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Abstract: There is an increasing concern about noise pol-
lution around the world. As a first step to tackling the
problem of deteriorated urban soundscapes, this article
aims to develop a tool that automatically evaluates the
soundscape quality of dwellings based on the acoustic
events obtained from short videos recorded on-site. A sound
event classifier based on a convolutional neural network
has been used to detect the sounds present in those videos.
Once the events are detected, our distinctive approach pro-
ceeds in two steps. First, the detected acoustic events are
employed as inputs in a binary assessment system, utilizing
logistic regression to predict whether the user’s perception
of the soundscape (and, therefore, the soundscape quality
estimator) is categorized as “comfortable” or “uncomfor-
table”. Additionally, an Acoustic Comfort Index (ACI) on a
scale of 1–5 is estimated, facilitated by a linear regression
model. The system achieves an accuracy value over 80% in
predicting the subjective opinion of citizens based only on
the automatic sound event detected on their balconies. The
ultimate goal is to be able to predict an ACI on new locations
using solely a 30-s video as an input. The potential of the tool
might offer data-driven insights to map the annoyance or
the pleasantness of the acoustic environment for people,
and gives the possibility to support the administration to
mitigate noise pollution and enhance urban living condi-
tions, contributing to improved well-being and community
engagement.

Keywords: citizen science, acoustic event detection, noise,
annoyance evaluation, acoustic comfort, soundscape, con-
volutional neural networks

Abbreviations

ACI Acoustic Comfort Index
ASED Automatic sound event detection
CNN Convolutional neural network
DL Deep learning
EU European Union
GTCC GammaTone Cepstrum coefficients
LAeq A-weighted equivalent sound level
Ld Day Noise Level. A-weighted Leq, over the 14-h

day period (7 to 21)
Le Evening Noise Level. A-weighted Leq, over the 2-h

evening period (21 to 23)
Ln Night Noise Level. A-weighted Leq, over the 8-h

night period (23 to 7)
Lden Day-Evening-Night noise level. A-weighted Leq

with a penalty for night/evening noise
SNR Signal-to-noise ratio
SSID Soundscape indices
WHO World health organisation

1 Introduction

Noise pollution is a widespread problem affecting millions
of people, mostly in urban areas, industrial areas, and the
surroundings of transportation hubs such as airports or
railway stations. Focusing on Europe alone, a report pub-
lished in 2020 [1] confirmed that 20% of the European Union
(EU) population resides in areas where noise levels surpass
the thresholds deemed harmful to health by the World
Health Organization (WHO). Exposure to noise levels
exceeding unhealthy Lden thresholds due to road traffic
was estimated to affect over 80 million people within urban
areas and more than 30 million people outside urban areas
in the countries studied, including the EU and five other
European countries. Additionally, a recent study [2] con-
firmed that more than 3,600 deaths were caused by road
traffic exposure could be prevented each year.

There is a long list of unhealthy and pernicious conse-
quences derived from continuous exposure to deteriorated
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soundscapes with high noise levels. There are even thou-
sands of reported cases in Europe of premature deaths
directly related to noise exposure. Environmental noise
can lead to diastolic blood pressure [3] and ischaemic heart
diseases [4,5]. It produces high sleep disorders with awaken-
ings that acutely hinder the quality of life of the affected
population [6]. It has also been linked to fatigue, headaches
and nervousness [7], psychological stress [8,9], decline in
working performance [10,11], and learning and cognitive
impairment in children and students [12,13]. In addition to
these severe effects on the health and the quality of life of
citizens, noise exposure is also associated with general
annoyance [14], which also has a negative impact on the
well-being of those afflicted by it.

Annoyance is widely regarded as the primary psycho-
logical consequence resulting from noise exposure. It is
commonly associated with feelings of nuisance, disturbance,
dissatisfaction, and unpleasantness [15]. Moreover, annoy-
ance can significantly interfere with various everyday activ-
ities, including mental concentration [16], communication
[17], learning [18], work [19], and even recreation [20,21].
Additionally, it is directly linked to the aforementioned
sleeping disorders, particularly increased difficulties in
falling asleep and frequent awakenings [22]. The starting
point for finding a viable solution to this widespread pro-
blem should involve an accurate diagnosis of the quality of
the acoustic environment. Several studies, both using objec-
tive data and psycho-acoustic and non-acoustic parameters,
can be found in the literature tackling this issue, as it will be
further developed in Section 2.

This present article conducts a different approach to
predict the subjective acoustic satisfaction level with a
given soundscape neither based on noise level measure-
ments nor psycho-acoustic metrics. The proposed approach
can be very useful in making an approximation of the per-
ceived quality of soundscapes (in terms of acoustic comfort)
in urban areas without needing expensive dedicated equip-
ment to do so. The goal is to develop a two-stage estimator to
predict the level of acoustic comfort in a living environment
based on the automatic sound event detection and classifi-
cation performed on short videos recorded with a smart-
phone or tablet [23]. This acoustic comfort predictor could
be used to rate dwellings for educational or informative
purposes in a citizen science context, to map urban areas
according to the predicted subjective perception of acoustic
satisfaction instead of the normally favoured noise indices
or to automatically extract meaningful information from
future collecting campaigns among other applications.

Acoustic satisfaction or dissatisfaction is correlated
with several perceptual constructs such as pleasantness,
calmness, eventfulness, monotony, or annoyance among

others. Previous works have successfully explored sounds-
cape modelling and the prediction of perceptual constructs
using acoustic and psycho-acoustic indicators as inputs
[24,25]. That being said, the difficulty of predicting annoy-
ance or other perceptual constructs using noise levels or
psycho-acoustic metrics has also been acknowledged [26,27],
primarily due to the complex interplay of variables that
influence individual judgments of the polyphonic sounds-
cape. In light of this, the proposed approach emphasizes
the significance of considering the type of sound source
among the non-sensory variables. Moreover, the proposed
solution is easy to implement as it does not require the use
of costly sound sensors operated by expert technicians.
Instead, anyone can conveniently make a brief recording
using a common mobile domestic device. To predict the
subjective assessment of the dwelling’s soundscapes, two
rating scales will be used: (i) a binary assessment and (ii)
a 5-point rating scale.

To train and test the design, the authors have used one
of the datasets obtained from the citizen science project
Sons al Balcó. In that project, two campaigns were con-
ducted across Catalonia. The first one took place in 2020
[28], amid lots of mobility and activity restrictions enforced
during the lockdown caused by the COVID-19 pandemic.
The second one took place in 2021 [29], in a back-to-normal
context.

It is important to note that in most previous studies on
annoyance modelling or perceptual constructs prediction
found in the literature, authors try to predict the perceived
annoyance of a particular sound event [30], the subjective
perception of a particular audio or video clip that has been
assessed by a set of participants [31] or the perceived
quality of soundscapes in public spaces by a plural on-
site evaluation during a soundwalk [32]. In contrast, the
present work aims to predict the global perceived acoustic
comfort in a dwelling, reported only by one of its residents.
That means that the video used may not be representative
and that the opinion reported may not be consensual. This
article also assesses the impact of these aspects on the
performance with an accurate analysis of the failed pre-
dictions and proposes complementary information that
could be used to improve it.

In Section 2, a more exhaustive study of the state of the
art is developed. In Section 3, relevant information about
the Sons al Balcó dataset is presented along with the meth-
odology used to predict the subjective perception of the
soundscapes and the metrics used to assess the estimator
performance. Section 4 gives the results of two studied
rating systems (binary assessment and 5-point scale rating).
Next, Section 5 offers a more insightful discussion about the
results and an analysis of the errors made by the estimator.
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Finally, Section 6 is dedicated to the final conclusions of this
present work.

2 Related work

Studies conducted to assess acoustic comfort in urban loca-
tions can be classified into three categories. The first
approach (Section 2.1) is restricted to the collection of noise
exposure pressure levels using sound sensors (usually
deployed in urban areas). The second approach (Section
2.2) focuses on specific types of noise sources and their
perception and effects on well-being. Finally, the third
approach (Section 2.3) computes psycho-acoustic metrics
or uses non-acoustic or even non-sensory variables to try
to ascertain the subjective annoyance perceived.

2.1 Urban sound sensors and noise indices

Numerous projects have been undertaken with the objec-
tive of mapping different areas within targeted cities based
on the measured noise exposure. As the amount of noise
mappings published is very large, this subsection will focus
only on some of the most recent contributions in the
literature.

Most noise mappings done in urban and suburban
areas are especially concerned with road traffic noise
and use noise indices to assess the noise exposure in
each spot. Case studies have been published for many cities
such as Piteşti, Romania [33] or Mashhad, Iran [34]. In some
instances, a differentiated analysis is conducted depending
on the land-use type as in Kigali, Rwanda [35]. In Aburra
Valley, Colombia [36] a noise mapping was conducted
focused on non-traffic related noise sources, especially lei-
sure noise.

