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Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain, 3Department of Biochemistry and
Molecular Biomedicine, University of Barcelona, Barcelona, Spain, 4Institut Quı́mic de Sarrià (IQS),
Universitat Ramon Llull (URL), Barcelona, Spain, 5Institute for Bioengineering of Catalonia (IBEC),
The Barcelona Institute of Science and Technology, Barcelona, Spain

Increased liver glycogen content has been shown to reduce food intake,

attenuate obesity, and improve glucose tolerance in a mouse model of high-

fat diet (HFD)-induced obesity. Here we studied the contribution of liver

glycogen to the regulation of obesity and glucose metabolism in a model of

type 2 diabetes and obesity, namely the db/db mouse. To this end, we crossed

db/db mice with animals overexpressing protein targeting to glycogen (PTG) in

the liver to generate db/db mice with increased liver glycogen content (db/db-

PTG). Hepatic PTG overexpression reduced food intake and fat weight and

attenuated obesity and hyperglycemia in db/db mice. Db/db-PTG mice

showed similar energy expenditure and physical activity to db/db mice. PTG

overexpression reduced liver phosphoenolpyruvate carboxykinase (PEPCK)

protein levels and repressed hepatic glucose production in db/db mice.

Moreover, increased liver glycogen elevated hepatic ATP content in these

animals. However, lipid metabolism was not modified by PTG overexpression.

In conclusion, increased liver glycogen content ameliorates the diabetic and

obesity phenotype in db/db mice.
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Introduction

The emergence of type 2 diabetes mellitus (T2DM) as a

global pandemic poses a major challenge for human health in

the 21st century (1). To gain an appreciation of the numbers

involved, in 2017, approximately 462 million individuals were

affected by T2DM (2).

The liver governs various pathways of glucose metabolism and

therefore plays a major role in the regulation of glucose homeostasis

(3). These hepatic processes are dysregulated in T2DM, and this

imbalance contributes to hyperglycemia in the fasted and

postprandial states (4). Liver glycogen metabolism is pivotal in

glucose homeostasis. In this regard, postprandial liver glycogen

synthesis is reduced in mildly overweight T2DM patients (5).

Glycogen synthesis is regulated mainly by glycogen synthase,

which is dephosphorylated and thus activated by protein

phosphatase 1 (PP1) in combination with glycogen-targeting

subunits or G subunits, which localize PP1 to glycogen particles.

Seven G subunits, among these proteins targeting to glycogen (PTG,

also known as PPP1R3C or PPP1R5) (6), regulate glycogenesis in

different organs. PTG overexpression in a variety of cell types and in

rodent livers in vivo results in a dramatic increase in cellular

glycogen accumulation (6–8).

We previously demonstrated that, when fed a high-fat diet

(HFD), mice that overexpress PTG in the liver show a reduced

food intake compared to control mice. This resulted in lower

body weight, decreased fat mass, and reduced leptin levels (8).

Furthermore, PTG overexpression reversed the glucose

intolerance caused by the HFD (8). However, it is important

to understand whether the positive effect of increasing liver

glycogen was limited to the HFD model or whether it could be

extended to other models of T2DM. To address this question,

here we studied the effect of increasing liver glycogen content in

db/db mice, another widely used model of T2DM and obesity.

Various mechanisms underlie T2DM in HFD-induced obese

mice and db/db mice. The latter carry a spontaneous mutation in

the leptin receptor (9) and suffer hyperphagia, severe glucose

in to l e rance , hyperg lycemia , hyper l ep t inemia and

hyperinsulinemia. In contrast, the former have milder glucose

intolerance and other metabolic symptoms, and this phenotype

is reversible with a low-fat diet (10). Our results show that

increased liver glycogen stores attenuate obesity and improves

hyperglycemia also in the context of db/db mice.

