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a Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain 
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A B S T R A C T   

Cocaine, methamphetamine, ectasy (3,4-methylenedioxy amphetamine (MDMA)) and ketamine are among the 
most consumed drugs worldwide causing cognitive, oxidative stress and cardiovascular problems in humans. 
Residue levels of these drugs and their transformation products may still enter the aquatic environment, where 
concentrations up to hundreds of ng/L have been measured. In the present work we tested the hypothesis that 
psychotropic effects and the mode of action of these drugs in D. magna cognitive, oxidative stress and cardio-
vascular responses are equivalent to those reported in humans and other vertebrate models. Accordingly we 
expose D. magna juveniles to pharmacological and environmental relevant concentrations. The study was 
complemented with the measurement of the main neurotransmitters involved in the known mechanisms of ac-
tion of these drugs in mammals and physiological relevant amino acids. Behavioural cognitive patters clearly 
differentiate the 3 psychostimulant drugs (methamphetamine, cocaine, MDMA) from the dissociative one ke-
tamine. Psychostimulant drugs at pharmacological doses (10–200 μM), increased basal locomotion activities and 
responses to light, and decreased habituation to it. Ketamine only increased habituation to light. The four drugs 
enhanced the production of reactive oxygen species in a concentration related manner, and at moderate con-
centrations (10–60 μM) increased heartbeats, diminishing them at high doses (200 μM). In chronic exposures to 
environmental low concentrations (10–1000 ng/L) the four drugs did not affect any of the behavioural responses 
measured but methamphetamine and cocaine inhibited reproduction at 10 ng/L. Observed effects on neuro-
transmitters and related metabolites were in concern with reported responses in mammalian and other vertebrate 
models: cocaine and MDMA enhanced dopamine and serotonin levels, respectively, methamphetamine and 
MDMA decreased dopamine and octopamine, and all but MDMA decreased 3 MT levels. Drug effects on the 
concentration of up to 10 amino acids evidence disruptive effects on neurotransmitter synthesis, the urea cycle, 
lipid metabolism and cardiac function.   

1. Introduction 

The continuous consumption of illicit drugs combined with their 
incomplete removal during wastewater treatment means that residues of 
these psychoactive compounds are constantly introduced into the 
aquatic environment, where they have the potential to affect non-target 
organisms. Among the most consumed illicit drugs cocaine (COC), 
methamphetamine (mAMP), ecstasy (3,4-methylenedioxymethamphet-
amine (MDMA), ketamine (KET) and their transformation products are 
often found in surface waters at ng/L but can reach values of several μg/ 

L (Verovšek et al., 2023). 
Cocaine, probably the most consumed illicit drug worldwide, is a 

psychostimulant affecting human behaviour and brain physiology by the 
alteration of dopamine (DA) release from dopaminergic neurons (Jeon 
et al., 2008). Methamphetamine, a central nervous system stimulant, 
induces euphoria and sense of well-being in humans by increasing the 
neuronal release of monoamines, mainly dopamine (Jeon et al., 2008)., 
MDMA, with both stimulant and hallucinogenic properties, acts as a 
powerful releasing agent of serotonin (5-HT), norepinephrine (NE) and 
dopamine (DA), and also promotes reuptake inhibition of their 
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high-affinity transporters (Rothman et al., 2001). Ketamine acts as a 
dissociative anaesthetic by blocking of the N-methyl-D-aspartate 
(NMDA) receptor (Freo et al., 2021), but it may also act such as an an-
tidepressant (Freo et al., 2021), although its mechanisms are still un-
known. There is also evidence that these drugs have undesired 
detrimental side effects causing oxidative stress and cardiac problems 
(De Felice et al., 2020; Moritz et al., 2003; Vollenweider et al., 1998; 
Waxman et al., 1980; White et al., 1996). 