Industrial areas have also been mapped to assess the
noise exposure of workers or neighbours. A study con-
ducted on a concrete block-making factory [37] concluded
that a Hearing-Loss Prevention Program was advisable
due to the elevated sound levels measured. Measurements
in the Tarkwa Mining Community of Ghana [38] were cor-
related with sleep disturbance, hearing problems, and
hypertension.

Another study complemented the data obtained
through sound sensors with questionnaires about the sub-
jective perception of the noise to evaluate noise pollution
and its subjective perception in a university campus in Juiz
de Fora, Brasil [39].

Typically, these urban noise mappings rely exclusively
on noise indices such as LAeq, Lden, Ld, Le, or Ln. These
indices are reliable for describing the exposure to road
traffic noise, which is the primary contributor to the dete-
riorated sound environment in cities. However, noise indices
alone do not provide a complete picture of what constitutes
a comfortable or uncomfortable sound environment. For
example, there are multiple influencing factors in the noise
annoyance perception beyond sound pressure levels, both
psycho-acoustic [40] and non-acoustic [41,42], which will be
hinted at Sections 2.2 and 2.3.

2.2 Annoyance by type of noise source

Acoustic discomfort is often caused by the presence of
annoying sound event. However, not all noise sources
are equally annoying. Thus, assessing the subjective per-
ception of the level of annoyance of some of them only
taking into account noise indices is usually unreliable.
This section will focus on the main types of noise sources
that can be found in an urban soundscape beyond the
exhaustively researched road traffic noise [43,44].

Neighbourhood noise, for example, can be highly
annoying and equally produce harmful effects on health
even though the noise indices related are low when they
are compared to traffic noise. The subjective experience of
this kind of noise stress can lead to inadequate neuroendo-
crine reactions and regulation diseases [45]. Even though
several studies in the literature have focused on assessing
neighbour noise, most of the research is still centred on the
analysis of traffic noise [46]. A very recent study opted for a
qualitative approach to analyse complaints, attitudes, and
viewpoints on neighbour noise [47].

Another noise source that has not been thoroughly
studied and that has been surprisingly missing in most
reports on noise pollution until recently is recreational
noise [48]. Many European cities experience increasing
noise exposure to daytime and night-time leisure activities
which normally involve crowds or outdoor music among
other sounds. Again, recreational noise can be very annoying
evenwithmoderate noise levels. However, publications centred
in leisure noise traditionally have used sound pressure levels to
assess the outcomes of its exposure [49].

It is also tricky to base the assessment of the annoy-
ance of construction sites only on LAeq measurements [50].
There are several individual noise sources in construction
sites, including several machines from pile drivers or earth
augers to bulldozers and excavators. Combined noise pro-
duces a higher annoyance than individual noise sources
for LAeq above 65 dBA. However, little is known about the
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real factors that could predict the annoyance level asso-
ciated with construction sites according to a recent report
by van Kamp et al. [51]. In China, an initiative was launched
consisting of mapping and analysing the construction
noise annoyance using data mining on social media plat-
forms [52].

Other noise sources that have a negative effect on the
psychological state and well-being of citizens are dogs
barking or babies crying [53]. Not all people are equally
annoyed by these kinds of sounds. A recent study [54]
proved that young adults found the high-pitched barks
more annoying than other age groups. As with other noise
sources, duration is also a very relevant factor related to
the annoyance produced. Koffi [55] proved that after sound
intensity in dBA, duration was the second most important
determinant of annoyance.

Further studies have also established relationships
between other individual noise sources that are not neces-
sarily well represented by noise-level measurements, such as
air traffic, floor impact, or drainage and overall dissatisfac-
tion with indoor soundscapes in residences [56]. Therefore,
the evaluation of the annoyance perceived in a soundscape
and, by extension, its acoustic comfort can greatly be improved
when the sound event present are known [32,57].

2.3 Psychoacoustic and non-acoustic factors

Some psychoacoustic factors have also been correlated
with subjective annoyance judgments. Kim et al. [58] stu-
died the psycho-acoustic effect of the level variation, the
duration and the number of impacts on the floor and deter-
mined that the duration and total energy level are more
suitable predictors than maximum sound pressure level
when assessing the annoyance produced by children’s
impact sounds.

Psychoacoustic metrics (including loudness, sharpness,
or roughness) have been used to predict the perceived noise
annoyance. One publication by Orga et al. [31] used a multi-
level psychoacoustic model that combined sharpness, rough-
ness, impulsiveness, and tonality. However, approaches only
based on psycho-acoustic metrics do not take into account the
nature of the sound which can add emotional and cognitive
variables that have an impact on the subjective assessment of
the noise.

There are non-acoustic and non-sensory variables that
clearly influence the subjective perception of the noise
environment, including familiarity, preferences, or even
expectations. Annoyance judgements by people revolve
around an internal representation of the noise situation.

In many cases, the same noise level causes different degrees
of annoyance depending on their occurrence during day or
night-time. However, this does not happen for all kinds of
noise sources. For example, no differences between day and
night-time annoyance were found regarding traffic noise.
On the contrary, reactions to rail or air traffic noise differ
depending on the time of day [59].

Another study revealed that even in the case of railway
and road traffic noise there are non-acoustical variables that
explain part of the variance in noise annoyance beyond the
noise indices (Lden). Some of these variables are the indivi-
dual noise sensitivity, the coping capacity or the concern
about the harmful effects [60].

Neighbourhood characteristics also modify the subjec-
tive perception of the soundscape. Surrounding greenery,
especially garden and wetland parks usually reduce noise
annoyance perception in the living environment [61,62].
Facade and building orientation are other influential fac-
tors in the perceived noise annoyance [63]. Even socioeco-
nomic status is related to noise pollution perception. A
study conducted in Germany [64] concluded that younger
people and those with lower socioeconomic status have
higher probabilities of being affected by noise pollution
because they live in areas with more deteriorated sounds-
capes. However, it has also been stated that people with
high socioeconomic status appear to be more noise-sensi-
tive, maybe because they have higher expectations of quiet
in the living environment [65].

There have been imaginative approaches to noise
annoyance assessment that have combined acoustic and
non-sensory variables. De Muer et al. [66] included the type
of activity conducted along indoor background level and
signal-to-noise ratio (SNR) measurements. Bravo-Moncayo
et al. [30] used noise exposure levels but added other vari-
ables such as noise perception and demographics but focused
only on road traffic noise annoyance. Finally, González et al.
[67] combined meteorological and noise measurements,
objective urban variables and in situ surveys to evaluate
the effects of road traffic noise on pedestrians.

3 Materials and methods

As stated in Section 1, this project will be structured in two
parts. The first set of experiments will give a binary assessment
of the quality of the dwelling’s soundscape. Next, the second set
of experiments will offer an Acoustic Comfort Index (ACI),
which uses a 5-point rating scale, for the same soundscape.

The following subsections detail the data gathering
process framed in the Sons al Balcó project, the processing
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of the data collected and the experimental pipeline designed
including the setup for both estimators, i.e. the binary esti-
mator and the ACI estimator.

3.1 Data gathering and Sons al Balcó

In this research article, the authors used data collected
from the Sons al Balcó citizen science project. As a part
of this project, two Catalonia-wide campaigns were con-
ducted in 2020 and 2021. The project asked participants
to make a double contribution. First, they had to record
a short video of a minimum 30 s from their balconies using
their smartphones or tablets and upload them to a server.
Additionally, they had to answer a questionnaire about the
perception of their soundscapes. The questions in the
survey included a global subjective assessment of the
soundscapes from their balconies (acoustic satisfaction),
a description of the sound event present, and their respec-
tive level of annoyance or pleasantness according to their
opinion, the frequency of appearance of the mentioned
sound classes, and other useful information.

Even though the original goal of the project was to
study the changes in the perceived soundscape during
the lockdown, the data obtained are valuable and are cur-
rently being used with a broader scope in mind. For this
current work, the dataset offers a combination of real-life
video clips from living environments with a subjective assess-
ment of the acoustic comfort by the dwellers themselves.

Both campaigns were advertised on social media and it
was open to all people living in Catalonia. All the videos
collected were manually reviewed to guarantee that three
requirements were satisfied: (i) they should be recorded
from a balcony or window, (ii) they should not contain
human faces, and (iii) they should be recorded in Catalonia.

Data collected are very relevant as an important per-
centage of the Sons al Balcó contributions come from the
biggest city in the region, Barcelona, which is particularly
affected by noise pollution with over 210,000 people suf-
fering serious psychological, emotional, or social effects
caused by noise exposure and more than 60,000 with sleep
disorders. Noise mapping by the Barcelona Public Health
Agency reported that 57% of the population live in areas
with traffic noise levels considered detrimental to health [68].

All the videos collected came from Catalonia mini-
mizing the possible cultural differences in the subjective
appreciation of the annoyance of noise sources. As these
differences do exist [69], if the system were to be used in
another cultural framework, it would be recommended to
train the algorithm with locally acquired contributions.

3.2 Data processing

The first two campaigns of Sons al Balcó conducted in 2020
and 2021 received 365 and 237 contributions, respectively.
Two complex polyphonic datasets were obtained from
them, one for 2020 and one for 2021. Both datasets were
manually labelled using a hierarchical taxonomy and ana-
lysed by the authors in the previous work [70]. They were
annotated considering polyphony because there were fre-
quent overlapping sound event.

