 kg of CO2-eq). There is a difference of one order of magnitude lower
than the emission factor of the electricity from the electrical grid. The emission related to
the electricity consumption (Eelectricity) in the optimal experiment (9 mL/min of CO2) using
the PV system was 0.86 g CO2-eq/h. That is why the obtained results clearly evidenced
that the combination of the DBD reactor with renewable energy significantly enhances the
life cycle assessment of the process, reaching almost a complete compensation of the CO2
emissions with a more sustainable perspective.

4. Conclusions

A cylindrical packed-bed DBD plasma reactor was used for the conversion of CO2
into CO using a copper and zinc-based catalyst, copper electrodes, Ar as a diluent gas, and
photovoltaic energy as an electricity source. Parameters such as CO2 flowrate in the inlet gas
stream and Ar flowrate were assessed. The main findings of this study are stated below:

• The concentration of CO2 in the inlet of the reactor is an important variable. The CO2
conversion is higher at lower CO2 concentrations. An increase in CO2 concentration
causes a major decline in CO2 conversion.

• The maximum CO2 conversion was 74.2%, using an Ar flowrate of 1 L/min and a CO2
flowrate of 3 mL/min, applying 50 W, a frequency of 20 kHz, and a minimum duty cycle.

• The presence of the diluent gas (Ar) has a strong influence on the decomposition of
CO2. It was observed that at higher Ar concentrations, the conversion improved.

• The use of photovoltaic energy increases the sustainability of the process. Using an
LCA approach, it was estimated, for the decomposition reaction, that, with the best
conditions obtained in this study, it would be possible to compensate 97% of the CO2
emissions related to the process.
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