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ABSTRACT

Multiobjective evolutionary clustering algorithms areskd on the optimization of several objective
functions that guide the search following a cycle based atugenary algorithms. Their capabilities
allow them to find better solutions than with conventionaistéring algorithms when more than one
criterion is necessary to obtain understandable patteons the data. However, these kind of tech-
nigues are expensive in terms of computational time and menmage, and specific strategies are
required to ensure their successful scalability when fatange-scale data sets. This work proposes
the application of a data subset approach for scaling-ugiobjgctive clustering algorithms and it also
analyzes the impact of three stratification methods. Themxgnts show that the use of the proposed
data subset approach improves the performance of multitigeevolutionary clustering algorithms
without considerably penalizing the accuracy of the finast#ring solution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction due to their high computational and memory usage require-
S ) ) ments (Freitas, 2002). This is an important issue consideri
Multiobjective clustering (MC) algorithms (Handl and the needs when analyzing large data sets in a reasonable com-
Knowles, 2007) tackle the challenge of optimizing several ¢ ytational time and memory usage without considerably lpena
teria that cannot be combined in a single objective fundiipn  izing their accuracy (Kargupta et al., 2009). Evolutionafgo-
defining an objective function for each criterion and by opit-  yithms (EAs) are based on the principles of evolution and nat
ing them trying to obtain a tradeffidoetween all the objectives. ;g selection, applying an iterative process where a ciitle
There are dferent strateg_ies for multiobjective optimization ¢ initial solutions (individuals) are evolved through pse-
such as Simulated Annealing (Saha and Bandyopadhyay, 201Q)ndom recombination until obtaining an optimal solutién.
and Ant Colony Optimization (Iredi et al., 2000), but Multio  ¢jystering, an individual is a possible group of data. From t
jective Evolutionary Algorithms (MOEAs) (Coello, 1999\&  \ynole process, the evaluation is the most time-consumiyy st
become one of the most capable strategies to solve this kind §ecause each individual has to be assessed with respett to al

problem (Zitzler et al., 2000) since they (1) work with & col- the elements according to all the objective functions deffine
lection of solutions with dferent trade-fis among objectives,

which are improved until a Pareto set with optimal tradiss=o ~ This work proposes to scale-up MOEAs when they are ap-
is obtained; (2) can be easily adapted to the type of data dilied to large data using an approach based on data subsets te
the studied domain, due to the flexible knowledge representdiiques. Specifically, the approach splits the data set eersl

tion used; and (3) are able to optimizéfdient objectives with- ~ strata so the EA only uses a stratum for evaluating the iddivi
out assuming any underlying structure of the objective funcals in each generation following a Round Robin policy to evoi
tions. Therefore, MOEAsfer outstanding search capabilities Pias problems. Thus, computational and memory costs associ

but their performance can be compromised in large databas@éed to the evaluation of the population are drasticallyced
and its application does not need to modify the algorithmacstr

ture. An ideal stratification strategy is to map the initiatalset
**Corresponding author: Tek:34-932522890 into disjoint strata of equal size and with equal class ihistion
e-mail: albert . fornells@htsi.url.edu (Albert Fornells) and where the number of strata is defined by the user. How-
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ever, clustering problems are unsupervised and classestcan is returned as the solution. Following this idea, other rodsh
be used to split the instances into representative straise consist of randomly extracting several samples from thigeent
they are unknown (Cano et al., 2008). Therefore, the definidata set and applying the same clustering algorithm to eaeh o
tion of the size of subsets and the selection of their elementof the samples, thereby obtaining several clustering tesaif-
are not trivial and they influence the performance of the -algoter this, all the obtained results are merged in a singleeium)
rithm if they are not sfiiciently representative. For this reason, solution. Hore et al. (Hore et al., 2009) proposed ugimgeans
two unsupervised and one supervised strata generatide-straor fuzzyk-means algorithms with large data. The idea is to ob-
gies are presented and analyzed: (1) random strata, (23 strdain a set of jointed or disjointed samples and apply one ®f th
according to clusters distribution using a fast and appnax¢  two algorithms to each sample to obtain several clustemag r
clustering algorithm and (3) strata based on classes. Mergo sults. The last step consists of doing a consensus betwebkn ea
strategies are integrated in a MC algorithm based on MOEAslustering result to obtain a final clustering solution agm
called CAOS (Clustering Algorithm based on multiObjective semble clustering. The drawback of using only one sample to
Strategies) (Garcia-Piquer et al., 2012, 2013) and theteated  obtain the clustering results is that it is necessary toweehe
with several strata size using artificial and real world peais.  algorithm several times or apply it toftkrent data subsets in
Finally, results are compared with each other and with kkgarorder to avoid the bias of using only one sample. Moreover,
to MOCK, which is one of the most well-known MC algo- only a part of the entire data set is used. Thus, the appreache
rithms based on MOEAs (Handl and Knowles, 2007).The rebased on using all the data subsets can be useful to obtain the
sults show improvement in computational time while accyrac clustering results in a single execution.
is not substantially penalized when stratification apphesare ILAS (Incremental Learning by Alternating Strata) (Bac-
applied. Furthermore, the three strategies for buildimgstinata  ardit, 2004) is a technique based on Evolutionary Algorghm
are equivalent so the proposed data subset approach can foe classification problems based on dividing the trainieg s
used in clustering problems because it does need a striifica into several strata based on usingfatient stratum in each iter-
method based on classes. Finally, the results also showhthat ation of the evolutionary algorithm using a round-robinipgl
proposed approach is significantly better than MOCK in termsThus, the individuals are evaluated with all the stratajding
of computational time and accuracy. any bias of the data and increasing the generalization dhthe
The paper is organized as follows. Section 2 summarizes thdividual. The strategy followed in this paper is based on the
related work on data subsets applied to clustering. SecBon ILAS algorithm but applied to MC problems.
and 4 describe CAOS and the stratification strategies. @ebti
describes the experimentation and discusses the resmilyF 3 ca0s

Section 6 ends with conclusions and further work.
CAOS (Garcia-Piquer et al., 2013) is a multiobjective evo-

lutionary algorithm system to solve clustering problemsedaa
2. Related Work on adapting the multiobjective optimization algorithm PES
Il (Corne et al.,, 2001) due to its competitiveness with re-

Two of the most used strategies for scaling-up EAs are Parspect to the state-of-the-art clustering methods and ilisyatio
allel EA (Cantu-Paz, 2000) and data subsets (Cano et a8, 200evolve accurate clusterings from domains with complexcstru
Derrac et al., 2010). The first strategy distributes the aganp  tures (Handl and Knowles, 2007). It evolves a set of mutually
tional cost of the evaluation step by parallelizing the eséibn  non-dominated clustering solutions (called Pareto sat)dbr-
of individuals so it is necessary to adapt or redefine the-algorespond to dferent tradefis between objectives. A solutidh
rithm in order to be able to parallelize it in a environmenttwi  is non-dominated when there is not any solution better an
several processors. Moreover, the parallelization mayyimp  in all the objectives. Otherwise, the solution is dominated
additional communication cost that could decrease theoperf  Algorithm 1 summarizes the main elements of PESA-II. It
mance achieved with the distribution of compute. On therotheevolves an external populatiofEP) of individuals through a
hand, the second strategy uses a data subset from the brigimumber of generation where individuals are selected, etbss
data set to evaluate the individuals so fewer resourceseare rand mutated following the typical evolutionary cycle. idi
quired and there is no need to modify the algorithm structureual are represented with real numbers that represent thre coo
In contrast, the data sets definition is not trivial. dinates (attributes) of the cluster prototype using a céahir

There are two main ways to work with data subsets: usindased representation (Hruschka et al., 2009). More spabjfic
only one of the built data subsets, or using alternativdlyhal  each individual consists of-t genegXy1, ..., Xit, ..., Xn1 ---» Xnt}r
data subsets. The algorithm CLARA (Clustering LARge Ap-wherenis the number of clusters of the individugals the num-
plications) (Kaufman and Rousseeuw, 1990), one of the modier of the attributes of the data set, aqdis the value of the
representative algorithms for clustering large data setsks  attribute j of the cluster centroid. The genotypic represen-
using the first approach. This algorithm is based on selgctintation is transformed into the phenotypic representatipass
randomly a sample from the entire data set and, subsequentkigning each instance to the cluster with the nearest adrtyo
it finds k medoids of the sample using only the built sample.it. In addition to EP, it also maintains anternal population
After this, all the instances of the entire data set are assigo  (IP) to separate the exploration from the storage of the best
the most similar medoid. The execution of the entire processolutions. That isJP is used to explore new promising solu-
is repeated five times, and the solution with less dissiitylar tions andEP is employed to store a large and diverse set of hon
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1 LetEPandIP be an external and an internal population respectively. values close to 0 for random partitions. In contrast, a VafL.I.b
They store a maximum dfigp andN;p individuals, whereip < Ngp) means that all the clusters correspond to the structurestkiin

2 Init. 1P with Nip individuals stochastically created the ideal partition. In our case, the ideal partition cqoresls

3 Init. the EP individuals with non-dominated clustering results fréf to the classes of the instances in the original data set.

