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ABSTRACT

Multiobjective evolutionary clustering algorithms are based on the optimization of several objective
functions that guide the search following a cycle based on evolutionary algorithms. Their capabilities
allow them to find better solutions than with conventional clustering algorithms when more than one
criterion is necessary to obtain understandable patterns from the data. However, these kind of tech-
niques are expensive in terms of computational time and memory usage, and specific strategies are
required to ensure their successful scalability when facing large-scale data sets. This work proposes
the application of a data subset approach for scaling-up multiobjective clustering algorithms and it also
analyzes the impact of three stratification methods. The experiments show that the use of the proposed
data subset approach improves the performance of multiobjective evolutionary clustering algorithms
without considerably penalizing the accuracy of the final clustering solution.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multiobjective clustering (MC) algorithms (Handl and
Knowles, 2007) tackle the challenge of optimizing several cri-
teria that cannot be combined in a single objective functionby
defining an objective function for each criterion and by optimiz-
ing them trying to obtain a trade-off between all the objectives.
There are different strategies for multiobjective optimization
such as Simulated Annealing (Saha and Bandyopadhyay, 2010)
and Ant Colony Optimization (Iredi et al., 2000), but Multiob-
jective Evolutionary Algorithms (MOEAs) (Coello, 1999) have
become one of the most capable strategies to solve this kind of
problem (Zitzler et al., 2000) since they (1) work with a col-
lection of solutions with different trade-offs among objectives,
which are improved until a Pareto set with optimal trade-offs
is obtained; (2) can be easily adapted to the type of data of
the studied domain, due to the flexible knowledge representa-
tion used; and (3) are able to optimize different objectives with-
out assuming any underlying structure of the objective func-
tions. Therefore, MOEAs offer outstanding search capabilities
but their performance can be compromised in large databases
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due to their high computational and memory usage require-
ments (Freitas, 2002). This is an important issue considering
the needs when analyzing large data sets in a reasonable com-
putational time and memory usage without considerably penal-
izing their accuracy (Kargupta et al., 2009). EvolutionaryAlgo-
rithms (EAs) are based on the principles of evolution and nat-
ural selection, applying an iterative process where a collection
of initial solutions (individuals) are evolved through pseudo-
random recombination until obtaining an optimal solution.In
clustering, an individual is a possible group of data. From the
whole process, the evaluation is the most time-consuming step
because each individual has to be assessed with respect to all
the elements according to all the objective functions defined.

This work proposes to scale-up MOEAs when they are ap-
plied to large data using an approach based on data subsets tec-
niques. Specifically, the approach splits the data set into several
strata so the EA only uses a stratum for evaluating the individu-
als in each generation following a Round Robin policy to avoid
bias problems. Thus, computational and memory costs associ-
ated to the evaluation of the population are drastically reduced
and its application does not need to modify the algorithm struc-
ture. An ideal stratification strategy is to map the initial data set
into disjoint strata of equal size and with equal class distribution
and where the number of strata is defined by the user. How-
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ever, clustering problems are unsupervised and classes cannot
be used to split the instances into representative strata because
they are unknown (Cano et al., 2008). Therefore, the defini-
tion of the size of subsets and the selection of their elements
are not trivial and they influence the performance of the algo-
rithm if they are not sufficiently representative. For this reason,
two unsupervised and one supervised strata generation strate-
gies are presented and analyzed: (1) random strata, (2) strata
according to clusters distribution using a fast and approximate
clustering algorithm and (3) strata based on classes. Moreover,
strategies are integrated in a MC algorithm based on MOEAs
called CAOS (Clustering Algorithm based on multiObjective
Strategies) (Garcia-Piquer et al., 2012, 2013) and they aretested
with several strata size using artificial and real world problems.
Finally, results are compared with each other and with regard
to MOCK, which is one of the most well-known MC algo-
rithms based on MOEAs (Handl and Knowles, 2007).The re-
sults show improvement in computational time while accuracy
is not substantially penalized when stratification approaches are
applied. Furthermore, the three strategies for building the strata
are equivalent so the proposed data subset approach can be
used in clustering problems because it does need a stratification
method based on classes. Finally, the results also show thatthe
proposed approach is significantly better than MOCK in terms
of computational time and accuracy.

The paper is organized as follows. Section 2 summarizes the
related work on data subsets applied to clustering. Sections 3
and 4 describe CAOS and the stratification strategies. Section 5
describes the experimentation and discusses the results. Finally,
Section 6 ends with conclusions and further work.

2. Related Work

Two of the most used strategies for scaling-up EAs are Par-
allel EA (Cantu-Paz, 2000) and data subsets (Cano et al., 2008;
Derrac et al., 2010). The first strategy distributes the computa-
tional cost of the evaluation step by parallelizing the evaluation
of individuals so it is necessary to adapt or redefine the algo-
rithm in order to be able to parallelize it in a environment with
several processors. Moreover, the parallelization may imply an
additional communication cost that could decrease the perfor-
mance achieved with the distribution of compute. On the other
hand, the second strategy uses a data subset from the original
data set to evaluate the individuals so fewer resources are re-
quired and there is no need to modify the algorithm structure.
In contrast, the data sets definition is not trivial.

There are two main ways to work with data subsets: using
only one of the built data subsets, or using alternatively all the
data subsets. The algorithm CLARA (Clustering LARge Ap-
plications) (Kaufman and Rousseeuw, 1990), one of the most
representative algorithms for clustering large data sets,works
using the first approach. This algorithm is based on selecting
randomly a sample from the entire data set and, subsequently,
it finds k medoids of the sample using only the built sample.
After this, all the instances of the entire data set are assigned to
the most similar medoid. The execution of the entire process
is repeated five times, and the solution with less dissimilarity

is returned as the solution. Following this idea, other methods
consist of randomly extracting several samples from the entire
data set and applying the same clustering algorithm to each one
of the samples, thereby obtaining several clustering results. Af-
ter this, all the obtained results are merged in a single clustering
solution. Hore et al. (Hore et al., 2009) proposed usingk-means
or fuzzyk-means algorithms with large data. The idea is to ob-
tain a set of jointed or disjointed samples and apply one of the
two algorithms to each sample to obtain several clustering re-
sults. The last step consists of doing a consensus between each
clustering result to obtain a final clustering solution as inen-
semble clustering. The drawback of using only one sample to
obtain the clustering results is that it is necessary to execute the
algorithm several times or apply it to different data subsets in
order to avoid the bias of using only one sample. Moreover,
only a part of the entire data set is used. Thus, the approaches
based on using all the data subsets can be useful to obtain the
clustering results in a single execution.

ILAS (Incremental Learning by Alternating Strata) (Bac-
ardit, 2004) is a technique based on Evolutionary Algorithms
for classification problems based on dividing the training set
into several strata based on using a different stratum in each iter-
ation of the evolutionary algorithm using a round-robin policy.
Thus, the individuals are evaluated with all the strata, avoiding
any bias of the data and increasing the generalization of thein-
dividual. The strategy followed in this paper is based on the
ILAS algorithm but applied to MC problems.

3. CAOS

CAOS (Garcia-Piquer et al., 2013) is a multiobjective evo-
lutionary algorithm system to solve clustering problems based
on adapting the multiobjective optimization algorithm PESA-
II (Corne et al., 2001) due to its competitiveness with re-
spect to the state-of-the-art clustering methods and its ability to
evolve accurate clusterings from domains with complex struc-
tures (Handl and Knowles, 2007). It evolves a set of mutually
non-dominated clustering solutions (called Pareto set) that cor-
respond to different tradeoffs between objectives. A solutionS
is non-dominated when there is not any solution better thanS
in all the objectives. Otherwise, the solution is dominated.