For this present study, only the dataset of the 2021
campaign could be used. The 2020 campaign was handled
during the lockdown caused by the COVID-19 pandemic in
order to study the effects of the restrictions on the sounds-
cape in Catalonia. This severe activity and mobility restric-
tions shaped a quieter sound environment in the cities
across Catalonia [71,72]. In this context, the subjective per-
ception of citizens during the lockdown also drastically
changed to the point where there were virtually no exam-
ples of negative soundscapes reported in the 365 videos
collected, making them unsuitable for the purpose of the
current study.

In contrast, the 237 surveys answered in the 2021 cam-
paign offer a realistic variety of positive, neutral, and nega-
tive scenarios. The videos from this campaign came from
different spots representing a wide extension of the Catalan
geography, as seen in Figure 1. About half of them were
collected in big cities, especially in the metropolitan area
of Barcelona, and the other half were collected in smaller
cities or towns. Figure 1 shows that most of the scenarios
reported as negative are found in large urban areas, a sig-
nificant number of them in the metropolitan area of Barce-
lona, which suffers especially from noise pollution, as it was
already stated in Section 3.1.

Of the 237 videos collected in 2021, two of them were
discarded because they were too short. The mean duration
of the actual videos collected was close to the specifica-
tions: 32.44 s. However, there were some outliers ranging
from 3.2 to 85.2 s. Almost all of them could be used to
characterize the soundscape, even if they were shorter,
but 8 s were chosen as the minimum duration necessary
to have enough relevant information on the scenario.
Therefore, a total of 235 videos have been used in the pre-
sent work. Almost all videos were recorded during the
daytime. In fact, no video was recorded between 22:30
and 05:00. Consequently, video contents are more repre-
sentative of daytime noise sources.

As shown in Figure 2, 50 participants (21.28%) deemed
that the soundscape from their balconies has poor quality.
On the other hand, 144 participants (61.28%) considered
that they are surrounded by positive soundscapes.
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3.3 Experimental pipeline

A two-stage soundscape quality predictor has been designed
(Figure 3). The first stage consists of an automatic sound
event classifier and the second stage includes two sounds-
cape quality estimators. A process of aggregation and nor-
malization followed by a predictor selection is applied
between both stages.

The automatic sound event classifier used in Stage 1 is
the same one previously published by the same authors
[70] that had already been tested with the Sons al Balcó
datasets. It is fed with a 30-s video that is subsequently
framed using 30 ms Hamming windows. Then, 100 Gam-
maTone Cepstral Coefficients (GTCC) are extracted [73].
GTCC were chosen as they outperformed other feature
extraction methods in a survey comparison conducted by
authors [74]. They are formatted into a ×10 10 matrix
which is what is expected by the deep learning (DL) algo-
rithm chosen to detect and classify the sound classes. Spe-
cifically, a convolutional neural network (CNN) was chosen
[75]. Finally, an array of 34 probabilities corresponding to
the 34 classes in the taxonomy is binarized using a threshold

of 0.5 to obtain an array of 34 Booleans indicating which
sound categories are detected in each frame. The exact set-
ting of the classifier can be found in the aforementioned
work [70].

Afterwards, the classified sound event detected in all
the frames of a given video are aggregated and normalized

Figure 1: Distribution of the contributions for the 2021 Sons al Balcó campaign classified by global level of acoustic satisfaction (negative, neutral or
positive).

Figure 2: Global subjective assessment of the soundscape according to
its dwellers (number of videos).
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to obtain an array of percentages of presence for each
sound class in the studied audio file.

Even though there are up to 30 different sound classes
spotted in the 2021 dataset (the taxonomy is described in a
previous work by the authors [70]), not all of them are
suitable to be used as predictors. In fact, only those that
have an impact on the prediction metrics of the assessment
of the soundscape quality are considered. A hypothesis has
been made that the less prevalent sounds would be irrele-
vant and that some sound classes that are not homoge-
neously considered pleasant nor unpleasant by the general
population can be counterproductive as predictors. These
hypotheses have been tested by comparing the perfor-
mance of the estimator with different sets of predictors,
starting with all the sound categories and subsequently
removing the ones suspected to have a negative effect on
the prediction. Particularly, the first sound categories removed
were those with less than 1% of prevalence in the dataset
according to Bonet-Solà et al. [70]. Next, the remaining sound
categories were removed one by one, starting from the ones

less correlated (either positively or negatively) with the
reported acoustic comfort as stated in Figure 4, until the
performance started to improve.

Effectively, most of the sound classes with less than 5%
of prevalence in the dataset are detrimental to the perfor-
mance of the algorithm except for rail and, to some extent,
construction. Furthermore, some of the sound classes with
higher presence such as wind or voice are not correlated
with the subjective perception of the quality of the sounds-
cape. They appear in both positively and negatively per-
ceived scenarios. In some instances, they contribute to a
more negative assessment while in other instances they do
the opposite. This fact can be observed in the correlation
map shown in Figure 4. Thus, they are not reliable for
prediction purposes. Consequently, the only five sound
classes originally annotated in the dataset that are relevant
for the present study and will be used as predictors are as
follows: bird, road traffic, rail, water, and construction.

Initial experiments and the analysis of the survey
results revealed a new noise source with a significant

AUTOMATIC SOUND EVENTS 
CLASSIFIER (Stage 1)

Binarizing
34 Booleans

CNN
34 Probabili�es

Forma�ng
10x10 Matrix

Features Extrac�on
100 GTCC

Windowing
30ms frames

Logis�c 
Regression Binarizing Binary 

Assessment

Linear 
Regression

Rounding 
(Op�onal)

5-Point Scale 
Assessment

Aggrega�on & 
Normaliza�on

34 
Percentages

Predictor 
Selec�on 6 Predictors

SOUNDSCAPE QUALITY ESTIMATOR

(Stage 2)

Figure 3: Two-stage soundscape quality predictor.

Figure 4: Correlation between the different predictors of the dataset (sound classes appearing at a minimum of four videos) and the acoustic comfort
marked by the participants.
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impact on the assessment of several soundscapes that was
not previously annotated: leisure activities (especially,
nightlife and restaurants). This noise source is a composite
class made up of voices, music, and other basic sound event
that, when they are integrated, are especially annoying com-
pared to the individual sound classes mentioned. Therefore,
the 2021 campaign dataset’s labels were manually updated
to add the leisure category as the sixth relevant sound class
in the present study that will also be used as a predictor.

These sound event are consistent with the main noise
sources detected in Barcelona in a previous study [76],
which shows that road traffic is the main contributor to
noise exposure in the city with more than 85% of exposure,
followed by night-time leisure with less than 10%. The
other noise sources detected are rail and industrial/con-
struction noise, with a residual exposure below 2%.

Once all the videos were annotated and the predictors
were chosen, an estimator of the quality of a given urban
soundscape was designed (corresponding to stage 2 in
Figure 3). The goal was to try to predict the subjective
quality perceived by the participants using objective data,
i.e. the specific noise sources present in the short video clips
they sent. This estimator was initially tested using the real
sound event manually annotated in the videos for the 2021
Sons al Balcó campaign to assess the performance of the
estimator independently, without the possible error added
by a classification algorithm.

Afterwards, the designed estimator was added to an
automatic sound event classifier (Stage 1) to implement the
two-stage system capable of automatically assessing the
quality of the soundscape, as depicted in Figure 3.

Two rating scales were chosen to assess the level of
acoustic comfort of the dwelling:
(1) A binary assessment
(2) A continuous 5-point rating scale (ACI).

For the first approach, the global subjective assess-
ment of each contribution has been binarized. The dwell-
ings rated as “very positive” or “positive” were assigned to
the “comfortable” category. The dwellings rated as “very
negative” or “negative” were assigned to the “uncomfor-
table” category. Finally, the dwellings rated as “neutral”
were discarded for this first set of experiments. Thus, a
total of 194 were finally available.

These soundscapes were divided in a 4-fold cross-vali-
dation train-test scheme, and a logistic regressor was
implemented using only the six relevant sound classes
already mentioned as predictors.

For the second approach, the system predicts the
acoustic satisfaction score achieved by a dwelling with
an ACI using a 5-point rating scale, which emulates the

Likert scale [77] used by participants of the survey to assess
the global perceived quality of their surroundings (very
negative (1), negative (2), neutral (3), positive (4), and
very positive (5)). This ACI offers a general approach to
the overall acoustic satisfaction felt by the dwellers without
focusing on specific perceptual constructs such as calmness,
pleasantness, or monotony, which can be subject to different
cultural interpretations [78].

Kang et al. proposed the creation of soundscape indices
(SSID) [79–81] obtained from acoustical, psychoacoustical,
psychological, neural, and physiological and contextual fac-
tors as a framework to better represent soundscapes and
their perception. However, most of these factors require
additional information not always available. The ACI pre-
sented in this work is a simplified and minimalist version of
a single SSID, which only uses the sound source type as a
defining factor.