4 Evaluate all the individuals fror& P according to the objectives . L .

5 foreach Generationdo F_mally, CAOS allows the customlzatl_on_of the ObjECtIVG_S—, g

6 SelectN;p individuals fromEPto generate a neWP netic operators among other featurBgviationandConnectiv-

7 Wh"es (ll'Plt!:g) do o individuals frotf ity are used as objective functions (Handl and Knowles, 2007)

8 elect and remove two Individuals 1r . :

9 Cross and mutate them to obtain 2 new irfiés, andiyen, beca_use they |nd|cat_e how nearby are the elements of each clu
10 foreach Iyey do ter (intra-cluster variance) and how separated are theeckis
11 Evaluate theey fitness according to the objectives between them (inter-cluster variance), respectivelyh®itjec-

12 if INew dominates any individual from Eften tives have to be minimized because the desired solutionéghou
13 Remove the dominated individuals byey, from EP . . .
I Add Iy into EP; contain compact clusters with examples that are close ifethe
o ; ) . ture space. A one-point crossover operator (Goldberg, 002
15 else if Inew is not-dominated andyky not-dominates any . . .
individual then is ysgd to generate twdfsepring from pairs of parents. One
16 if EP is fullthen point is selected for each parent and the parts are integeltn
17 | Remove anind. from the most crowded niche between them, taking into account that they have to cut the in
18 | Add Inew into EP dividuals at the same attribute but not necessarily at theesa
L L - cluster. This is an easy crossover strategy according teitiee
19 Select a individual fronEP as a solution of each individual can be fierent. A cluster-oriented mutation
Algorithm 1 Scheme of PESA-II algorithm. operator (Hruschka et al., 2009) is used to promote the right

search. It defines threeftrent types of mutations and all of
them have the same probability to be applied: to merge two

_ ) ) _ clusters, to split a cluster, and to move the centroid of atelu
dominated solutions found so far. MoreovER is organized

in Nhiches different niches through the placement of an hyper4, pata Subset Strategies

grid in the objective space splitting it in hyper-rectarsglwhere ) _ _

each of them is considered as a separate niche. Therefere, so Reducing the amount of data used by an algorithm is a smart
lutions with similar objectives will be placed in the samehe. ~ @Pproach to reduce the computational cost of evolutionary-
The replacement process uses the niching mechanism to mak@sed machine learning techniques and it could also improve
pressure toward balancing the allocation of solutions ffegi ~ the accuracy of the system Bacardit (2004). In this sense, we
ent niches thus encouraging solutions to cover all the tisgec  Want to scale-up a MC algorithm based on EAs by dividing a

space. Concretely, the system credsvith Np individuals data set in several stratified subsets and using them aiteziya

stochastically initialized. All the non-dominated sotuts of ~ during the algorithm process in order to avoid bias. Nexhsoi
IP are used to buil&EP. detail the analyzed approaches to build the strata and huseto

The final step is to select a solution from the Pareto set (comIt in MC. Finally, the impact of using these strategies imtsr

posed by all non-dominated solutions) when the evolutipnar of computational cost and memory usage is described.
process er?ds.. .This pqint_is not trivigl because_the_re IS NO{ 1 Creation of Strata

any single individual which is the best in all the objectieesl
for this reason clustering validation techniques (Hallatal., b ; | si 4 with Lol ditibib
2001) are required for selecting the best one. CAOS integrat subsets (strata) of equal size and with equal class ditibibu

some supervised and unsupervised techniques to score a ég_acardlt, 2004; Cano etal., 2006,)’ where the numper ofestra
lution. The supervised approach follows the idea that simil 'S Selécted by the user (see Algorithm 2). Classes in clasgter
elements from the same class should be in the same clust@ir.c’blem,S are usually unknown, SO th? str_at|f|cat|on based on
In contrast, the unsupervised approaches retrieve thesblest c!asses is not always a_lvf';ulable. To avoid this lack, two pasu
tion from the Pareto set according to the quality of the €lsst vised approaches to divide the data set are proposed:

based on the compacting and separation between them, such 8§ random Strata. It randomly assigns the instances to each
Dawes-BouIdnj mdex,_Dunn |nde>_< or Silhouette mdex,_ agon  gne of the strata as Algorithm 3 shows.

others. Experimentation of Section 5 uses a supervised vali

dation technique based on classes called Adjusted Rand Inde e Strata based on Clusters.It uses a fast and approxima-
(Yeung and Ruzzo, 2001) for being able to compare the per- tive clustering technique to create a partition of the erigi

Data subset strategies map the initial data set into didigtia

formance of several strategies between them. It is impbttan nal data set. Next, the data set is stratified according to the
highlight that class information is not used in the buildprg- obtained clusters, that is, it assigns the instances to each
cess of the clusters, it is only used at the end of the process f stratum respecting in it the same cluster distribution ef th
comparing the obtained clustering solution between thene. T instances than in the clustered original data set. The pro-
Adjusted Rand Index compares a clustering solution with re-  cess is described in Algorithm 4. The clusters are found
spect to an ideal partition of the data set by counting thelrarm with the Subtractive Clustering algorithm Chiu (1994) ap-

of pairwise co-assignments of instances between them and in  plied to the original data set, which is afieient and non-
troducing a statistically induced normalization in ordeyield iterative method for estimating cluster centers. Itis ligua



used to determine the number of clusters and their initiahh.3. Computational Performance Models

values for initializing iterative optimization-based star- The aim of the data subsets Strategies is to reduce the com-
ing algorithms. The limitation of this strategy is their com pytational time and memory usage without considerably lpena
putational cosO(?), wheremis the number of instances izing the accuracy. Next, this subsection analyzes thedwgpr

of the original data set, because with very large data setgent in the performance of a MC algorithm based on EAs using
can be expensive in computational terms. Nevertheless, igAOS from a theoretical perspective and section 5 will azgly
terms of spatial cost it only needs the data set informationthe improvement using fierent real and artificial data sets.

and a list with the prototypes of each cluster. The CAOS process can be divided in two main blocks: the

: . L initialization process and the clustering process. Theaini
Finally, these approaches require the definition of the rarmb ._ . : .
ization process focuses on precalculating the distandesba

of strata which will influence the performance. As the number, ", :
. . : the instances and the nearest neighbors to speed-up the clus
of strata increases the computational time decreases thatrpa

extraction becomes more complex due to the lack of informaEerlng process avoiding the repetition of calculations.com-

tion. Itis important to highlight that the idea of these sttaes trast, the_clustenng processis referr_ed to the evolutgou_yx:le
. . 2 o that obtains the Pareto set of solutions. CAOS algorithm has
is to obtain data with similar distribution in each stratuand

. L ; ; the same initialization and clustering cost independeuitihe
this only can be possible if the size of each one is not venjlsma data subset strategy used (based on classes, random oobased
clusters) but it depends on the number of strata used. Howeve
the time of both processes is extremely lower in comparison
The idea is to use afierent stratum in each iteration of the it the time spent when the complete data set is used as Ta-
evolutionary algorithm in order to avoid the bias producé@w  pje 1 describes. It should be emphasized that both times are
only one stratum is used. Thus, the final individuals can genpeqyced when the size of the stratum is decreased, thatés wh
eralize more than using only one of the strata and there is nhe number of strata increases. Nevertheless, the useatd str
need to modify the main process. More precisely, the generggquires an additional cost for building them. Accordingfis,
tion of strata is done before line 1 of the Algorithm 1, and thetne strategies based on random instances selection ardidrase
change of stratum is done between lines 6 and 7. Itis impbrtanyasses need only one data scan to build the strata and tiseir ¢
to highlight that these strategies can be applied to CAOS dug O(m), wherem is the number of instances of the complete
to the fact that individuals are represented by the pro&s\if  gata set. In contrast, the strategy based on approximdtise ¢
the clusters and then the individuals are independent ahthe (a5 has a higher cost due to the cost related to the subtacti
stances. Thus, the algorithm can work witlffelient instances clustering techniqued(m?)).
of the data set in each iteration. As it has been explained above, CAOS precalculate the dis-
tances between all the instances of the data set and thesheare
L LetnumsS tratebe the number of strata to generate neighbors of each instance to speed-up the cIu_ster_ing §g0Cce
2 LetStratabe a vector of sizaumsS tratavhere each position is initially Thus, the memory usage would be extremely high if the com-
an empty list of instances plete data set is analyzed when a large data set is used. Ap-
3 Let| be a vector of sizaumClassewhere each position stores a list of plying any of the three strategies of data subset consbmcti
the instances of the same class the memory usage is considerably reduced as Table 2 shows.