Algorithm 1 summarizes the main elements of PESA-II. It
evolves an external population (EP) of individuals through a
number of generation where individuals are selected, crossed
and mutated following the typical evolutionary cycle. Individ-
ual are represented with real numbers that represent the coor-
dinates (attributes) of the cluster prototype using a centroid-
based representation (Hruschka et al., 2009). More specifically,
each individual consists ofn · t genes{x11, ..., x1t, ..., xn1, ..., xnt},
wheren is the number of clusters of the individual,t is the num-
ber of the attributes of the data set, andxi j is the value of the
attribute j of the cluster centroidi. The genotypic represen-
tation is transformed into the phenotypic representation by as-
signing each instance to the cluster with the nearest centroid to
it. In addition to EP, it also maintains aninternal population
(IP) to separate the exploration from the storage of the best
solutions. That is,IP is used to explore new promising solu-
tions andEP is employed to store a large and diverse set of non



3

Let EP andIP be an external and an internal population respectively.1
They store a maximum ofNEP andNIP individuals, where (NIP < NEP)
Init. IP with NIP individuals stochastically created2
Init. theEP individuals with non-dominated clustering results fromIP3
Evaluate all the individuals fromEP according to the objectives4
foreachGenerationdo5

SelectNIP individuals fromEP to generate a newIP6
while (|IP| != ∅) do7

Select and remove two individuals fromIP8
Cross and mutate them to obtain 2 new ind.:INew1 andINew29
foreach INewi do10

Evaluate theINewi fitness according to the objectives11
if INewi dominates any individual from EPthen12

Remove the dominated individuals byINewi from EP13
Add INewi into EP;14

else if INewi is not-dominated and INewi not-dominates any15
individual then

if EP is full then16
Remove an ind. from the most crowded niche17

Add INewi into EP18

Select a individual fromEPas a solution19

Algorithm 1 : Scheme of PESA-II algorithm.

dominated solutions found so far. Moreover,EP is organized
in Nniches different niches through the placement of an hyper-
grid in the objective space splitting it in hyper-rectangles, where
each of them is considered as a separate niche. Therefore, so-
lutions with similar objectives will be placed in the same niche.
The replacement process uses the niching mechanism to make
pressure toward balancing the allocation of solutions in differ-
ent niches thus encouraging solutions to cover all the objective
space. Concretely, the system createsIP with NIP individuals
stochastically initialized. All the non-dominated solutions of
IP are used to buildEP.

The final step is to select a solution from the Pareto set (com-
posed by all non-dominated solutions) when the evolutionary
process ends. This point is not trivial because there is not
any single individual which is the best in all the objectivesand
for this reason clustering validation techniques (Halkidiet al.,
2001) are required for selecting the best one. CAOS integrates
some supervised and unsupervised techniques to score a so-
lution. The supervised approach follows the idea that similar
elements from the same class should be in the same cluster.
In contrast, the unsupervised approaches retrieve the bestsolu-
tion from the Pareto set according to the quality of the clusters
based on the compacting and separation between them, such as
Davies-Bouldin index, Dunn index or Silhouette index, among
others. Experimentation of Section 5 uses a supervised vali-
dation technique based on classes called Adjusted Rand Index
(Yeung and Ruzzo, 2001) for being able to compare the per-
formance of several strategies between them. It is important to
highlight that class information is not used in the buildingpro-
cess of the clusters, it is only used at the end of the process for
comparing the obtained clustering solution between them. The
Adjusted Rand Index compares a clustering solution with re-
spect to an ideal partition of the data set by counting the number
of pairwise co-assignments of instances between them and in-
troducing a statistically induced normalization in order to yield

values close to 0 for random partitions. In contrast, a valueof 1
means that all the clusters correspond to the structure defined in
the ideal partition. In our case, the ideal partition corresponds
to the classes of the instances in the original data set.

Finally, CAOS allows the customization of the objectives, ge-
netic operators among other features.DeviationandConnectiv-
ity are used as objective functions (Handl and Knowles, 2007)
because they indicate how nearby are the elements of each clus-
ter (intra-cluster variance) and how separated are the clusters
between them (inter-cluster variance), respectively. Both objec-
tives have to be minimized because the desired solution should
contain compact clusters with examples that are close in thefea-
ture space. A one-point crossover operator (Goldberg, 2002)
is used to generate two offspring from pairs of parents. One
point is selected for each parent and the parts are interchanged
between them, taking into account that they have to cut the in-
dividuals at the same attribute but not necessarily at the same
cluster. This is an easy crossover strategy according to thesize
of each individual can be different. A cluster-oriented mutation
operator (Hruschka et al., 2009) is used to promote the right
search. It defines three different types of mutations and all of
them have the same probability to be applied: to merge two
clusters, to split a cluster, and to move the centroid of a cluster.

4. Data Subset Strategies

Reducing the amount of data used by an algorithm is a smart
approach to reduce the computational cost of evolutionary-
based machine learning techniques and it could also improve
the accuracy of the system Bacardit (2004). In this sense, we
want to scale-up a MC algorithm based on EAs by dividing a
data set in several stratified subsets and using them alternatively
during the algorithm process in order to avoid bias. Next points
detail the analyzed approaches to build the strata and how touse
it in MC. Finally, the impact of using these strategies in terms
of computational cost and memory usage is described.

4.1. Creation of Strata

Data subset strategies map the initial data set into disjoindata
subsets (strata) of equal size and with equal class distribution
(Bacardit, 2004; Cano et al., 2006), where the number of strata
is selected by the user (see Algorithm 2). Classes in clustering
problems are usually unknown, so the stratification based on
classes is not always available. To avoid this lack, two unsuper-
vised approaches to divide the data set are proposed:

• Random Strata. It randomly assigns the instances to each
one of the strata as Algorithm 3 shows.

• Strata based on Clusters.It uses a fast and approxima-
tive clustering technique to create a partition of the origi-
nal data set. Next, the data set is stratified according to the
obtained clusters, that is, it assigns the instances to each
stratum respecting in it the same cluster distribution of the
instances than in the clustered original data set. The pro-
cess is described in Algorithm 4. The clusters are found
with the Subtractive Clustering algorithm Chiu (1994) ap-
plied to the original data set, which is an efficient and non-
iterative method for estimating cluster centers. It is usually
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used to determine the number of clusters and their initial
values for initializing iterative optimization-based cluster-
ing algorithms. The limitation of this strategy is their com-
putational costO(m2), wherem is the number of instances
of the original data set, because with very large data sets
can be expensive in computational terms. Nevertheless, in
terms of spatial cost it only needs the data set information
and a list with the prototypes of each cluster.

Finally, these approaches require the definition of the number
of strata which will influence the performance. As the number
of strata increases the computational time decreases but pattern
extraction becomes more complex due to the lack of informa-
tion. It is important to highlight that the idea of these strategies
is to obtain data with similar distribution in each stratum,and
this only can be possible if the size of each one is not very small.

4.2. Evolution Based on Strata

The idea is to use a different stratum in each iteration of the
evolutionary algorithm in order to avoid the bias produced when
only one stratum is used. Thus, the final individuals can gen-
eralize more than using only one of the strata and there is no
need to modify the main process. More precisely, the genera-
tion of strata is done before line 1 of the Algorithm 1, and the
change of stratum is done between lines 6 and 7. It is important
to highlight that these strategies can be applied to CAOS due
to the fact that individuals are represented by the prototypes of
the clusters and then the individuals are independent of thein-
stances. Thus, the algorithm can work with different instances
of the data set in each iteration.

Let numS tratabe the number of strata to generate1
Let S tratabe a vector of sizenumS tratawhere each position is initially2
an empty list of instances
Let I be a vector of sizenumClasseswhere each position stores a list of3
the instances of the same class
stratum= 04
class= 05
while (class< numClasses)do6

while (|I [class]| != ∅) do7
Select randomly an instancei from I [class]8
Add i to S trata[stratum]9
Erasei from I [class]10
stratum= (stratum+ 1) modnumS trata11

class= class+ 112

return S trata13

Algorithm 2 : Strata generation based on classes.

Let numS tratabe the number of strata to generate1
Let S tratabe a vector of sizenumS tratawhere each position is initially2
an empty list of instances
Let I be a list of all the instances of the data set3
stratum= 04
while (|I | != ∅) do5

Select randomly an instancei from I6
Add i to S trata[stratum]7
Erasei from I8
stratum= (stratum+ 1) modnumS trata9

return S trata10

Algorithm 3 : Strata generation based on random instances selection.

4.3. Computational Performance Models

The aim of the data subsets strategies is to reduce the com-
putational time and memory usage without considerably penal-
izing the accuracy. Next, this subsection analyzes the improve-
ment in the performance of a MC algorithm based on EAs using
CAOS from a theoretical perspective and section 5 will analyze
the improvement using different real and artificial data sets.

The CAOS process can be divided in two main blocks: the
initialization process and the clustering process. The initial-
ization process focuses on precalculating the distances between
the instances and the nearest neighbors to speed-up the clus-
tering process avoiding the repetition of calculations. Incon-
trast, the clustering process is referred to the evolutionary cycle
that obtains the Pareto set of solutions. CAOS algorithm has
the same initialization and clustering cost independentlyof the
data subset strategy used (based on classes, random or basedon
clusters) but it depends on the number of strata used. However,
the time of both processes is extremely lower in comparison
with the time spent when the complete data set is used as Ta-
ble 1 describes. It should be emphasized that both times are
reduced when the size of the stratum is decreased, that is, when
the number of strata increases. Nevertheless, the use of strata
requires an additional cost for building them. According tothis,
the strategies based on random instances selection and based on
classes need only one data scan to build the strata and their cost
is O(m), wherem is the number of instances of the complete
data set. In contrast, the strategy based on approximative clus-
ters has a higher cost due to the cost related to the subtractive
clustering technique (O(m2)).

