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Abstract

Partial Least Squares (PLS) Mode B is a multi-block method and a tightly coupled 

algorithm for estimating structural equation models (SEMs). Describing key aspects 

of parallel computing, we approach the parallelization of the PLS Mode B algorithm 

to operate on large distributed data. We show the scalability and performance 

of the algorithm at a very fine-grained level thanks to the versatility of pbdR, a

R-project library for parallel computing. We vary several factors under different 

data distribution schemes in a supercomputing environment. Shorter elapsed times 

are obtained for the square-blocking factor 16 × 16 using a grid of processors as 

square as possible and non-square blocking factors 1000 × 4 and 10000 × 4 using 

an one-column grid of processors. Depending on the configuration, distributing data 

in a larger number of cores allows reaching speedups of up to 121 over the CPU 

implementation. Moreover, we show that SEMs can be estimated with big data sets 

using current state-of-the-art algorithms for multi-block data analysis.
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1. Introduction

Early, mathematicians and computer scientists explored methodologies and proposed 

techniques to process distributed matrices to optimize computing power and profit 

large computer systems (Golub and Van Loan, 1996). With the software-hardware 

infrastructures advances, examining large data sets is gradually more feasible. That 

is the reason why the use of parallel computing technologies has spread by leaps and 

bounds in many areas (Schmidberger et al., 2009, Pacheco, 2011). This situation 

makes the analysis of big volumes of data a major challenge of investigating the 

performance, efficiency, and effectiveness of statistical methods.

From an end-user perspective, the parallelization process of an algorithm is not 

an easy task. It requires considering many factors, such as data distribution and 

data processing schema, the understanding of how available computer architectures 

operate to find the best way to distribute both data and tasks, or determining the 

appropriate dimension of data blocks for distributing data. As a result, scientific 

communities and companies are making available computational platforms for 

parallel statistical analysis, parallel computing and big data endeavors with

increasing swiftness. An example of that is the website of “CRAN Task View: 

High-Performance and Parallel Computing with R” (Eddelbuettel, 2016) which lists 

a set of R packages and tools to develop parallel R-based applications, the preferred 

software of the statistical community. The number of applications in the list has at 

least doubled in the last few years. Most of them provide support to MPI (Message 

Passing Interface) API which is the standard in parallel computing.

Among the different existing tools (Schmidberger et al., 2009) we would like to 

highlight snow (Rossini et al., 2007, Tierney et al., 2011), snowfall (Knaus, 2010),

parallel (included in R since R 2.14.0) and its extension doParallel (Calaway et 

al., 2015), Rmpi (Yu, 2009), pbdR and MapReduce. snow and snowfall rely in the 

typical task parallelism provided by libraries with a Master/Worker approach. They 

use one function to perform reductions on a whole distributed data set in parallel. 

Both tools have been used in several applications. For instance, Deb and Srirama 

(2013) used snow to process bigger gene expression data sets by parallelizing the 

algorithm of K-Means clustering exploiting the multicore architecture of a desktop 

computer and Riddick et al. (2011) took advantage of snow package to make more 

efficient the process of multiple drug responses using Random Forest.

In contrast with this approach, Rmpi exposes MPI routines in R but leaves the 

parallelization task to the user. In this way, McLeod et al. (2007) used Rmpi to 

reduce computations by a factor of 30 in running the Durbin-Levinson and Trench 

algorithms for linear time series analysis and Lê Cao and Chabrier (2008) used Rmpi
to faster the classification process of high dimensional data sets. Another example is 

Varsos et al. (2016), who took advantage of Rmpi to implement single program 
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and multiple data and develop an interface to perform parallel data analysis for 

the R-package vegan. Parallel R-based packages can also be used for exploring 

the parameter space of simulations faster. Lawrence and Morgan (2014) used

parallel package to improve the speed of analysis of genetic variants from a whole 

genome sequencing experiment, and Luo and Zhang (2015) used parallel package 

provided by R to enhance the detection and extraction of water surface area from 

individual LiDAR point clouds. Hofert and Mächler (2016) and Górecki and Smaga 

(2018) used doParallel to carry out parallel computations on multiple cores for the 

simulation of a quantitative risk management problem and multivariate functional 

data analysis, respectively. MapReduce schema in Spark and Hadoop is commonly 

used in cloud computing but comparisons on clusters of multicore processors show 

that is not very well-suited for tightly coupled problems (Schmidt et al., 2014), 

and Single Program Multiple Data approaches provide faster and scalable solutions 

(Schmidt et al., 2017).

On the other hand, Partial Least Squares (PLS) Mode B is an algorithm for building 

explicit estimates of standardized variables that describe the relationship between 

several blocks of variables. PLS has been successfully used to estimate structural 

equation models and has facilitated the construction and estimation of new models 

in areas as diverse as marketing, genomics, brain imaging and manufacturing 

(Esposito-Vinzi et al., 2010, Abdi et al., 2016). In contrast to a loosely coupled 

algorithm where operations may be easily separated and therefore computed in 

different processors, PLS Mode B is a tightly coupled algorithm that is composed 

of a sequence of dense matrix operations that must be executed and iterated in a 

specific order. From a distributed perspective, the coupled sequence and order of 

operations make difficult to follow a master-worker approach to perform a parallel 

implementation of the algorithm. A data parallelism approach, such as Single 

Program Multiple Data (SPMD), is more suitable in this case.

Recently, there has been some research in relation to the performance of multiblocks 

algorithms. For instance, to address the big data problem, Fu et al. (2016) proposed 

a distributed algorithm for Generalized Canonical Correlation Analysis (GCCA) 

applied to sparse matrices. In this research, each data matrix was stored in different 

nodes and block components were computed in parallel for each block of variables. 

In contrast, in our research, we studied how to partition and distribute data matrices in 

different nodes, and how to tune a set of parameters to achieve the best performance 

on High Performance Computing architectures. Other works have been published in 

accelerating CCA algorithms such as Yan et al. (2014) who worked with MKL (Intel 

Math Kernel Library) and R-project. To our knowledge, no work has been done for 

multiblock PLS Mode B before.

In this paper, we present a parallel implementation of the multiblock PLS Mode 

B algorithm. Section 2 shows an outline of the algorithm and presents some 
on.2019.e01451
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of its features. We also introduce the framework pbdR, a set of R libraries for 

High Performance and Distributed Computing. This framework helps implementing 

the PLS tightly coupled algorithm to operate on distributed data. The versatility 

offered by pbdR to work with High Performance Computing systems with SPMD, 

its support to Single Process Multiple Data schema (Chen et al., 2012a, 2016), 

along with their extensive documentation made us choose this library as a good 

suitable option for parallel PLS implementation. Next, the parallel implementation 

is presented in Section 3, and we show how the PLS algorithm can be used 

in a distributed environment to process large or big data sets. Finally, several 

computational experiments are carried out to study the scalability and performance 

of the implementation examining several factors such as grid layout and number of 

observations under different data distribution schemes in a multicore environment in 

Section 4. Among other results, we found that shorter elapsed times are obtained for 

the square-blocking factor 16 × 16 using a grid of processors as square as possible 

and non-square blocking factors 1000 × 4 and 10000 × 4 using an one-column grid 

of processors. Depending on the configuration, distributing data in a larger number 

of cores allows reaching speedups of up to 121.

2. Background

2.1. Multiblock PLS Mode B algorithm

PLS Mode B is an iterative algorithm for building a set of standardized variables and 

estimate the relationships between them (Wold, 1985, Lohmöller, 1989, Tenenhaus 

et al., 2005, Hanafi, 2007). Let 𝐽 be the number of standardized variables 𝑦𝑗 , 𝐽

the number of block of variables 𝑋𝑗 , 𝐽 the number of arbitrary initial weights 

vectors 𝑤̃(0)
𝑗

representing the relationships between variables 𝑦𝑗 and 𝑋𝑗 , 𝐶[𝑐𝑗𝑙] a 

binary matrix with the relationships between variables 𝑦𝑗 , 𝑅[𝑟𝑗𝑙] a matrix with 

the correlations between variables 𝑦𝑗 , and Θ[𝜃𝑗𝑙] a matrix with the sign of the 

correlations between variables 𝑦𝑗 (centroid weighting scheme), 1 ≤ 𝑗 ≤ 𝐽 , 1 ≤

𝑙 ≤ 𝐽 .