4.2. Evolution Based on Strata

4 stratum=0 . .
5 class= 0 Even the computational time and the memory usage of the MC
6 while (class< numClassesio algorithm is considerably reduced, the accuracy of the ateth
7 while (III[C'aSS]Id!= QIJ) do rom [clas can be penalized due to the fact that less information is tesed
8 Select randomly an instancérom I[clas : ; :
o Add to Stratdstratun] obtain the clustering solutions.
10 Erasel from I[clasg
11 stratum= (stratum+ 1) modnumS trata
12 class= class+ 1 1 Obtaining the instances clusterechumCluster<lusters by applying the
Subtractive Clustering algorithm to the complete data set
13 return Strata 2 LetnumStratebe the number of strata to generate
Algorithm 2 : Strata generation based on classes. 3 Let Stratabe a vector of sizaums tratavhere each position is initially

an empty list of instances
4 Let| be a vector of sizaumClustersvhere each position stores a list 0

1 LetnumsS tratabe the number of strata to generate the instances assigned to the same cluster
2 Let Stratabe a vector of sizeaums tratavhere each position is initially 5 stratum=0
an empty list of instances 6 clu_ster: 0
3 Let| be alist of all the instances of the data set 7 while (‘.:IUStEK numClustersyio
4 stratum=0 8 while (|I[clustef|!= 0) do
5 while (|I| = 0) do 9 Sele_ct randomly an instancérom I [clustei
6 Select randomly an instancérom | 7° Addi .to Stratd stratun]
7 Add i to Stratd stratunj H Erase from I[clusteq
8 Erase from | 12 stratum= (stratum+ 1) modnumsS trata
9 stratum= (stratum+ 1) modnums trata 13 cluster= cluster+ 1
10 return Strata 14 return Strata

Algorithm 3 : Strata generation based on random instances selection. Algorithm 4 : Strata generation based on approximative clusters.



Table 1. Computational cost of CAOS applied to the complete da set and
to data subsets CAOScp and CAOSys respectively) broken down in ini-
tialization cost and clustering cost. Whereg is the number of generations,
[IP|is the internal population size,mandt are the number of instances and
attributes of the data set respectivelyng is the average of the number of
clusters of the individuals (the minimum number of clustersis 1 and the
maximum m), Ngs is the average of the number of clusters of the individu-
als (the minimum number of clusters is1 and the maximum ngé), tis
the percentage of the nearest elements taken into accountp@numsS trata

is the number of strata generated.

Algorithm Initialization cost Clustering cost

CAOSco o - ) (g IIP|- M- fea - )

CAOS o(humsStrata (—a—12.¢) | O(g-[IP|- — 2 . fys- 1)
S numstard ¢ 9 numStrata °°

Table 2. Memory usage of CAOS applied to the complete data set dn
to data subsets CAOScp and CAOSps respectively) to store the nearest
neighbors. Wherem is the number of instances of the data set/ is the
percentage of instances considered neighbonsumsS tratas the number of
strata generated andsizeo {data typ@ is the size in bytes of the data type.

Algorithm Storage of distances Storage of nearest neighbors
CAOSh n? - sizeo{float) (£ - m)? - sizeofintegen
CAOSys (o= - sizeo{float) | numStrata (74012 - sizeo{integen

5. Experiments, Results, and Discussion

5

150 to 58000), attributes (from 2 to 60) and classes (from 2 to
26) from the UCI repository (Frank and Asuncion, 2010). The
characteristics of each data set are detailed in Table 5and T
ble 6 in supplementary material. It must be emphasized that
the class assigned to each instance of the data sets is known i
order to apply the stratification strategy based on clagse$oa
evaluate the accuracy of the clustering results.

5.2. Experimental Methodology

The performance of the three approaches based on data sub-
sets (CAOBs) were compared with respect to the approach that
uses the complete data set (CA§¥in terms of accuracy and
computational time. The accuracy is compared using the Ad-
justed Rand Index, which is based on the initial classesef th
data set, where 1 is the best accuracy (all the clusters-corre
spond to the original classes) and 0 the worst. The computa-
tional time represents the sum of the precalculation ting an
clustering time. The first one includes the time needed tlolbui
the data subsets and to precalculate the distance and neares
neighbors structures necessaries to the clustering odtée
second one is referred to the time needed to do the evoluyiona
process that obtains the Pareto set of solutions. Finalsh e
CAOSys strategy is executed dividing the original data set in
2, 3, 4, 10, 15, 20 and 25 data subsets which means the 50%,
34%, 25%, 20%, 10%, 7% and 4% of the instances of the orig-

This section evaluates the performance improvement iff@l data sets are considered in each data subset respective
CAOS using the proposed data subset approach with the threeEach CAOS configuration was run with 20fférent seeds

stratification strategies described in section 4. The perdoce

and with the following parameters (see Section 3 for notatio

is considered in terms of accuracy using the Adjusted Rand Irfletails):¢is 5% of the number of instances used, the maximum
dex value of the solution returned by CAOS and the computa$iz€ of the initial population is 100Nep is 1000, Nip is 50,

tional time required to find it.

NhichesiS 5, the number of generations is 4®,is 0.7 andP,

The organization of this section is as follows. First, the co 1S 1/m. The minimum and maximum number of clusters for the

initial individuals is 2% and 20% ah respectively.

lection of 105 artificial and real-world data sets and theeexp ’ _
imental methodology are described. Next, CAOS results and On the other hand, the recommendations pointed out by
a comparison between the proposed data subset approachGQi§msar (Densar, 2006) were followed to perform the statisti-
CAOS and MOCK (Hand! and Knowles, 2007) is presented ircal analysis of the accuracy.of the algorithms, wh!ch wasgthas
order to emphasize the performance improvement of our an the use of nonparametric tests. More specifically, we fol-
proach. Finally, the performance of the most suitable egrat 0Wed the process given in (Gaacand Herrera, 2008) to com-

is analyzed in data sets of medium and large size. pare them using the software freely provided by the authors.
First, the Friedman’s test (Friedman, 1940) witk= 0.05 was

applied to contrast the null hypothesis that all the leagilgo-
rithms obtained the same results on average. Then, if teeri
man’s test rejected the null hypothesis, pair-wise conspas
were performed by means of the Holm'’s step-down procedure
éHoIm, 1979). Following this procedure, we could distirgjui
0,oairs of learners that performed significantlyferently.

5.1. TestBed

The experimentation usesfidirent typologies of artificial
and real-world problems. Concretely, 75 artificial datasset
were created according tofférent number of instances (from
800 to 24000), attributes (from 2 to 100) and classes (from
to 30). They were built adapting the tool used in (Handl an
Knowles, 2007) where three parameters are used to create the ) .
data sets: the number of attributes, the number of classes ra-3- Discussion of CAOS Results
lated to the number of instances, and the separation betweenThe accuracy of CAOS and the three CAOSy strategies
the classes. Each class has a data distribution for eathuggtr were empirically tested with the presented 105 data seig usi
which can only have numerical values. The distribution can b the Holm’s test (see Table 7 in the supplementary mateAal).

a normal or uniform distribution, and it is randomly selecte  alyzing the results it can be observed that independentllyeof
model each attribute. Also, the separation between clagses  size of the strata, all the CAQ@g strategies are not significantly
modeled, obtaining 25 data sets with well-separated dassedifferent between them. However, all of them are significantly
other 25 data sets with nearer classes, and the last 25 véth ov different to CAOgp due to the fact that they are using less
lapped classes .On the other hand, other 30 real-worldgmubl  information in the clustering process. For this reason, ee r
were selected according tofidirent number of instances (from peat the same Holm'’s test but separating data sets in atifici



Table 3. Comparison of the accuracy of the algorithms in thed) artificial and (b) real data sets using the post-hoc Holm’s pcedure with @ = 0.05. The
algorithms compared are CAOS using the complete data s&AOScp and the three CAOSps strategies to generate data subsets: based on classe8Q s
Classes), random CAOSys Random) and based on clustersQAOSps Clusters). The results are showed for 34%, 10% and 4% of infomation used from
the complete data set. The symbols and & show that the method in the row obtained results that were sigificantly higher/lower than those obtained with
the method in the column. Similarly, the symbols+ and — denote a non-significant higheflower results. The Iman and Davenport statistic is calculagd
according to F-distribution with 3 and 222 degrees of freedm.