As it has been explained above, CAOS precalculate the dis-
tances between all the instances of the data set and the nearest
neighbors of each instance to speed-up the clustering process.
Thus, the memory usage would be extremely high if the com-
plete data set is analyzed when a large data set is used. Ap-
plying any of the three strategies of data subset construction,
the memory usage is considerably reduced as Table 2 shows.
Even the computational time and the memory usage of the MC
algorithm is considerably reduced, the accuracy of the method
can be penalized due to the fact that less information is usedto
obtain the clustering solutions.

Obtaining the instances clustered innumClustersclusters by applying the1
Subtractive Clustering algorithm to the complete data set
Let numS tratabe the number of strata to generate2
Let S tratabe a vector of sizenumS tratawhere each position is initially3
an empty list of instances
Let I be a vector of sizenumClusterswhere each position stores a list of4
the instances assigned to the same cluster
stratum= 05
cluster= 06
while (cluster< numClusters)do7

while (|I [cluster]| != ∅) do8
Select randomly an instancei from I [cluster]9
Add i to S trata[stratum]10
Erasei from I [cluster]11
stratum= (stratum+ 1) modnumS trata12

cluster= cluster+ 113

return S trata14

Algorithm 4 : Strata generation based on approximative clusters.
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Table 1. Computational cost of CAOS applied to the complete data set and
to data subsets (CAOSCD and CAOSDS respectively) broken down in ini-
tialization cost and clustering cost. Whereg is the number of generations,
|IP| is the internal population size,mand t are the number of instances and
attributes of the data set respectively,̄ncd is the average of the number of
clusters of the individuals (the minimum number of clustersis 1 and the
maximum m), n̄ds is the average of the number of clusters of the individu-
als (the minimum number of clusters is1 and the maximum p

numS trata), ℓ is
the percentage of the nearest elements taken into account, and numS trata
is the number of strata generated.

Algorithm Initialization cost Clustering cost

CAOSCD O(m3 · ℓ) O(g · |IP| ·m · n̄cd · t)

CAOSDS O(numS trata· (
m

numS trata
)3 · ℓ) O(g · |IP| ·

m
numS trata

· n̄ds · t)

Table 2. Memory usage of CAOS applied to the complete data set and
to data subsets (CAOSCD and CAOSDS respectively) to store the nearest
neighbors. Wherem is the number of instances of the data set,ℓ is the
percentage of instances considered neighbors,numS tratais the number of
strata generated andsizeo f(data type) is the size in bytes of the data type.

Algorithm Storage of distances Storage of nearest neighbors

CAOSCD m2 · sizeo f( f loat) (ℓ ·m)2 · sizeo f(integer)

CAOSDS ( m
numS trata)

2 · sizeo f( f loat) numS trata· ( ℓ·m
numS trata)

2 · sizeo f(integer)

5. Experiments, Results, and Discussion

This section evaluates the performance improvement in
CAOS using the proposed data subset approach with the three
stratification strategies described in section 4. The performance
is considered in terms of accuracy using the Adjusted Rand In-
dex value of the solution returned by CAOS and the computa-
tional time required to find it.

The organization of this section is as follows. First, the col-
lection of 105 artificial and real-world data sets and the exper-
imental methodology are described. Next, CAOS results and
a comparison between the proposed data subset approach in
CAOS and MOCK (Handl and Knowles, 2007) is presented in
order to emphasize the performance improvement of our ap-
proach. Finally, the performance of the most suitable strategy
is analyzed in data sets of medium and large size.

5.1. Test Bed

The experimentation uses different typologies of artificial
and real-world problems. Concretely, 75 artificial data sets
were created according to different number of instances (from
800 to 24000), attributes (from 2 to 100) and classes (from 2
to 30). They were built adapting the tool used in (Handl and
Knowles, 2007) where three parameters are used to create the
data sets: the number of attributes, the number of classes re-
lated to the number of instances, and the separation between
the classes. Each class has a data distribution for each attribute,
which can only have numerical values. The distribution can be
a normal or uniform distribution, and it is randomly selected to
model each attribute. Also, the separation between classeswere
modeled, obtaining 25 data sets with well-separated classes,
other 25 data sets with nearer classes, and the last 25 with over-
lapped classes .On the other hand, other 30 real-world problems
were selected according to different number of instances (from

150 to 58000), attributes (from 2 to 60) and classes (from 2 to
26) from the UCI repository (Frank and Asuncion, 2010). The
characteristics of each data set are detailed in Table 5 and Ta-
ble 6 in supplementary material. It must be emphasized that
the class assigned to each instance of the data sets is known in
order to apply the stratification strategy based on classes and to
evaluate the accuracy of the clustering results.

5.2. Experimental Methodology

The performance of the three approaches based on data sub-
sets (CAOSDS) were compared with respect to the approach that
uses the complete data set (CAOSCD) in terms of accuracy and
computational time. The accuracy is compared using the Ad-
justed Rand Index, which is based on the initial classes of the
data set, where 1 is the best accuracy (all the clusters corre-
spond to the original classes) and 0 the worst. The computa-
tional time represents the sum of the precalculation time and
clustering time. The first one includes the time needed to build
the data subsets and to precalculate the distance and nearest
neighbors structures necessaries to the clustering process. The
second one is referred to the time needed to do the evolutionary
process that obtains the Pareto set of solutions. Finally, each
CAOSDS strategy is executed dividing the original data set in
2, 3, 4, 10, 15, 20 and 25 data subsets which means the 50%,
34%, 25%, 20%, 10%, 7% and 4% of the instances of the orig-
inal data sets are considered in each data subset respectively.

Each CAOS configuration was run with 20 different seeds
and with the following parameters (see Section 3 for notation
details):ℓ is 5% of the number of instances used, the maximum
size of the initial population is 100,NEP is 1000,NIP is 50,
Nniches is 5, the number of generations is 400,Pc is 0.7 andPµ
is 1/m. The minimum and maximum number of clusters for the
initial individuals is 2% and 20% ofm respectively.

On the other hand, the recommendations pointed out by
Dem̌sar (Dem̌sar, 2006) were followed to perform the statisti-
cal analysis of the accuracy of the algorithms, which was based
on the use of nonparametric tests. More specifically, we fol-
lowed the process given in (Garcı́a and Herrera, 2008) to com-
pare them using the software freely provided by the authors.
First, the Friedman’s test (Friedman, 1940) withα = 0.05 was
applied to contrast the null hypothesis that all the learning algo-
rithms obtained the same results on average. Then, if the Fried-
man’s test rejected the null hypothesis, pair-wise comparisons
were performed by means of the Holm’s step-down procedure
(Holm, 1979). Following this procedure, we could distinguish
pairs of learners that performed significantly differently.

5.3. Discussion of CAOS Results

The accuracy of CAOSCD and the three CAOSDS strategies
were empirically tested with the presented 105 data sets using
the Holm’s test (see Table 7 in the supplementary material).An-
alyzing the results it can be observed that independently ofthe
size of the strata, all the CAOSDS strategies are not significantly
different between them. However, all of them are significantly
different to CAOSCD due to the fact that they are using less
information in the clustering process. For this reason, we re-
peat the same Holm’s test but separating data sets in artificial
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Table 3. Comparison of the accuracy of the algorithms in the (a) artificial and (b) real data sets using the post-hoc Holm’s procedure with α = 0.05. The
algorithms compared are CAOS using the complete data setCAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS
Classes), random (CAOSDS Random) and based on clusters (CAOSDS Clusters). The results are showed for 34%, 10% and 4% of information used from
the complete data set. The symbols⊕ and⊖ show that the method in the row obtained results that were significantly higher /lower than those obtained with
the method in the column. Similarly, the symbols+ and − denote a non-significant higher/lower results. The Iman and Davenport statistic is calculated
according to F-distribution with 3 and 222 degrees of freedom.