Materials and methods

Experimental animals

All procedures were approved by the Barcelona Science

Park’s Animal Experimentation Committee and were carried

out following the European Community Council Directive

and the National Institute of Health guidelines for the care

and use of laboratory animals. Db/db mice (strain name

BKS.Cg-Dock7m +/+ Leprdb/J) were purchased from the

Jackson Lab. The db/db mice were backcrossed to C57BL/6J

for 8 generations and then mated with Cre-Albumin mice on

the C57BL/6J background that overexpressed hepatic PTG.

Mice overexpressing PTG specifically in the liver were

generated as previously described (8, 11). Heterozygous db/

+ mice were used as controls. Since the PTG expression

cassette was introduced into the Hprt locus in the X

chromosome (8), and to avoid variability due to female X

chromosome inactivation, all the studies were conducted in

male animals. All the mice studied were littermates. Animals

were sacrificed at 18 weeks of age under ad libitum-fed

conditions between 8 and 10 a.m. by cervical dislocation,

and tissues were collected and frozen in liquid nitrogen.

Whole blood was collected from tails in EDTA-coated tubes

and then centrifuged, and plasma was stored at –20°C

for analysis.

Body mass composition

Lean weight and fat weight were measured by magnetic

resonance imaging (EchoMRI System, EchoMRI LLC, Houston,

TX, USA).

Metabolic activity

Indirect calorimetry was performed using an eight-

chamber Oxymax system (Columbus Instruments) to

measure energy expenditure, which was calculated from

oxygen consumption and CO2 production. Mice were

allowed to acclimatize to the cages for 2 days before three

cycles of 24-h measurements . Energy expenditure

(standardized for body weight) was calculated as EE =

(3.185 + 1.232 × RER) × VO2, respiratory exchange ratio

(RER) was calculated as VCO2/VO2, glucose oxidation was

calculated in g/min/kg0.75 = [(4.545 × Vco2) − (3.205 × Vo2)]/

1000 and lipid oxidation was calculated in g/min/kg0.75 =

[1.672 × (Vo2 − Vco2)]/1000). Ambulant and total locomotor

activity was monitored by an infrared photocell beam

interruption method.

Food consumption

To monitor food intake, mice were housed individually and

acclimatized for a week before the study. Food intake was

measured daily for 5 consecutive days.
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Blood and biochemical analysis

For liver glycogen quantification, frozen tissue was

homogenized in 4 volumes of 30% KOH at 4°C. The

homogenate was heated at 100°C for 15 min. A volume of 50

µl of the heated homogenate was deposited in 31ET paper

(Whatman, Maidstone, UK). Glycogen precipitates in the

31ET paper due to immersion in cold ethanol 66% (v/v) for

10 min. After two washes with 66% ethanol for 20 min at room

temperature, papers were washed with acetone and left air

drying overnight. Dry papers were incubated for 90 min at 37°

C with 25 mg/ml of amyloglucosidase (A7420, Sigma-Aldrich, St

Louis, USA) diluted in 100 mM sodium acetate buffer at pH 4.8.

After the incubation, the resulting solution was collected into

new tubes and used to measure glucose concentration using a

commercial kit (Horiba, ABX, Montpellier, France). Hepatic

nucleotides (ATP and AMP) were measured by HPLC in

perchloric acid extracts. Briefly 75 mg of frozen tissue was

homogenized in 0.75 ml of 10% HClO4. Samples were spun at

3,500 g at 4°C for 20 min. The supernatant was neutralized with

0.5 M K2CO3. Samples were placed on ice for 15 min and spun at

3,500 g at 4°C for 15 min. Analysis was performed using a Brisa

LC2 C18 column (4.6 × 150 mm, 3-mm particle size) interfaced

with a Photodiode Array Detector (PDA) detector (260 nm) and

a constant flow rate of 0.6 ml/min. ATP was identified using a

gradient of mobile phase (70:30 ratio of eluent A/MeOH) for

37 min and quantified using known standards [Eluent A (500

mM monopotassium phosphate (KH2PO4) + 4 mM

tetramethylammonium hydrogen sulfate (C4H12HSO4 pH=6)].