(@
% Instances Strategies CAOSp | CAOSys Classes| CAOSys Random| CAOSps Cluster | Avg. Rank p-value
CAOp ® ® ® 1.871
CAOSys Classes e + + 2.662
0, -
34% | crpoSsRandom| o . N 2689 | LTOE-S
CAOSys Clusters e - - 2.777
CAOSp ® ® ® 1.730
CAOSys Classes e + + 2.716
0, —
10% | caospsRandom| o . - 2817 | 203%€-8
CAQOSys Clusters o - + 2.736
CAOp @ ® @ 1.676
CAOSps Classes o + + 2.662
0, —
4% CAOSys Random o - - 2.946 4.68% - 10
CAOSps Clusters e - + 2.716
(b)
% Instances Strategies CAOSp | CAOSys Classes| CAOSHys Random | CAOSys Cluster | Avg. Rank p-value
CAOSp @ + + 1.816
CAOSps Classes o - - 2.917
0,
34% CAOSHs Random - + + 2.650 0.005
CAOSys Clusters - - + 2.617
CAO<p ® ® ® 1.533
CAOSys Classes o - - 2.966
0, —
10% | caosssRandom| o . - 2033 | 48F-6
CAOSys Clusters o + + 2.567
CAOp ® ® ® 1.400
CAOSps Classes o + + 2.667
0, —
4% CAOSHs Random o - - 3.000 8677E -8
CAQOSys Clusters o - + 2.933

and real-world datasets in order to analyze in more detail thsiderably decreased until less than the 20% of the instaarees
performance of the flierent strategies as Table 3(a) and 3(b)used. In contrast, the random selection approach seems to un
illustrates using 34%, 10% and 4% of instances for the artific derperform the other two due to the fact that the classes-stru
and real data sets respectively (see Tables 8(a) and 8¢h) froture is complex in some data sets and the random strategy is no
the supplementary material for the complete experimentati  able to build representative strata. Figure 2(c) shows ¥be a
The results with respect to the artificial data sets shows thaage speedup for each data set of the three GAGBategies.

the three CAOSs strategies are significantly worse in terms of The speedup of each CA@Sstrategy applied to a specific data
accuracy regarding CAQ$ independently of the number of set corresponds to the time needed to apply CAOS by GAOS
instances considered. Nevertheless, the three GA@& not  divided by the time needed by the corresponding CA&Srat-
significantly diferent in terms of accuracy between them. egy. Thus, a high speedup is desired (e.g., a CGAQOSrat-
From a quantitative point of view, Figure 1(a) shows the averegy with speedup of 3 indicates that it is three times fasizn t
age of accuracy flierence among the three CA@sstrategies the CAOSp approach). This speedup is divided in two partial
and CAO%p. Globally, the strategies based on classes and ospeedups (1) regarding the precalculation time neededilth bu
clusters follow a similar pattern, and the accuracy is naot-co the data subsets and to precalculate the distance and tneares

Oy o 0@:\_‘,\\
TTT— B— o
——— = g |
-0.025 b S -0.025 =
3 S~ 8 T~
< \ 2 ¥,
g ~. o §~°~e
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€) (b)

Fig. 1. Accuracy difference of the threeCAOSys strategies regardingCAOScp. (a) Artificial data sets and (b) real-world data sets.
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Fig. 2. Speedup of the threeCAOSys strategies regardingCAOScp in artificial (a,b,c) and real-world data sets (d,e,f). Figues (a,d) are referred to the
speedup of the precalculation time. Figures (b,e) show thepeedup of the clustering time to do the evolutionary procesthat obtains the Pareto set of
solutions. Figures (c,f) are related to the speedup of the evall time taking into account both times.

neighbors structures (see Figure 2(a)), and (2) regarditiget  subset, the three CAQ@g strategies are significantlyfiérent in
clustering time (see Figure 2(b)). The precalculation dppe terms of accuracy regarding CA@S but they are not signifi-

is the same in the random strata than in the strata based a@antly diterent between them. Figure 1(b) shows that there is
classes strategies. However, the strategy based on slhsten  virtually no accuracy dference between CAQS strategies re-
lower precalculation speedup because it needs to rougidy cl garding CAOZp, because the data sets used do not have shapes
ter the instances before building the data subsets. On lttee ot as complex than the artificial ones used. Figure 2(f) shoats th
hand, the speedup of the clustering time is the same in the thr in terms of speedup, the behavior in the used real-world data
strategies since the strata method does fiecato the clus- setsis similar than in artificial data sets. The maximumdppe
tering process. Analyzing the overall speedup accordintbgo is lower because some of the real-world data sets are snthll an
percentage of instances used from the complete data san it cthe speedup of using less than a 10% of the instances is not as
be observed that using a 50% of the instances, that is the lovitigh than in larger data sets. Also, it can be observed thtrein
est improvement, the speedup is 3, so CA@Strategies are used real-world data sets if it is used a 50% of the instarices,
three times faster than CAQS. Moreover, using a 4% of the is four times faster than CAQ$p and it obtains the same clus-
instances of the complete data set the speedup is 500 for thering results (see Table 11 and Table 12 in the sup. material
strategy based on clusters and 1200 for the other two sieateg with the results of the execution time). It must be emphakize
Also it can be observed that there are not speedfiprdinces that the speedup obtained applying this kind of technigees i
between the strategies until more than a 10% of the instancegry high and, consequently, the computational perforraarfc
are used. These analysis showed that CA§Srategies ap- the system is considerably improved. Moreover, assumiag th
plied to the proposed artificial data sets are faster than&fO the best strata generation is based on the original clasees,
and do not considerably penalize the accuracy in quangtati results show that the other two strategies to build theastest
terms. Nevertheless, CA@Sis worst and significantly dier-  not significantly dfferent in terms of accuracy independently
ent, in statistical terms, regarding CAG@sS of the kind of data sets tested. In terms of accuracy, the ran-
With respect to the results of the Holm'’s test applied to thedom and the cluster based strategies are as useful as tieggtra
real-world data sets, the Friedman'’s test cannot rejechtitle  based on classes but without the requirement of having the or
hypothesis that all the strategies obtain the same resulés0 inal class of each instance. In terms of computational timee,
erage when in each data subset is considered a 50% of the irmhdom and classes based strategies have similar speedup re
stances (2 data subsets). Thus, the three GAGBategies can- garding CAO%p. Nevertheless, the cluster based strategy has
not be considered fierent than CAO&y in terms of accuracy. a lower speedup. According to these observations, it selgahs t
When the 34% and the 25% of the instances are considered, thige most suitable strategy to build the data subsets in GAGS
CAOSps strategy based on random strata and on clusters is ntie random one, because it does not require the originadedas
significantly diterent in terms of accuracy regarding CAS  of the instances, it is not significantlyftérent in terms of ac-
Nevertheless, the accuracy of the other strategy is woidt arcuracy than the other two strategies and it has a high speedup
significantly diferent than CAO&>. When it is used less than

the 25% of the instances of the complete data set in each data
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5.4. Discussion of CAOS and MOCK Results The accuracy of the best results of MOCK, CA§%nd the
three CAOS$s strategies of the real-world data sets is analyzed
The proposed approach has demonstrated that it is able tsing the Holm’s test and illustrated in Table 4(a) For carry
scale-up CAOS without considerably penalizing the acguracing out this analysis, four data setetfer-recognition magig
and it has been compared with respect to MOCK (Handl anghendigitsand shuttld where MOCK was not able to obtain
Knowles, 2007) in order to emphasize the results. MOCK ighe results with a reasonable memory usage are not condidere
also based on the PESA-II algorithm but it uses the locusdas Analyzing the results it can be observed that MOCK is signif-
adjacency representation proposed in (Park and Song, 1®98) icantly worse than CAO& and than all the CAOSs strate-
representing the individuals. That is, each individualeeles a  gies when a 20% of information or more is used. When less
reflexive directed unlabeled graph that connects pairsafiex of a 20% of instances are used, MOCK is worse but not sig-
ples using an integer encoding scheme. More specificalty ea nificantly diferent than CAOSs strategies. Finally, MOCK
individual consists ofn genes{xy, X, ..., Xn}, Wherem is the  has a lower computational time than CAgSor the diferent
number of examples of the training data set ajiinges in [1, data sets as Table 11 and Table 12 show in the suplementary
m]. Thence, each geng indicates that there exists an arrow material. However, CAOSs strategies are significantly better
connecting instancewith instancex;. It can be observed that than MOCK in terms of computational time independently of
this representation cannot properly scale-up the memageus the size of the strata as Table 4(b) shows. Thus, the proposed
when the algorithm is applied to large data because theithdiv data subset approach can obtain better results than MOCK in a
ual size depends on the number of instances. Thus, this-repriewer computational time, and it can bffiemed that CAOSs
sentation does not allow the use of data subsets due to the fas a promising scalable MC algorithm based on MOEAs.
that all the instances are needed for building the indiMglua

Table 4. Comparison of (a) the accuracy and (b) the executiotime of the algorithms in the real-world data sets (the four data sets where MOCK cannot
obtain results are excluded from the analysis, so 26 data seare used) using the post-hoc Holm’s procedure witkr = 0.05. The algorithms compared are
MOCK and CAOS using the CAOS:p and the three CAOSys strategies to generate data subsets: based on class€aQSys) Classes, random CAOSps
Random) and based on clustersAOSps Clusters). The results are showed for 34%, 10% and 4% of infomation used from the complete data set. The
symbols® and & show that the method in the row obtained results that were sigificantly higher/lower than those obtained with the method in the column.
Similarly, the symbols + and — denote a non-significant higheflower results. Symbol= indicates that the algorithms have the same rank. The Iman ad
Davenport statistic is calculated according to F-distribuion with 4 and 100 degrees of freedom. The results with the st of % of instances are detailed in
Table 9 and 10 in supplementary material.