Neurological signalling pathways are highly conserved across 
phylogenetically different species (Arendt et al., 2016). These means 
that the psychotropic, cardiac, and oxidative stress effects of these drugs 
are likely to affect non target organisms such as the ecotoxicological 
model crustacean species Daphnia magna, despite that is phylogeneti-
cally distant from humans. Likewise in humans and vertebrate species, 
dopaminergic, serotonergic, adrenergic and NMDA receptor signalling 
pathways and associated neurotransmitters regulate life-history traits 
and behaviour in D. magna (Bedrossiantz et al., 2020; J. Bedrossiantz 
et al., 2021a,b; Campos et al., 2016; Fuertes and Barata, 2021; Jeong 
et al., 2018; Rivetti et al., 2018). Indeed there is evidence that at envi-
ronmental relevant concentrations cocaine, its major transformation 
product benzoylecgonine (BZ) and methamphetamine affect the swim-
ming activity, reproduction and/or promote oxidative stress in D. magna 
individuals (De Felice et al., 2020, 2019; Parolini et al., 2018). The 
above-mentioned studies, however, did not assess the molecular targets 
of the studies drugs, neither assessed key cognitive effects of the studied 
drugs such as Daphnia responses to light stimuli, which is a primary 
antipredator response. This means that the mechanisms of action by 
which illicit drugs may affect phylogenetically distant non-target species 
such as Daphnia are still largely unknown. In this study we tested the 
hypothesis that psychotropic effects and the mode of action of the four 
selected illicit drugs on D. magna are equivalent to those reported in 
humans and other vertebrate models. Accordingly in the present work 
we provide a comprehensive study of the psychotropic effects of cocaine, 
methamphetamine, MDMA and ketamine on behavioural D. magna re-
sponses linked with cognition, oxidative stress and cardiovascular ef-
fects upon acute exposures to pharmacological doses and chronic 
exposures to environmental relevant ones. For the latter we also assessed 
effects on reproduction. The study was complement with the measure-
ment of the main neurotransmitters involved in the known mechanisms 
of action of these drugs in mammals and physiological relevant amino 
acids. Exposure to pharmacological doses equivalent to those used by 
illicit drug consumers (10–200 μM (Drummer, 2004; Elliott, 2005; Festa 
et al., 2004; Melega et al., 2007; Peiró et al., 2013; Peltoniemi et al., 
2016),) will allow to compare Daphnia acute responses to those reported 
in human drug addicts. Chronic exposures to low environmental con-
centrations will inform about potential environmental hazardous 
effects. 

2. Methods 

2.1. Chemicals and reagents 

Cocaine⋅HCl and MDMA⋅HCl were generously provided by the 
Spanish National Institute of Toxicology. Methamphetamine⋅HCl was 
generously provided by Dr. Elena Escubedo laboratory from Faculty of 
Pharmacy and Food Science at University of Barcelona. Ketamine and 
benzoylecgonine were purchased as hydrochloride and tetrahydrate 
salts from Sigma-Aldrich, respectively. Further information is on Sup-
plementary Material. 

2.2. Experimental animals and culture conditions 

Parthenogenetic cultures of the D. magna clone F were used for this 
study. This clone has been maintained for over 20 years in our lab 
(Barata and Baird, 1998). Animals were cultured under a 16 h light:8 h 
dark photoperiod cycle, and at 20 ± 1 ◦C. Several bulk cultures of 10 

adult Daphnia females were maintained in 2 L of lab water, i.e. ASTM 
hard synthetic water (APHA-AWWA-WEF et al., 1995) using a food ratio 
of 5 x105 cells/mL of Chlorella vulgaris that was cultured in semi-axenic 
conditions (Barata and Baird, 1998). Hard ASTM water has a pH around 
8, which is convenient to increase the bio-availability of the studied 
drugs that are weak bases (Chang et al., 2021; Fontes et al., 2020). 
Culture media were changed every other day. Groups of 50 third brood 
neonates collected within the first 12 h of being release by their mothers 
from the adult bulk cultures were reared in 1.5 L of media as previously 
described, during 4 days (hereafter referred as 4-day old juveniles) 
before initiate the experiments. 