(a)

% Instances Strategies CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Cluster Avg. Rank p-value

34%

CAOSCD ⊕ ⊕ ⊕ 1.871

1.705E − 5
CAOSDS Classes ⊖ + + 2.662
CAOSDS Random ⊖ − + 2.689
CAOSDS Clusters ⊖ − − 2.777

10%

CAOSCD ⊕ ⊕ ⊕ 1.730

2.634E − 8
CAOSDS Classes ⊖ + + 2.716
CAOSDS Random ⊖ − − 2.817
CAOSDS Clusters ⊖ − + 2.736

4%

CAOSCD ⊕ ⊕ ⊕ 1.676

4.689E − 10
CAOSDS Classes ⊖ + + 2.662
CAOSDS Random ⊖ − − 2.946
CAOSDS Clusters ⊖ − + 2.716

(b)

% Instances Strategies CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Cluster Avg. Rank p-value

34%

CAOSCD ⊕ + + 1.816

0.005
CAOSDS Classes ⊖ − − 2.917
CAOSDS Random − + + 2.650
CAOSDS Clusters − − + 2.617

10%

CAOSCD ⊕ ⊕ ⊕ 1.533

4.853E − 6
CAOSDS Classes ⊖ − − 2.966
CAOSDS Random ⊖ + − 2.933
CAOSDS Clusters ⊖ + + 2.567

4%

CAOSCD ⊕ ⊕ ⊕ 1.400

8.677E − 8
CAOSDS Classes ⊖ + + 2.667
CAOSDS Random ⊖ − − 3.000
CAOSDS Clusters ⊖ − + 2.933

and real-world datasets in order to analyze in more detail the
performance of the different strategies as Table 3(a) and 3(b)
illustrates using 34%, 10% and 4% of instances for the artificial
and real data sets respectively (see Tables 8(a) and 8(b) from
the supplementary material for the complete experimentation).
The results with respect to the artificial data sets shows that
the three CAOSDS strategies are significantly worse in terms of
accuracy regarding CAOSCD independently of the number of
instances considered. Nevertheless, the three CAOSDS are not
significantly different in terms of accuracy between them.
From a quantitative point of view, Figure 1(a) shows the aver-
age of accuracy difference among the three CAOSDS strategies
and CAOSCD. Globally, the strategies based on classes and on
clusters follow a similar pattern, and the accuracy is not con-

siderably decreased until less than the 20% of the instancesare
used. In contrast, the random selection approach seems to un-
derperform the other two due to the fact that the classes struc-
ture is complex in some data sets and the random strategy is not
able to build representative strata. Figure 2(c) shows the aver-
age speedup for each data set of the three CAOSDS strategies.
The speedup of each CAOSDS strategy applied to a specific data
set corresponds to the time needed to apply CAOS by CAOSCD

divided by the time needed by the corresponding CAOSDS strat-
egy. Thus, a high speedup is desired (e.g., a CAOSDS strat-
egy with speedup of 3 indicates that it is three times faster than
the CAOSCD approach). This speedup is divided in two partial
speedups (1) regarding the precalculation time needed to build
the data subsets and to precalculate the distance and nearest

(a) (b)

Fig. 1. Accuracy difference of the threeCAOSDS strategies regardingCAOSCD. (a) Artificial data sets and (b) real-world data sets.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Speedup of the threeCAOSDS strategies regardingCAOSCD in artificial (a,b,c) and real-world data sets (d,e,f). Figures (a,d) are referred to the
speedup of the precalculation time. Figures (b,e) show the speedup of the clustering time to do the evolutionary processthat obtains the Pareto set of
solutions. Figures (c,f) are related to the speedup of the overall time taking into account both times.

neighbors structures (see Figure 2(a)), and (2) regarding to the
clustering time (see Figure 2(b)). The precalculation speedup
is the same in the random strata than in the strata based on
classes strategies. However, the strategy based on clusters has a
lower precalculation speedup because it needs to roughly clus-
ter the instances before building the data subsets. On the other
hand, the speedup of the clustering time is the same in the three
strategies since the strata method does not affect to the clus-
tering process. Analyzing the overall speedup according tothe
percentage of instances used from the complete data set, it can
be observed that using a 50% of the instances, that is the low-
est improvement, the speedup is 3, so CAOSDS strategies are
three times faster than CAOSCD. Moreover, using a 4% of the
instances of the complete data set the speedup is 500 for the
strategy based on clusters and 1200 for the other two strategies.
Also it can be observed that there are not speedup differences
between the strategies until more than a 10% of the instances
are used. These analysis showed that CAOSDS strategies ap-
plied to the proposed artificial data sets are faster than CAOSCD

and do not considerably penalize the accuracy in quantitative
terms. Nevertheless, CAOSDS is worst and significantly differ-
ent, in statistical terms, regarding CAOSCD.
With respect to the results of the Holm’s test applied to the
real-world data sets, the Friedman’s test cannot reject thenull
hypothesis that all the strategies obtain the same results on av-
erage when in each data subset is considered a 50% of the in-
stances (2 data subsets). Thus, the three CAOSDS strategies can-
not be considered different than CAOSCD in terms of accuracy.
When the 34% and the 25% of the instances are considered, the
CAOSDS strategy based on random strata and on clusters is not
significantly different in terms of accuracy regarding CAOSCD.
Nevertheless, the accuracy of the other strategy is worst and
significantly different than CAOSCD. When it is used less than
the 25% of the instances of the complete data set in each data

subset, the three CAOSDS strategies are significantly different in
terms of accuracy regarding CAOSCD, but they are not signifi-
cantly different between them. Figure 1(b) shows that there is
virtually no accuracy difference between CAOSDS strategies re-
garding CAOSCD, because the data sets used do not have shapes
as complex than the artificial ones used. Figure 2(f) shows that,
in terms of speedup, the behavior in the used real-world data
sets is similar than in artificial data sets. The maximum speedup
is lower because some of the real-world data sets are small and
the speedup of using less than a 10% of the instances is not as
high than in larger data sets. Also, it can be observed than inthe
used real-world data sets if it is used a 50% of the instances,it
is four times faster than CAOSCD and it obtains the same clus-
tering results (see Table 11 and Table 12 in the sup. material
with the results of the execution time). It must be emphasized
that the speedup obtained applying this kind of techniques is
very high and, consequently, the computational performance of
the system is considerably improved. Moreover, assuming that
the best strata generation is based on the original classes,the
results show that the other two strategies to build the strata are
not significantly different in terms of accuracy independently
of the kind of data sets tested. In terms of accuracy, the ran-
dom and the cluster based strategies are as useful as the strategy
based on classes but without the requirement of having the orig-
inal class of each instance. In terms of computational time,the
random and classes based strategies have similar speedup re-
garding CAOSCD. Nevertheless, the cluster based strategy has
a lower speedup. According to these observations, it seems that
the most suitable strategy to build the data subsets in CAOSDS is
the random one, because it does not require the original classes
of the instances, it is not significantly different in terms of ac-
curacy than the other two strategies and it has a high speedup.
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5.4. Discussion of CAOS and MOCK Results

The proposed approach has demonstrated that it is able to
scale-up CAOS without considerably penalizing the accuracy
and it has been compared with respect to MOCK (Handl and
Knowles, 2007) in order to emphasize the results. MOCK is
also based on the PESA-II algorithm but it uses the locus-based
adjacency representation proposed in (Park and Song, 1998)for
representing the individuals. That is, each individual encodes a
reflexive directed unlabeled graph that connects pairs of exam-
ples using an integer encoding scheme. More specifically, each
individual consists ofm genes{x1, x2, ..., xm}, wherem is the
number of examples of the training data set andxi ranges in [1,
m]. Thence, each genexi indicates that there exists an arrow
connecting instancei with instancexi . It can be observed that
this representation cannot properly scale-up the memory usage
when the algorithm is applied to large data because the individ-
ual size depends on the number of instances. Thus, this repre-
sentation does not allow the use of data subsets due to the fact
that all the instances are needed for building the individuals.

The accuracy of the best results of MOCK, CAOSCD and the
three CAOSDS strategies of the real-world data sets is analyzed
using the Holm’s test and illustrated in Table 4(a) For carry-
ing out this analysis, four data sets (letter-recognition, magic,
pendigitsand shuttle) where MOCK was not able to obtain
the results with a reasonable memory usage are not considered.
Analyzing the results it can be observed that MOCK is signif-
icantly worse than CAOSCD and than all the CAOSDS strate-
gies when a 20% of information or more is used. When less
of a 20% of instances are used, MOCK is worse but not sig-
nificantly different than CAOSDS strategies. Finally, MOCK
has a lower computational time than CAOSCD for the different
data sets as Table 11 and Table 12 show in the suplementary
material. However, CAOSDS strategies are significantly better
than MOCK in terms of computational time independently of
the size of the strata as Table 4(b) shows. Thus, the proposed
data subset approach can obtain better results than MOCK in a
lower computational time, and it can be affirmed that CAOSDS

is a promising scalable MC algorithm based on MOEAs.