@

Instances Strategies MOCK | CAOSp | CAOSys Classes| CAOSys Random | CAOSys Clusters | Average Rank p-value

MOCK 5] ) e 5] 4.346
CAOp ® + + + 1.962

34% CAOSys Classes ® - - - 3.077 344% -7
CAOSys Random ® - + + 2.769
CAOSys Clusters ® - + - 2.846
MOCK o - I} 4.269
CAO&p ® @ @ ® 1.577

10% CAOSps Classes + IS = - 3.192 1.108E-9
CAOSpys Random + S = - 3.192
CAOSps Clusters ® o + + 2.769
MOCK o - - - 4.000
CAOp ® ® 1.538

4% CAOSps Classes + o + + 3.038 4.580E - 8
CAOSys Random + o - - 3.346
CAOSps Clusters + o - + 3.077

(b)

Instances Strategies MOCK | CAOSp | CAOSys Classes| CAOSps Random | CAOSys Clusters | Average Rank| p-value

MOCK + o o o 1.731
CAO:p - e e e 1.308

34% CAOSps Classes ® ® + + 4.231 0
CAOSHs Random ® ® - + 3.961
CAOSys Clusters ® ® - - 3.769
MOCK + o o o 1.692
CAOS:p - e e e 1.308

10% CAOSps Classes ® ® + + 4.154 0
CAOSHs Random ® ® - + 4.135
CAOSys Clusters ® ® - - 3.712
MOCK + o =) ) 1.692
CAOS:p - e e e 1.308

4% CAOSys Classes ® ® + + 4.442 0
CAOSHs Random ® ® - + 4.192
CAOSys Clusters ® ® - - 3.365
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5.5. CAOS Results in Large and Medium Data Sets obtained when the 25% of the instances are used in each cycle

of the EA are analyzed to better illustrate this issue bex#us

is considered (according to Figure 3) that it is a configorati

with a good trade-d between accuracy and execution time.
Figure 4 and Figure 5 show the accuracy result and the over-

all execution time of CAO&y and the random strata strategy of

AOSs for each one of the large and medium-sized data sets.

The analysis of the performance of the three CpQStrate-
gies in artificial and real-world data sets concluded thatém-
dom strata strategy is the most suitable one. In order toyamal
the potential of CAOSs with this strategy applied to data sets
with a considerable number of instances, it was tested vdith 3
data sets considered of medium size and with 33 data sets cop-
sidered of large size. The medium size data sets have a num th figures show the average results of the 20 runs donen ltca

of instances from 2000 to 8000, and the large size data seds ha € observed that the accuracy results are preserved otiligh
a number of instances from 13000 to 50000. penalized but, on the other hand, the execution time is glyon

roved. Moreover, it is important to emphasize that thenma
The experiments show that the speedup of both type of daﬂ P . . .
sets is very high (see Figure 3(b)), and this represents an i ea of CAO9s is to considerably improve the performance of
portant improvement (e.g., in the shuttle data set, which ha the algorithm with small impact on the accuracy, and this can

50000 instances, CAQS needs near 40 hours to obtain a clus- be clearly observed in data sets of medium and large size.
tering result, and CAQS with a random strata strategy needs 6. Conclusions and Further Work

10 hours using the 50% of instances and 3 hours using the 25% MC based on EA is a data mining technique focused on
of them, as Table 11 in supplementary material shows). lbis o identifying data relationships according to multiple erié to
vious that if less data is considered, the accuracy resilltbev  properly understand huge and complex databases. Althdsigh i
worse, as statistical tests show in Subsection 5.3. Howther search capability outlines from the rest of similar teclueis) its
loss of accuracy is not very considerable when more than thmain lack is the high cost in terms of computational time and
20% of instances are used (see Figure 3(a)). Thus, thesesutlhemory usage when itis applied to a large data sets.

0.0 / -¥-Large size data sets o
0.025 10° £ Medium size data sets J’E
g 0 ———— L o
g -0.025 _E o
E 405 y 310
5 0 \ - 'g
§70.075 m @ . ‘/“'
g o1 \ 10' e —
0125 | %L arge size data sets | \ - g
_0.15/-| = Medium size data sets ‘ ok n‘
50 3‘4 25 20 10 7 54 10 50 34 25 20 10 7 54
Percentage of instances used Percentage of instances used
(@) (b)
Fig. 3. Accuracy difference (a) and overall speedup (b) of th€AOS>s random strata strategy in large and medium size data sets.
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Fig. 5. Average of the overall clustering time of 20 runs oCAOS:p and CAOSys using the 25% of information in each generation for (a) medium and (b)
large size data sets.



10

This work has presented an approach focused on reducingano, J.R., Herrera, F., Lozano, M., 2006. On the combinati@volutionary
the impact of the volume of data in the EA by means of the 2‘90{_“2“;5 ]f:f(‘:d SffatitfiEdzséfgléegfg fg;gaining set seladh data mining.
L . s pplied Soft Computing , —332.
stratification of the C(_)mplete data set _mto d_lsqut stratl Cantu-Paz, E., 2000. fEcient and Accurate Parallel Genetic Algorithms.
alternate them following a Round Robin policy in each cycle  kjywer Academic Publishers, Norwell, MA, USA.
of the genetic algorithm. More specifically, a supervised an Chiu, S.L., 1994. Fuzzy model identification based on clusséimation. Jour-
two unsupervised stratification strategies are proposedeair c nﬁll ofcln;elhfgeg; anAd Fuzzy shyste_ms _ { evolutionanyiect
. . PP PN oello, C.A., . comprenensive survey of evolutionanytroojective
Performance IS an_alyzed using 196 real and ngIfICIal data se optimization techniques. Knowledge and Information Systen269-308.
in the CAOS algorithm: (1) according to the original classeS corme, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J., 20BESA-II:
the data set, (2) selecting random instances from the dgta se Region-based selection in evolutionary multiobjectivéro#ation, in: Pro-
and (3) according to the clusters found applying a fast ntetho C}(‘;i‘f’:ggrs] r?‘;tgglgﬁgres“% 2nczi§3vozlgt(l)onary Computation Cenfeg, Morgan
called SUbtra_Ct'Ve CIL_jStermg' Densar, J., 2006. Statistical comparisons of classifiers ovetipieitlata sets.
The experimentation showed that the speedup of the three journal of Machine Learning Research 7, 1-30.
Strategies is very high, and this Considerably improvesdnn. Derrac, J., Gaife, S., Herl_’era, F.,‘ 2010. Stratified prototype seI‘ectimeﬁa)n
putational performance of the system. Moreover, it can be ob ﬁ] Stga‘l’gtigegmeme“c algorithm: A study of scalability. Meéer@omput-
served that the_ tWO unsupe_rVised Strategies used to bueld trhang, A’\.,Asuncic;n,A., 2010. UCI machine learning repagitRL: http:
strata are not significantly flierent from the strategy based on  //archive.ics.uci.edu/ml.
classes in terms of accuracy so they can be considered equﬁ.eitas, A.A., 2002: Data Mining and Knowledge Discoveryhaivolutionary
alent to the strategy based on classes in terms of accuraqy.A'go”thms' Springer-Verlag New York, Inc., Secaucus, NS/
. Friedman, M., 1940. A comparison of alternative tests of $icgmce for the
Furthermore, the strategy based on random strata has a highe propiem of m rankings. Annals of Mathematical Statistics8692.
speedup than the cluster based strategy because the last @ugda, S., Herrera, F., 2008. An extension&atistical comparisons of classi-
needs to build approximative clusters at the begin of the-alg fiers over multiple ﬁata sdty all pairwise comparisons. Journal of Machine
rithm and this has a high COSt_ with very Iarg.e data sets. ,Thu%alr_gztglir;%el-?r?sAé,alr:%rr?éllzsz,_zBi?:irdit, J., OrriolsiRA., Golobardes, E.,
the random stratum strategy is the most suitable to scaling-  2013. Large-scale experimental evaluation of cluster sgpations for
CAQOS. On the other hand, there are statistically significéfat multiobjective evolutionary clustering. IEEE Transacsmn Evolutionary
ferences among these three strategies and the approach basetomputation, 36-53. o
on using the complete data set even the accuragrdnces Garcia-Piquer, A., Fornells, A., Orriols-Puig, A., Corré., Golobardes, E.,
9 p ; ) ) ¥ 2012. Data Classification through an Evolutionary Appra@aked on Mul-
among them are relatively small while they considerablyioed tiple Criteria. Knowledge and Information Systems 33, 35-56.
the computational time of the algorithm_ Itis important tglh Goldberg, D.E., 2002. The Design of Innovation. Kluwer Aeaic Publishers,
light that the size of each straturfiects the performance of the ~ Massachusetts, US. o _ o
CAOS al ith Th tati | ti f CAOS d Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2001. On chering validation
aigon m'_ e co_mpu ational tme o el ecreases techniques. Journal of Intelligent Information Systems D7-1145.
as much smaller is the size of the strata but it is moficdit ~ Handl, J., Knowles, J., 2007. An evolutionary approach totimhjective clus-
to obtain consistent stratum according to the original data tering. IEEE Transactions on Evolutionary Computation 1585
so it afects the accuracy of the system. The last part of thé'og‘i"r;;/'iaigjﬁmAaT'(;Tf‘ps'faz‘;ggsg“gé{%ecm’e multiple tesigedure. Scan-
eXpe”menta}t'on has also compared the results of the depOS Hore, P., Hall, L.O., Goldgof, D.B., 2009. A scalable framekéor cluster
strategies with respect to MOCK and they have obtainedt®esul ensembles. Pattern Recognition 42, 676—-688.
significantly better in terms of computational time and accu Hruschka, ER., Ca}mpel”oy R-J-G-IBu Frr]eitafsv AI-A-, de QhojaA.C.P.L.F,