In this case, all 235 valid videos from the 2021 campaign
were used. They were also divided using a 4-fold cross-vali-
dation scheme. After that, a linear regressor was used to
predict the soundscape’s rating. Any outcome below 1 or
above 5 was rounded to avoid exceeding the rating scale
margins.

This assessment gives a real number between 1 and 5
that can be optionally rounded to obtain a discrete scale of
5 points identical to the Likert scale used by participants in
the survey. To study the performance of this approach, the
R-squared value of the prediction is computed and the
error distance between the regressor’s output and the sub-
jective assessment is calculated. Subsequently, the accu-
racy is evaluated on a prediction interval of ±1 points.

4 Results

In this section, the results of the designed estimator are
presented. Section 4.1 conveys the results obtained by the
binary assessment. Afterwards, Section 4.2 exposes the
results of the ACI estimation.

4.1 Binary assessment of the acoustic
comfort

Four experiments were conducted. The first two experi-
ments (Experiments 1 and 2) used only the estimator
described as Stage 2 in Figure 3 which was fed with the
sounds labelled by expert annotators. The last two experi-
ments (Experiments 3 and 4) used the complete design with
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the classifier. In this case, the classifier automatically
detects the sound event present in each video and feeds
them to the soundscape quality estimator.

First (Experiment 1), a segment-based approach where
the prediction was based on a binary array with the anno-
tated/detected sounds on a given video was chosen. It used
binary data, i.e. the presence or absence of each sound
class in any given dwelling as independent variables,
without considering the exact duration of each sound
event. This could be interesting if the detection of sound
event is accomplished with a segment-based classifier
instead of an event-based one, which normally offers better
performances in polyphonic environments. Experiment 2
opted for an event-based approach trying to detect the exact
time frame and duration of each sound class event. It used
the relative duration of each sound event within each video
as independent variables; that is the percentage of time in
each audio clip where a specific sound class is spotted.

The event-based approach achieves 3.1% higher accu-
racy and 8.26% higher F1-score than the segment-based one
(Table 1). Experiments 1 and 2 showed the top performance
that can be achieved with this kind of estimator in the
current dataset. They can only be improved with addi-
tional information or by discarding the inconsistent entries
in the survey.

The next two experiments aim to achieve perfor-
mances as close as possible to the ones described in
Table 1. The main change between them is that instead of
using the manual labels, the acoustic events are obtained
using an automatic CNN-based event detector. The auto-
matic sound event classifier, even though it achieves state-
of-the-art results when working with prevalent sounds such
as birds or road traffic [82], is not perfect. Therefore, a dip in
the accuracy is to be expected.

A detailed analysis of the performance of each class of
the classifier (when working on an event-based metric)
revealed that water was the only class that was often mixed
up with non-related categories (25.86% of the time), i.e. it
was often mixed up with generally annoying noise sources
(road traffic, rail, construction, and leisure). Given that
water was one of the less relevant categories considered
in the prediction process, to begin with, this classifying
under-performance is high enough to consider its removal
from the estimator. For that reason, Experiment 4 was con-
ducted only with five predictors (birds, road traffic, rail,
construction, and leisure) achieving a slightly better perfor-
mance than when water was included.

As can be seen in Table 2, the best performance is
achieved in Experiment 4, which gave the same perfor-
mance as Experiment 1. That means that inaccuracies due
to the automating sound event detection (ASED) had only
a 3.1% impact on the global accuracy. Due to the better
performance achieved by the event-based detection (Experi-
ment 4), this study will focus on this approach from now on.

In this subsection, the results for the ACI estimators
are presented. First, the results without the ASED stage will
be discussed. Afterwards, the results of the two-stage esti-
mator will be explained and compared.

Without adding the automatic sound event classifier
(and, therefore, using the manually annotated labels for
each audio file), the R-squared value of the regression is
not high: 0.28. However, the system offers a remarkably
good accuracy if we accept a prediction interval of ±1

points, which is reasonable when trying to get a first
approximation of the expected acoustic comfort or discom-
fort. The mean absolute error distance between the global
assessment of the soundscape reported (with the 5-point
rating scale) and the prediction is 0.85 points. If the index is
rounded, the mean absolute error decreases even more, to
0.83 points.

4.2 ACI

As seen in Figure 5, in 86.81% of the soundscapes, the rounded
assessment predicted is the same or has only 1 point of differ-
ence from the reported perception. In other words, 86.81%
of soundscapes are correctly predicted inside the defined

Table 1: Accuracy and F1-score using the real annotated sounds to
predict the subjective binary assessment of the soundscapes

Accuracy (%) F1-score (%)

Exp. 1 – Manual labels and segment
based

80.41 64.15

Exp. 2 – Manual labels and event
based

83.51 72.41

Table 2: Accuracy and F1-score using automatically detected sound event to predict the subjective assessment of the soundscapes

Accuracy (%) F1-score (%)

Exp. 3 – Automatic event detection and segment based 78.87 55.91
Exp. 4 – Automatic event detection and event based 80.41 64.15
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prediction interval. Only 1.28% of the soundscapes offer a
predicted index with more than 2 points of difference.

The standard deviation of the predictions is lower than
the standard deviation of the reported perceptions (0.69
instead of 1.22). The system performs better in predicting
middle indices and performs poorer in especially negative
scenarios.

Results for the two-stage estimator are almost identical
to the ones achieved with the estimator-only approach. The
R-squared value is slightly diminished: 0.26. However, the
mean absolute error distance between the reported assess-
ment and the prediction is also reduced to 0.83 points (that
falls even more to 0.79 points when the index is rounded).
The accuracy for the prediction interval is exactly the same
in both implementations (86.81%), as we can see in Figure 5.
A slight improvement can be spotted in the number of per-
fect predictions (error = 0).

There are no significant differences in the error dis-
persion when using the ASED algorithm and when using
manual labels. That can be further assessed in Figure 6.
Median values are very close to 0 in both cases and first
and third quartiles have a similar distance in both scenarios.

However, there is a slight asymmetry in the outliers which
favour negative errors in both cases, especially in the sce-
nario without ASED. A negative error means that the pre-
diction describes the soundscape as less annoying that the
ground truth expressed by the contributors. On the con-
trary, a positive error means that the prediction depicts a
poorer scenario than the one stated by citizens.

The two-stage predictor performs better when predicting
positive and neutral assessed soundscapes. As seen in Figure 7,
when the acoustic satisfaction reported is “very negative” (the
lowest), the performance is poorer. However, it must be stated
that the number of soundscapes with a reported “very nega-
tive” rating is barely a 7.7% of the total (Figure 2).

The performance of the soundscape assessment depends
on the size of the town/city in which it was taken. Even
though the errors committed when using the 5-point rating
system are smaller no matter the size of the city, Figure 8
proves that there is a vast difference depending on the rating
system chosen when assessing small- and middle-sized cities
(population ranging from 20,000 to 100,000). In fact, the 5-

Figure 5: Percentage of predictions with less than a given (absolute)
error using the rounded ACI estimation.

Figure 6: Comparison of the error distance for the ACI estimator with or
without ASED.

Figure 7: Prediction performance depending on the acoustic satisfaction
reported.

Figure 8: Comparison of errors of both rating systems depending on the
size of the city or town (errors in the 5-point-rated ACI are predictions
outside the ±1 prediction interval).
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point scale rating system stands out in small cities, even sur-
passing the predictions made in little towns. On the contrary,
the binary rating system under-performs in this segment with
an accuracy of slightly under 75%.

It is also interesting to note that the floor is inhabited by
the participants, from which the videos were recorded,
greatly influences the performance of the prediction. The
difference is huge when using the binary assessment rating,
as can be seen in Figure 9.

When considering only citizens living on floors 0 to 5
(that are approximately 85% of the participants), the accu-
racy rises to almost 85%with the binary assessment method.
On the contrary, it drops to less than 60% for the minority
living on higher floors.

5 Discussion

In this section, results are discussed and further developed.
First, Section 5.1 offers a previous analysis of some relevant
survey results to spot the hindrances to be considered
when predicting a subjective opinion. Afterwards, a sepa-
rate analysis of the accuracy according to the sounds anno-
tated is done in Section 5.2. Finally, a detailed audit of those
cases where the system failed is revealed (Section 5.3),
starting with the binary assessment approach, and ending
with a comparison with the 5-point scale ACI scheme.

5.1 Analysis of the survey results

Some outlier opinions are bound to be almost impossible to
predict without further data. In fact, data based on a
citizen science project can contain incoherent assertions
and inconsistencies. Therefore, a previous inspection of

the survey results can give a clearer picture of the ceiling
that can be achieved in the framework of this project.

The perception of the annoyance produced by indivi-
dual predictors, the correlation or lack thereof between the
annoyance reported for individual noise sources and the
acoustic satisfaction reported for the dwelling, differences
between reported sounds by participants and labelled
sounds by annotators or the representativeness of the
sound classes annotated in the videos could give valuable
information to interpret the subsequent results.