2.3. Exposures and sample collection 

2.3.1. Acute exposures 
D. magna juveniles of 4 days old cultures as decribed in the previous 

section were exposed to pharmacological concentrations of 10, 60 and 
200 μM of the four studied drugs for 24 h without food in groups of 10 
individuals in 300 mL of media (4 replicates per treatment). Following 
exposures, 24 and 10 individuals were used to determine behavioural 
responses to light stimuli and the heartbeat frequency, respectively, and 
then used to measure the content of reactive oxygen species (ROS). 
Experiments were performed twice. The concentrations tested in this 
study (10–200 μM) include concentrations in the range of those 
described in humans after drug consumption (Elliott, 2005; Karch et al., 
1998; McIntyre et al., 2013; Peiró et al., 2013). Experimental drug 
concentrations were freshly prepared each day from their respective 
hydrochloride salts in ASTM water. 

2.3.2. Chronic exposures 
Effects of chronic exposures to environmental concentrations of 10, 

100 and 1000 ng/L of the studied drugs on D magna behavioural and 
reproductive responses were studied as follows. New born neonates 
(<12 h old) were exposed to environmental concentrations of 10, 100 
and 1000 ng/L of the studied drugs for 5 days in groups of 10 individuals 
in 300 mL of media (3 replicates) with the addition of food (5 x 105 cells 
Chlorella vulgaris), after which behaviour and heartbeat responses were 
determined as above. At day five, 10 D. magna animals randomly chosen 
from each treatment were exposed to the same drug and food concen-
tration for an additional 12 days in 100 mL of media to determine effects 
on total offspring production of at least three broods and growth in 
length. Offspring production was counted daily and removed and at the 
end of exposures the length of adult females was measured from the top 
of the head until the bottom of the tail to the nearest 0.1 mm using a 
GigE camera (UI–5240CP-NIR-GL, Imaging Development Systems, 
Germany) mounted onto a stereomicroscope (Motic SMZ-171, Wetzlar, 
Germany). In chronic exposures, acetone was used as a carrier (<0.1 ml/ 
L) for preparing drug stock and experimental solutions. The same 
amount of acetone was used in all treatments including controls. Cul-
tures were renewed with fresh media and contaminant every other day. 

2.4. Stability assurance 

The stability of the four drugs of abuse at 10 ng/μL in ASTM water 
was studied for 24 h using ultra-high performance liquid chromatog-
raphy (UHPLC) coupled to a hybrid triple quadrupole detector with ion 
trap spectrometer (Shimadzu, Sciex QTrap 7500). Three different solu-
tions were prepared and analyzed after 48 h, for each compound. As 
cocaine its known to be less stable in water solution than the other target 
drugs (Bijlsma et al., 2013), its main metabolite, benzoylecgonine (BZ), 
was analyzed during the exposition time too. Further methodological 
details are in Supplementary Material. 

2.5. Behaviour assays 

The Daphnia Photomotor Response Assay (DPRA) was performed as 
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described in (Bedrossiantz et al., 2020). Details of the assay are in 
Supplementary Material. The assay measured the distance moved after a 
sudden increase in light intensity across 30 repetitive light stimuli of 1 s 
followed by 4 s of darkness. Following a previous study, the “maximal 
photomotor response” (Max), was defined as the greatest distance 
moved during the first 10 stimuli. “Habituation or non-associative 
learning” was computed as the area under the curve (AU) for the 
decreasing responses to stimuli (Bedrossiantz et al., 2020). To better 
characterize the swimming activity under darkness and upon continuous 
light, basal locomotor activity (BLM) and visual-motor response (VMR) 
analyses of 5 d old D. magna juveniles were also assessed using the 
Daphnia visual-motor response (DVMA) assay described in (Bellot et al., 
2021), and also in Supplementary Material. In both assays 24 in-
dividuals per treatment were monitored using 24 well plates and 1 mL of 
media per well. Each treatment was monitored in two separate plates 
and treatments were randomized across plates. 

2.6. Heartbeat determination 

Daphnia individuals were directly positioned in lateral view in 
methylcellulose and the cardiac activity of each daphnia was video 
recorded for 30 s with a GigE camera (UI–5240CP-NIR-GL, Imaging 
Development Systems, Germany) mounted onto a stereomicroscope 
(Motic SMZ-171, Wetzlar, Germany), basically as reported by (Faria 
et al., 2022). Video analyses of each individual Daphnia were performed 
using a recently developed MATLAB algorithm (Duran-Corbera et al., 
2022). 