The algorithm repeats 3 steps until convergence: (1) outer estimation of variables 𝑦𝑗, 

(2) inner estimation of variables 𝑦𝑗 , and (3) weight updating. One of the algorithms – 

the Lohmöller procedure – may be described as follows. To initialize the algorithm, 

we first calculate the initial weights vectors 𝑤̃(0)
𝑗

such that the variance of 𝑦𝑗 is equal 

to one,

𝑤
(0)
𝑗

=

√
𝑛𝑤̃

(0)
𝑗

‖𝑋𝑗𝑤̃
(0)‖ , 1 ≤ 𝑗 ≤ 𝐽 (1)
𝑗
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Algorithm 1 Lohmöller iterative algorithm

1: Choose J arbitrary initial vectors 𝑤(0)
𝑗

, 𝑗 = 0, 1, 2, ..., 𝐽
2: Choose an initial value for 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
3: Initialization

4: 𝑤
(0)
𝑗

=

√
𝑛𝑤̃

(0)
𝑗

‖𝑋𝑗𝑤̃
(0)
𝑗
‖

5: 𝑌
(0)
𝑗

= 𝑋𝑗𝑤
(0)
𝑗

6: while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 > 10−16 do

7: At iteration 𝑠,
8: 𝜃

(𝑠)
𝑗𝑙

= sign(𝑟(𝑌 (𝑠)
𝑗
, 𝑌 (𝑠)

𝑙
))

9: 𝑍
(𝑠)
𝑗

=
𝐽∑

𝑙=1,𝑙≠𝑗
𝑐𝑗𝑙𝜃

(𝑠)
𝑗𝑙
𝑌

(𝑠)
𝑙

10: 𝑤̃
(𝑠+1)
𝑗

= (𝑋′
𝑗
𝑋𝑗 )−1𝑋′

𝑗
𝑍

(𝑠)
𝑗

(Mode B)

11: 𝑤
(𝑠+1)
𝑗

=

√
𝑛𝑤̃

(𝑠+1)
𝑗

‖𝑋𝑗𝑤̃
(𝑠+1)
𝑗

‖
12: 𝑌

(𝑠+1)
𝑗

= 𝑋𝑗𝑤
(𝑠+1)
𝑗

13: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = (𝑤𝑠+1
𝑗

−𝑤𝑠
𝑗
)2

14: end while

Then, we initialize the value of the outer estimate of 𝑦𝑗 as an exact linear combination 

of its variables 𝑋𝑗 , 𝑦
(0)
𝑗

= 𝑋𝑗𝑤
(0)
𝑗

. At this point, we repeat until convergence the next 

procedure. For iteration 𝑠, we calculate an inner estimate 𝑧𝑗 of 𝑦𝑗 ,

𝑧𝑗 =
𝐽∑

𝑙=1,𝑙≠𝑗
𝑐𝑗𝑙𝜃

(𝑠)
𝑗𝑙
𝑦
(𝑠)
𝑙

(2)

where 𝜃(𝑠)
𝑗𝑙

= sign(𝑟(𝑦(𝑠)
𝑗
, 𝑦(𝑠)

𝑙
)). After that, we update and normalize the weights 

vectors 𝑤̃𝑗 ,

𝑤̃
(𝑠+1)
𝑗

= (𝑋′
𝑗
𝑋𝑗)−1𝑋′

𝑗
𝑧
(𝑠)
𝑗

(3)

𝑤
(𝑠+1)
𝑗

=

√
𝑛𝑤̃

(𝑠+1)
𝑗

‖𝑋𝑗𝑤̃
(𝑠+1)
𝑗

‖ (4)

Finally, we update the value of the outer estimate 𝑦𝑗, 𝑦
(𝑠+1)
𝑗

= 𝑋𝑗𝑤
(𝑠+1)
𝑗

.

The outer estimation offers a first estimation of 𝑦𝑗 as a linear combination of the 

measured variables 𝑥𝑗ℎ. To consider the relationships between variables 𝑦𝑗 , the 

sign of the correlation between them is computed in the inner estimation (centroid 

weighting scheme). These signs are used as coefficients to compute the auxiliary 

variables 𝑧𝑗 – counterparts of variables 𝑦𝑗 . The variables 𝑧𝑗 are a linear combination 

of the variables 𝑦𝑖 with which they are related in the structural model. The last step 

consists of updating weights. Here, the vector 𝑤𝑗 of weights 𝑤𝑗ℎ is the vector of the 

regression coefficients in the multiple regression of 𝑧𝑗 on the measured variables 𝑥𝑗ℎ
(mode B). Lohmöller iterative algorithm for a serial R implementation is shown in 

Algorithm 1.
on.2019.e01451
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Figure 1. An example of Single Program Multiple Data and Master/Worker approaches with the

R-project package pbdR. In SPMD, data are distributed among processors (processor rank 0 and 1) 
and the same program or operations are executed in each portion of data. Here, we could summarize the 
final result. In the Master/Worker approach, the master prepares the data and distributes the subset to the 
process by the worker. Both processors execute their respective calculations in their own data sets and 
finally, the worker sends the results to the master, which summarizes the final result.

2.2. A tightly coupled algorithm and iterations

The PLS Mode B algorithm – and as was described above – consists of a well-

defined sequence of dense matrix operations that must be executed in a sequential 

and specific order. The algorithm is fully written in terms of matrix algebra – making 

it a good candidate for parallelization – and no operation can be computed if the 

previous one has not been fully completed. PLS Mode B algorithm is what is called 

a tightly coupled algorithm where the operations may not be easily separated, and 

therefore, processed in different processors. For instance, we can not carry out outer 

and inner estimations in parallel in two processors at the same time because the inner 

estimation depends on the output values of the outer estimation.

All of this is in contrast to a loosely coupled problem where operations may be 

easily split, and therefore, processed in parallel in different processors. From a 

parallelization perspective, tightly coupled sequences make difficult to implement a 

master-worker framework to perform a parallel implementation. A data parallelism 

approach, such as SPMD, is more suitable in this case. pbdR puts into practice a 

SPMD approach (Raim, 2013, Schmidt et al., 2014), thus, it is properly positioned for 

implementing tightly coupled algorithms and working with dense matrix operations 

(Figure 1).

Another important characteristic of the PLS Mode B algorithm is that the sequence 

of dense matrix operations – outer and inner estimation, and weight updating 

– is repeated until convergence. This has implications in terms of the cost of 

the algorithm parallelization and it imposes more communications costs among

processors, so the distribution of work among them should be optimized as much as 

possible. All these characteristics, led us to use pbdR for the parallel implementation 

of the PLS algorithm.
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e01451

7 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Figure 2. Block-cyclic distribution of a 6 × 6 matrix – global matrix – among 6 processing units. Data 
blocks are distributed following a 2 × 2 blocking factor, where a square data block of 2 × 2 is assigned to 
each processor with the order described in the upper left figure. The bottom right figure shows the final 
distribution of the matrix.

2.3. pbdR programming with big data

pbdR consists of a set of libraries for configuring and establishing an environment to 

work with parallel computing for big data analysis in R-project in a very similar 

manner. From a simple perspective, we can easily use R to analyze large data sets 

(Eddelbuettel, 2016). In terms of performance, pbdR has shown to scale up to 10,000 

cores with very good results (Schmidt et al., 2017). There are several distinctive 

characteristics that make pbdRwell-suited for developing parallel applications easily. 

It offers an almost mid-point between implicit and explicit parallel programming 

approaches. Users may easily decide whether to set how data are distributed among 

processors or let the library do it (default values). Thus, users may control some 

factors such as to examine the application performance while using an environment 

similar to plain R while operating on distributed data. Moreover, pbdR allows a fine-

grained control of the code and thus offers a lot of flexibility when programming an 

application (Ostrouchov et al., 2013).

pbdR uses block cyclic distribution to distribute data across processors. This is 

done internally by pbdR but users are able to still set up the blocking factor in 

the program (Schmidt et al., 2012a, 2014). Data blocks are assigned to a set of 

processors cyclically. Figure 2 shows an example to illustrate how we can allot 

a 6 × 6 matrix – global matrix – in a cluster of six processors. The block-cyclic 

distribution has several advantages. With the allocation of regular data blocks, 

computational methods can achieve a better performance by balancing the workload 

among computing units by parallelizing mathematical tasks and thus reducing 

communication costs (Blackford et al., 1997, Bachmann et al., 2013, Schmidt et al., 

2012a, 2014).

The core of pbdR consist of several packages such as pbdMPI, pbdSLAP, pbdBASE, 

and pbdDMAT. pbdMPI is an interface to MPI, a communication protocol between 
on.2019.e01451
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processors and the most extended solution so far for clusters and supercomputers 

(Schmidberger et al., 2009, Eugster et al., 2011, Eddelbuettel, 2016). Thus, pbdMPI

provides – for instance – functions that allow the data distribution, the movement 

of these data among processors, and also running the code that should operate on 

the distributed data. Therefore, to properly establish the communicator – that is the 

object “to define which collection of processes may communicate with each other” 

– is of paramount importance. Since pbdR is focused on the SPMD programming 

paradigm (Chen et al., 2012a, Schmidt et al., 2012c, Ostrouchov et al., 2013), 

users need to initialize the communicator(s) at the beginning of a script with the 

instruction init(). This enables the initialization of the processors (or task IDs) “to 

specify the source and destination of messages”. Naturally, at the end of the script, 

we have to shut down the communicator(s) with the instruction finalize(). The 

main functions implemented in pbdMPI are reduce for collecting a set of objects 

distributed in different processors applying a reduction operation, for example, the 

sum of the objects; gather for collecting a set of objects distributed in different 

processors, the result is a list of the objects; comm.set.seed for setting seeds 

for random number generation to all processors via rlecuyer (Sevcikova and 

Rossini, 2012); and *ply functions such as pbdApply, pbdLapply, and pbdSapply, 

the counterparts of apply and lapply in the parallel case. At an early stage, 

Raim (2013) and Schmidt et al. (2014) showed very useful pbdMPI examples and 

functionalities such as point-to-point and collective communication.