Hepatic triacylglycerol (TAG) was quantified in 3 mol/L KOH

and 65% ethanol extracts following the method described by

Salmon and Flatt (12) and using a kit (Sigma-Aldrich, St Louis,

MO, USA). Plasma insulin was measured by ELISA using a

commercial kit (Crystal Chem, Elk Grove Village, IL, USA).

Blood glucose was determined using a glucometer (Bayer

Contour Next, Bayer Healthcare, Leverkusen, Germany).

Western blot (WB) analysis

Liver samples were homogenized in 50 mM Tris/HCl (pH 7.4),

150 mMNaCl, 1 mM EDTA, 5 mM sodium pyrophosphate, 1 mM

sodium orthovanadate, 50mMNaF, 1%NP-40, 1mMPMSF, and a

protease inhibitor cocktail tablet (Roche, Basel, Switzerland).

Homogenized tissues were incubated on ice for 30 min. Samples

were then centrifuged for 15 min at 12,000 rpm at 4°C and

supernatants were transferred to clean vials. Protein concentration

was measured using the bicinchonic acid (BCA) protein assay

reagent (Thermo Fisher Scientific, Massachusetts, USA). Samples

were loaded on 10% acrylamide gels for SDS-PAGE and transferred

to Immobilonmembranes (Millipore, Sigma-Aldrich, St Louis, MO,

USA). Immunoblot analysis of homogenates was performed using

the following antibody: PEPCK (a kind gift from Dr. E. Beale)

dilution 1:100.000. Proteins were detected by the ECL method

(Immobilon Western Chemoluminescent HRP Substrate,

Millipore, Sigma-Aldrich, St Louis, MO, USA). The loading

control of the WB membrane was performed using the REVERT

total protein stain.

Glucose tolerance test

The glucose tolerance test (GTT) was performed in 16-h

fasted mice after an intraperitoneal injection of 1 g/kg of body

weight glucose bolus. Blood glucose was measured at the

indicated time points after the challenge.

Insulin tolerance test

The insulin tolerance test (ITT) was performed in 6-h fasted

mice after an intraperitoneal injection of 0.75 units/kg for db/+

and db/+-PTG or 2 units/kg for db/db and db/db-PTG. Blood

glucose was measured at the indicated time points after

the challenge.

Pyruvate tolerance test

The pyruvate tolerance test (PTT) was performed in 16-h

fasted mice after an intraperitoneal injection of 2 g/kg of body

weight of sodium pyruvate (Sigma-Aldrich, St Louis, MO, USA).

Blood glucose was measured at the indicated time points after

the challenge.

RNA extraction and quantitative RT-PCR

For liver RNA extraction, 50 mg of the frozen sample was

homogenized in 500 µl of TRIzol (Invitrogen, Waltham, MA,

USA). After 5 min of incubation at room temperature, 0.1 ml of

chloroform was added. Samples were centrifugated at 12,000

rpm for 15 min at 4°C. The upper phase was collected into a new

tube and 0.3 ml of 70% ethanol was added. The mix was

transferred into columns from the RNeasy Micro Kit (Qiagen,

Hilden, Germany) and RNA was isolated following the

manufacturer’s instructions. Single-stranded complementary

DNA was produced by reverse transcription using 1 µg of

RNA in a 20-µL reaction qScript cDNA SuperMix (Quanta

bio, Beverly, MA, USA). Quantitative polymerase chain reaction

(PCR) was performed using Taqman universal PCR master mix

(Applied Biosystem, Waltham, MA, USA) on the QuantStudio 6

Flex (Applied Biosystem, Waltham, MA, USA). The DCt was
defined as the difference between the Q-PCR cycles of the
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housekeeping gene and those of the target genes. The following

TaqMan probes (Applied Biosystems, Waltham, MA, USA) were

used for quantitative real-time PCR: PTG (Mm01204084_m1);

ACC1 (Mm01304257_m1); FAS (Mm00662319_m1); SCD1

(Mm00772290_m1); GPAT1 (Mm00833328_m1); and 18S

(Mm03928990_g1). 18S was used as a housekeeping gene.