2.7. ROS measurement 

Intracellular oxidative stress was measured using 2′,7′-dichlor-
odihydrofluorescein diacetate (H2DCFDA, Sigma-Aldrich, St. Louis, MO, 
USA), which oxidizes to the fluorescent product 2′,7′-dichlorofluorescein 
(DCF) (Holovská et al., 1998; Barja, 2002). Procedures are described in 
Supplementary Materials. 

2.8. Metabolomic determinations 

Up to 20 neurotransmitter and related metabolite changes following 
acute exposures to the highest concentrations of drugs (200 μM) were 
assessed using the same conditions as in acute exposures (Table S2, 
Supplementary Material). Following exposures, animals were frozen 
with liquid N2 in pools of 5 in an Eppendorf and kept at − 80 ◦C until 
processed for metabolites’ extraction. Procedures are described in Sup-
plementary Materials. 

3. Results 

3.1. Chemical stability 

Three out of the 4 tested drugs were stable during the 48 h exposure 
period before renewal (Table S3). Freshly prepared solutions of COC, 
however, had trace levels of its main metabolite benzoylecgonine, and 
decreased by 50% after 48 h. Benzoylecgonine showed the opposite 
behaviour. Mass balance indicates that the concentration sum of both 
compounds was stable in time. 

3.2. Behavioural responses 

There were two different patterns of response between the psy-
chostimulant drugs and the dissociative KET one at pharmacological 
concentrations. Fig. 1 shows the behavioural effects of the studied drugs 
in D. magna juveniles. Further details for the entire locomotion trajec-
tories are depicted in Fig. S1 (Supplementary Materials). mAMP, MDMA 
and to a greater extent COC increased significantly (P < 0.05, see 
Table S5, Supplementary Material for stats) basal locomotor activity and 

decreased or even completely abolished visual responses to light in a 
concentrated related manner, whereas KET only diminished the latter 
response. The three psychostimulant drugs also compromise habituation 
to repetitive light stimuli in a concentration related manner, whereas 
KET enhanced it (Fig. 1). Results for Max responses to first light stimuli 
flashes varied across drugs and experiments but for COC were consistent 
across them, diminishing at 60 μM (Fig. 1). 

Behavioural responses to chronic exposures to low environmental 
concentrations of the studied drugs that are shown in Fig. S2 (Supple-
mentary Material), did not significantly affect any trait (P > 0.05, 
Table S5, Supplementary Material). Further details for entire locomotion 
trajectories are depicted in Fig. S3 (Supplementary Materials). 

3.3. Heartbeat and ROS 

The four tested drugs dosed at pharmacological concentrations had a 
bimodal effect on heartbeats, increasing them at low and intermediate 
concentrations and decreased them at the highest concentration (Fig. 2). 
The production of ROS was enhanced in a concentrated related manner 
upon exposure to the pharmacological concentrations of the four drugs 
(Fig. 2). 

Chronic exposures to the tested drugs increased significantly (P <
0.05, Table S5) heart rates except at low concentrations of COC and KET 
(Fig. 3). 

3.4. Life history effects in chronic exposures 

Total offspring production was reduced significantly (P < 0.05, 
Table S5) at low concentrations of mAMP and COC and low concen-
trations of MDMA reduced growth (Fig. 3). 

3.5. Metabolites 

Target metabolites presented great correlation (R2>0.99) in the 
concentration range of study (5–500 ng/mL). Quantification was per-
formed using isotopically labelled internal standards. The instrumental 
detection limits (IDLs) were ranged from 0.40 pg (Chol) to 138.0 pg 
(NE), while MDLs varied from 0.4 (Chol) to 23.8 (Tyra) pg/Daphnia. 
Intra-day precision ranged from 0.4% to 5.5% and inter-day precision 
values were from 1.8% to 25.5%. Regarding matrix effect, compounds 
with values below 70% indicated signal suppression due to the matrix 
(Phe), whereas values above 130% suggested a signal enhancement 
(GABA). Table S4 summarizes the quality parameters obtained for each 
target metabolite. 