5.1.1 Assessment of the perception of annoyance for
individual predictors

While birds andwater are almost unanimously considered
as non-annoying or even pleasant sounds by participants,
the assessment of the other four categories is less homo-
geneous. Construction, leisure, rail, and road traffic noise
are normally considered annoying but there are numerous
exceptions among the participants as seen in Figure 10. It has
been proven that differences in impulsiveness, roughness, or
tonality in some type of sound event influence the perceived
annoyance [31]. This lack of consensus with the annoying
noise sources betokens a higher difficulty in predicting poor
quality soundscapes compared to the positive ones.

5.1.2 Correlation between the global assessment of the
Dwelling’s soundscape and the individual level of
annoyance reported for the predictors

Inconsistencies between the subjective global assessment
of the dwelling and the subjective assessment of each rele-
vant class of noise source can affect the performance of the
predictor. In most cases (89.45%), there is not a significant
difference between both assessments, as seen in Table 3.

Figure 9: Comparison of errors of both rating systems depending on the
floor on which the video was recorded (errors in the 5-point-rated ACI are
predictions outside the ±1 prediction interval)).

Figure 10: Individual assessment of the annoyance level for each of the
six sound classes used as predictors.
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However, some discrepancies do exist. For 4.22% of the par-
takers, the perceived annoyance of the individual sound event
present is significantly higher than the perceived acoustic
discomfort of their residence. In some cases, this discre-
pancy can be explained by the low frequency of apparition
of the detected noise sources. However, in other cases, the
answers provided by respondents seem to be illogical or
incoherent. That can be attributed to an incorrect interpre-
tation of the questions among other causes that would be
further discussed in Section 5.3.

On the other hand, 6.33% of the contributors stated that
the perceived annoyance of the reported sound event present
was significantly lower than the assessed acoustic discomfort
of the soundscape in their dwellings. Even though a minimal
part of this percentage corresponds to situations where the
main noise source reported was not included in the predictors
(such as neighbours or pets), some of the survey answers seem
illogical, again, even after hearing the actual videos from the
annotators. Further data that cannot be obtained directly from
the videos could explain some of this divergence, e.g. the lack
of representativeness of some of the videos sent.

5.1.3 Comparison between annotated and reported
sound event

The automatic sound event classifier relies on the anno-
tated sound event to do the training. Errors in the labelling

process or discrepancies with the reported sound event by
citizens affect the outcome of the classifier process and the
subsequent prediction of the annoyance level. Therefore, it
is interesting to compare if the annotated sounds are con-
sistent with the reported sounds in the survey.

Figure 11 shows that some differences exist between
the labelled sounds by annotators and the reported sounds
by the participants in the survey. On the one hand, birds
andwater (not annoying sounds) were spotted inmore videos
by annotators than by participants even if the differences are
not significant. On the other hand, construction, leisure, rail,
and road traffic noise were reported in more videos by con-
tributors than by annotators. Differences can be attributed to
the quality of the recordings and to the subjective interpreta-
tion of each individual. However, some contributors may be
biased in their responses as they know which sounds are
normally present in their urban location, irrespective of their
real apparition in the short videos sent.

Aggregating the six categories used as predictors (Table 4),
it can be concluded that 88.4% of the time both labellers and
contributors agree on the sound event appearing (or not
appearing) in each video. By comparison, 8.23% of the sounds
reported in the survey do not appear in the annotations.
Finally, 3.38% of the sound event annotated were not reported
by participants.

5.1.4 Representativeness of the sounds annotated in the
videos

Table 5 shows the representativeness of the sounds annotated
in the videos (only sounds that were both labelled by anno-
tators and reported by contributors are being considered).

Table 3: Comparison of the global negative assessment of the dwelling’s soundscape provided by citizens and the mean value of the annoyance level
for each of the six individual sound classes used as predictors

Total answers

Perceived annoyance of individual sound classes similar to the acoustic discomfort of the soundscape 212 (89.45%)
Perceived annoyance of individual sound classes significantly higher than the global acoustic discomfort of the soundscape 10 (4.22%)
Perceived annoyance of individual sound classes significantly lower than the acoustic discomfort of the soundscape 15 (6.33%)

To be considered similar, both figures had to be less than 1.5 apart.

Figure 11: Comparison of the labelled sounds in the dataset and the
reported sounds by the participants in the surveys.

Table 4: Crossover between labelled and reported sounds for the six
predictors (aggregated)

Not labelled (%) Labelled (%)

Not reported 70.32 3.38
Reported 8.23 18.07
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All instances of rail and almost all instances of birds are
representative of the usual composition of their soundscapes.
However, other sounds such as water and construction are
over-represented in many videos according to the opinion of
the participants. This over-representation of some noise sources
maymake them less relevant in the prediction of the subjective
perception of the quality of some soundscapes, also affecting
the performance of the estimator.

These four hindrances: heterogeneous assessment of
the annoyance of individual noise sources, lack of correla-
tion between individual noise sources and global assess-
ment, inconsistencies in the reported and annotated sounds,
and lack of representativeness of the sounds detected in the
videos, limit the expected accuracy of the estimator. In
Section 5, the actual errors caused by these factors are
further discussed.

5.2 Effects of the type of sound source in the
accuracy

As seen in Table 2, the global accuracy achieved by the two-
stage implementation exceeds 80%. However, the relia-
bility of the prediction varies based on the kind of sound
present in each location. The analysis made in Section 5.1.1
with Figure 10 already hinted at this outcome. The system
excels in correctly assessing the quality of the videos that
only have pleasant predictors annotated (birds or water)
and the videos that do not have any of the predictors
because they only have other sounds labelled (such as
music or pets). Table 6 shows that the performance for
these videos climbs to more than 90%.

Performance is also slightly above average for those
videos with only annoying sound sources present with an
accuracy of 80.7%. However, accuracy decreases below
70% of those videos where both pleasant and annoying
sound sources co-exist.

5.3 Errors analysis

It is interesting to analyse the causes of the incorrectly
assessed soundscapes. Starting with the binary assessment,
a total of 156 soundscapes (more than 80%) were correctly
predicted. However, the system failed to match the subjec-
tive perception of the participants in 38 instances. Figure 12
shows the causes for each of these errors.

A 1.03% of the errors (Type I) were caused by incon-
sistencies in the survey responses. The global assessment
assigned by the participants was incoherent. The reasons
could be diverse and caused by the subjective nature of the
project. They may be due to a misunderstanding of the
questions in the survey, a lack of commitment to the vera-
city of the answers or an extremely outlier opinion in the
assessment of the quality of the soundscape on the part of
the contributor. In this present study, all these errors con-
sisted of soundscapes reported as negative that were incor-
rectly predicted as positive by the estimator. This 1.03% is
completely unpredictable and can only be removed by a
previous screening of the survey.

A 5.15% (Type II) of the errors consisted in videos
where annoying noise sources (such as road traffic) were
present or even predominant but the quality of the sounds-
cape reported was positive, nevertheless. Therefore, a
negative soundscape was predicted instead of a positive
one. There are several reasons that explain this situation.
First, it may be possible that the presence of these parti-
cular noise sources was exceptional and not representative
of the everyday soundscape. As seen in Table 5, there is a
significant percentage of annoying sound event present in
the videos that are rare in the studied locations. Therefore,
taking this single video as an example to assess the quality
of the soundscape is not appropriate. This issue can be
tackled by analysing more than one video taken from the
same location instead of only one. Another reason for this

Table 5: Representativeness of the annotated and reported sound event

Birds (%) Water (%) Road traffic (%) Rail (%) Construction (%) Leisure (%)

Rare 3.51 55.56 13.27 0 37.5 14.29
Common 42.98 11.11 45.13 33.33 12.5 28.57
Very frequent 53.51 33.33 41.59 66.67 50 57.14

Table 6: Reliability of the prediction depending on the sound sources
present at each location

Sounds present in the video Accuracy (%)

None of the predictors present 91.67
Only pleasant sound sources present (birds, water) 90.77
Only annoying sound sources present (road traffic,
rail, construction, leisure)

80.7

Both pleasant and annoying sound sources present 66.67
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kind of error is a different subjective appreciation of the
level of annoyance of these particular noise sources (road
traffic noise, leisure...) by the participants. As seen in
Figure 10, even though most people consider road traffic,
rail, construction, or leisure as annoying, very annoying, or
even extremely annoying, there are also some participants
who do not consider them annoying at all. The foreground-
to-background placement of the sounds or the noise isola-
tion of the building can explain some of these differences
in appreciation. However, other factors such as socioeco-
nomic status, demographics, time slot of occurrence, activ-
ities developed by residents, percentage of time at home,
coping capacity, or expectations can also play a role.
Soundscape appropriateness also has a role in positive
appraisal of heavy traffic areas where road traffic is the
main noise source present [83]. In any case, it should be
noted that when dealing with subjective contributions,
some outlier opinions are almost impossible to predict no
matter the model used.