While pbdMPI handles communications among processors, pbdDMAT is a library for 

managing distributed matrix classes, linear algebra, and statistics. pbdDMAT presents 

the class ddmatrix that allows the construction of distributed data across multiple 

processors using a block-cyclic distribution scheme to partition data. One of the main 

characteristics of the matrix decomposition is that it is not overlapping, meaning that 

each portion of a matrix is only distributed to one and only one processor. It is worth 

noting that data partition is performed by row and the blocks of data are handled 

by column in each processor (Schmidt et al., 2012a, 2014). pbdDMAT also provides 

functions and interfaces to operate on block-cyclic distributed data such as Choleski 

or QR decomposition, linear algebra functions, principal component analysis, and a 

fitter for linear models, among others.

Two of the slots of the class ddmatrix are bldim, and ICTXT. bldim enables to set 

up the blocking factor for data distribution, that is the row and column dimensions of 

the blocks to partition the data matrix. ICTXT allows setting up a rectangular grid of 

processors for distributing data. Three rectangular shapes or contexts are possible. 

Context 0 sets the processors in a grid as square as possible, context 1 establishes a 

one-row grid of processors, and context 2 places the processors in a one-column 

grid. The grid is initialized at the beginning of the R script with the instruction

init.grid(). By default, the context is 0. Being able to decide the blocking factor 
on.2019.e01451
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Table 1. Coefficients of the routine lm.fit(), distributed 
matrix solution to the linear least squares problem.

Non-square 
blocking factor 
𝟏𝟎 × 𝟒 rank 0

Square 
blocking factor 
𝟒 × 𝟒 rank 0

[1, ] -0,1999 [1, ] -0,1999

[2, ] -0,1187 [2, ] -0,1187

[3, ] -0,6524 [3, ] -0,6524

[4, ] 0,8255 [4, ] 0,8255

[5, ] -0,3261 [5, ] 0,2595

[6, ] 0,0253 [6, ] 0,8592

[7, ] 0,0769 [7, ] -1,2341

[8, ] -0,0881 [8, ] -1,0092

[9, ] 0,2595 rank 1
[10, ] 0,8592 [1, ] -0,3261

rank 1 [2, ] 0,0253

[1, ] -1,2341 [3, ] 0,0769

[2, ] -1,0092 [4, ] -0,0881

[3, ] 0,1804 [5, ] 0,1804

[4, ] -0,3063 [6, ] -0,3063

[5, ] 1,1304 [7, ] 1,1304

[6, ] 0,0446 [8, ] 0,0446

and context offers a lot of flexibility for experimentation and determining the proper 

set up to perform computations. This has an impact on the achieved scalability and 

the communications among processors.

Supplementary Material SM_HLY_e01451 shows an example on the use of

pbdLapplywith the Master/Worker and SPMD approaches implemented in pbdMPI

and a simple example on the use of pbdDMAT.

pbdR uses ScaLAPACK as the library to perform distributed dense linear algebra 

operations without adding much computational or memory overhead. ScaLAPACK

is a widely known library which has been deeply assessed by the scientific 

community and improved by developers (Blackford et al., 1997). It is well-known 

that ScaLAPACK prefers to work with square blocking factors, that is, equal row 

and column dimensions to partition a data matrix. Among others – and depending 

on the designed set-up – our results show that non-square blocking factor can be 

an alternative for achieving better performance which is particularly conditioned 

by communication costs among processors. The reference manual of pbdDMAT 

and the vignettes (Schmidt et al., 2012a) points out that “ScaLAPACK and PBLAS 

routines usually require square blocking” (Schmidt et al., 2012a), but while some 

routines do not support non-square blocking, others like lm.fit() support non-

square blocking factors (one must be careful in its use in any case). Table 1 shows the 

coefficients given by lm.fit() for matrices distributed with two blocking factors, 

a non-square blocking factor of 10 × 4, and a square blocking factor of 4 × 4. The 

solution corresponds to the solution of the linear least square problem. As can be 

observed, the same coefficients are obtained in both cases. We execute the script 

provided here in two ranks with mpiexec -np 2 Rscript filename.R.
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Despite enabling to set up the size and layout of the grid of processors, and through 

the blocking factor a certain degree of control over the parallel process, many of the 

technical details for executing the parallel jobs in pbdR are hidden for the end-user 

(Schmidt et al., 2012a). The packages pbdSLAP and pbdBASE execute this hidden 

job. pbdSLAP allows to use ScaLAPACK’s functions – which includes the scalable 

linear algebra routines that make possible to perform calculations with distributed 

data – from within R via pbdMPI (Chen et al., 2012b, Ostrouchov et al., 2013).

pbdSLAP is based on ScaLAPACK version 2.0.2 which was last updated may 1, 

2012. On the other hand, pbdBASE presents the necessary wrappers or interfaces and 

routines for communication with low-level routines written in Fortran and available 

in ScaLAPACK (Schmidt et al., 2012b). All pbdR libraries “install and run on a single 

machine as well as on shared memory and distributed clusters” (Schmidt et al., 

2012c, p. 811).

In our experience, one of the main costs of using parallel programming tools such 

as pbdR for statistical analysis are first the initial configuration of hardware (if 

necessary), second the installation of packages, and third the experimentation and 

tuning of parameters such as the blocking factor and the context to perform statistical 

analysis on distributed data.

rm(list=ls(all=TRUE))
suppressPackageStartupMessages(library(pbdDMAT, quiet=TRUE))
init.grid()
.pbd_env$BLDIM <- c(4,4) #.pbd_env$BLDIM <- c(10,4)
.pbd_env$ICTXT <- 0
n <- 25
p <- 16
if (comm.rank() == 0){

comm.set.seed(12345,diff=TRUE)
X <- matrix(rnorm(n*p, 0, 1), n, p)
y <- matrix(rnorm(n*1, 0, 1), n, 1)

} else {
X = NULL
y = NULL

}
dX <- as.ddmatrix(X)
dy <- as.ddmatrix(y)
myfun <- function(x,y) lm.fit(x,y)$coefficients
result <- myfun(dX,dy)
comm.print("Printing result rank 0...", rank.print=0)
comm.print(submatrix(result), rank.print=0)
comm.print("Printing result rank 1...", rank.print=1)
comm.print(submatrix(result), rank.print=1)
finalize()
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Algorithm 2 Pseudocode for the parallel implementation of Lohmöller PLS 

algorithm, where 𝑝𝑟𝑜𝑐 is the total number of processors, 𝑛𝑟 is the number of rows 

and 𝑛𝑐 is the number of columns of the submatrices.
Input: 𝑋; {large-scale data matrix}

Input: 𝑊 ; {initial weights vector}

Output: 𝑑𝑊 , 𝑑𝑌 ; {list of distributed weights, list of distributed 𝑦𝑗}
1: (processor=0) 𝑆𝑒𝑡 𝑠𝑒𝑒𝑑;

2: 𝑅𝑒𝑎𝑑 𝑋 = {𝑋1, 𝑋2, .., 𝑋𝐽 } ⊂ ℜ𝑛;

3: for rank = 0; rank < proc; rank = rank + 1 do

4: Send(rank, 𝑋[𝑛𝑟 ∗ 𝑟𝑎𝑛𝑘 + 1 ∶ 𝑛𝑟 + 𝑛𝑟 ∗ 𝑟𝑎𝑛𝑘, 𝑛𝑐 ∗ 𝑟𝑎𝑛𝑘 + 1 ∶ 𝑛𝑐 + 𝑛𝑐 ∗ 𝑟𝑎𝑛𝑘])

5: end for

6: (All processors) 𝑃𝐿𝑆(𝑋, 𝑊 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛);
7: for rank = 0; rank <= proc; rank = rank + 1 do

8: Receive(0, rank, 𝑑𝑊𝑟𝑎𝑛𝑘, 𝑑𝑌𝑟𝑎𝑛𝑘)
9: end for

10: 𝑅𝑒𝑡𝑢𝑟𝑛 dW, dY;

3. Methods

In this section, some considerations about the implementation of the algorithm 

with pbdR framework are pointed out. The parallelization process considers several 

steps. We used a virtual machine cluster for testing and tuning the conditions under 

which the experiments were finally executed, and marenostrum 3 supercomputer for 

running the experiments.

3.1. Parallel implementation of PLS with pbdR

Using the PLS algorithm presented in Algorithm 1, the new approach operates on 

𝑛𝑟 ∗ 𝑛𝑐 submatrices of the input matrix 𝑋, where 𝑛𝑟 is the number of rows and 

𝑛𝑐 is the number of columns. The goal is to split a large or big input matrix into 

different matrices and distribute them accross a number of processors where the PLS 

method will be applied to different portions of data. The PLS method operated in 

each submatrix will be collected at the end to compute the final results. The parallel 

pseudocode to distribute the data is presented in Algorithm 2.