The concentrations of 16 out of 21 metabolites analyzed, which are 
depicted in Fig. 4, varied significantly (P < 0.05, ANOVA results are in 
Table S7) across pharmacological concentrations of the four studied 
drugs. From the 7 metabolites directly related with the mode of action of 
the studied drugs (DA, octopamine [Oct], 3-Methoxytyramine [3-MT], 
levodopa [LD], NE, 5-HT, 5-Hydroxyindoleacetic acid [5-HIAA]), the 
concentrations of 4 of them were significantly (P < 0.05) affected upon 
exposure to drugs: DA levels increased upon COC exposure and 
decreased following exposures to mAMP, whereas concentrations of the 
DA degradation product (3-MT) decreased in animals exposed to mAMP, 
COC and KET; OCT levels decreased under mAMP and MDMA exposures; 
5-HT concentrations increased upon exposure to MDMA. The concen-
trations of other neurotransmitters like ACh increased following expo-
sures to mAMP and KET, and those of GABA decreased in daphnids 
exposed to COC. The concentrations of ten amino acids showed also 
significant differences (P < 0.05, Table S7) across the tested drugs, with 
two clear patterns: a moderate reduction of concentrations upon expo-
sure to COC, mAMP and MDMA (phenylalanine [Phe], tyrosine [Tyr], 
tryptophan [Trp], methionine [Met], valine [Val]) and a strong reduc-
tion by the four drugs (arginine [Arg], citrulline [Citr], proline [Pro]). 
Levels of Chol decreased upon exposure to mAMP and MDMA and those 
of tyramine (Tyra) upon mAMP and KET exposure. Metabolites that did 
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Fig. 1. Behavioural effects of the studied drugs in D. magna juveniles acutely exposed to pharmacological concentrations across duplicated experiments. Responses 
included basal locomotion activity, visual motor response (VMR), maximal response to light stimuli (Max) and habituation (Mean ± SE, N = 12–24). *means sig-
nificant different from controls following ANOVA and Dunett’s tests. Graphs within column panels A, B, C, D belong to mAMP, COC, MDMA and KET, respectively. 
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not changed across drugs are depicted in Fig. S4 (SI). 

4. Discussion 

The aims of this study were to study the mode of action (MoA) of four 
illicit drugs in Daphnia following acute exposures to pharmacological 
doses and to assess potential chronic effects at environmental relevant 
concentrations ≤1 μg/L. The concentrations of 3 out of the 4 drugs 
tested were stable in water during experiment showing negligible 
changes within 48 h. The exception was COC whose concentrations in 
water were not stable being in part degraded to its main metabolite 
benzoylecgonine after 48 h. COC and its main metabolite benzoy-
lecgonine are often found in both waste and surface waters (Fontes et al., 
2020). Previous studies found that both compounds have similar con-
centration defects on D. magna reproduction and swimming activity (De 
Felice et al., 2019; Parolini et al., 2018). This means that from the 
toxicological point of view their combined effect is interchangeable 
(Altenburger et al., 2003). 

Behavioural cognitive patters clearly differentiate the 3 psychosti-
mulant drugs (mAMP, COC, MDMA) from the dissociative one KET. 
Psychostimulant drugs, in particular COC and MDMA, at the highest 
concentrations (200 μM), increased dramatically basal locomotion ac-
tivities abolishing D. magna responses to light and its habituation to it. 
Alternative KET did not impair basal locomotion activity and increased 
habituation to light. At lower pharmacological concentrations (10–60 
μM) psychostimulant drugs increased responses to light and except COC, 
decreased habituation, whereas KET did not have any effect on the 
measured responses. In chronic exposures to environmental low con-
centrations (10, 100, 1000 ng/L) the 4 drugs did not affect any of the 

behavioural responses measured. These results indicated that the four 
drugs were able to disrupt key D. magna cognitive responses but only at 
pharmacological doses. Previous reported studies found that cocaine 
and its transformation product benzoylecgonine at 50–1000 ng/L 
altered D. magna swimming activity (De Felice et al., 2019; Parolini 
et al., 2018), but mAMP at similar concentrations did not (De Felice 
et al., 2020). This disparity of results is likely related to the use of 
different behavioural assay procedures aimed to measure locomotion 
activity rather than basal swimming activity and responses to a visual 
stimulus as in our case. Also the use of non standardized and rather 
undefined behavioural set ups (i.e. light intensity and camera frames 
were not depicted), in the previous studies (De Felice et al., 2019; 
Parolini et al., 2018) precluded a proper comparison. 