Table 4. Comparison of (a) the accuracy and (b) the executiontime of the algorithms in the real-world data sets (the four data sets where MOCK cannot
obtain results are excluded from the analysis, so 26 data sets are used) using the post-hoc Holm’s procedure withα = 0.05. The algorithms compared are
MOCK and CAOS using the CAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS) Classes, random (CAOSDS
Random) and based on clusters (CAOSDS Clusters). The results are showed for 34%, 10% and 4% of information used from the complete data set. The
symbols⊕ and⊖ show that the method in the row obtained results that were significantly higher /lower than those obtained with the method in the column.
Similarly, the symbols+ and − denote a non-significant higher/lower results. Symbol= indicates that the algorithms have the same rank. The Iman and
Davenport statistic is calculated according to F-distribution with 4 and 100 degrees of freedom. The results with the rest of % of instances are detailed in
Table 9 and 10 in supplementary material.

(a)

Instances Strategies MOCK CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average Rank p-value

34%

MOCK ⊖ ⊖ ⊖ ⊖ 4.346

3.449E − 7
CAOSCD ⊕ + + + 1.962

CAOSDS Classes ⊕ − − − 3.077
CAOSDS Random ⊕ − + + 2.769
CAOSDS Clusters ⊕ − + − 2.846

10%

MOCK ⊖ − − ⊖ 4.269

1.108E − 9
CAOSCD ⊕ ⊕ ⊕ ⊕ 1.577

CAOSDS Classes + ⊖ = − 3.192
CAOSDS Random + ⊖ = − 3.192
CAOSDS Clusters ⊕ ⊖ + + 2.769

4%

MOCK ⊖ − − − 4.000

4.580E − 8
CAOSCD ⊕ ⊕ ⊕ ⊕ 1.538

CAOSDS Classes + ⊖ + + 3.038
CAOSDS Random + ⊖ − − 3.346
CAOSDS Clusters + ⊖ − + 3.077

(b)

Instances Strategies MOCK CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average Rank p-value

34%

MOCK + ⊖ ⊖ ⊖ 1.731

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.231
CAOSDS Random ⊕ ⊕ − + 3.961
CAOSDS Clusters ⊕ ⊕ − − 3.769

10%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.154
CAOSDS Random ⊕ ⊕ − + 4.135
CAOSDS Clusters ⊕ ⊕ − − 3.712

4%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.442
CAOSDS Random ⊕ ⊕ − + 4.192
CAOSDS Clusters ⊕ ⊕ − − 3.365
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5.5. CAOS Results in Large and Medium Data Sets

The analysis of the performance of the three CAOSDS strate-
gies in artificial and real-world data sets concluded that the ran-
dom strata strategy is the most suitable one. In order to analyze
the potential of CAOSDS with this strategy applied to data sets
with a considerable number of instances, it was tested with 33
data sets considered of medium size and with 33 data sets con-
sidered of large size. The medium size data sets have a number
of instances from 2000 to 8000, and the large size data sets have
a number of instances from 13000 to 50000.

The experiments show that the speedup of both type of data
sets is very high (see Figure 3(b)), and this represents an im-
portant improvement (e.g., in the shuttle data set, which has
50000 instances, CAOSCD needs near 40 hours to obtain a clus-
tering result, and CAOSDS with a random strata strategy needs
10 hours using the 50% of instances and 3 hours using the 25%
of them, as Table 11 in supplementary material shows). It is ob-
vious that if less data is considered, the accuracy results will be
worse, as statistical tests show in Subsection 5.3. However, the
loss of accuracy is not very considerable when more than the
20% of instances are used (see Figure 3(a)). Thus, the results

obtained when the 25% of the instances are used in each cycle
of the EA are analyzed to better illustrate this issue because it
is considered (according to Figure 3) that it is a configuration
with a good trade-off between accuracy and execution time.

Figure 4 and Figure 5 show the accuracy result and the over-
all execution time of CAOSCD and the random strata strategy of
CAOSDS for each one of the large and medium-sized data sets.
Both figures show the average results of the 20 runs done. It can
be observed that the accuracy results are preserved or slightly
penalized but, on the other hand, the execution time is strongly
improved. Moreover, it is important to emphasize that the main
idea of CAOSDS is to considerably improve the performance of
the algorithm with small impact on the accuracy, and this can
be clearly observed in data sets of medium and large size.

6. Conclusions and Further Work
MC based on EA is a data mining technique focused on

identifying data relationships according to multiple criteria to
properly understand huge and complex databases. Although its
search capability outlines from the rest of similar techniques, its
main lack is the high cost in terms of computational time and
memory usage when it is applied to a large data sets.

(a) (b)

Fig. 3. Accuracy difference (a) and overall speedup (b) of theCAOSDS random strata strategy in large and medium size data sets.

(a) (b)

Fig. 4. Average accuracy of 20 runs ofCAOSCD and CAOSDS using 25% of information in each generation for (a) medium and (b) large data sets.

(a) (b)

Fig. 5. Average of the overall clustering time of 20 runs ofCAOSCD and CAOSDS using the 25% of information in each generation for (a) medium and (b)
large size data sets.
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This work has presented an approach focused on reducing
the impact of the volume of data in the EA by means of the
stratification of the complete data set into disjoint strataand
alternate them following a Round Robin policy in each cycle
of the genetic algorithm. More specifically, a supervised and
two unsupervised stratification strategies are proposed and their
performance is analyzed using 106 real and artificial data sets
in the CAOS algorithm: (1) according to the original classesof
the data set, (2) selecting random instances from the data set,
and (3) according to the clusters found applying a fast method
called subtractive clustering.

The experimentation showed that the speedup of the three
strategies is very high, and this considerably improves thecom-
putational performance of the system. Moreover, it can be ob-
served that the two unsupervised strategies used to build the
strata are not significantly different from the strategy based on
classes in terms of accuracy so they can be considered equiv-
alent to the strategy based on classes in terms of accuracy.
Furthermore, the strategy based on random strata has a higher
speedup than the cluster based strategy because the last one
needs to build approximative clusters at the begin of the algo-
rithm and this has a high cost with very large data sets. Thus,
the random stratum strategy is the most suitable to scaling-up
CAOS. On the other hand, there are statistically significantdif-
ferences among these three strategies and the approach based
on using the complete data set even the accuracy differences
among them are relatively small while they considerably reduce
the computational time of the algorithm. It is important to high-
light that the size of each stratum affects the performance of the
CAOS algorithm. The computational time of CAOS decreases
as much smaller is the size of the strata but it is more difficult
to obtain consistent stratum according to the original dataset
so it affects the accuracy of the system. The last part of the
experimentation has also compared the results of the proposed
strategies with respect to MOCK and they have obtained results
significantly better in terms of computational time and accu-
racy. Thus, it can be concluded that the proposed approach isa
promising scalable MC algorithm based on MOEAs and it can
be properly applied to large data. Moreover, this approach can
also be applied in situations where losing some accuracy canbe
accepted if it is possible to obtain results in a reasonable time.

Finally, this analysis has set the basis for further conducting
research on multiobjective evolutionary clustering applied to
large data sets in two research topics. First, the consequences of
applying stratification methods for scaling-up CAOS with other
individual representations. Second, the application of other data
mining techniques for large data sets (Bacardit and Llorà, 2009)
such as Parallel EAs.
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Table 5. Summary of the characteristics of the 30 real-worlddata sets used, sorted by their number of instances. The columns are referred to the number
of instances (nI), to the number of attributes (nA) and to thenumber of classes (nC).

Data set nI nA nC Data set nI nA nC
shuttle 58000 9 7 crx 690 15 2
letter-recognition 20000 16 26 balance 625 4 3
magic 19020 10 2 wdbc 569 30 2
pendigits 7494 17 10 housevotes 435 16 2
waveform 5000 40 3 dermatology 366 35 6
segment 2310 19 7 ionosphere 351 34 2
yeast 1484 9 10 bpa 345 6 2
contraceptives 1473 9 3 liver-disorders 345 6 2
biopsia 1027 24 2 ecoli 336 8 8
vowel 990 13 11 heart-statlog 270 13 2
mammographic 961 5 2 thyroids 215 5 2
vehicle 846 18 4 glass 214 9 6
pim 768 8 2 sonar 208 60 2
transfusion 748 4 2 wpbc 198 33 2
wisconsin 699 9 2 iris 150 4 3

Table 6. Summary of the characteristics of the 75 artificial data sets used, sorted by their number of instances. The columns are referred to the number of
instances (nI), to the number of attributes (nA) and to the number of classes (nC).