A significant part of these Type II errors appears in
videos recorded from higher floors, which partly explains
the differences revealed in Figure 9. On higher floors, the

annoying noise sources still are present and detected by
the ASED algorithm, but they are not as annoying to the
inhabitants. Accurate measuring of the LAeq in the studied
floor could be helpful in improving the prediction perfor-
mance in this case. However, as it was already stated, this
situation only affects a small part of the population (15% in
the Sons al Balcó sample), as most people live on lower
floors.

A 6.19% of the errors (Type III) occurred because a
similar presence of annoying noise sources and pleasant
sound event were equally present in the spot. The subjec-
tive appreciation of this situation is especially variable,
and the algorithm will miss about a third of the situations
(as seen in Table 6) if the only criteria to assess the quality
is the detection of the sound classes present. Errors can
go both ways: a negative soundscape is predicted as posi-
tive or otherwise. To improve the performance, the assess-
ment of these soundscapes should be complemented with
other data such as the LAeq measured in the location (when
it is available). If noise levels are not available, another
valid alternative could be using psychoacoustic metrics
extracted from the sounds detected.

Figure 12: Error analysis for the binary assessment of the soundscape.

Table 7: Comparison of errors made by both rating systems

Type of error Errors in the binary
rating

Errors in the ACI Improvement

Type I: Inconsistencies in the survey 2 2 0%
Type II: Soundscape reported as positive even though noise sources
are annoying

10 2 80%

Type III: Similar presence of pleasant and annoying sound sources 12 8 (+1 not previously
existing)

33.33%

Type IV: Errors ascribable to the ASED algorithm 13 7 46.15%
Type V: Noise source different from the studied 1 1 0%
Type VI: Errors in the assessment of extreme ratings (1 or 5) predicted
as middle

— 11 Not applicable

14  Daniel Bonet-Solà et al.



Types I, II, and III errors are exceedingly difficult to
improve using only this approach to make the decision,
marking an accuracy ceiling of 87.63%.

There are two more kinds of errors. On the one hand, a
6.7% of the videos were incorrectly predicted (Type IV
errors) due to mistakes committed by the classifier (incor-
rect detection or classification of some sound event). A
detailed analysis of these errors showed that in four audio
clips, water was incorrectly detected as road traffic noise
leading to a negative assessment of a positive soundscape.
Moreover, even though the algorithm performs exception-
ally well in detecting rail noises, a slight confusion to other
sounds considered pleasant leads to a positive assessment
of a negative soundscape. As ASED algorithms are continu-
ously improving their accuracy, it is conceivable that these
errors could diminish, especially if the classifier can be
trained with more extensive data.

On the other hand, 0.52% of the errors (Type V) were
caused by the presence of a noise source different from the
ones used as predictors. As a result, the soundscape was
predicted as positive although it had poor quality. There
were not enough samples in the Sons al Balcó project to
include this noise source (Industry) as a predictor with
positive results. However, a broader collection of data in
future campaigns would solve this specific issue.

In order to compare the performance of both ratings
(binary and ACI), it can be considered that an error of 2 or
more points in the rounded ACI is a poor assessment.
Following this criterion, 86.38% of the soundscapes assessed
with the ACI can be considered good predictions (inside the
±1 prediction interval) and 13.62% can be considered poor
predictions. This outperforms the binary assessment accu-
racy of 80.41% even though there are more videos assessed
using the ACI than using the binary one (235 to 194).

To better understand the improvement of the ACI over
the binary one, Table 7 compares the errors of the latter
with the poor predictions of the former.

Errors derived from inconsistencies in the survey or
from noise sources different from the predictors cannot be
solved with the 5-point rating system. On the contrary, the
other types of errors described in Figure 12 are signifi-
cantly improved, especially Type II errors. A binary cate-
gorization of this kind of location was not the best suited.
Even some of the errors ascribable to the ASED algorithm
can be avoided when using the 5-point scale rating. In fact,
all the situations where the rail was detected slightly mixed
with pleasant sounds are correctly predicted as negative
locations with a the 5-point rating.

However, it must be noted that the rating underper-
forms with extreme appraisals (“very negative” or “very
positive”). It struggles especially with some locations rated

as “very negative” by citizens that are upgraded two points
by the predictor.

6 Conclusion

This article presents a system capable of predicting the
acoustic satisfaction level for a dwelling based only on
the ASED of a short video. Although both a segment-based
approach and an event-based approach have been tested,
the prediction based on events is preferable. The improved
accuracy of the ASED algorithm in segment-based metrics
does not make up for the less information obtained with
that approach.

Accuracies obtained are good and encouraging (top-
ping 80% or even better depending on the rating system
used). However, for an even higher reliability, it is recom-
mended to add additional information of the noise expo-
sure when available, such as the mean LAeq level measured
on the spot. The reason is that the system has a ceiling of
accuracy that can hardly be surpassed without further
information, mainly due to several hindrances related to
the subjective nature of the study and the representative-
ness of the videos used.

The binary assessment alternative achieved particu-
larly remarkable accuracies when assessing soundscapes
from floors 0 to 5 reaching almost 85%. That figure is espe-
cially relevant considering that only a small fraction of the
Catalan population has its residence in the upper floors.
The performance would probably take a dip in regions
cluttered with skyscrapers, making it less suitable. The
population of the studied city or town also affects the per-
formance of both assessments. For small- and medium-
sized cities the 5-point scale ACI approach is recommended.

This implementation works comparatively better in pre-
dicting pleasant scenarios (with less annoying noise expo-
sure) than in predicting deteriorated soundscapes. That was
to be expected as opinions on the annoyance (or lack thereof)
of pleasant sounds such as birds or water are homogeneous.
However, there is a clear lack of consensus in the assessment
of the level of annoyance for other less agreeable noise
sources: road traffic, train, leisure, and construction that
give place to outlier opinions difficult to predict.

In general, the ACI approach makes even better pre-
dictions, offering a more nuanced assessment, taking into
account that the prediction should be interpreted inside a
±1 interval. However, it tends to be conservative in the
assessment of extreme soundscapes (“very negative” or
“very positive”) with a reduced standard deviation and a
bias towards a neutral assessment.
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As it takes a little extra effort to extract both ratings, it
is advised to use both of them to have a more precise
assessment. The ACI option is especially valid and error-
free (within the sample of the study) when the rail is
detected. However, the number of occurrences of rail in
the videos collected is insufficient to make a general
assertion.

The videos collected for the Sons al Balcó campaigns
only include daytime soundscapes, which is a recurrent
problem in this kind of citizen science project. It would
be interesting to also collect videos depicting night-time
scenarios to better evaluate the impact of night recrea-
tional activities on the acoustic comfort of the dwelling.

The approach proposed can be very useful to make a
first approximation of the perceived acoustic comfort in
urban areas without needing expensive dedicated equip-
ment to do so. As short videos can be recorded with a
mobile phone, everyone is able to easily upload or send
the video without technical expertise. It can also be used by
municipal technical staff complementary to other noise
surveillance techniques (such as sound meters) to more
accurately map the subjective noise exposure in a city
(or town).

Acknowledgments: The authors would like to thank all the
contributors of both 2020 and 2021 collecting campaigns.
The authors would also like to thank Universitat Ramon
Llull, under the grants 2020-URL-Proj-054 and 2021-URL-Proj-
053 (Rosa Ma Alsina-Pagès), and 2023-URL-Proj-075 (Marc
Freixes) and the Departament de Recerca i Universitats
(Generalitat de Catalunya) under Grant Ref. 2021 SGR 01396.

Conflict of interest: Authors state no conflict of interest.

References

[1] Agency EE. Environmental noise in Europe, 2020. European
Environment Agency; 2020.

[2] Khomenko S, Cirach M, Barrera-Gómez J, Pereira-Barboza E,
Iungman T, Mueller N, et al. Impact of road traffic noise on
annoyance and preventable mortality in European cities: A health
impact assessment. Environ Int. 2022;162:107160.

[3] Petri D, Licitra G, Vigotti MA, Fredianelli L. Effects of exposure to
road, railway, airport and recreational noise on blood pressure and
hypertension. Int J Environ Res Public Health. 2021;18(17):9145.

[4] Thacher JD, Poulsen AH, Raaschou-Nielsen O, Hvidtfeldt UA,
Brandt J, Christensen JH, et al. Exposure to transportation noise and
risk for cardiovascular disease in a nationwide cohort study from
Denmark. Environ Res. 2022;211:113106.

[5] Pyko A, Roswall N, Ögren M, Oudin A, Rosengren A, Eriksson C,
et al. Long-term exposure to transportation noise and ischemic

heart disease: A pooled analysis of nine Scandinavian cohorts.
Environ Health Perspectives. 2023;131(1):017003.

[6] Smith MG, Cordoza M, Basner M. Environmental noise and effects
on sleep: an update to the WHO systematic review and meta-
analysis. Environ Health Perspectives. 2022;130(7):076001.

[7] Taoussi AA, Yassine AsA, Malloum MSM, Assi C, Fotclossou T, Ali YA.
Effects of noise exposure among industrial workers in power plants
of the National Electricity Company in N’Djamena, Chad. The Egypt
J Otolaryngol. 2022;38(1):63.