The observed D. magna cognitive responses at the highest concen-
trations (200 μM) upon exposure to the mAMP, MDMA, COC indicated a 
high degree of excitability depicted as high locomotion activity under 
darkness combined with an almost absent response to light stimuli. 
Responses to light in D. magna is an anxiety like response related to anti- 
predatory fish responses since fishes are visual predators. The observed 
diminished response to light at 200 μM is related to both, a decrease 
response of light and an already enhanced basal locomotion activity 
(BLM). Results obtained at 10–60 μM, however, showed a normal BLM 
but a greater response to light. Habituation to a repetitive stimuli, which 
is a primary trait for short term non associative memory and learning 
(Bedrossiantz et al., 2020), was also impaired by the drugs at high 
concentrations, which means that the central nervous system of the 
exposed D. magna individuals lost its capacity to adapt to the sur-
rounding environment. In humans, mice, monkeys and even in zebra-
fish, there is huge information showing that acute exposures to 

Fig. 2. Drug effects on heartbeats and oxygen reactive species (ROS) in D. magna juveniles acutely exposed to pharmacological concentrations across duplicated 
experiments (Mean ± SE, N = 10). Graphs within column panels A, B, C, D belong to mAMP, COC, MDMA and KET, respectively. *means significant different from 
controls following ANOVA and Dunett’s tests. 
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pharmacological and/or drug abuse doses of mAMP, MDMA and COC 
increase locomotion activity, enhanced the response to visual stimuli, 
anxiety-like behaviours and impaired learning (J Bedrossiantz et al., 
2021a,b; Jentsch et al., 2002; Kalivas et al., 1998; Oliveri and Calvo, 
2003; Ortman et al., 2021; Pum et al., 2011; Saddoris and Carelli, 2014; 
Shukla and Vincent, 2021; Singh et al., 2012; Stewart et al., 2011; 
Strickland et al., 2016; Wagner et al., 2015; Zombeck et al., 2010). This 
means that the observed drug mediated disruptive behavioural defects 
of mAMP, COC and MDMA on D. magna are equivalent to those reported 
in vertebrates. 

On the other hand, KET, only at high concentrations decreased re-
sponses to light but surprisingly decreased habituation to repetitive light 
stimuli. There is also reported information that KET at sub-anaesthetic 
drug abuse doses may impair responses to stimuli in humans 

(Schwertner et al., 2018). However, reported studies on KET effects on 
learning in rodents are contradictory (Li et al., 2020; Shi et al., 2021). 
Interestingly in adult zebrafish KET evoked anxiolytic-like responses in 
the novel tank and light–dark box tests at concentrations of 80–160 μM 
(Riehl et al., 2011). In our study the observed decrease response to light 
at 200 μM can also be interpreted as anxiolytic-like responses. Decreased 
habituation to stimuli has also been reported in zebrafish larvae exposed 
to anti-depressants fluoxetine and deprenyl (Faria et al., 2021) and it 
may be related to the reported anti-depressive side effects of KET (Freo 
et al., 2021). 

Effects on heartbeats were quite consistent across concentrations. At 
low pharmacological doses (10, 60 μM) and at environmental concen-
trations of 100 and 1000 ng/L the four drugs enhanced heartbeats, only 
inhibited them at the highest exposure levels studied (200 μM). These 
results indicate that the four drugs have a great potential to disrupt the 
cardiovascular system in exposed D. magna even at low exposure levels. 
Cardiovascular problems such as increasing heart rates upon exposures 
to the 4 studied drugs are known in humans and also in other vertebrate 
species such as fish (De La Torre et al., 2004; Frishman et al., 2003; 
Goddard et al., 2021; Idvall et al., 1979; Martinez-Raga et al., 2013; 
Mersereau et al., 2015; Sinha et al., 2000; Zhang et al., 2021). 