; i« 2009. A survey of evolutionary algorithms for clusteringEEE Transactions
racy. .T.hus’ it can be ConCIUd.ed that the pr0posed approa_ach IS on Systems, Man and Cybernetics, Applications and Review$38-155.
promising Scalaple MC algorithm based on MO_EAS and it CaNredi, s., Merkle, D., Middendorf, M., 2000.  Bi-criteriorptimization with
be properly applied to large data. Moreover, this approach c
also be applied in situations where losing some accuracpean
accepted if it is possible to obtain results in a reasonaile. t

Finally, this analysis has set the basis for further coridgct

research on multiobjective evolutionary clustering aggblto

multi colony ant algorithms, in: Proceedings of the 1st Inéional Confer-
ence on Evolutionary Multi-Criterion Optimization, Sprergpp. 359-372.
Kargupta, H., Han, J., Yu, P.S., Motwani, R., Kumar, V., 2008xt Gener-
ation of Data Mining. Chapman & HaCRC data mining and knowledge
discovery series, CRC Press, USA.
Kaufman, L., Rousseeuw, P.J., 1990. Finding groups in datain#koduction

large data sets in two research topics. First, the consegearf
applying stratification methods for scaling-up CAOS witheat
individual representations. Second, the applicationloéotlata
mining techniques for large data sets (Bacardit andd,|28009)
such as Parallel EAs.
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Table 5. Summary of the characteristics of the 30 real-worldiata sets used, sorted by their number of instances. The cahns are referred to the number
of instances (nl), to the number of attributes (nA) and to thenumber of classes (nC).

Data set nl nA nC || Data set nl nA  nC
shuttle 58000 9 7 || crx 690 15 2
letter-recognition| 20000 16 26 || balance 625 4 3
magic 19020 10 2 || wdbc 569 30 2
pendigits 7494 17  10|| housevotes 435 16 2
waveform 5000 40 3 || dermatology | 366 35 6
segment 2310 19 7 ionosphere 351 34 2
yeast 1484 9 10 || bpa 345 6 2
contraceptives 1473 9 3 liver-disorders | 345 6 2
biopsia 1027 24 2 || ecoli 336 8 8
vowel 990 13 11 || heart-statlog 270 13 2
mammographic 961 5 2 thyroids 215 5 2
vehicle 846 18 4 glass 214 9 6
pim 768 8 2 sonar 208 60 2
transfusion 748 4 2 wpbc 198 33 2
wisconsin 699 9 2 iris 150 4 3

Table 6. Summary of the characteristics of the 75 artificial éta sets used, sorted by their number of instances. The colums are referred to the number of
instances (nl), to the number of attributes (nA) and to the number of classes (nC).

Data set nl nA nC Data set nl nA nC
10d-30c-175m | 23898 10 30|| 100d-10c-125m| 7021 100 10
10d-30c-75m 23471 10 30|| 5d-10c-175m 6981 5 10
5d-30c-75m 23234 5 30 || 20d-10c-75m 6848 20 10
100d-30c-175m| 22788 100 30|| 2d-10c-75m 6798 2 10
20d-30c-75m 22470 20 30|| 2d-10c-175m 6586 2 10
2d-30c-175m 22229 2 30 || 10d-10c-75m 6513 10 10
5d-30c-125m 22038 5 30 || 20d-10c-125m | 6084 20 10
10d-30c-125m | 21974 10 30|| 20d-5c-125m 4473 20
2d-30c-125m 21846 2 30 || 2d-5¢-75m 4306 2
20d-30c-175m | 21491 20 30|| 20d-5c-75m 3877 20
5d-30c-175m 21129 5 30 || 100d-5c-175m | 3870 100
20d-30c-125m | 20986 20 30|| 10d-5c-75m 3781 10
100d-30c-75m | 20561 100 30(| 10d-5c-175m 3664 10
2d-30c-75m 20370 2 30 || 5d-5¢-175m 3575 5
100d-30c-125m| 20156 100 30|| 2d-5c-175m 3564 2
2d-20c-125m 16097 2 20 || 2d-5c¢-125m 3525 2
5d-20c-175m 15675 5 20 || 100d-5c-75m 3445 100
20d-20c-125m | 15508 20 20|| 10d-5c-125m 3382 10
2d-20c-75m 15012 2 20 || 20d-5¢-175m 3272 20
20d-20c-175m | 14970 20 20|| 5d-5c-75m 3184 5
10d-20c-75m 14830 10 20|| 5d-5c-125m 3124 5
20d-20c-75m 14491 20 20|| 100d-5¢-125m | 2955 100
5d-20c-125m 14261 5 20 || 20d-2c-75m 1796 20
10d-20c-175m | 14023 10 20|| 20d-2c-125m 1789 20
10d-20c-125m | 13875 10 20|| 100d-2c-75m 1763 100
100d-20c-75m | 13790 100 20|| 20d-2c-175m 1685 20
100d-20c-125m| 13702 100 20|| 5d-2c-125m 1636 5
100d-20c-175m| 13421 100 20|| 2d-2c-75m 1560 2
2d-20c-175m 13355 2 20 || 2d-2c-125m 1497 2
5d-20c-75m 13289 5 20 || 10d-2c-125m 1418 10
5d-10c-75m 7875 5 10 || 5d-2c-75m 1352 5
10d-10c-125m 7609 10 10 || 2d-2¢-175m 1245 2
100d-10c-75m 7394 100 10|| 100d-2c-125m | 1146 100
20d-10c-175m 7200 20 10 || 100d-2c-175m | 1132 100
2d-10c-125m 7078 2 10 || 10d-2c-175m 1132 10
100d-10c-175m| 7071 100 10|| 5d-2c-175m 1042 5
10d-10c-175m 7070 10 10|| 10d-2c-75m 884 10
5d-10c-125m 7052 5 10
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Table 7. Comparison of the accuracy of the algorithms in the eerall data sets (artificial and real-world) using the posthoc Holm’s procedure with @ = 0.05.
The algorithms compared are CAOS using theCAOScp and the three CAOSys strategies to generate data subsets: based on class€aQSys Classes),
random (CAOSys Random) and based on clustersGAOSps Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%7% and 4% of information
used from the complete data set. The symbols and © show that the method in the row obtained results that were sigificantly higher/lower than those
obtained with the method in the column. Similarly, the symbds + and — denote a non-significant higheflower results. The Iman and Davenport statistic
is calculated according to F-distribution with 3 and 312 degees of freedom.

Instances] Strategies | CAOScp | CAOSys Classes| CAOSys Random | CAOSysCluster | Average Rank] — p-value

CAO:p ® @ ® 1.957
CAOSys Classes o - + 2.601
0, —
50% | cAOspsRandom| o . ; 2591 313%€-6
CAOSys Clusters <) - - 2.851
CAOSp ® ® ® 1.856
CAOSys Classes <) - - 2.736
0, —
34% CAOSys Random <) + + 2.678 S9TE-8
CAQOSys Clusters <) + - 2.731
CAOp ® @ ® 1.827
CAOSys Classes <) - - 2.875
0, —
25% | caOspsRandom| o . . 2,625 3.360E -9
CAOSys Clusters e + - 2.673
CAOSp ® ® ® 1.745
CAOSys Classes <} + + 2.726
0, —
20% | caospsRandom| o . . 2.760 462 -11
CAOSys Clusters <) - - 2.770
CAOS:p ® ® ® 1.673
CAOSys Classes IS + - 2.788
0, —
10% CAOSs Random <) - - 2.851 110% - 13
CAOSps Clusters <) + + 2.687
CAO:p ® @ ® 1.644
CAOSys Classes o + - 2.745
0, —
% CAOS>s Random =) - - 2.875 1010E-14
CAOSys Clusters <) + + 2.730
CAOSp ® ® ® 1.596
4% CAOSys Classes o + + 2.663 0
CAOSys Random <) - - 2.961
CAQOSys Clusters <) - + 2.779
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Table 8. Comparison of the accuracy of the algorithms in the &) artificial and (b) real data sets using the post-hoc Holm’s pcedure with @ = 0.05.
The algorithms compared are CAOS using theCAOS:p and the three CAOSys strategies to generate data subsets: based on class€8QSys Classes),
random (CAOSps Random) and based on clustersGQAOSys Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%7% and 4% of information
used from the complete data set. The symbols and & show that the method in the row obtained results that were sigificantly higher/lower than those
obtained with the method in the column. Similarly, the symbds + and — denote a non-significant higheflower results. The Iman and Davenport statistic
is calculated according to F-distribution with 3 and 222 degees of freedom.