The first processor (𝑟𝑎𝑛𝑘 = 0) prepares the execution by setting the seed that will be 

used in the algorithm and reads the input dataset (𝑋 matrix). After that, 𝑋 is divided 

equally and sent to each processor, including the first one. The submatrix will have 

dimensions [𝑛𝑟 ∗ 𝑟𝑎𝑛𝑘 + 1 ∶ 𝑛𝑟 + 𝑛𝑟 ∗ 𝑟𝑎𝑛𝑘, 𝑛𝑐 ∗ 𝑟𝑎𝑛𝑘 + 1 ∶ 𝑛𝑐 + 𝑛𝑐 ∗ 𝑟𝑎𝑛𝑘]
where 𝑟𝑎𝑛𝑘 = 0..𝑝𝑟𝑜𝑐 for 𝑝𝑟𝑜𝑐 >= 1. For example, if 𝑛𝑟 was set to 4 and 𝑛𝑐 to 

5, the first processor will store a submatrix of 𝑋, e.g. 𝑋[1 ∶ 4, 1 ∶ 5], the second 

processor will store another submatrix of 𝑋, e.g. 𝑋[1 ∶ 4, 6 ∶ 10], and so on. The 

value of 𝑛𝑟 and 𝑛𝑐 is determined by the user and it can take into account the memory 
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Algorithm 3 Pseudocode for the parallel implementation of PLS algorithm 

introduced in 2 with pbdR framework, where 𝑁 is the total number of 

processors/ranks

Input: 𝑋; {large-scale data matrix}

Input: 𝑊 ; {initial weights vector}

Output: 𝑑𝑊 𝑙𝑠, 𝑑𝑌 𝑙𝑠; {list of distributed weights, list of distributed 𝑦𝑗}
1: if comm.rank() = 0 then

2: 𝑆𝑒𝑡 𝑠𝑒𝑒𝑑

3: X ← matrix();

4: end if

5: 𝑆𝑒𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 .pbd_env$BLDIM, .pbd_env$ICTXT
6: 𝐿𝑜𝑎𝑑 dX ← as.ddmatrix(X) 𝑖𝑛 N 𝑛𝑜𝑑𝑒𝑠

7: 𝐿𝑜𝑎𝑑 dW ← as.ddmatrix(W) 𝑖𝑛 N 𝑛𝑜𝑑𝑒𝑠

8: dXls ← dX;

9: dWls ← dW;

10: dYls ← mapply(dXls,dWls)

11: while condition > 10−16 do

12: dZls ← f(dYls)

13: dWls ← mapply(dXls, dZls)
14: 𝑈𝑝𝑑𝑎𝑡𝑒 condition

15: end while

16: 𝑅𝑒𝑠𝑢𝑚𝑒 dWls, dYls 𝑓𝑟𝑜𝑚 N 𝑛𝑜𝑑𝑒𝑠;

17: 𝑅𝑒𝑡𝑢𝑟𝑛 dWls, dYls;

capacity of each processor and the number of processors involved. Once the different 

processors receive the information, they proceed to apply PLS method defined in 

Algorithm 1 implemented to operate over the assigned submatrices. Finally, results 

of the algorithm are sent to processor 𝑟𝑎𝑛𝑘 = 0 and gathered into a unique matrix 

– in this case 𝑑𝑊 , 𝑑𝑌 – before giving the final result. In our proposed algorithm 

data partition is performed based on data order, which is the way to ensure that the 

method is giving the appropriate results since the computation of weights presented 

in Algorithm 1 has a locality constraint.

To parallelize the PLS algorithm, we transformed our optimized serial R version 

to express it in terms of operations on submatrices, implementing it by using the 

utilities from pbdR and R-project. We used the class ddmatrix of the pbdDMAT

package. Thus, we worked with distributed matrices and the code was applied to 

different portions of data, thanks to basic matrix operations already implemented in

ScaLAPACK and used by pbdSLAP and pbdBASE to perform parallel computations 

(Chen et al., 2012a,b, Schmidt et al., 2012b). The pseudocode of the implementation 

is presented in Algorithm 3.

There are two possible ways to create a data set for experimentation. First, we can 

generate a distributed matrix with the following instructions,
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if (comm.rank() == 0){

comm.set.seed(12345,diff=TRUE)

X <- matrix(rnorm(n*p, 0, 1), n, p)

} else X = NULL

dX <- as.ddmatrix(X)

where n is the number of observations and p the number of variables. In this case, we 

are generating random normal data with zero mean and unit variance with the seed

12345 in the rank = 0 (processor 0), and then distributing it to other processors 

with the instruction dX <- as.ddmatrix(X). Thus, independently of the setup, the 

same data set is always distributed. The second way to generate data is as follows:

comm.set.seed(12345,diff=TRUE)

dX <- as.ddmatrix(matrix(rnorm(n*p,0,1),n,p))

In this other case, data it is automatically generated in each rank (or processor) 

resulting in different data sets for every setup. To be able to verify the proper 

implementation of the algorithms we chose the first option. Moreover, we decided 

to store small vectors and parameters in all ranks to get a more homogeneous 

parallelization, such as the initial weights vector, the number of observations, the 

number of variables, the binary matrix with the relationships between variables, the 

mode for each block of variables, and the number of variables per block of variables.

To manage distributed data within the parallel PLS function, we organize the data 

into lists, thus, for instance, the first step of the PLS algorithm – the initialization – 

may be implemented as follows,

dWnls <- mapply(f,dXls,dWls,SIMPLIFY=FALSE)

dYls <- mapply("%*%",dXls,dWnls,SIMPLIFY=FALSE)

The function f allows us to compute the values of the weights vectors such that the 

variance of 𝑦𝑗 is equal to one (line 4 and 11 in Algorithm 1). This can be obtained 

by computing the Frobenius norm (“F”) of the vector x%*%y. Thus, we call mapply
to apply the function to the first, second, third, ..., element of each argument, in this 

case dXls and dWls, the distributed data set and weights vector. The same procedure 

is applied to calculate the values of the variables 𝑦𝑗 , which are also organized into 

lists (line 5 and 12 in Algorithm 1). mapply is provided for the base distribution of

R-project and it works fine with distributed data. A similar procedure was used 

to implement the other steps of the PLS Mode B algorithm (inner estimation and 

weight updating).
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We would like to highlight some stages in the process of creating an implementation 

that operates in distributed environments. (1) The serial implementation should be 

first optimized, by testing and benchmarking key functions looking for performance 

improvements. (2) Determining a degree of parallelism is crucial. There is a need 

to decide how data will be distributed and thereafter the implementation should be 

adapted. (3) Results obtained should be validated against the serial version (for 

instance, the instructions for norm computation, the reciprocal of a number, the fit 

of linear models, etc. for square and non-square blocking factors and for different 

contexts). This was rigorously and systematically carried out for (a) each step of the 

first iteration of the algorithm – outer and inner estimation and weight updating – 

and (b) the final algorithm results. In this way, we were able to verify the results’ 

correctness and to carefully understand how the operations are executed when using 

a SPMD approach. (4) Finally, benchmarks should be performed to test different 

alternatives of implementation of the computations and code-granularity.

4. Results and discussion

4.1. Computational experiments

We run a set of computational experiments to study the scalability and performance 

of the parallel implementation of the PLS Mode B iterative algorithm (centroid 

scheme). Parallel simulations results were compared with the sequential executions 

results for correctness whenever possible. We installed pbdR and performed all 

the experiments in marenostrum 3 supercomputer. Marenostrum3 is equipped with 

3,056 nodes containing 2 sockets of Intel SandyBridge-EP E5-2670/1600, with 8 

cores each, totaling 16 cores per node and 32 GB of main memory (2 GB per core). 

The interconnection network is based on Infiniband FDR10 technology. In all nodes, 

we used R version 3.3.0, OpenMPI 1.8.1, rlecuyer 0.3-4, pbdBASE 0.5-0, pbdMPI

0.3-3, pbdSLAP 0.2-1, and pbdDMAT 0.5-0. In total, we run around 750 experiments.

4.2. Computational performance of the sequential 
implementation

In order to have a baseline for comparison, the first set of computational experiments 

was designed to obtain executions times and the relationship between time and 

the number of observations with the serial implementation of the PLS iterative 

algorithm. The PLS model setup included a component-based model with three 

exogenous variables and one endogenous variable. Each variable was related to a 

block of variables with four indicators in a Mode B. Therefore, we set the complexity 

level of the multiblock model. Data were generated as random normal data with zero 
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Table 2. Elapsed times (s) of the sequential 
implementation of the algorithm.

Number of 
observations 

(𝒙𝟏𝟎𝟔)

Number of 
entries 
(𝒙𝟏𝟎𝟔)

Elapsed 
time (s)

1.0 16 200.592

2.5 40 172.166

5.0 80 394.566

7.5 120 358.604

10.0 160 554.598

mean and unit variance and using the seed 12345. The condition for convergence 

was set in 1𝑒 − 16. The experiments were executed for tall skinny matrices with five 

different number of observations: 1, 2.5, 5, 7.5, and 10 million.

As a result, we processed matrices with 16, 40, 80, 120, and 160 million entries, 

respectively. The experiments were executed on a personal computer under the usual 

conditions in which researchers and practitioners apply the algorithm to estimate a 

model: a multicore architecture with 2 to 8 processors with a shared memory. For 

every case, we measured the elapsed time of the iterative algorithm implementation. 

We worked with the mean of 5 replications.

Table 2 shows the elapsed time in seconds of the serial implementation of the 

iterative algorithm to tall and skinny matrices. The algorithm is executed in 200.6 

seconds for 1 million observations. Beyond that, we can not observe constant 

increments of the times. However, we note that the execution time increases close to 

linearity with the number of observations. For each simulated condition, the same 

PLS vector of weights was obtained in each execution. Even though there are several 

factors affecting times, it is worth the attention the fact different seeds give a different 

set of pseudo-random numbers, and therefore, this will involve different elapsed 

times. For instance, for a seed 123 and 1 million observations, the execution time 

of the serial implementation is 34.8 seconds, much less than for the seed 12345. 