The four drugs were also able to enhance ROS production in a con-
centration related manner upon exposure to pharmacological doses, 
which also agree with reported results in D. magna for COC, its main 
metabolite benzoylecgonine and mAMP (De Felice et al., 2020, 2019; 
Parolini et al., 2018). There is also huge information indicating that in 
humans and mammalian model species the four studied drugs are able to 
cause oxidative stress leading to neurotoxicity and cardiotoxicity (Bai 
et al., 2013; Cerretani et al., 2012; Kovacic, 2005; McDonnell-Dowling 
and Kelly, 2017; Moritz et al., 2003; Song et al., 2010). 

Chronic exposures to environmental concentrations of mAMP and 
COC diminished reproduction but only at 10 ng/L. MDMA at 10 ng/L 
impaired growth. Previous studies reported that COC inhibited repro-
duction at 50, 500 ng/L (De Felice et al., 2019), its metabolite benzoy-
lecgonine did so at 500, 1000 ng/L (Parolini et al., 2018), but mAMP 
increased it at 50, 500 ng/L (De Felice et al., 2020). Our results, thus, 
only partly agree with those obtained for cocaine and its metabolite 
benzoylecgonine since both compounds inhibited reproduction at 10 but 
not at 100 or 1000 ng/L. Bi-modal non monotocic effects of neuroactive 
contaminants on behaviour and reproduction responses have been often 
reported in D. magna, amphipods and fish (Bedrossiantz et al., 2023; 
Campos et al., 2012; Guler and Ford, 2010). Desensitization of neuro-
transmitter receptors and feedback mechanism in related signalling 
pathways could explain the reduced behaviour effect we found at con-
centrations higher than 10 ng/L. There is reported evidence that the 
chronic use of cocaine can produce tolerance due to the functional 
desensitization of dopamine Dl-like receptors (Hammer Jr. et al., 1997). 
Similarly mAMP exposure caused long-term reductions in all of the 
dopaminergic markers assayed in rats (Crawford et al., 2003). Moreover, 
repeated MDMA exposure causes neural and behavioral adaptations in 
mice by inhibitory feedback mediated by adrenergic and serotonin 
autoreceptors (Lanteri et al., 2014). 

The drug’s neurotransmitter profile targets of the D. magna in-
dividuals exposed to the highest doses of the studied drugs indicated that 
COC and MDMA enhanced DA and 5HT levels, respectively, that of 
mAMP and MDMA decreased DA and OCT and all tested drugs but 
MDMA decreased 3 MT levels. Both COC and MDMA have psychosti-
mulant effects in humans acting as powerful releasing agents of DA and 
5HT, respectively (Jeon et al., 2008; Liechti et al., 2000), thus, both 
drugs altered the same neurotransmitters in D. magna and humans. 
Studies on mammalian species reported that after an initial release of 
DA, acute high doses of mAMP causes damage to dopaminergic axon 
terminals in the brain. Consequently, a decrease in the DA in the brain is 
used as a neurochemical marker of mAMP neurotoxicity (Yu et al., 
2015). Similarly, a concentration- and time-dependent decrease in the 
levels of DA, NE and 5-HT have been reported in the brain of zebra fish 

Fig. 3. Effects of the studied drugs on heartbeats, cumulative offspring pro-
duction and final length in D. magna individuals exposed to environmental 
relevant concentrations. (Mean ± SE, N = 10). *means significant different 
from controls following ANOVA and Dunett’s tests. 
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Fig. 4. Effects of the studied drugs on selected metabolic profiles measured in whole D. magna individuals exposed top 200 μM. Results are depicted as Mean ± SE, N 
= 5–6). * means significant different from controls following ANOVA and Dunett’s tests. 
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treated with MT (J Bedrossiantz et al., 2021a,b). Moreover, the previous 
study also found that levels of the DA metabolite 3-MT decreased after 
48 h exposure to 40 mg/L mAMP, an effect that may be related with the 
decreased DA levels. In insects and likely in D. magna octopamine is the 
monohydroxylic analog of norepinephrine (Zhou et al., 2008). This 
means that for mAMP the results found in our study also agree with 
those reported for mammalian and fish models. 