()
Instances] Strategies | CAOScp | CAOSys Classes] CAOSys Random [ CAOSps Clusters | Average rank| — p-value
CAOp @ & ® 1.946
CAOSys Classes e - + 2.621
0, —
50% | caospsRandom| o . + 2.527 SI3E-5
CAOSys Clusters e - - 2.905
CAOSp @ ® ® 1.871
CAOSys Classes e + + 2.662
0, —
34% CAOSs Random e - + 2.689 L70% -5
CAOSps Clusters e - - 2.777
CAOp ® ® ® 1.818
CAOSys Classes o + + 2.777
0, —
25% | cpospsRandom| o . - 2.669 1818 -6
CAOSys Clusters e - + 2.736
CAOp ® ® ® 1.798
CAOSys Classes e + - 2.770
0, —
20% CAOSys Random e - - 2.804 5494 -7
CAQOSys Clusters e + + 2.628
CAOp ® ® ® 1.730
CAOSys Classes e + + 2.716
0, -
10% | cpospsRandom| o . - 2.817 2634 -8
CAOSys Clusters e - + 2.736
CAOp @ & ® 1.716
CAOSys Classes e + - 2.757
0, —
% | cAosssRandom| o . - 2.878 754%E -9
CAQOSys Clusters e + + 2.649
CAOSp ® ® ® 1.676
CAOSys Classes e + + 2.662
0, —
4% CAOSs Random e - - 2.946 4.68% - 10
CAOSps Clusters e - + 2.716

(b)
Instances]| Strategies [ CAOScp | CAOSps Classes] CAOSys Random | CAOSps Clusters | Average rank|  p-value

CAOSp 1.983
50% CAOSpys Classes The Friedman'’s test cannot reject the null hypothesis that al 2.550 2377
° CAOSys Random the learning algorithms obtain the same results on average. 2.750 ’
CAOSys Clusters 2.716
CAOp ® + + 1.816
CAOSpys Classes S - - 2.917
0,
34% | caospsRandom| - . . 2.650 0.005
CAOSys Clusters - - + 2.617
CAOSp ® + + 1.850
CAOSys Classes e - - 3.117
0,
25% CAOSs Random - + + 2.517 0.001
CAQOSys Clusters - - + 2.519
CAOp ® ® ® 1.617
CAOSys Classes e + + 2.617
0, —
20% | cpospsRandom| o . . 2650 | 2°8E-S
CAOSys Clusters e - - 3.117
CAOSp ® ® ® 1.533
CAOSys Classes o - - 2.966
0, —
10% CAOSys Random o + - 2.933 485% -6
CAQOSys Clusters e + + 2.567
CAOp ® ® ® 1.467
CAOSys Classes <) + + 2.733
0, —
" | cAOosssRandom| o . . 2867 | LS0E-6
CAOSys Clusters e - - 2.933
CAOScp ® ® ® 1.400
CAOSys Classes e + + 2.667
0, —
4% | cAOSsRandom| e . - 3000 | B867E-8
CAQOSys Clusters o - + 2.933
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Table 9. Comparison of the accuracy of the algorithms in the eal-world data sets (the four data sets where MOCK cannot obtai results are excluded
from the analysis, so 26 data sets are used) using the postehdolm’s procedure with & = 0.05. The algorithms compared are MOCK and CAOS using the
CAOSp and the three CAOSps strategies to generate data subsets: based on class€aQSps Classes), random CAOS>s Random) and based on clusters
(CAOSps Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%7% and 4% of information used from the complete data set. Thesymbols®
and e show that the method in the row obtained results that were sigificantly higher/lower than those obtained with the method in the column. Simarly,
the symbols+ and — denote a non-significant higheflower results. Symbol= indicates that the algorithms have the same rank. The Iman ad Davenport
statistic is calculated according to F-distribution with 4and 100 degrees of freedom.

Instances]| Strategies [ MOCK | CAOScp | CAOSys Classes| CAOSys Random [ CAOSps Clusters [ Average rank[ — p-value

MOCK o ) ] ) 4.462
CAO<p ® + + + 2.154

50% CAOSys Classes ) - + + 2.692 2.996E -7
CAOSys Random ® - - = 2.846
CAOSys Clusters ® - - = 2.846
MOCK 5] ) 5] ) 4.346
CAOp ® + + + 1.962

34% CAOSys Classes @ - - - 3.077 344%€ -7
CAOSHs Random ® - + + 2.769
CAOSys Clusters ® - + - 2.846
MOCK 5] ) 5] ) 4.385
CAOp ® @ + + 2.000

25% CAOSys Classes ® S - - 3.308 4.880E -8
CAOSys Random ® - + - 2.692
CAOSys Clusters ® - + + 2.615
MOCK S ) e e 4.423
CAOp ® + + + 1.731

20% CAOSps Classes ® - - + 2.769 4378 - 10
CAOSHs Random ® - + + 2.731
CAOSps Clusters ® - - 3.346
MOCK <} - - <) 4.269
CAOp ® @ ® @ 1.577

10% CAOSps Classes + o = - 3.192 1.108E -9
CAOSHs Random + <} = - 3.192
CAQOSys Clusters ® o + + 2.769
MOCK ) - - - 4.115
CAOSp ® [ ® @ 1.500

7% CAOSps Classes + e + + 3.000 4.816E -9
CAOSHs Random + <} - + 3.154
CAOSps Clusters + o - - 3.231
MOCK B - - - 4.000
CAO<p ® ® 1.538

4% CAOSys Classes + S + + 3.038 4580E -8
CAOSys Random + o - - 3.346
CAOSys Clusters + o - + 3.077
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Table 10. Comparison of the execution time of the algorithmn the real-world data sets (the four data sets where MOCK cannbobtain results are excluded
from the analysis, so 26 data sets are used) using the postehidolm’s procedure with & = 0.05. The algorithms compared are MOCK and CAOS using the
CAOScp and the three CAOSys strategies to generate data subsets: based on classeAQ Sps Classes), random CAOSys Random) and based on clusters
(CAOSos Clusters). The results are showed for 50%, 34%, 25%, 20%, 10%7% and 4% of information used from the complete data set. Thesymbols®
and e show that the method in the row obtained results that were sigificantly higher/lower than those obtained with the method in the column. Sintarly,
the symbols+ and — denote a non-significant higheflower results. Symbol= indicates that the algorithms have the same rank. It must be wrth noting
that, in terms of execution time, high ranks are better due tdow values of time are required. The Iman and Davenport statstic is calculated according to
F-distribution with 4 and 100 degrees of freedom.

Instances]| Strategies [ MOCK | CAOSp | CAOSys Classes| CAOSys Random | CAOSys Clusters [ Average rank[ p-value

MOCK + o o I} 1.923
CAOSp - e e e 1.308
50% CAOSys Classes ® ® = = 3.923 0
CAOSys Random ® ® = = 3.923
CAOSys Clusters ® ® = = 3.923
MOCK + o e o 1.731
CAOS:p - e S e 1.308
34% CAOSys Classes ® ® + + 4.231 0
CAOSys Random ® ® - + 3.961
CAOSps Clusters ® ® - - 3.769
MOCK + <) <) <} 1.692
CAO&p - o o o 1.308
25% CAOSps Classes ® ® + + 4.250 0
CAOSys Random ® ® - - 3.846
CAQOSys Clusters ® ® - + 3.904
MOCK + <) e <} 1.692
CAO&p - o o o 1.308
20% CAOSys Classes ® ® + + 4.154 0
CAOSys Random ® ® - + 4.039
CAOSps Clusters ® ® - - 3.808
MOCK + <) o <} 1.692
CAOSp - IS} o o 1.308
10% CAOSps Classes ® ® + + 4.154 0
CAOSps Random ® ® - + 4.135
CAOSys Clusters ® ® - - 3.712
MOCK + ) o o 1.692
CAOp - e e <} 1.308
7% CAOSys Classes ® ® + + 4.154 0
CAOSys Random ® ® - + 4.135
CAOSys Clusters ® ® - - 3.712
MOCK + o o I} 1.692
CAOS:p - e e e 1.308
4% CAOSys Classes ® ® + + 4.442 0
CAOSys Random ® ® - + 4,192
CAOSys Clusters ® ® - - 3.365




Table 11. Execution time in seconds of CAOS using thEAOS:p and the three CAOSps strategies to generate data subsets: based on class€&QSs Classes), random CAOSps Random) and based on
clusters (CAOSys Clusters). The results are showed for 50%, 34%, 25% and 20% oihformation used from the complete data set. Moreover, the eacution time of MOCK algorithm is presented. The —
symbol indicates that the corresponding algorithm was not ble to obtain the results with a reasonable memory usage.