However, for a seed 123 and 7.5 million observations, the same implementation is 

executed in more than five times the time obtained when generating the data with the 

seed 12345 (1891.7 seconds). As expected, elapsed times of the PLS algorithm serial 

implementation are quite smaller for small numbers of observations: matrices with 

100, 500, and 1,000 rows were processed in 0.25, 0.05 and 0.08 seconds, respectively 

(seed 12345).

On the other hand, using the instruction plspm of the plspm R-package (Sanchez 

et al., 2009) and the instruction sempls of the semPLS R-package (Monecke and 

Leisch, 2012) on the same model resulted in an elapsed time of 0.11 and 0.68 seconds 

respectively for 1,000 observations (seed 12345). Note that we are comparing the 

implementation of the iterative algorithm with the instructions just as a reference.
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4.3. Computational performance of the parallel implementation

We examined the performance of the parallel PLS algorithm compared to the serial 

PLS iterative algorithm to find the most suitable computational setup for an effective 

and efficient algorithm’s execution. We varied five factors: number of observations, 

blocking factor, context, number of cores, and number of nodes. To make results 

comparable, we generate the same data by setting the seed to 12345 with the 

instruction comm.set.seed(). Data were generated in comm.rank() == 0 and 

then distributed to the other cores/nodes as was previously described. The condition 

for algorithm convergence was set to 1𝑒 − 16. Each experiment was executed in 

different cores/nodes so that executions were independent and they did not compete 

with others in the use of resources. In addition, and as for the serial case, we inspected 

the values obtained for weight vectors. For each simulated condition, the same vector 

of weights was obtained in each execution.

We performed the first experiment to determine the proper block sizes to distribute 

data across processors. Moreover, we examined how blocking factors affect the 

execution time when applying the algorithm to distributed data. It is known that 

block sizes may be inefficiently large or small (Schmidt et al., 2012b). With this 

aim, we fixed the size of the data set. We worked with a matrix of 16 variables and 

1 million observations. The data matrix was partitioned and distributed using eight 

different blocking factors: 2 × 2, 4 × 4, 8 × 8, 16 × 16, 50 × 4, 100 × 4, 1000 × 4 and 

10000 × 4. The first four square blocking factors were also used in Bachmann et al. 

(2013) to study the performance of parallel implementations of covariance matrices 

and principal component analysis. In their report, they concluded that “dividing the 

number of rows and columns evenly are likely more efficient” (Bachmann et al., 

2013, p.3). Thus, they chose a matrix where the number of observations is ten times 

larger than the number of variables to ensure an even distribution of the data and a 

suitable load balancing. Here, we studied a more general case for experimenting with 

tall and skinny matrices. Our aim was to see whether to establish the blocking factors 

according to the column dimension of the data matrices could have an advantage in 

terms of execution times. Moreover, – and even though square blocking factors are 

recommended to partition and distribute data and “ScaLAPACK and PBLAS routines 

usually require square blocking” (Schmidt et al., 2012a, p.9) – we perform our 

experiments with the second set of non-square blocking factors – 50 × 4, 100 ×
4, 1000 × 4, 10000 × 4 – where the number of columns of the partition blocks are 

equal to the number of indicators per variable and the number of rows is up to 2500 

the number of columns.

We examined the performance of the algorithm implementation in two different

pbdR contexts by varying the grid layout by fixing the value of the slot .𝐼𝐶𝑇𝑋𝑇

to test the effect of different configurations in the execution time. A context 0 in 
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Table 3. Elapsed times (et) of the parallel implementation for .𝐼𝐶𝑇𝑋𝑇 = 0 (𝑒𝑡0, processors in a 
grid as square as possible) and .𝐼𝐶𝑇𝑋𝑇 = 2 (𝑒𝑡1, processors placed in one-column grid).

Number 
of cores

.BLDIM Elapsed time (s) 
.ICTXT=0

Elapsed time (s) 
.ICTXT=2

𝒆𝒕𝟎 - 𝒆𝒕𝟏 (s)

2 2x2 1917.927 1914.137 3.790

2 4x4 963.383 962.157 1.226

2 8x8 487.508 486.337 1.171

2 16x16 250.205 248.254 1.951

2 50x4 88.268 86.943 1.325

2 100x4 50.169 48.902 1.267

2 1000x4 16.206 14.727 1.479

2 10000x4 12.668 11.286 1.382

4 2x2 12.339 499.424 -487.085

4 4x4 12.581 252.354 -239.773

4 8x8 12.336 129.219 -116.883

4 16x16 12.124 67.534 -55.410

4 50x4 11.999 25.471 -13.472

4 100x4 11.944 15.589 -3.645

4 1000x4 11.824 6.669 5.155

4 10000x4 11.763 5.805 5.958

8 2x2 8.407 131.334 -122.927

8 4x4 8.474 67.389 -58.915

8 8x8 8.272 35.650 -27.378

8 16x16 8.058 19.844 -11.786

8 50x4 8.022 8.925 -0.903

8 100x4 8.041 6.389 1.652

8 1000x4 7.920 4.109 3.811

8 10000x4 8.359 4.210 4.149

16 2x2 10.208 37.369 -27.161

16 4x4 9.235 20.271 -11.036

16 8x8 8.634 11.759 -3.125

16 16x16 8.213 7.735 0.478

16 50x4 8.472 4.600 3.872

16 100x4 8.387 4.012 4.375

16 1000x4 8.258 3.398 4.860

16 10000x4 8.332 3.630 4.702

which a grid layout is automatically set as square as possible by pbdR, and a context 

2 in which the processors are positioned in a one-column grid. For every case, we 

measured the elapsed time of the application of the iterative algorithm to distributed 

data in 2, 4, 8, and 16 cores. As in the previous case, the experiments were performed 

in a multicore environment. Time measurement did not include the time for data 

generation, the initial data movement for data distribution or the time for collecting 

the output results. However, the obtained computation time included some data 

movement within the iterative algorithm.

Table 3 shows the elapsed time in seconds of the parallel implementation operating 

on distributed data in 2, 4, 8 and 16 cores in a single node, so communication 

times are minimized. For 2 cores and .𝐼𝐶𝑇𝑋𝑇 = 0, and taking into account all 

the blocking factors, the times range from 12.6 s to 1917.9 s (0.2 min to 31.9 

min). When .𝐼𝐶𝑇𝑋𝑇 = 2, the times range from 11.2 s to 1914.1 s (0.1 min to 
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31.9 min). These results are for a matrix of 16 million entries. These times seem 

reasonable when they are compared with those obtained by Bachmann et al. (2013), 

although the highest time obtained for .𝐼𝐶𝑇𝑋𝑇 = 0 is high. Bachmann et al. (2013)

reported the elapsed times of the calculation of the covariance matrix and principal 

component analysis (PCA) for a matrix of 262 million entries approximately. For the 

experiments executed in 2 cores, the overall runtime ranged from 3274.6 s to 4131 s 

(54.5 min to 68.8 min).

For 2 cores, the elapsed times of the parallel implementation are higher than for 

the serial implementation when distributing data with square blocking factors (see 

Table 2). However, all the elapsed times obtained when distributing data with non-

square blocking factors are smaller than for the serial implementation. Elapsed times 

decrease in all cases when the number of cores jumps from 2 to 4 as clearly seen in 

the table. Beyond that – 4, 8, and 16 cores – there is a clear decrease tendency in 

the times in all cases when increasing the dimension of blocking factors. Moreover, 

elapsed times remain much smaller than in the serial version in all executions.

On the other hand, when increasing the dimension of blocking factors and the 

context is 2 (.𝐼𝐶𝑇𝑋𝑇 = 2 organizing processors in an one-column grid), we 

can clearly observe a linear decrease in execution times for both square and non-

square blocking factors. Nevertheless, the slopes of the curves are higher in the case 

of square blocking factors. For instance, for 4 cores and square blocking factors, 

elapsed times range from 499 s to 67.5 s (.𝐼𝐶𝑇𝑋𝑇 = 2). When increasing the 

dimension of blocking factors and the context is 0 (.𝐼𝐶𝑇𝑋𝑇 = 0), we can observe a 

decrease in the times for both square and non-square blocking factors, but the ranges 

of variation of times are much smaller than for context 2 (.𝐼𝐶𝑇𝑋𝑇 = 2). That is 

the case, for example, for 4 cores and square blocking factors, elapsed times range 

from 12.5 s to 12.1 s (.𝐼𝐶𝑇𝑋𝑇 = 0). Since serial experiments were executed on a 

personal computer, these results are good especially if we consider the architecture 

of a supercomputer where we might find added latency and communication costs. 

Therefore, the proposed parallel implementation is justified for a number of cases in 

a multicore environment.

Furthermore, elapsed times were lower in context 2 than in context 0, 56.25% of 

executions. For square blocking factors, elapsed times were lower in context 0 than 

in context 2, 68.7% of executions. For non-square blocking factors, elapsed times 

in context 2 were below those obtained in context 0, 87.5% of executions. Thus, 

we conclude square blocking factors work better when processors are arranged in 

a grid as square as possible (.𝐼𝐶𝑇𝑋𝑇 = 0), and non-square blocking factors 

work better when processors are arranged in an one-column grid (.𝐼𝐶𝑇𝑋𝑇 = 2). 