Data set nI nA nC Data set nI nA nC
10d-30c-175m 23898 10 30 100d-10c-125m 7021 100 10
10d-30c-75m 23471 10 30 5d-10c-175m 6981 5 10
5d-30c-75m 23234 5 30 20d-10c-75m 6848 20 10
100d-30c-175m 22788 100 30 2d-10c-75m 6798 2 10
20d-30c-75m 22470 20 30 2d-10c-175m 6586 2 10
2d-30c-175m 22229 2 30 10d-10c-75m 6513 10 10
5d-30c-125m 22038 5 30 20d-10c-125m 6084 20 10
10d-30c-125m 21974 10 30 20d-5c-125m 4473 20 5
2d-30c-125m 21846 2 30 2d-5c-75m 4306 2 5
20d-30c-175m 21491 20 30 20d-5c-75m 3877 20 5
5d-30c-175m 21129 5 30 100d-5c-175m 3870 100 5
20d-30c-125m 20986 20 30 10d-5c-75m 3781 10 5
100d-30c-75m 20561 100 30 10d-5c-175m 3664 10 5
2d-30c-75m 20370 2 30 5d-5c-175m 3575 5 5
100d-30c-125m 20156 100 30 2d-5c-175m 3564 2 5
2d-20c-125m 16097 2 20 2d-5c-125m 3525 2 5
5d-20c-175m 15675 5 20 100d-5c-75m 3445 100 5
20d-20c-125m 15508 20 20 10d-5c-125m 3382 10 5
2d-20c-75m 15012 2 20 20d-5c-175m 3272 20 5
20d-20c-175m 14970 20 20 5d-5c-75m 3184 5 5
10d-20c-75m 14830 10 20 5d-5c-125m 3124 5 5
20d-20c-75m 14491 20 20 100d-5c-125m 2955 100 5
5d-20c-125m 14261 5 20 20d-2c-75m 1796 20 2
10d-20c-175m 14023 10 20 20d-2c-125m 1789 20 2
10d-20c-125m 13875 10 20 100d-2c-75m 1763 100 2
100d-20c-75m 13790 100 20 20d-2c-175m 1685 20 2
100d-20c-125m 13702 100 20 5d-2c-125m 1636 5 2
100d-20c-175m 13421 100 20 2d-2c-75m 1560 2 2
2d-20c-175m 13355 2 20 2d-2c-125m 1497 2 2
5d-20c-75m 13289 5 20 10d-2c-125m 1418 10 2
5d-10c-75m 7875 5 10 5d-2c-75m 1352 5 2
10d-10c-125m 7609 10 10 2d-2c-175m 1245 2 2
100d-10c-75m 7394 100 10 100d-2c-125m 1146 100 2
20d-10c-175m 7200 20 10 100d-2c-175m 1132 100 2
2d-10c-125m 7078 2 10 10d-2c-175m 1132 10 2
100d-10c-175m 7071 100 10 5d-2c-175m 1042 5 2
10d-10c-175m 7070 10 10 10d-2c-75m 884 10 2
5d-10c-125m 7052 5 10



13

Table 7. Comparison of the accuracy of the algorithms in the overall data sets (artificial and real-world) using the post-hoc Holm’s procedure withα = 0.05.
The algorithms compared are CAOS using theCAOSCD and the three CAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes),
random (CAOSDS Random) and based on clusters (CAOSDS Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%, 7% and 4% of information
used from the complete data set. The symbols⊕ and ⊖ show that the method in the row obtained results that were significantly higher /lower than those
obtained with the method in the column. Similarly, the symbols + and − denote a non-significant higher/lower results. The Iman and Davenport statistic
is calculated according to F-distribution with 3 and 312 degrees of freedom.

Instances Strategies CAOSCD CAOSDS Classes CAOSDS Random CAOSDSCluster Average Rank p-value

50%

CAOSCD ⊕ ⊕ ⊕ 1.957

3.133E − 6
CAOSDS Classes ⊖ − + 2.601
CAOSDS Random ⊖ + + 2.591
CAOSDS Clusters ⊖ − − 2.851

34%

CAOSCD ⊕ ⊕ ⊕ 1.856

5.972E − 8
CAOSDS Classes ⊖ − − 2.736
CAOSDS Random ⊖ + + 2.678
CAOSDS Clusters ⊖ + − 2.731

25%

CAOSCD ⊕ ⊕ ⊕ 1.827

3.360E − 9
CAOSDS Classes ⊖ − − 2.875
CAOSDS Random ⊖ + + 2.625
CAOSDS Clusters ⊖ + − 2.673

20%

CAOSCD ⊕ ⊕ ⊕ 1.745

4.622E − 11
CAOSDS Classes ⊖ + + 2.726
CAOSDS Random ⊖ − + 2.760
CAOSDS Clusters ⊖ − − 2.770

10%

CAOSCD ⊕ ⊕ ⊕ 1.673

1.105E − 13
CAOSDS Classes ⊖ + − 2.788
CAOSDS Random ⊖ − − 2.851
CAOSDS Clusters ⊖ + + 2.687

7%

CAOSCD ⊕ ⊕ ⊕ 1.644

1.010E − 14
CAOSDS Classes ⊖ + − 2.745
CAOSDS Random ⊖ − − 2.875
CAOSDS Clusters ⊖ + + 2.730

4%

CAOSCD ⊕ ⊕ ⊕ 1.596

0
CAOSDS Classes ⊖ + + 2.663
CAOSDS Random ⊖ − − 2.961
CAOSDS Clusters ⊖ − + 2.779
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Table 8. Comparison of the accuracy of the algorithms in the (a) artificial and (b) real data sets using the post-hoc Holm’s procedure with α = 0.05.
The algorithms compared are CAOS using theCAOSCD and the three CAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes),
random (CAOSDS Random) and based on clusters (CAOSDS Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%, 7% and 4% of information
used from the complete data set. The symbols⊕ and ⊖ show that the method in the row obtained results that were significantly higher /lower than those
obtained with the method in the column. Similarly, the symbols + and − denote a non-significant higher/lower results. The Iman and Davenport statistic
is calculated according to F-distribution with 3 and 222 degrees of freedom.

(a)

Instances Strategies CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average rank p-value

50%

CAOSCD ⊕ ⊕ ⊕ 1.946

5.131E − 5
CAOSDS Classes ⊖ − + 2.621
CAOSDS Random ⊖ + + 2.527
CAOSDS Clusters ⊖ − − 2.905

34%

CAOSCD ⊕ ⊕ ⊕ 1.871

1.705E − 5
CAOSDS Classes ⊖ + + 2.662
CAOSDS Random ⊖ − + 2.689
CAOSDS Clusters ⊖ − − 2.777

25%

CAOSCD ⊕ ⊕ ⊕ 1.818

1.818E − 6
CAOSDS Classes ⊖ + + 2.777
CAOSDS Random ⊖ − − 2.669
CAOSDS Clusters ⊖ − + 2.736

20%

CAOSCD ⊕ ⊕ ⊕ 1.798

5.494E − 7
CAOSDS Classes ⊖ + − 2.770
CAOSDS Random ⊖ − − 2.804
CAOSDS Clusters ⊖ + + 2.628

10%

CAOSCD ⊕ ⊕ ⊕ 1.730

2.634E − 8
CAOSDS Classes ⊖ + + 2.716
CAOSDS Random ⊖ − − 2.817
CAOSDS Clusters ⊖ − + 2.736

7%

CAOSCD ⊕ ⊕ ⊕ 1.716

7.542E − 9
CAOSDS Classes ⊖ + − 2.757
CAOSDS Random ⊖ − − 2.878
CAOSDS Clusters ⊖ + + 2.649

4%

CAOSCD ⊕ ⊕ ⊕ 1.676

4.689E − 10
CAOSDS Classes ⊖ + + 2.662
CAOSDS Random ⊖ − − 2.946
CAOSDS Clusters ⊖ − + 2.716

(b)

Instances Strategies CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average rank p-value

50%

CAOSCD
The Friedman’s test cannot reject the null hypothesis that all
the learning algorithms obtain the same results on average.