Statistical analysis

Data are expressed as mean ± SEM. P values and F ratio were

calculated using two-way ANOVA with post hoc Tukey tests as

appropriate using Prism8 software (GraphPad).

Results

Hepatic PTG overexpression decreases
body weight and food intake in db/db
mice

PTG was overexpressed specifically in the liver of male db/+

and db/db mice. As expected, the mRNA level of PTG was

increased in db/+-PTG and db/db-PTG mice (Figure 1A). The

liver glycogen concentration in db/db mice was significantly

lower than in control mice (db/+) (Figure 1B), as previously

described (13). As expected, the overexpression of PTG in the
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FIGURE 1

Liver PTG overexpression decreases body weight and food intake in db/db mice. (A) Relative mRNA of PTG in the liver, (B) Liver glycogen
content, (C) Growth curve from 6-18 weeks of age, (D) Fat weight, (E) Lean weight, and (F) Daily food intake of db/db and db/db-PTG mice, and
non-diabetic controls (n=6-12 in all experiments except food intake n=18-26). All values are mean ± SEM. *P<0.05, **P<0.01, ***P<0.001. For
figure (A) Diabetes factor (F ratio=4.090, P=0.0540), PTG factor (F ratio=123.5, P<0.0001), Interaction (F ratio=1.963, P=0.1734). For figure
(B) Diabetes factor (F ratio=20.81, P<0.0001), PTG factor (F ratio=243.8, P<0.0001), Interaction (F ratio=3.354, P=0.0777). For figure (C) 6 weeks
of age Diabetes factor (F ratio=43.79, P<0.0001), PTG factor (F ratio=2.250, P=0.1456), Interaction (F ratio=5.106, P=0.0325). For figure (C) 8
weeks of age Diabetes factor (F ratio=119.5, P<0.0001), PTG factor (F ratio=3.982, P=0.0566), Interaction (F ratio=8.517, P=0.0072). For figure
(C) 10 weeks of age Diabetes factor (F ratio=175.3, P<0.0001), PTG factor (F ratio=8.286, P=0.0079), Interaction (F ratio=8.461, P=0.0073). For
figure (C) 12 weeks of age Diabetes factor (F ratio=327.4, P<0.0001), PTG factor (F ratio=19.51, P=0.0002), Interaction (F ratio=20.02,
P=0.0001). For figure (C) 14 weeks of age Diabetes factor (F ratio=467.6, P<0.0001), PTG factor (F ratio=94.71, P=0.0004), Interaction (F
ratio=13.08, P=0.0013). For figure (C) 16 weeks of age Diabetes factor (F ratio=529.7, P<0.0001), PTG factor (F ratio=20.50, P=0.0001),
Interaction (F ratio=15.65, P=0.0005). For figure (C) 18 weeks of age Diabetes factor (F ratio=442.1, P<0.0001), PTG factor (F ratio=9.595,
P=0.0046), Interaction (F ratio=7.617, P=0.0105). For figure (D) Diabetes factor (F ratio=1620, P<0.0001), PTG factor (F ratio=11.46, P=0.0017),
Interaction (F ratio=14.32, P=0.0005). For figure (E) Diabetes factor (F ratio=62.29, P<0.0001), PTG factor (F ratio=0.4716, P=0.4964), Interaction
(F ratio=6.722, P=0.0134). For figure (F) Diabetes factor (F ratio=128.8, P<0.0001), PTG factor (F ratio=13.47, P=0.0004), Interaction (F
ratio=15.02, P=0.0002).
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liver caused a significant increase in liver glycogen concentration

in the db/+-PTG and db/db-PTG groups compared to db/+ and

db/db animals, respectively (Figure 1B).