These results show that the decision of choosing the blocking factor and context can 

highly affect the efficiency of the solution and we confirm the results reported by
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Figure 3. Differences of the elapsed times (s) between context 0 (𝑒𝑡0, .𝐼𝐶𝑇𝑋𝑇 = 0, processors in a grid 
as square as possible) and context 2 (𝑒𝑡2, .𝐼𝐶𝑇𝑋𝑇 = 2, processors placed in one-column grid).

Schmidt et al. (2012a, p. 7) “there is a strong connection between the process grid 

and the block-cyclic distribution”.

To have a much clearer appreciation of the performance of the parallel

implementation when partitioning the data with different blocking factors, Figure 3

shows the differences of the elapsed times in seconds between context 0 and context 

2, 𝑒𝑡0 − 𝑒𝑡2; Table 3 also shows this difference. Figure 3(a) presents the results for 

square blocking factors whereas Figure 3(b) displays the outcome for non-square 

blocking factors for different number of cores. Negative values of 𝑒𝑡0 − 𝑒𝑡2 indicate 

the conditions under which the implementation performed better when running 

the experiments with a context 0 (under the x-axis). Positive values of 𝑒𝑡0 − 𝑒𝑡2
indicate the conditions under which the implementation has better performance 

when running the experiments with a context 2 (over the x-axis). In general terms 

for our specific setups, we can clearly see that the parallel implementation of the 

PLS Mode B algorithm performs better when partitioning the data with non-square 

blocking factors. For these cases, the differences are smaller than those presented for 

square-blocking factors, and for a greater number of experiments. For non-square 

blocking factors, the elapsed times are more similar for both contexts, and although 

in principle elapsed times are smaller for .𝐼𝐶𝑇𝑋𝑇 = 0, smaller times are reached 

for .𝐼𝐶𝑇𝑋𝑇 = 2. For square blocking factors, the differences are higher and we 

observe a greater number of experiments achieving a better performance when the 

processors’ grid is arranged as square as possible (context 0).

Our results contrast with the recommendation given by Schmidt et al. (2012c,a)

to partition data with square blocking factors. The reason for that is likely due to 

the fact that the column dimension of the blocking factors was chosen equal to the 

number of variables related to each variable 𝑌𝑗 , thus facilitating the computation 
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of the distributed matrix algebra operations considered in the PLS algorithm. This 

configuration should also facilitate the data operation in each processor, giving that 

data partition is performed by row and the blocks of data are handled by column in 

each processor (Schmidt et al., 2012a, 2014).

To summarize, shorter elapsed times are obtained for the following configuration: 

square-blocking factor 16 × 16 using a grid of processors as square as possible 

(context 0) and non-square blocking factors 1000 × 4 and 10000 × 4 using an one-

column grid of processors. The non-square blocking factors considered here are “too 

big (relative to the process grid), then the data distribution will be very uneven” 

(Schmidt et al., 2012a, p. 15), this should reduce communication times among 

processors and also “the amount of parallelism possible”. However, it is good to 

reduce communication times and data sets considered here are large enough to take 

advantage of the parallelism.

The second set of experiments was executed in order to measure the execution 

times when increasing the number of observations. Five number of observations 

were considered: 1, 2.5, 5, 7.5, and 10 million. First, we studied a general case, 

experimenting with tall and skinny matrices. Second, the number of observations 

was 625.000 times larger than the number of variables in the most extreme case. 

Two blocking factors were selected based on first set of experiments output, 16 ×16
(.𝐼𝐶𝑇𝑋𝑇 = 0) and 1000 × 4 (.𝐼𝐶𝑇𝑋𝑇 = 2). We run the experiments in 4, 8 and 

16 cores in a single node. Performance results presented in this section are based on 

five replications of the experiments.

Additionally, to examine the performance of the implementation taking into account 

communication times between nodes, the third set of experiments was designed. We 

executed the same experiments as described before distributing data in 8 cores in 2, 4, 

8, 16 and 32 nodes this time. Therefore, data were distributed among 16, 32, 64, 128, 

and 256 cores in total. This experiment allows observing if we have improvements 

in the times by increasing the available memory in each node for each core.

To measure the speedup, we computed the gain obtained in the elapsed time 

comparing the parallel execution of the PLS Mode B algorithm to the serial one. 

The speedup of a parallel implementation is defined as 𝑆 = 𝑇1∕𝑇𝑝 where 𝑇1 is the 

time required for an algorithm running on a computer with one processor and 𝑇𝑃 is 

the time on a computer with 𝑃 independent processors.

Table 4 and Figures 4(a) and 4(b) show the elapsed times in seconds of the 

parallel implementation when increasing the number of observations (mean of five 

replications). Table 4 also shows the elapsed times for each repetition as well as the 

mean, standard deviations and coefficients of variation. As expected, time increases 

when the number of observations increases. Besides, all the times are lower for a 

blocking factor of 1000 × 4 and .𝐼𝐶𝑇𝑋𝑇 = 2 than for 16 × 16 and .𝐼𝐶𝑇𝑋𝑇 =
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Table 4. Elapsed times (s) an

number of cores.

Number 
of cores

Number of 
obs. (𝒙𝟏𝟎𝟔)

4 1

4 2.5 4

4 5 2

4 7.5 2

4 10 7

8 1

8 2.5 2

8 5 1

8 7.5 1

8 10 3

16 1

16 2.5 2

16 5 1

16 7.5 1

16 10 3

4 1

4 2.5 2

4 5 1

4 7.5 1

4 10 7

8 1

8 2.5 1

8 5

8 7.5

8 10 2

16 1

16 2.5 1

16 5

16 7.5

16 10 1
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d speedups of the parallel implementation when increasing the number of observations and the 

Elapsed time (s) .BLDIM = c(16,16), .𝑰𝑪𝑻𝑿𝑻 = 𝟎 SD CV Speedup
Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean of 5 

reps.

12.210 12.271 12.175 12.239 12.249 12.229 0.033 0.003 16.403

62.211 463.222 460.479 461.352 467.360 462.925 2.397 0.005 0.372

41.662 244.260 243.966 243.336 244.542 243.553 1.027 0.004 1.620

00.057 199.446 200.243 199.662 198.156 199.513 0.734 0.004 1.797

88.386 794.477 788.940 790.752 792.527 791.016 2.261 0.003 0.701

8.054 8.060 8.043 8.029 8.051 8.047 0.011 0.001 24.926

79.611 278.184 277.371 279.332 278.824 278.664 0.809 0.003 0.618

55.320 155.053 154.596 153.694 153.836 154.500 0.645 0.004 2.554

22.799 123.911 123.057 122.796 122.438 123.000 0.496 0.004 2.915

96.255 399.516 397.846 399.304 398.888 398.362 1.200 0.003 1.392

8.203 8.184 8.163 8.347 8.237 8.227 0.065 0.008 24.383

77.417 277.024 277.667 277.418 276.749 277.255 0.326 0.001 0.621

53.750 154.363 154.701 154.001 153.809 154.125 0.359 0.002 2.560

22.429 122.965 123.094 122.481 123.004 122.795 0.281 0.002 2.920

95.077 396.479 397.655 393.575 393.765 395.310 1.570 0.004 1.403

Elapsed time (s) .BLDIM = c(1000,4), .𝐼𝐶𝑇𝑋𝑇 = 2
6.680 6.686 6.696 6.698 6.668 6.686 0.011 0.002 30.004

69.963 270.438 268.514 270.244 270.548 269.941 0.741 0.003 0.638

94.236 193.869 194.489 194.082 194.114 194.158 0.203 0.001 2.032

89.791 190.128 190.053 190.252 190.096 190.064 0.152 0.001 1.887

25.405 726.650 726.077 725.153 724.833 725.624 0.656 0.001 0.764

4.102 4.135 4.121 4.109 4.122 4.118 0.011 0.003 48.713

40.400 140.306 140.517 140.430 140.285 140.388 0.085 0.001 1.226

85.963 85.648 85.639 85.754 85.657 85.732 0.123 0.001 4.602

76.075 76.147 76.097 75.990 76.022 76.066 0.055 0.001 4.714

86.642 286.047 285.567 286.071 286.425 286.150 0.367 0.001 1.938

3.403 3.394 3.391 3.397 3.396 3.396 0.004 0.001 59.064

01.459 101.608 101.437 101.823 101.550 101.575 0.138 0.001 1.695

56.832 56.800 57.014 56.802 56.821 56.854 0.081 0.001 6.940

46.548 46.617 46.525 46.469 46.484 46.529 0.052 0.001 7.707

57.549 157.238 157.296 157.325 157.271 157.336 0.110 0.001 3.525

0. As can be clearly seen, for matrices with a higher number of observations – 7.5 

and 10 million observations – the computations require more time when they are 

executed with fewer resources as in the case of 4 cores.

Times decrease considerably when increasing the number of cores from 4 to 8, 

but when increasing to 16 cores, communication costs among cores outweigh the 

savings in time by distributing data to a larger number of processors. This is more 

evident when distributing data with a blocking factor of 16 × 16 and context 0. 