1.983

2.377
CAOSDS Classes 2.550
CAOSDS Random 2.750
CAOSDS Clusters 2.716

34%

CAOSCD ⊕ + + 1.816

0.005
CAOSDS Classes ⊖ − − 2.917
CAOSDS Random − + + 2.650
CAOSDS Clusters − − + 2.617

25%

CAOSCD ⊕ + + 1.850

0.001
CAOSDS Classes ⊖ − − 3.117
CAOSDS Random − + + 2.517
CAOSDS Clusters − − + 2.519

20%

CAOSCD ⊕ ⊕ ⊕ 1.617

2.581E − 5
CAOSDS Classes ⊖ + + 2.617
CAOSDS Random ⊖ − + 2.650
CAOSDS Clusters ⊖ − − 3.117

10%

CAOSCD ⊕ ⊕ ⊕ 1.533

4.853E − 6
CAOSDS Classes ⊖ − − 2.966
CAOSDS Random ⊖ + − 2.933
CAOSDS Clusters ⊖ + + 2.567

7%

CAOSCD ⊕ ⊕ ⊕ 1.467

1.502E − 6
CAOSDS Classes ⊖ + + 2.733
CAOSDS Random ⊖ − + 2.867
CAOSDS Clusters ⊖ − − 2.933

4%

CAOSCD ⊕ ⊕ ⊕ 1.400

8.677E − 8
CAOSDS Classes ⊖ + + 2.667
CAOSDS Random ⊖ − − 3.000
CAOSDS Clusters ⊖ − + 2.933
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Table 9. Comparison of the accuracy of the algorithms in the real-world data sets (the four data sets where MOCK cannot obtain results are excluded
from the analysis, so 26 data sets are used) using the post-hoc Holm’s procedure with α = 0.05. The algorithms compared are MOCK and CAOS using the
CAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes), random (CAOSDS Random) and based on clusters
(CAOSDS Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%, 7% and 4% of information used from the complete data set. Thesymbols⊕
and⊖ show that the method in the row obtained results that were significantly higher /lower than those obtained with the method in the column. Similarly,
the symbols+ and − denote a non-significant higher/lower results. Symbol= indicates that the algorithms have the same rank. The Iman and Davenport
statistic is calculated according to F-distribution with 4and 100 degrees of freedom.

Instances Strategies MOCK CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average rank p-value

50%

MOCK ⊖ ⊖ ⊖ ⊖ 4.462

2.996E − 7
CAOSCD ⊕ + + + 2.154

CAOSDS Classes ⊕ − + + 2.692
CAOSDS Random ⊕ − − = 2.846
CAOSDS Clusters ⊕ − − = 2.846

34%

MOCK ⊖ ⊖ ⊖ ⊖ 4.346

3.449E − 7
CAOSCD ⊕ + + + 1.962

CAOSDS Classes ⊕ − − − 3.077
CAOSDS Random ⊕ − + + 2.769
CAOSDS Clusters ⊕ − + − 2.846

25%

MOCK ⊖ ⊖ ⊖ ⊖ 4.385

4.880E − 8
CAOSCD ⊕ ⊕ + + 2.000

CAOSDS Classes ⊕ ⊖ − − 3.308
CAOSDS Random ⊕ − + − 2.692
CAOSDS Clusters ⊕ − + + 2.615

20%

MOCK ⊖ ⊖ ⊖ ⊖ 4.423

4.378E − 10
CAOSCD ⊕ + + + 1.731

CAOSDS Classes ⊕ − − + 2.769
CAOSDS Random ⊕ − + + 2.731
CAOSDS Clusters ⊕ ⊖ − − 3.346

10%

MOCK ⊖ − − ⊖ 4.269

1.108E − 9
CAOSCD ⊕ ⊕ ⊕ ⊕ 1.577

CAOSDS Classes + ⊖ = − 3.192
CAOSDS Random + ⊖ = − 3.192
CAOSDS Clusters ⊕ ⊖ + + 2.769

7%

MOCK ⊖ − − − 4.115

4.816E − 9
CAOSCD ⊕ ⊕ ⊕ ⊕ 1.500

CAOSDS Classes + ⊖ + + 3.000
CAOSDS Random + ⊖ − + 3.154
CAOSDS Clusters + ⊖ − − 3.231

4%

MOCK ⊖ − − − 4.000

4.580E − 8
CAOSCD ⊕ ⊕ ⊕ ⊕ 1.538

CAOSDS Classes + ⊖ + + 3.038
CAOSDS Random + ⊖ − − 3.346
CAOSDS Clusters + ⊖ − + 3.077
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Table 10. Comparison of the execution time of the algorithmsin the real-world data sets (the four data sets where MOCK cannot obtain results are excluded
from the analysis, so 26 data sets are used) using the post-hoc Holm’s procedure with α = 0.05. The algorithms compared are MOCK and CAOS using the
CAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes), random (CAOSDS Random) and based on clusters
(CAOSDS Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%, 7% and 4% of information used from the complete data set. Thesymbols⊕
and⊖ show that the method in the row obtained results that were significantly higher /lower than those obtained with the method in the column. Similarly,
the symbols+ and − denote a non-significant higher/lower results. Symbol= indicates that the algorithms have the same rank. It must be worth noting
that, in terms of execution time, high ranks are better due tolow values of time are required. The Iman and Davenport statistic is calculated according to
F-distribution with 4 and 100 degrees of freedom.

Instances Strategies MOCK CAOSCD CAOSDS Classes CAOSDS Random CAOSDS Clusters Average rank p-value

50%

MOCK + ⊖ ⊖ ⊖ 1.923

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ = = 3.923
CAOSDS Random ⊕ ⊕ = = 3.923
CAOSDS Clusters ⊕ ⊕ = = 3.923

34%

MOCK + ⊖ ⊖ ⊖ 1.731

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.231
CAOSDS Random ⊕ ⊕ − + 3.961
CAOSDS Clusters ⊕ ⊕ − − 3.769

25%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.250
CAOSDS Random ⊕ ⊕ − − 3.846
CAOSDS Clusters ⊕ ⊕ − + 3.904

20%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.154
CAOSDS Random ⊕ ⊕ − + 4.039
CAOSDS Clusters ⊕ ⊕ − − 3.808

10%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.154
CAOSDS Random ⊕ ⊕ − + 4.135
CAOSDS Clusters ⊕ ⊕ − − 3.712

7%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.154
CAOSDS Random ⊕ ⊕ − + 4.135
CAOSDS Clusters ⊕ ⊕ − − 3.712

4%

MOCK + ⊖ ⊖ ⊖ 1.692

0
CAOSCD − ⊖ ⊖ ⊖ 1.308

CAOSDS Classes ⊕ ⊕ + + 4.442
CAOSDS Random ⊕ ⊕ − + 4.192
CAOSDS Clusters ⊕ ⊕ − − 3.365
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Table 11. Execution time in seconds of CAOS using theCAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes), random (CAOSDS Random) and based on
clusters (CAOSDS Clusters). The results are showed for 50%, 34%, 25% and 20% ofinformation used from the complete data set. Moreover, the execution time of MOCK algorithm is presented. The –
symbol indicates that the corresponding algorithm was not able to obtain the results with a reasonable memory usage.

Data set MOCK CAOSCD CAOSDS (50%) CAOSDS (34%) CAOSDS (25%) CAOSDS (20%)
Classes Random Clusters Classes Random Clusters Classes Random Clusters Classes Random Clusters