Body weights were recorded from 6 weeks of age till the end

of the experiment (18 weeks of age). At week 6, the db/db and

db/db-PTG animals were heavier than their respective controls.

From week 6 to week 18, db/db-PTG mice weighed significantly

less than db/db counterparts. There were no differences in body

weight between db/+ and db/+-PTG mice throughout the study

(Figure 1C). At the end of the 16 weeks, we analyzed the total

body fat and lean mass for all groups by magnetic resonance

imaging. Diabetic mice of both genotypes showed a higher fat

mass and lower lean mass than non-diabetic counterparts

(Figures 1D, E). Db/db-PTG mice had a significantly lower

total fat mass than db/db mice (Figure 1D). However, the lean

mass was similar between the two genotypes (Figure 1E).

To determine the cause of the lower body weight and body fat

in db/db-PTGmice, we examined their daily food intake and energy

expenditure. Daily food intake was higher in diabetic compared to

non-diabetic mice (Figure 1F), but db/db-PTG mice ate less than

db/dbmice, which may explain the lower body weight of the former

(Figure 1F). We studied metabolic parameters by means of indirect

calorimetry using the Oxymax system. Mice were placed in

individual metabolic chambers for 48 h, and gas exchange and

activity were monitored. Energy expenditure was lower in diabetic

than non-diabetic mice. However, there were no differences in

energy expenditure between db/db and db/db-PTG mice

(Figure 2A). The respiratory exchange ratio (RER), an indicator

of the fuel (i.e. carbohydrate or fat) being metabolized to supply the

body with energy, was similar between all the groups analyzed

(Figure 2B). Regarding glucose oxidation, diabetic mice oxidized

less glucose than non-diabetic counterparts (Figure 2C).

Furthermore, the db/+-PTG mice oxidized more glucose and less

lipids than the db/+ mice (Figures 2C, D). However, no differences

were found between the db/db and db/db-PTG groups. Greater

physical activity of the db/db-PTG group may also contribute to

their lower body weight compared to db/db mice. To explore this

notion, total movement and ambulant movement were measured.

Diabetic mice moved less than non-diabetic counterparts but no

differences between db/db and db/db-PTG mice were observed

(Figures 2E, F).

Hepatic PTG overexpression reverts
hyperglycemia in db/db mice

The liver plays a key role in the maintenance of glucose

homeostasis—it produces glucose during fasting and stores

glucose after eating. Blood glucose homeostasis can be

improved by modulating the expression or activity of proteins

involved in the regulation of liver glycogen metabolism (14).

Interestingly, PTG overexpression led to a decrease in glucose

concentrations levels in db/db mice (Figure 3A). Plasma insulin

was similarly increased in db/db mice and db/db-PTG mice

(Figure 3B). This observation might be attributable to the

absence of leptin receptor in these mice, which is associated

with severe persistent hyperinsulinemia (15). To further evaluate

the effect of hepatic PTG overexpression on glucose metabolism,

we performed an intraperitoneal glucose tolerance test (GTT).

The plasma glucose concentration during the GTT was

markedly decreased at 0, 15, 30 and 60 min after

intraperitoneal injection of glucose in db/db-PTG mice

compared to db/db animals (Figure 3C). The area under the

curve (AUC) was significantly smaller in the db/db-PTG group

than in the db/db group (Figure 3D). These results demonstrated

that the former had improved glucose homeostasis. To

determine possible changes in insulin sensitivity, an

intraperitoneal insulin tolerance test (ITT) was performed.

After a 6-h fast, db/db-PTG had significantly lower blood

glucose concentration than db/db mice (Figure 3E), which

made the analysis of the results difficult to interpret.

Therefore, the ITT was expressed as the percentage of the

initial values, and no differences were observed among db/db

and db/db-PTG (Figure 3F), indicating that insulin resistance

was similar in both groups of diabetic mice.