For data distributed across 8 and 16 cores, elapsed time decreases more for non-

square blocking factors and context 2 than for square blocking factors and context 0, 

and smaller times are reached for the first case (.𝐼𝐶𝑇𝑋𝑇 = 2). Figure 4(b) clearly 

displays that times are closer to linearity when data are partitioned with a non-square 

blocking factor. This is the case in all studied cases (number of observations), and 

as shown, results are precise with coefficients of variation of 0.8% at most.
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Figure 4. Elapsed times (s) and speedups of the parallel implementation when increasing the number of 
observations and the number of cores.

Table 4 and Figures 4(c) and 4(d) make visible the resulting speedups. Elapsed 

times of the parallel implementation were contrasted with those of the serial 

implementation (Table 2). Results present that the elapsed times are lower than for 

the serial implementation. The only exceptions are data with 2.5 and 10 million 

observations distributed in 4 cores (.𝐼𝐶𝑇𝑋𝑇 = 0 and .𝐼𝐶𝑇𝑋𝑇 = 2), and 2.5 

million observations distributed in 8 and 16 cores (.𝐼𝐶𝑇𝑋𝑇 = 0). For one million 

observations, speedups reach values of up to 59. For 2.5, 5, 7.5 and 10 million 

observations, speedups reach values of up to 1.6, 6.9, 7.7, and 3.5, respectively. The 

speedups increase for 2.5, 5 and 7.5 million observations but the speedups decrease 

for 10 million observations. These performance increments are quite good, especially 

if we contrast them with Schmidt et al. (2012c) who reported speedups of up to 3.58 

when testing PCA for a matrix of 100 million entries distributed in 512 cores.

Table 5 and Figure 5 show the elapsed times and the speedups of the parallel 

implementation when distributing data in 16, 32, 64, 128, and 256 cores in 2, 4, 
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Table 5. Elapsed times (s) an

number of nodes.

Number 
of nodes

Number 
of cores

N
ob

2 16

2 16

2 16

2 16

2 16

4 32

4 32

4 32

4 32

4 32

8 64

8 64

8 64

8 64

8 64

16 128

16 128

16 128

16 128

16 128

32 256

32 256

32 256

32 256

32 256
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d speedups of the parallel implementation when increasing the number of observations and the 

umber of 
servations 
(𝒙𝟏𝟎𝟔)

Number of 
entries 
(𝒙𝟏𝟎𝟔)

Elapsed time (s) 
.BLDIM
c(16,16)

Elapsed time (s) 
.BLDIM

c(1000,4)

Speedup 
.BLDIM
c(16,16)

Speedup 
.BLDIM

c(1000,4)

1 16 7.858 3.747 25.527 53.534

2.5 40 245.505 89.251 0.701 1.929

5 80 142.072 43.823 2.777 9.004

7.5 120 115.875 36.787 3.095 9.748

10 160 372.513 130.205 1.489 4.259

1 16 6.697 1.946 29.953 103.079

2.5 40 182.946 41.060 0.941 4.193

5 80 91.466 15.438 4.314 25.558

7.5 120 72.712 11.898 4.932 30.140

10 160 246.372 40.129 2.251 13.820

1 16 5.089 2.481 39.417 80.851

2.5 40 140.986 48.217 1.221 3.571

5 80 69.722 17.118 5.659 23.050

7.5 120 54.393 11.268 6.593 31.825

10 160 190.939 34.841 2.905 15.918

1 16 5.612 1.650 35.743 121.571

2.5 40 123.460 33.032 1.395 5.212

5 80 56.705 9.909 6.958 39.819

7.5 120 43.253 6.334 8.291 56.616

10 160 138.250 18.094 4.012 30.651

1 16 6.875 2.854 29.177 70.285

2.5 40 148.323 49.281 1.161 3.494

5 80 64.600 13.207 6.108 29.876

7.5 120 49.528 7.617 7.240 47.079

10 160 163.386 23.228 3.394 23.876

Figure 5. Speedups of the parallel implementation when increasing the number of observations and the 
number of nodes.
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8, 16, and 32 nodes, respectively, using all available resources at each node. In 

general terms, the results demonstrate that elapsed times increase when increasing 

the number of observations. However, as the number of cores increases, the times 

decrease, although at some point – beyond the 128 cores – communication times 

among nodes may become important and elapsed times slightly increased again. 

Furthermore, Figure 5 clearly shows that adding more resources to the experiments 

or executing the experiments using more resources made it possible to improve the 

speedups of the parallel implementation when comparing to the results showed in 

the Figure 4. For these experiments, speedups reach values of up to 121. In general 

terms, results are better for non-square blocking factors and context 2 (.𝐼𝐶𝑇𝑋𝑇 =
2).

5. Conclusions

Parallel computing technology is making more and more advances and providing 

faster solutions for running applications. Technological development in this area 

is extremely rapid and an increasing number of scientific communities are taking 

benefit of this technology. It looks like, as computers are a standard today, parallel 

computing will be tomorrow. From this standpoint, identifying the key aspects of 

the parallelization process and experimenting in an early stage of the research with 

different setups allow the user proper decision making. In this sense, the main 

contributions of this paper are (i) to show the scalability and performance of the 

Multiblock PLS Mode B algorithm, a tightly coupled algorithm for estimating the 

relationships among several blocks of variables; scaling an algorithm of this type 

is a difficult task precisely because of the coupled sequence of matrix operations; 

(ii) to confirm the applicability and utility of the R-project package pbdR for this 

implementation; and (iii) to prove that structural equation models can be estimated 

with big data sets using current state-of-the-art algorithms for multi-block data 

analysis.

There are several open questions and streams that arise from this research for 

future work. Areas such as algorithm features, hardware availability, software, linear 

algebra libraries for processing dense matrix operations, algorithm encoding, among 

others, could be further addressed. To investigate the use of other linear algebra 

libraries for distributed data that allow handling non-square blocking factors without 

restrictions is a pending task. We conclude that non-square blocking factors show 

the best elapsed times, even though the libraries PBLAS and ScaLAPACK – on which

pbdR is based – prefer to work with square-blocking factors and some operations do 

not support non-square blocking factors. To compare pbdR with other R libraries, 

or other platforms for big data analysis such as Spark and MapReduce is also a 

compelling topic for further research as well as to apply our work to real data 
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sets. Moreover, solving the problem of how to extract and transform big data sets 

from data sources to a multicore environment should be approached. We plan to 

tackle also of software installation can future research, especially because the initial 

configuration is one of the main entry barriers for many users.

Declarations

Author contribution statement

A. Martinez-Ruiz, C. Montañola-Sales: Conceived and designed the experiments; 

Performed the experiments; Analyzed and interpreted the data; Contributed reagents, 

materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://

doi .org /10 .1016 /j .heliyon .2019 .e01451.

Acknowledgements

We would like to sincerely thank both the editor and reviewers for their comments 

which led us to highly improve our paper. We would also like to thank Wei-Chen 

Chen, Drew Schmidt and George Ostrouchov for clarifying our doubts about pbdR

and for their helpful comments and suggestions to improve our work.

References

Abdi, H., Esposito-Vinzi, V., Russolillo, G., Saporta, G., Trinchera, L., 2016. 

The Multiple Facets of Partial Least Squares and Related Methods. Springer 

Proceedings in Mathematics and Statistics. Springer International Publishing.
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01451
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4162643136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4162643136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4162643136s1
https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e01451


Article No~e01451

26 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Bachmann, M., Dyas, A., Kilmer, S., Sass, J., 2013. Block Cyclic Distribution of 

Data in pbdR and Its Effects on Computational Efficiency. Technical Report 

HPCD-2013-11. University of Maryland, Baltimore County.

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, 

J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R., 

1997. ScaLAPACK: a linear algebra library for message-passing computers. In: 

SIAM Conference on Parallel Processing, pp. 1–15.

Calaway, R., Weston, S., Tenenbaum, D., 2015. doParallel: Foreach parallel adaptor 

for the ‘parallel’ package. http://CRAN.R-project .org /package =doParallel.

Chen, W.-C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H., 2012a. A quick guide for 

the pbdMPI package. R Vignette version 0.2-3. http://cran .r-project .org /package =

pbdMPI.

Chen, W.-C., Schmidt, D., Ostrouchov, G., Patel, P., 2012b. A quick guide for the

pbdSLAP package. R Vignette. http://cran .r-project .org /package =pbdSLAP.

Chen, W.-C., Schmidt, D., Sehrawat, G., Patel, P., Ostrouchov, G., 2016. A quick 

guide for the pbdPROF package. R Vignette. http://cran .r-project .org /package =

pbdPROF.

Deb, B., Srirama, S., 2013. Parallel k-means clustering for gene expression data on

snow. Int. J. Comput. Appl. 71 (24).

Eddelbuettel, D., 2016. CRAN task view: high-performance and parallel computing 

with R. https://cran .r-project .org /web /views /HighPerformanceComputing .html. 

(Accessed 9August2016).

Esposito-Vinzi, V., Chin, W., Heneler, J., Wang, H., 2010. Handbook of Partial 

Least Squares: Concepts, Methods and Applications. Springer Handbooks of 

Computational Statistics. Springer-Verlag, Berlin, Heidelberg.