Data set MOCK CAOSp CAOSps (50%) CAOSys (34%) CAOSps (25%) CAOSps (20%)

Classes Random Clusters Classes Random Clusters Classes Random Clusters Classes Random  Clusters
balance 43.70 78.74 16.74 17.72 13.43 3.95 4.02 5.02 2.48 2.54 2.50 1.28 1.10 1.27
biopsia 176.65 511.88 108.58 135.70 168.29 48.01 62.10 44.81 22.64 26.98 22.30 10.99 15.72 11.62
bpa 21.52 27.37 5.42 5.94 5.04 1.72 2.58 2.10 0.92 0.92 1.18 0.50 0.68 0.66
contraceptives 142.04 349.84 72.16 90.85 85.72 34.39 32.51 28.87 14.24 16.39 17.74 9.65 11.11 9.13
crx 144.80 23.04 6.67 5.35 6.51 3.78 3.52 2.65 1.55 1.83 1.79 1.09 1.12 1.06
dermatology 52.52 146.08 29.58 30.10 32.80 9.82 10.81 10.11 4.78 7.30 4.43 2.11 1.66 1.95
ecoli 23.13 29.38 5.61 5.32 5.23 1.54 1.72 1.71 1.03 1.01 0.70 0.45 0.52 0.75
glass 16.09 12.77 2.27 2.74 2.72 0.92 1.10 1.20 0.59 0.52 0.39 0.50 0.32 0.49
heart-statlog 28.94 30.02 7.11 4.95 6.34 2.01 2.70 1.82 1.27 1.72 1.07 0.68 0.53 0.72
housevotes 42.72 9.75 0.34 0.35 3.16 1.30 1.29 1.52 0.71 0.65 0.84 0.53 0.73 0.52
ionosphere 57.85 118.16 22.22 26.06 29.79 7.17 9.08 6.23 3.88 3.44 4.87 2.21 3.03 2.76
iris 64.90 4,71 0.86 1.37 1.15 0.44 0.37 0.47 0.37 0.50 0.50 0.32 0.30 0.18
letter-recognition - 46933.41 | 6611.63 8904.71 7571.54 5346.95 4250.12 5618.74 2844.15 2712.04 3716.18 2290.48 1626.48 2172.04
liver-disorders 22.83 35.19 5.82 6.97 4.16 2.34 2.62 1.82 0.96 1.04 1.05 0.49 0.62 0.69
magic - 38392.73 | 15943.77 12473.66 14324.3p 7643.63 6177.70 5608.94 2637.42 3344.59 2553.88 2184.74 1712.92 2735.09
mammography 60.78 10.58 2.22 2.33 2.55 1.19 1.26 1.17 0.80 0.56 0.82 0.47 0.48 0.52
pendigits - 14089.59 | 4554.12 3573.42 4330.80 1584.21 1636.68 1484.44 914.70 763.11 873.11| 403.51 419.59 483.48
pim 65.38 125.54 33.14 31.35 25.55 9.23 9.56 9.28 5.66 5.50 4.52 3.48 2.27 2.66
segment 279.67 986.58 317.80 282.72 332.02| 135.50 124.62 144.94 51.26 64.40 65.80 43.36 37.77 47.40
shuttle - 145769.48| 39513.02 37278.12 40372.78 17929.51 19899.96 18259.2p 10744.45 10444.68 10666.89 7297.98 7547.09 7615.68
sonar 52.86 125.57 25.91 22.54 24.61 591 9.63 7.98 4.25 478 4.05 3.26 2.46 3.10
thyroids 86.27 28.67 4.90 5.24 4.83 2.59 2.63 2.89 11.59 18.99 10.54 6.94 4.03 8.41
transfusion 36.14 19.28 4.85 4.45 6.05 2.72 3.03 3.08 1.66 1.63 1.68 1.05 0.78 1.24
vehicle 97.22 358.72 67.10 65.15 57.30 23.36 19.51 21.03 9.21 12.57 9.89 6.58 5.49 7.46
vowel 100.60 231.39 47.88 56.15 59.28 18.33 17.86 20.44 8.58 9.76 10.91 4.65 6.41 5.16
waveform 1437.58 | 22075.68 | 4287.51 4289.13 4198.3§ 1408.31 1258.11 1513.80 666.65 630.38 704.95| 344.98 392.73 375.29
wdbc 90.45 264.08 43.03 40.76 52.11 17.37 14.86 17.48 6.92 9.28 7.29 3.82 5.21 6.85
wisc 45.49 34.54 13.50 9.83 7.60 4.77 4.68 6.31 2.19 2.15 2.30 1.94 2.05 1.10
wpbc 26.72 63.19 15.24 11.36 14.05 3.71 4,78 5.38 3.79 2.73 2.24 1.54 1.83 1.75
yeast 153.37 400.10 83.50 74.58 82.52 30.89 26.39 26.46 11.61 13.74 12.61 8.62 8.32 8.86
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Table 12. Execution time in seconds of CAOS using thEAOS:p and the three CAOSps strategies to generate data subsets: based on class€&QSs Classes), random CAOSps Random) and based on
clusters (CAOSps Clusters). The results are showed for 10%, 7%, 5% and 4% of inbrmation used from the complete data set. Moreover, the exetion time of MOCK algorithm is presented. The — symbol
indicates that the corresponding algorithm was not able to btain the results with a reasonable memory usage.

Data set MOCK | CAOSp CAOSps (10%) CAOSps (7%) CAOSps (5%) CAOSps (4%)
Classes Random Clustens Classes Random  Clustens Classes Random  Clusters Classes Random  Clusters
balance 43.70 78.74 0.36 0.37 0.38 0.15 0.13 0.20 0.12 0.06 0.18 0.05 0.06 0.15
biopsia 176.65 511.88 2.78 2.21 1.95 0.75 0.84 1.56 0.63 0.46 1.05 0.48 0.58 0.70
bpa 21.52 27.37 0.16 0.12 0.15 0.12 0.12 0.11 0.08 0.12 0.07 0.08 0.07 0.09
contraceptives 142.04 349.84 1.72 1.89 2.62 0.61 1.12 0.83 0.43 0.42 0.78 0.26 0.35 0.66
crx 144.80 23.04 0.33 0.32 0.42 0.19 0.19 0.29 0.15 0.15 0.29 0.15 0.14 0.27
dermatology 52.52 146.08 0.62 0.68 0.81 0.37 0.39 0.50 0.25 0.29 0.41 0.27 0.29 0.27
ecoli 23.13 29.38 0.17 0.16 0.16 0.13 0.12 0.11 0.12 0.10 0.10 0.07 0.09 0.10
glass 16.09 12.77 0.13 0.12 0.12 0.13 0.11 0.10 0.08 0.10 0.10 0.07 0.12 0.07
heart-statlog 28.94 30.02 0.23 0.24 0.28 0.13 0.14 0.15 0.10 0.12 0.11 0.11 0.11 0.12
housevotes 42.72 9.75 0.20 0.20 0.28 0.18 0.14 0.22 0.14 0.16 0.23 0.14 0.14 0.20
ionosphere 57.85 118.16 0.51 0.43 0.43 0.32 0.37 0.33 0.25 0.28 0.30 0.22 0.21 0.34
iris 64.90 4,71 0.10 0.10 0.18 0.11 0.11 0.09 0.10 0.09 0.11 0.11 0.07 0.11
letter recognition - 46933.41 | 772.81 671.20 566.42| 187.95 250.25 463.84| 282.25 125.69 251.17| 86.73 98.78 192.88
liver-disorders 22.83 35.19 0.15 0.22 0.21 0.10 0.10 0.15 0.09 0.12 0.13 0.09 0.08 0.07
magic - 38392.73 | 258.70 252.47 299.13| 102.03 108.79 269.24| 51.91 66.92 88.94 | 30.97 48.01 95.76
mammography 60.78 10.58 0.18 0.14 0.32 0.10 0.08 0.24 0.08 0.08 0.22 0.08 0.07 0.22
pendigits - 14089.59 | 110.48 74.69 96.22 | 40.31 42.12 58.73 | 29.49 18.00 25.39 4.30 4.93 20.95
pim 65.38 125.54 0.51 0.68 0.68 0.33 0.30 0.30 0.19 0.20 0.23 0.13 0.17 0.22
segment 279.67 986.58 7.80 7.69 5.96 2.77 2.64 3.87 1.55 2.32 3.68 0.53 0.89 2.38
shuttle - 145769.48| 1105.78 1076.37 2114.8% 569.73 619.69 1102.95 342.76 380.65 902.32| 343.93 205.27 989.78
sonar 52.86 125.57 0.70 0.84 0.70 0.40 0.24 0.33 0.32 0.30 0.47 0.35 0.38 0.34
thyroids 86.27 28.67 0.89 1.39 1.58 0.43 0.30 0.91 0.22 0.29 0.74 0.34 0.29 0.61
transfusion 36.14 19.28 0.33 0.26 0.33 0.13 0.14 0.23 0.12 0.11 0.14 0.09 0.11 0.16
vehicle 97.22 358.72 1.04 0.92 1.89 0.44 0.45 0.65 0.33 0.36 0.39 0.27 0.25 0.38
vowel 100.60 231.39 1.20 1.39 1.27 0.49 0.82 0.80 0.31 0.37 0.54 0.29 0.29 0.50
waveform 1437.58 | 22075.68 | 131.79 97.71 87.48 | 67.57 21.67 41.65 | 19.31 17.88 30.62 5.77 10.50 21.90
wdbc 90.45 264.08 0.66 0.75 1.35 0.48 0.65 0.47 0.18 0.34 0.28 0.18 0.25 0.30
wisc 45.49 34.54 0.45 0.50 0.50 0.13 0.21 0.36 0.15 0.16 0.25 0.12 0.12 0.19
wpbc 26.72 63.19 0.79 0.41 0.52 0.32 0.20 0.22 0.26 0.33 0.22 0.19 0.26 0.15
yeast 153.37 400.10 1.59 2.16 2.15 0.73 0.83 0.80 0.20 0.58 0.58 0.23 0.32 0.59
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