Gluconeogenesis is reduced in
db/db-PTG mice

Pyruvate is a precursor of gluconeogenesis, and pyruvate

tolerance test (PTT) has been used to detect subtle abnormalities

in hepatic glucose production (16–18). The blood glucose

concentration of mice challenged by a bolus administration of

pyruvate (2 g/kg) was lower in the db/db-PTG group compared to

db/db animals (Figure 4A). The AUC was also smaller in the

formers (Figure 4B). We next measured the expression of

phosphoenolpyruvate carboxykinase (PEPCK), one of the main

gluconeogenic enzymes, by western blot. PEPCK was significantly

lower in db/db-PTG compared to db/db mice (Figures 4C, D).

PEPCK down-regulation involved a decrease in glucose output into

blood, which could explain the reduction in blood glucose observed

in the db/db mice overexpressing PTG. An increase in glucose

production in the livers of diabetic animals has been associated with

a decrease in ATP content (19). Therefore, we measured the hepatic

concentration of ATP and AMP. While db/db mice had a lower

ATP content compared to non-diabetic counterparts (Figure 5A),

as previously described (19, 20), db/db-PTG mice showed similar

concentrations of hepatic ATP than db/+ mice. The concentration

of AMP and the AMP : ATP ratio was increased in db/db mice

compared to db/+ mice (Figures 5B, C), but this increase was not

present in the livers of db/db-PTG mice (Figures 5B, C).
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The expression of lipogenic genes is
unaltered in db/db-PTG mice

The liver is a key tissue for lipid metabolism. Consistent with

genetic obesity, hepatic TAG concentration was increased in db/db

mice compared to non-diabetic mice. TAG accumulation was

similar in db/db and db/db-PTG animals (Figure 6A). We then

measured the expression of genes involved in the lipogenic pathway.

In this regard, the expression of acetyl-CoA carboxylase (ACC1)

(Figure 6B), fatty acid synthase (FAS) (Figure 6C), stearoyl-CoA

desaturase (SCD1) (Figure 6D) and glycerol-3-phosphate

acyltransferase 1 (GPAT1) (Figure 6E) was higher in db/db and

db/db-PTG compared to db/+ and db/+-PTG animals, respectively,

and PTG overexpression did not alter the expression of these

lipogenic genes in diabetic and non-diabetic mice.

Discussion

Here we show that an increase in liver glycogen attenuated

obesity in db/db mice, a model of T2DM. Similar observations have

been made in an HFDmouse, another model of T2DM (8). In both

cases, the decrease in body weight was accompanied by a reduction

in daily food intake. An increase in energy expenditure could also

protect the animals against weight gain and obesity. However, our

data indicate that energy expenditure was not increased in db/db-
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PTG mice, thereby suggesting that the weight-reducing effect was

caused exclusively by a diminished appetite. Liver ATP is a key

metabolite in the regulation of food intake (21, 22). An increase in

the hepatic AMP : ATP ratio stimulates food intake by vagus nerve

signalling to the brain (23). In this regard, liver ATP is diminished

in obesity and insulin resistance in humans (23). ATP content was

significantly reduced in the livers of db/db mice, as previously

described (19), but PTG overexpression restored hepatic ATP

content in db/db-PTG mice. Therefore, increased liver glycogen

stores, through the maintenance of hepatic ATP levels, contributed

to decreasing appetite in db/db mice and this effect was probably

triggered by the vagus nerve (24). A potential limitation of this

study is the lack of a pair-feeding control, which would have

provided information about the effect of food intake in all the

parameters measured, independently of PTG overexpression.

However, the present results are in line with our previous reports

on the effects of the increase of hepatic glycogen inmouse models of

T2DM (8, 24).

Increased liver glycogen had a marked glucose-lowering

effect in db/db mice, both in fed and fasted conditions, but not

in non-diabetic animals. Thus, the glucose-lowering effect of

PTG overexpression was observed only in conditions of
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hyperglycemia, which represents an advantage from a

therapeutic perspective. This glucose-lowering effect was

independent of insulin since PTG overexpression did not

modify plasma insulin concentration or insulin resistance.