Eugster, M., Knaus, J., Porzelius, C., Schmidberger, M., Vicedo, E., 2011. Hands-on 

tutorial for parallel computing with R. Comput. Stat. 26, 219–239.

Fu, X., Huang, K., Papalexakis, E., Song, H., Talukdar, P., Sidiropoulos, N., 

Faloutsos, C., Mitchell, T., 2016. Efficient and distributed algorithms for large-

scale generalized canonical correlation analysis. In: 2016 IEEE 16th International 

Conference on Data Mining. ICDM, pp. 1–6.

Golub, G., Van Loan, C., 1996. Matrix Computations. Johns Hopkins University 

Press, Baltimore, US.

Górecki, T., Smaga, Ł., 2018. fdANOVA: an R software package for analysis of 

variance for univariate and multivariate functional data. Comput. Stat., 1–27.
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426163683133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426163683133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426163683133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426C613937s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426C613937s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426C613937s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib426C613937s1
http://CRAN.R-project.org/package=doParallel
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdSLAP
http://cran.r-project.org/package=pbdPROF
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4465623133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4465623133s1
https://cran.r-project.org/web/views/HighPerformanceComputing.html
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4573703130s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4573703130s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4573703130s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4575673131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4575673131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib46753136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib46753136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib46753136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib46753136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib476F6C3936s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib476F6C3936s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib476F7265636B6932303138s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib476F7265636B6932303138s1
https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdPROF


Article No~e01451

27 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Hanafi, M., 2007. PLS path modelling: computation of latent variables with the 

estimation mode B. Comput. Stat. 22, 275–292.

Hofert, M., Mächler, M., 2016. Parallel and other simulations in R made easy: an 

end-to-end study. J. Stat. Softw. 69 (4).

Knaus, J., 2010. Developing parallel programs using snowfall. https://cran .r-

project .org /web /packages /snowfall /vignettes /snowfall .pdf.

Lawrence, M., Morgan, M., 2014. Scalable genomics with R and Bioconductor. 

Stat. Sci. 29 (2), 214–226.

Lê Cao, K., Chabrier, P., 2008. Ofw: an R package to select continuous variables for 

multiclass classification with a stochastic wrapper method. J. Stat. Softw. 28 (9), 

1–16.

Lohmöller, J., 1989. Latent Variable Path Modeling With Partial Least Squares. 

Physica-Verlag, Heidelberg.

Luo, W., Zhang, H., 2015. Visual analysis of large-scale lidar point clouds. In: Big 

Data (Big Data), 2015 IEEE International Conference on, pp. 2487–2492.

McLeod, A., Yu, H., Krougly, Z., 2007. Algorithms for linear time series analysis: 

with R package. J. Stat. Softw. 23 (5), 1–26.

Monecke, A., Leisch, F., 2012. sempls: structural equation modeling using partial 

least squares. J. Stat. Softw. 48 (3), 1–32.

Ostrouchov, G., Schmidt, D., Chen, W.-C., Patel, P., 2013. Combining Rwith scalable 

libraries to get the best of both for big data. In: Cho, S. (Ed.), Proceedings of IASC 

Satellite Conference for the 59th ISI WSC & the 8th Conference of IASC-ARS, 

pp. 85–90.

Pacheco, P., 2011. An Introduction to Parallel Programming. Elsevier, 

Massachusetts, US.

Raim, A., 2013. Introduction to Distributed Computing With pbdR at the UMBC 

High Performance Computing Facility. Tech. rep. University of Maryland, 

Baltimore County.

Riddick, G., Song, H., Ahn, S., Walling, J., Borges-Rivera, W., Fine, H., 2011. 

Predicting in vitro drug sensitivity using random forests. Bioinformatics 27 (2), 

220–224.

Rossini, A.J., Tierney, L., Li, N., 2007. Simple parallel statistical computing in R. J. 

Comput. Graph. Stat. 16 (2), 399–420.
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(18)36761-6/bib48616E3037s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib48616E3037s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib486F6665727432303136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib486F6665727432303136s1
https://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C61773134s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C61773134s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C65633038s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C65633038s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C65633038s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C6F683839s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C6F683839s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C756F3135s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4C756F3135s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4D636C3037s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4D636C3037s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4D6F6E3132s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4D6F6E3132s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4F73743133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4F73743133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4F73743133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib4F73743133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5061633131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5061633131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5261693133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5261693133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5261693133s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5269643131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5269643131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5269643131s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib526F7373696E6932303037s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib526F7373696E6932303037s1
https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf


Article No~e01451

28 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Sanchez, G., Trinchera, L., Russolillo, G., 2009. plspm: tools for partial least 

squares path modeling (PLS-PM). R package version 0.4-7. http://cran .r-project .

org /package =plspm.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann, U., 

2009. State-of-the-art in parallel computing with R. J. Stat. Softw. 47 (1), 1–51.

Schmidt, D., Chen, W.-C., Ostrouchov, G., Patel, P., 2012a. Guide to the pbdDMAT

package. R Vignette version 2.0 http://cran .r-project .org /package =pbdDMAT.

Schmidt, D., Chen, W.-C., Ostrouchov, G., Patel, P., 2012b. A quick guide for 

the pbdBASE package. R Vignette version 2.0 http://cran .r-project .org /package =

pbdBASE.

Schmidt, D., Ostrouchov, G., Chen, W.-C., Patel, P., 2012c. Tight coupling of R

and distributed linear algebra for high-level programming with big data. In: 

Society, I.C. (Ed.), Proceedings of the 2012 SC Companion: High Performance 

Computing, Networking Storage and Analysis.

Schmidt, D., Chen, W.-C., Ostrouchov, G., Patel, P., 2014. Speaking serial R with a 

parallel accent. pbdR package examples and demonstrations. R Vignette version 

0.2-0. http://cran .r-project .org /package =pbdDEMO.

Schmidt, D., Chen, W.-C., Matheson, M., Ostrouchov, G., 2017. Programming with 

big data in R: scaling analytics from one to thousands of nodes. Big Data Res. 8, 

1–11.

Sevcikova, H., Rossini, T., 2012. rlecuyer: R interface to RNG with multiple 

streams. http://cran .r-project .org /package =rlecuyer.

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y., Lauro, C., 2005. PLS path modeling. 

Comput. Stat. Data Anal. 48, 159–205.

Tierney, L., Rossini, A., Li, N., Sevcikova, H., 2011. snow: simple network of 

workstations. https://cran .r-project .org /web /packages /snow/.

Varsos, C., Patkos, T., Oulas, A., Pavloudi, C., Gougousis, A., Ijaz, U., Filiopoulou, 

I., Pattakos, N., Vanden-Berghe, E., Fernández-Guerra, A., Faulwetter, S., 

Chatzinikolaou, E., Pafilis, E., Bekiari, C., Doerr, M., Arvanitidis, C., 2016. 

Optimized R functions for analysis of ecological community data using the R 

virtual laboratory (RvLab). Biodivers. Data J. 4, e8357.

Wold, H., 1985. Partial least squares. In: Kotz, S., Johnson, N. (Eds.), Encyclopedia 

of Statistical Sciences, vol. 6. Wiley, New York, pp. 581–591.

Yan, J., Zhang, H., Du, L., Wernert, E., Saykin, A., Shen, L., 2014. Accelerating 

sparse canonical correlation analysis for large brain imaging genetics data. In: 
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

http://cran.r-project.org/package=plspm
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5363683039s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5363683039s1
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdBASE
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib536368313262s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib536368313262s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib536368313262s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib536368313262s1
http://cran.r-project.org/package=pbdDEMO
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5343484D49445432303137s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5343484D49445432303137s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5343484D49445432303137s1
http://cran.r-project.org/package=rlecuyer
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib54656E3035s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib54656E3035s1
https://cran.r-project.org/web/packages/snow/
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5661723136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5661723136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5661723136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5661723136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib5661723136s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib576F6C3835s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib576F6C3835s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib59616E3134s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib59616E3134s1
https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://cran.r-project.org/package=plspm
http://cran.r-project.org/package=pbdBASE


Article No~e01451

29 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
XSEDE’14 Proceedings of the 2014 Annual Conference on Extreme Science and 

Engineering Discovery Environment, pp. 1–7.

Yu, H., 2009. Rmpi: interface (wrapper) to mpi (message-passing interface) https://

cran .r-project .org /web /packages /Rmpi/.
on.2019.e01451

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(18)36761-6/bib59616E3134s1
http://refhub.elsevier.com/S2405-8440(18)36761-6/bib59616E3134s1
https://cran.r-project.org/web/packages/Rmpi/
https://doi.org/10.1016/j.heliyon.2019.e01451
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://cran.r-project.org/web/packages/Rmpi/

	Big data in multi-block data analysis: An approach to parallelizing Partial Least Squares Mode B algorithm
	1 Introduction
	2 Background
	2.1 Multiblock PLS Mode B algorithm
	2.2 A tightly coupled algorithm and iterations
	2.3 pbdR programming with big data

	3 Methods
	3.1 Parallel implementation of PLS with pbdR

	4 Results and discussion
	4.1 Computational experiments
	4.2 Computational performance of the sequential implementation
	4.3 Computational performance of the parallel implementation

	5 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	Acknowledgements
	References