[8] van Kamp I, Davies H. Environmental noise and mental health: Five
year review and future directions. In: 9th International Congress
on Noise as Public Health Problem (ICBEN) - Foxwoods, CT; 2008.

[9] Tortorella A, Menculini G, Moretti P, Attademo L, Balducci PM,
Bernardini F, et al. New determinants of mental health: The role of
noise pollution. A narrative review. Int Rev Psychiatry.
2022;34(7–8):783–96.

[10] Rossi L, Prato A, Lesina L, Schiavi A. Effects of low-frequency noise
on human cognitive performances in laboratory. Building
Acoustics. 2018;25(1):17–33.

[11] Vukiccc L, Mihanoviccc V, Fredianelli L, Plazibat V. Seafarers’
Perception and attitudes towards noise emission on board ships.
Int J Environ Res Public Health. 2021;18(12):6671.

[12] Minichilli F, Gorini F, Ascari E, Bianchi F, Coi A, Fredianelli L, et al.
Annoyance judgment and measurements of environmental noise:
a focus on Italian secondary schools. Int J Environ Res Public
Health. 2018;15(2):208.

[13] Thompson R, Smith RB, Karim YB, Shen C, Drummond K, Teng C,
et al. Noise pollution and human cognition: An updated systematic
review and meta-analysis of recent evidence. Environ Int.
2022;158:106905.

[14] Preisendörfer P, Liebe U, Enzler HB, Diekmann A. Annoyance due to
residential road traffic and aircraft noise: Empirical evidence from
two European cities. Environ Res. 2022;206:112269.

[15] Wang Q, Hongwei W, Cai J, Zhang L. The multi-dimensional per-
ceptions of office staff and non-office staff about metro noise in
commercial spaces. Acta Acustica. 2022;6:15.

[16] Radun J, Maula H, Rajala V, Scheinin M, Hongisto V. Acute stress
effects of impulsive noise during mental work. J Environ Psychol.
2022;81:101819.

[17] Pal J, Taywade M, Pal R, Sethi D. Noise pollution in intensive care
unit: a hidden enemy affecting the physical and mental health of
patients and caregivers. Noise Health. 2022;24(114):130.

[18] Désiré SSM, Ngum TM, Mambo AD, Lawrence F, Fogam BN,
Landry NSJ. Effects of noise pollution on learning in schools of
Bamenda II municipality, Northwest region of Cameroon. In:
Mambo AD, Gueye A, Bassioni G, editors. Innovations and
Interdisciplinary Solutions for Underserved Areas (InterSol 2022).
Cham, Switzerland: Springer; 2022. p. 3–15.

[19] Tomek R, Urhahne D. Effects of student noise on student teachers’
stress experiences, concentration and error-correction perfor-
mance. Educat Psychol. 2022;42(1):64–82.

[20] Nagarnaik PB, Mohitkar V, Parbat DK. Evaluation of noise pollution
annoyance at uninterrupted traffic flow condition. 2011 Fourth
International Conference on Emerging Trends in Engineering &
Technology; 2011 Nov 18–20; Port Louis, Mauritius. IEEE, 2012.
p. 156–63.

[21] Lemaitre G, Aubin F, Lambourg C, Lavandier C. How does the train
background noise affect passengers’ activities? Determining
thresholds of noise levels ensuring a good comfort for passengers.

16  Daniel Bonet-Solà et al.



World Congress on Railway Research (WCRR); 2022 Jun 6–10;
Birmingham, UK.

[22] Cardoso M, Quintas M, Tavares D. Observational study on the
influence of noise pollution on the quality of sleep of Porto resi-
dents compared with that of rural communities. Territorium.
2023;(30 (I)):107–14.

[23] Bonet-Solà D, Vidaña-Vila E, Alsina-Pagès RM. Predicting the per-
ceptual rating of a soundscape using artificial intelligence. In: 25th
International Conference of the Catalan Association for Artificial
Intelligence (CCIA 2023); 2023 Oct 25–27; Barcelona, Spain.
p. 287–8.

[24] Mitchell A, Oberman T, Aletta F, Kachlicka M, Lionello M,
Erfanian M, et al. Investigating urban soundscapes of the COVID-19
lockdown: A predictive soundscape modelling approach. J Acoustic
Soc America. 2021;150(6):4474–88.

[25] Sadeghian M, Shekarizadeh S, Abbasi M, Mousavi SM,
Yazdanirad S. The use of artificial neural networks to predict tonal
sound annoyance based on noise metrics and psychoacoustics
parameters. Noise Control Eng J. 2022;70(4):309–22.

[26] Aletta F, Axelsson Ö, Kang J. Towards acoustic indicators for
soundscape design. Forum Acusticum; 2014 Sep 7–12; Kraków,
Poland. European Acoustics Association, 2014.

[27] Vardaxis NG, Bard D, Persson Waye K. Review of acoustic comfort
evaluation in dwellings-part I: Associations of acoustic field data to
subjective responses from building surveys. Building Acoustics.
2018;25(2):151–70.

[28] Alsina-Pagès RM, Orga F, Mallol R, Freixes M, Baño X, Foraster M.
Sons al balcó: soundscape map of the confinement in Catalonia.
Eng Proc. 2020;2(1):77.

[29] Baño X, Bergadà P, Bonet-Solà D, Egea A, Foraster M, Freixes M,
et al. Sons al Balcó, a citizen science approach to map the
soundscape of Catalonia. Eng Proc. 2021;10(1):54.

[30] Bravo-Moncayo L, Lucio-Naranjo J, Chávez M, Pavón-García I,
Garzón C. A machine learning approach for traffic-noise annoyance
assessment. Appl Acoustic. 2019;156:262–70.

[31] Orga F, Mitchell A, Freixes M, Aletta F, Alsina-Pageees RM,
Foraster M. Multilevel annoyance modelling of short environ-
mental sound recordings. Sustainability. 2021;13(11):914–21.

[32] Kang J, Aletta F, Margaritis E, Yang M. A model for implementing
soundscape maps in smart cities. Noise Mapping. 2018;5(1):46–59.

[33] Titu AM, Boroiu AA, Mihailescu S, Pop AB, Boroiu A. Assessment of
road noise pollution in urban residential areas-a case study in
Pitesssti, Romania. Appl Sci. 2022;12(8):4053.

[34] Gheibi M, Karrabi M, Latifi P, Fathollahi-Fard AM. Evaluation of
traffic noise pollution using geographic information system and
descriptive statistical method: a case study in Mashhad, Iran.
Environ Sci Pollution Res. 2022;29:1–14.

[35] Kalisa E, Irankunda E, Rugengamanzi E, Amani M. Noise levels
associated with urban land use types in Kigali, Rwanda. Heliyon.
2022;8(9):e10653.

[36] Rendón J, Gómez DMM, Colorado HA. Useful tools for integrating
noise maps about noises other than those of transport, infra-
structures, and industrial plants in developing countries: Casework
of the Aburra Valley, Colombia. J Environ Manag. 2022;313:114953.

[37] Ahmed S, Gadelmoula A. Industrial noise monitoring using noise
mapping technique: a case study on a concrete block-making fac-
tory. Int J Environ Sci Technol. 2022;19(2):851–62.

[38] Baffoe PE, Duker AA, Senkyire-Kwarteng EV. Assessment of health
impacts of noise pollution in the Tarkwa Mining Community of

Ghana using noise mapping techniques. Global Health J.
2022;6(1):19–29.

[39] de Souza TB, Alberto KC, Barbosa SA. Evaluation of noise pollution
related to human perception in a university campus in Brazil. Appl
Acoustics. 2020;157:107023.

[40] Alsina-Pagès RM, Freixes M, Orga F, Foraster M, Labairu-Trenchs A.
Perceptual evaluation of the citizenas acoustic environment from
classic noise monitoring. Cities Health. 2021;5(1–2):145–9.

[41] Di G, Wang Y, Yao Y, Ma J, Wu J. Influencing Factors Identification
and Prediction of Noise Annoyance-A Case Study on Substation
Noise. Int J Environ Res Public Health. 2022;19(14):8394.

[42] Abbaszadeh MJ, Madani R, Ghaffari A. Effects of non-acoustic fac-
tors on noise annoyance in apartment buildings (case study:
Aseman-E Tabriz residential complex). Iran Univ Sci Technol.
2022;32(1):1–12.

[43] Ouis D. Annoyance from road traffic noise: a review. J Environ
Psychol. 2001;21(1):101–20.

[44] Wang J, Wang X, Yuan M, Hu W, Hu X, Lu K. Deep Learning-Based
Road Traffic Noise Annoyance Assessment. Int J Environ Res Public
Health. 2023;20(6):5199.

[45] Maschke C, Niemann H. Health effects of annoyance induced by
neighbour noise. Noise Control Eng J. 2007;55(3):348–56.

[46] Jahangeer F. Acoustic comfort in the living environment and its
association with noise representation: A systematic review. SHS
Web Confer. 2019;64:03012.