Enhanced l iver g lycogenes i s improves g lucose

homeostasis in several models of type 1 diabetes (T1DM)

and T2DM (8, 14, 25). This effect is mediated not only by the

diversion of blood glucose toward glycogen synthesis but also

by inhibition of hepatic gluconeogenesis. In this regard, PTG

overexpression in db/db mice resulted in lower expression of

PEPCK, the key enzyme in the regulation of gluconeogenesis,

and decreased hepatic glucose output, as determined by the

flux from pyruvate to glucose in vivo. In line with these

observations, partial silencing of hepatic PEPCK enhances

glycemia in db/db mice (20).

In addition, several studies have shown that a decrease in

ATP content is associated with an increase in glucose production

in the livers of diabetic animals and humans (19, 25–27). In

summary, PTG overexpression increased hepatic ATP levels and

suppressed gluconeogenesis in db/db mice, thereby leading to a

decrease in both food intake and glycemia.

Lipid accumulation in the liver is a characteristic of the

diabetic phenotype in db/db mice. Caloric restriction reverts

hepatic steatosis and reduces the expression of lipogenic

enzymes in the livers of db/db mice (28). However, db/db-

PTG mice did not show changes in the concentration of hepatic
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TAG or in the expression of lipogenic genes. Therefore, lipid

metabolism was not improved in these mice, probably because

the reduction in food intake was not as marked as in calorie-

restricted db/db mice (4.8 g per day vs. 2 g per day).

In conclusion, increased liver glycogen stores improve the

diabetic phenotype in db/db mice. Similar results were

previously obtained in another model of T2DM, namely the

HFD mouse (8). Furthermore, the beneficial effects of the

increase in hepatic glycogen have also been demonstrated in

an animal model of insulin-deficient and monogenic diabetes,

namely the Akita mouse (25). On the basis of the findings of all

the aforementioned studies, hepatic glycogen content emerges as

a potential target for the treatment of diabetes.
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TV3” Foundation (Barcelona, Spain) (project 201613-10). We

gratefully acknowledge institutional funding from the Spanish

Ministry of Science and Innovation through the Centres of

Excellence Severo Ochoa Award and from the CERCA

Programme/Generalitat de Catalunya.

Acknowledgments

We wish to thank Anna Adrover, Emma Veza, Vanessa

Hernandez, and Laura I. Alcaide for technical assistance.

We also thank Tanya Yates for correcting the English

version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V. Type 2 diabetes:
Demystifying the global epidemic. Diabetes (2017) 66(6):1432–42. doi: 10.2337/
db16-0766

2. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J.
Epidemiology of type 2 diabetes - global burden of disease and forecasted
trends. J Epidemiol Global Health (2020) 10(1):107–11. doi: 10.2991/
jegh.k.191028.001

3. Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose
metabolism from a liver-centric perspective. Exp Mol Med (2016) 48:e218. doi:
10.1038/emm.2015.122

4. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose
metabolism in health and disease. Nat Rev Endocrinol (2017) 13(10):572–87. doi:
10.1038/nrendo.2017.80

5. Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C,
et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.
Diabetes (2004) 53(12):3048–56. doi: 10.2337/diabetes.53.12.3048

6. Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding
protein with a role in glycogen metabolism. Science (1997) 275(5305):1475–8. doi:
10.1126/science.275.5305.1475

7. O'Doherty RM, Jensen PB, Anderson P, Jones JG, Berman HK, Kearney D,
et al. Activation of direct and indirect pathways of glycogen synthesis by hepatic
overexpression of protein targeting to glycogen. J Clin Invest (2000) 105(4):479–88.
doi: 10.1172/JCI8673

8. Lopez-Soldado I, Zafra D, Duran J, Adrover A, Calbo J, Guinovart JJ. Liver
glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse
model. Diabetes (2015) 64(3):796–807. doi: 10.2337/db14-0728
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