balance 43.70 78.74 16.74 17.72 13.43 3.95 4.02 5.02 2.48 2.54 2.50 1.28 1.10 1.27
biopsia 176.65 511.88 108.58 135.70 168.29 48.01 62.10 44.81 22.64 26.98 22.30 10.99 15.72 11.62
bpa 21.52 27.37 5.42 5.94 5.04 1.72 2.58 2.10 0.92 0.92 1.18 0.50 0.68 0.66
contraceptives 142.04 349.84 72.16 90.85 85.72 34.39 32.51 28.87 14.24 16.39 17.74 9.65 11.11 9.13
crx 144.80 23.04 6.67 5.35 6.51 3.78 3.52 2.65 1.55 1.83 1.79 1.09 1.12 1.06
dermatology 52.52 146.08 29.58 30.10 32.80 9.82 10.81 10.11 4.78 7.30 4.43 2.11 1.66 1.95
ecoli 23.13 29.38 5.61 5.32 5.23 1.54 1.72 1.71 1.03 1.01 0.70 0.45 0.52 0.75
glass 16.09 12.77 2.27 2.74 2.72 0.92 1.10 1.20 0.59 0.52 0.39 0.50 0.32 0.49
heart-statlog 28.94 30.02 7.11 4.95 6.34 2.01 2.70 1.82 1.27 1.72 1.07 0.68 0.53 0.72
housevotes 42.72 9.75 0.34 0.35 3.16 1.30 1.29 1.52 0.71 0.65 0.84 0.53 0.73 0.52
ionosphere 57.85 118.16 22.22 26.06 29.79 7.17 9.08 6.23 3.88 3.44 4.87 2.21 3.03 2.76
iris 64.90 4.71 0.86 1.37 1.15 0.44 0.37 0.47 0.37 0.50 0.50 0.32 0.30 0.18
letter-recognition – 46933.41 6611.63 8904.71 7571.54 5346.95 4250.12 5618.74 2844.15 2712.04 3716.18 2290.48 1626.48 2172.04
liver-disorders 22.83 35.19 5.82 6.97 4.16 2.34 2.62 1.82 0.96 1.04 1.05 0.49 0.62 0.69
magic – 38392.73 15943.77 12473.66 14324.35 7643.63 6177.70 5608.94 2637.42 3344.59 2553.88 2184.74 1712.92 2735.09
mammography 60.78 10.58 2.22 2.33 2.55 1.19 1.26 1.17 0.80 0.56 0.82 0.47 0.48 0.52
pendigits – 14089.59 4554.12 3573.42 4330.80 1584.21 1636.68 1484.44 914.70 763.11 873.11 403.51 419.59 483.48
pim 65.38 125.54 33.14 31.35 25.55 9.23 9.56 9.28 5.66 5.50 4.52 3.48 2.27 2.66
segment 279.67 986.58 317.80 282.72 332.02 135.50 124.62 144.94 51.26 64.40 65.80 43.36 37.77 47.40
shuttle – 145769.48 39513.02 37278.12 40372.78 17929.51 19899.96 18259.26 10744.45 10444.68 10666.89 7297.98 7547.09 7615.68
sonar 52.86 125.57 25.91 22.54 24.61 5.91 9.63 7.98 4.25 4.78 4.05 3.26 2.46 3.10
thyroids 86.27 28.67 4.90 5.24 4.83 2.59 2.63 2.89 11.59 18.99 10.54 6.94 4.03 8.41
transfusion 36.14 19.28 4.85 4.45 6.05 2.72 3.03 3.08 1.66 1.63 1.68 1.05 0.78 1.24
vehicle 97.22 358.72 67.10 65.15 57.30 23.36 19.51 21.03 9.21 12.57 9.89 6.58 5.49 7.46
vowel 100.60 231.39 47.88 56.15 59.28 18.33 17.86 20.44 8.58 9.76 10.91 4.65 6.41 5.16
waveform 1437.58 22075.68 4287.51 4289.13 4198.36 1408.31 1258.11 1513.80 666.65 630.38 704.95 344.98 392.73 375.29
wdbc 90.45 264.08 43.03 40.76 52.11 17.37 14.86 17.48 6.92 9.28 7.29 3.82 5.21 6.85
wisc 45.49 34.54 13.50 9.83 7.60 4.77 4.68 6.31 2.19 2.15 2.30 1.94 2.05 1.10
wpbc 26.72 63.19 15.24 11.36 14.05 3.71 4.78 5.38 3.79 2.73 2.24 1.54 1.83 1.75
yeast 153.37 400.10 83.50 74.58 82.52 30.89 26.39 26.46 11.61 13.74 12.61 8.62 8.32 8.86
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Table 12. Execution time in seconds of CAOS using theCAOSCD and the threeCAOSDS strategies to generate data subsets: based on classes (CAOSDS Classes), random (CAOSDS Random) and based on
clusters (CAOSDS Clusters). The results are showed for 10%, 7%, 5% and 4% of information used from the complete data set. Moreover, the execution time of MOCK algorithm is presented. The – symbol
indicates that the corresponding algorithm was not able to obtain the results with a reasonable memory usage.

Data set MOCK CAOSCD CAOSDS (10%) CAOSDS (7%) CAOSDS (5%) CAOSDS (4%)
Classes Random Clusters Classes Random Clusters Classes Random Clusters Classes Random Clusters

balance 43.70 78.74 0.36 0.37 0.38 0.15 0.13 0.20 0.12 0.06 0.18 0.05 0.06 0.15
biopsia 176.65 511.88 2.78 2.21 1.95 0.75 0.84 1.56 0.63 0.46 1.05 0.48 0.58 0.70
bpa 21.52 27.37 0.16 0.12 0.15 0.12 0.12 0.11 0.08 0.12 0.07 0.08 0.07 0.09
contraceptives 142.04 349.84 1.72 1.89 2.62 0.61 1.12 0.83 0.43 0.42 0.78 0.26 0.35 0.66
crx 144.80 23.04 0.33 0.32 0.42 0.19 0.19 0.29 0.15 0.15 0.29 0.15 0.14 0.27
dermatology 52.52 146.08 0.62 0.68 0.81 0.37 0.39 0.50 0.25 0.29 0.41 0.27 0.29 0.27
ecoli 23.13 29.38 0.17 0.16 0.16 0.13 0.12 0.11 0.12 0.10 0.10 0.07 0.09 0.10
glass 16.09 12.77 0.13 0.12 0.12 0.13 0.11 0.10 0.08 0.10 0.10 0.07 0.12 0.07
heart-statlog 28.94 30.02 0.23 0.24 0.28 0.13 0.14 0.15 0.10 0.12 0.11 0.11 0.11 0.12
housevotes 42.72 9.75 0.20 0.20 0.28 0.18 0.14 0.22 0.14 0.16 0.23 0.14 0.14 0.20
ionosphere 57.85 118.16 0.51 0.43 0.43 0.32 0.37 0.33 0.25 0.28 0.30 0.22 0.21 0.34
iris 64.90 4.71 0.10 0.10 0.18 0.11 0.11 0.09 0.10 0.09 0.11 0.11 0.07 0.11
letter recognition – 46933.41 772.81 671.20 566.42 187.95 250.25 463.84 282.25 125.69 251.17 86.73 98.78 192.88
liver-disorders 22.83 35.19 0.15 0.22 0.21 0.10 0.10 0.15 0.09 0.12 0.13 0.09 0.08 0.07
magic – 38392.73 258.70 252.47 299.13 102.03 108.79 269.24 51.91 66.92 88.94 30.97 48.01 95.76
mammography 60.78 10.58 0.18 0.14 0.32 0.10 0.08 0.24 0.08 0.08 0.22 0.08 0.07 0.22
pendigits – 14089.59 110.48 74.69 96.22 40.31 42.12 58.73 29.49 18.00 25.39 4.30 4.93 20.95
pim 65.38 125.54 0.51 0.68 0.68 0.33 0.30 0.30 0.19 0.20 0.23 0.13 0.17 0.22
segment 279.67 986.58 7.80 7.69 5.96 2.77 2.64 3.87 1.55 2.32 3.68 0.53 0.89 2.38
shuttle – 145769.48 1105.78 1076.37 2114.85 569.73 619.69 1102.95 342.76 380.65 902.32 343.93 205.27 989.78
sonar 52.86 125.57 0.70 0.84 0.70 0.40 0.24 0.33 0.32 0.30 0.47 0.35 0.38 0.34
thyroids 86.27 28.67 0.89 1.39 1.58 0.43 0.30 0.91 0.22 0.29 0.74 0.34 0.29 0.61
transfusion 36.14 19.28 0.33 0.26 0.33 0.13 0.14 0.23 0.12 0.11 0.14 0.09 0.11 0.16
vehicle 97.22 358.72 1.04 0.92 1.89 0.44 0.45 0.65 0.33 0.36 0.39 0.27 0.25 0.38
vowel 100.60 231.39 1.20 1.39 1.27 0.49 0.82 0.80 0.31 0.37 0.54 0.29 0.29 0.50
waveform 1437.58 22075.68 131.79 97.71 87.48 67.57 21.67 41.65 19.31 17.88 30.62 5.77 10.50 21.90
wdbc 90.45 264.08 0.66 0.75 1.35 0.48 0.65 0.47 0.18 0.34 0.28 0.18 0.25 0.30
wisc 45.49 34.54 0.45 0.50 0.50 0.13 0.21 0.36 0.15 0.16 0.25 0.12 0.12 0.19
wpbc 26.72 63.19 0.79 0.41 0.52 0.32 0.20 0.22 0.26 0.33 0.22 0.19 0.26 0.15
yeast 153.37 400.10 1.59 2.16 2.15 0.73 0.83 0.80 0.20 0.58 0.58 0.23 0.32 0.59