Ketamine primary molecular mode of action is blocking the NMDA 
receptor (Freo et al., 2021), but it may also inhibits the uptake of se-
rotonin increasing its concentration (Martin et al., 1982). In male rats it 
was reported that KET may decrease the concentrations of 3-MT in 
specific brain areas (Rao et al., 1989). Thus the observed decreased 
levels of 3-MT and relative increases of 5HT in D. magna individuals 
exposed to KET are in line with previous studies. 

There is also evidence that behavioural response of mouse models to 
acute exposures of mAMP and KET are associated to an increased release 
of ACh and that exposures to high doses of COC may also inhibit the 
release of GABA (Ferrucci et al., 2019; Goitia et al., 2016; Nelson et al., 
2002). Thus, the observed increased levels of ACh in D. magna exposed 
to mAMP and KET and decreased levels of GABA upon exposure to COC 
also agree with previously reported findings in mammals. 

Little is known about how changes of serotonergic, dopaminergic, 
cholinergic and GABAergic neurotransmitters affect Daphnia behaviour. 
The lack of serotonin in tryptophan hydrolase (TRH) knock-out D. magna 
clones or those treated with the TRH enzyme inhibitor chloro-DL- 
phenylalanine (PCPA) showed anxiety like behaviour such as 
increased responses to light stimuli, high basal locomotion activities and 
impaired habituation (Bedrossiantz et al., 2020; Gómez-Canela et al., 
2023), but an excess of serotonin also enhanced responses to light 
stimuli and habituation (Bedrossiantz et al., 2020). Increased levels of 
both serotonin and dopamine following deprenyl exposure, increased 
visual motor responses (VMR) (Bellot et al., 2021) as in the present study 
did COC and MDMA at moderate acute exposures. There is also infor-
mation that compounds that increased cholinergic signalling like mAMP 
did, impaired habituation to light stimuli (Bedrossiantz et al., 2020). 
Furthermore, the results obtained for COC together with those reported 
for picrotoxin indicated that compounds that antagonize or reduce 
GABA signalling enhanced the responses to light (Bedrossiantz et al., 
2020). Ketamine, despite of increasing cholinergic signalling reduced 
the responses to light. This is likely to be related to the KET mode of 
action blocking the NMDA receptor (Freo et al., 2021), since previously 
we reported that NMDA receptor antagonists like memantine also 
decreased responses to light (Bedrossiantz et al., 2020). 

We also found that the studied drugs decreased the concentrations of 
10 amino acids, some of them precursors of the studied neurotrans-
mitters, but also involved in many other metabolic functions. Cocaine, 
MDMA and mAMP were able to decrease the concentration of 3 out of 5 
amino acids directly involve in the neurotransmitter synthesis 
(phenylalanine, tyrosine, tyramine, tryptophan, choline) (Fernstrom 
and Fernstrom, 2007; Finetti et al., 2023; Grünewald, 2013; Richard 
et al., 2009), whereas KET did so for two of them; the four drugs 
dramatically decreased the concentrations of amino acids involved in 
the urea cycle (arginine, citrulline), neurology (proline), and in immu-
nity, lipid metabolism, cardiac function (methionine, proline) (Draper 
et al., 2018; Wu, 2009). In addition COC reduced the levels of valine, 
which is involved in glucose metabolism (Wu, 2009). 

5. Conclusions 

In summary the findings found in this study for six neurotransmitters 
and related transformation products provides additional evidence for 
the mechanisms of action of the tested drugs in D. magna, indicating that 
behavioural, neurotransmitter, oxidative stress and cardiac disruptive 
effects of the studied drugs were quite similar to those reported in 
vertebrate models. Psychostimulant drugs at pharmacological doses 
increased basal locomotion activities and both psychostimulant and 

dissociative drugs altered cognitive responses to external stimuli. The 
four drugs enhanced the production of reactive oxygen species in a 
concentration related manner, at moderate concentrations increased 
heartbeats, diminishing them at high doses. Effects on neurotransmitters 
and related metabolites were in concern with reported responses in 
mammalian and other vertebrate models. We also found that the studied 
drugs have detrimental side effects on amino acids involved in the urea 
cycle, immunity, lipid metabolism and cardiac function. 
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