[47] Dümen AS, Rasmussen B. Neighbour noise in multi-storey housing
with poor sound insulation-facts and occupants’ viewpoints. Forum
Acusticum; 2023 Sep 11–15; Turin, Italy. European Acoustics
Association, 2023.

[48] Ottoz E, Rizzi L, Nastasi F. Recreational noise: impact and costs for
annoyed residents in Milan and Turin. Appl Acoustics.
2018;133:173–81.

[49] Feder K, Marro L, Portnuff C. Leisure noise exposure and hearing
outcomes among Canadians aged 6 to 79 years. Int J Audiol.
2022:1–17.

[50] Lee SC, Hong JY, Jeon JY. Effects of acoustic characteristics of
combined construction noise on annoyance. Building Environ.
2015;92:657–67.

[51] Van Kamp I, van Kempen E, Simon S, Baliatsas C. Review of evi-
dence relating to environmental noise exposure and annoyance,
sleep disturbance, cardio-vascular and metabolic health outcomes
in the context of the interdepartmental group on costs and ben-
efits noise subject group (IGCB (N)). The Netherlands: National
Institute for Public Health and the Environment; 2020.

[52] Wang Y, Wang G, Li H, Gong L, Wu Z. Mapping and analyzing the
construction noise pollution in China using social media platforms.
Environ Impact Assessment Review. 2022;97:106863.

[53] Mendonça C, Arruda A, Mesquita C, Couto R, Sousa V, Dogs barking
and babies crying: the effect of environmental noise on physiolo-
gical state and cognitive performance. SSRN Elsevier. Available at
SSRN 4218179.

[54] Jégh-Czinege N, Faragó T, Pongrácz P. A bark of its own kind - the
acoustics of ‘annoying’ dog barks suggests a specific attention-
evoking effect for humans. Bioacoustics. 2020;29(2):210–25.

[55] Koffi E. Infant cry annoyance scale and indexes. Linguistic
Portfolios. 2023;12:3.

[56] Jeon JY, Ryu JK, Lee PJ. A quantification model of overall dissatis-
faction with indoor noise environment in residential buildings. Appl
Acoustics. 2010;71(10):914–21.

Prediction of the acoustic comfort of a dwelling based on automatic sound event detection  17



[57] Aletta F, Kang J, Axelsson Ö. Soundscape descriptors and a con-
ceptual framework for developing predictive soundscape models.
Landscape Urban Plann. 2016;149:65–74.

[58] Kim S, Kim J, Lee S, Song H, Song M, Ryu J. Effect of temporal
pattern of impact sound on annoyance: children’s impact sounds
on the floor. Building Environ. 2022;208:108609.

[59] Hoeger R, Schreckenberg D, Felscher-Suhr U, Griefahn B. Night-
time noise annoyance: state of the art. Noise Health.
2002;4(15):19–25.

[60] Pennig S, Schady A. Railway noise annoyance: exposure-response
relationships and testing a theoretical model by structural equa-
tion analysis. Noise Health. 2014;16(73):388–99.

[61] Li HN, Chau CK, Tang SK. Can surrounding greenery reduce noise
annoyance at home? Sci Total Environ. 2010;408(20):4376–84.

[62] Gidlöf-Gunnarsson A, Öhrström E. Noise and well-being in urban
residential environments: the potential role of perceived avail-
ability to nearby green areas. Landscape Urban Plan.
2007;83(2):115–26.

[63] Eggenschwiler K, Heutschi K, Taghipour A, Pieren R, Gisladottir A,
Schäffer B. Urban design of inner courtyards and road traffic noise:
influence of façade characteristics and building orientation on
perceived noise annoyance. Building Environ. 2022;224:109526.

[64] Von Szombathely M, Albrecht M, Augustin J, Bechtel B, Dwinger I,
Gaffron P, et al. Relation between observed and perceived traffic
noise and socio-economic status in urban blocks of different
characteristics. Urban Sci. 2018;2(1):20.

[65] Meijer H, Knipschild P, Sallé H. Road traffic noise annoyance in
Amsterdam. Int Archives Occupat Environ Health.
1985;56(4):285–97.

[66] De Muer T, Botteldooren D, De Coensel B, Berglund B, Nilsson M,
Lercher P. A model for noise annoyance based on notice-events.
INTER-NOISE 2005: Environmental Noise Control; 2005 Aug 7–10;
Rio de Janeiro, Brazil.

[67] González DM, Morillas JMB, Rey-Gozalo G. Effects of noise on
pedestrians in urban environments where road traffic is the main
source of sound. Sci Total Environ. 2023;857:159406.

[68] Font L, Gómez A, Oliveras L, Realp E, Borrell C. Soroll Ambiental i
Salut a la Ciutat de Barcelona. Barcelona, Spain: Agència de Salut
Pública de Barcelona; 2022.

[69] Namba S, Kuwano S, Schick A, Accclar A, Florentine M, Rui ZD. A
cross-cultural study on noise problems: comparison of the results
obtained in Japan, West Germany, the U.S.A., China and Turkey.
J Sound Vibrat. 1991;151(3):471–7.

[70] Bonet-Solà D, Vidaña-Vila E, Alsina-Pagès RM. Analysis and acoustic
event classification of environmental data collected in a citizen
science project. Int J Environ Res Public Health. 2023;20(4):3683.

[71] Alsina-Pagès R, Bergadà P, Martínez-Suquía C. Sounds in
Girona during the COVID Lockdown. J Acoustic Soc America.
2021;149:3416.

[72] Bonet-Solà D, Martínez-Suquía C, Alsina-Pagès RM, Bergadà P. The
soundscape of the COVID-19 lockdown: Barcelona noise moni-
toring network case study. Int J Environ Res Public Health.
2021;18(11).

[73] Valero X, Alías F. Gammatone Cepstral coefficients: biologically
inspired features for non-speech audio classification. IEEE Trans
Multimedia. 2012;14(6):1684–9.

[74] Bonet-Solà D, Alsina-Pagès R. A comparative survey of feature
extraction and machine learning methods in diverse acoustic
environments. Sensors. 2021;21(4):1274.

[75] Li Z, Liu F, Yang W, Peng S. A survey of convolutional neural net-
works: analysis, applications, and prospects. 2020.
arXiv:200402806.

[76] Ajuntament de Barcelona. Barcelona Resilience Plan
Diagnosis; 2020.

[77] Likert R. A technique for the measurement of attitudes. Archives
of Psychology. New York: American Physchological
Association; 1932.

[78] Aletta F, Oberman T, Mitchell A, Kang J, Consortium S. Preliminary
results of the soundscape attributes translation project (SATP):
lessons learned and next steps. Forum Acusticum; 2023 Sep 11–15;
Turin, Italy. European Acoustics Association, 2023.

[79] Kang J, Aletta F, Oberman T, Erfanian M, Kachlicka M, Lionello M,
et al. Towards soundscape indices. In: Proceedings of the
International Congress on Acoustics; 2019 Sep 9–13; Aachen,
Germany. p. 2488–95.

[80] Mitchell A, Oberman T, Aletta F, Erfanian M, Kachlicka M,
Lionello M, et al. The soundscape indices (SSID) protocol: a method
for urban soundscape surveys-questionnaires with acoustical and
contextual information. Appl Sci. 2020;10(7):2397.

[81] Kang J, Aletta F, Oberman T, Mitchell A, Erfanian M. Subjective
evaluation of environmental sounds in context-towards
Soundscape Indices (SSID). Forum Acusticum; 2023 Sep 11–15;
Turin, Italy. European Acoustics Association, 2023.

[82] Bonet-Solà D, Vidaña-Vila E, Alsina-Pagès RM. Analysis and acoustic
event classification of environmental data collected in Sons al Balcó
Project. Forum Acusticum; 2023 Sep 11–15; Turin, Italy. European
Acoustics Association, 2023.

[83] Tan JKA, Lau SK, Hasegawa Y. The effects of aural and visual factors
on appropriateness ratings of residential spaces in an urban city.
INTER-NOISE and NOISE-CON Congress and Conference
Proceedings; 2021 Washington DC, USA. Institute of Noise Control
Engineering, 2021. p. 5314–26.

18  Daniel Bonet-Solà et al.


	Abbreviations
	1 Introduction
	2 Related work
	2.1 Urban sound sensors and noise indices
	2.2 Annoyance by type of noise source
	2.3 Psychoacoustic and non-acoustic factors

	3 Materials and methods
	3.1 Data gathering and Sons al Balc&#x00F3;
	3.2 Data processing
	3.3 Experimental pipeline

	4 Results
	4.1 Binary assessment of the acoustic comfort
	4.2 ACI

	5 Discussion
	5.1 Analysis of the survey results
	5.1.1 Assessment of the perception of annoyance for individual predictors
	5.1.2 Correlation between the global assessment of the Dwelling's soundscape and the individual level of annoyance reported for the predictors
	5.1.3 Comparison between annotated and reported sound event
	5.1.4 Representativeness of the sounds annotated in the videos

	5.2 Effects of the type of sound source in the accuracy
	5.3 Errors analysis

	6 Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


