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Introduction 

An engineer does not need to consider damping for most of static (long term load) 
calculations, as loads and displacements are considered to be constant. Nevertheless, for 
a dynamic calculation a more realistic frequency response is needed. When resonance and 
signal amplification have to be taken into account, accurate damping ratio values are of 
great concern. In these cases, most of the energy is considered to be absorbed as plastic 
deformation and damping cannot be ignored. Usually damping is introduced with 
unrealistically high values (above 10%) in order to obtain a stable solution using explicit 
integration. 

Computer simulation is widely used in engineering calculation to obtain reasonable 
results at a low cost and far quicker in comparison to experimental approaches. Properties 
such as Young’s modulus, density, thermal expansion coefficient or yield stress are well 
covered in most material databases for simulation.  

Although the damping ratio of common materials is relevant for engineering applications, 
there is a lack of information about it in many computer assisted applications. As an 
example, the materials databases for SolidWorks™ 2011 and Ansys Workbench™ 13 
were examined and the materials damping ratio was not provided in either of these.  

In order to measure the damping ratio of a material, the vibrating beam method as 
specified in ASTM E756-05 (Xu and Nashif, 1996, Erdoğan and Bayraktar, 2003, 
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Wojtowicki et al., 2004, Crespo et al., 2010) is commonly used. The ASTM E756-05 
standard recommends the half-power bandwidth (HPB) method reported by Wei and 
Kukureka (2000) and Orban (2011) for evaluating the modal loss factor. Although this 
method provides an accurate estimation of the modal loss factor for lightly damped 
specimens, the error increases exponentially with the modal loss factor (Martínez-Aguirre 
and Elejaberrieta, 2010). Foss (2007) used an alternative method to measure damping at 
several temperatures. Malogi, Gupta and Kathawate (2009) developed the center 
impedance method as an alternative option. Wei and Kukureka (2000) used a method 
based on the power band width together with free-decay in order to examine the damping 
ratio for composites. When the material to be analyzed is a damper, its first resonance 
natural frequency is commonly measured in order to obtain its damping ratio using a band 
width method (Cai and Sun, 2010). 

Most of the documented work on damping measurement is focused on composites (Brodt 
and Lakes, 1995; Wei and Kukureka, 2000; Hammami et al., 2005; Foss, 2007; Martínez-
Aguirre and Elejaberrieta, 2010) and dampers which have a high damping ratio (Cai and 
Sun, 2010; Foss, 2007; Martínez-Aguirre and Elejaberrieta, 2010). There are less studies 
focusing on the damping of a real structure of several assembled parts (Chowdhuri and 
Dasgupta, 2003; Orban, 2011). Regarding the application of the damping ratio on 
simulation, with the Finite Element Method (FEM), Jáuregui et al. (2005) compared their 
measurements to simulations on torsional vibrations of elastomeric components. Ilg et al. 
(2012) used a reverse damping ratio approach to characterize a silicone rubber. Finally 
Chowdhuri and Dasgupta (2003) analyzed the issue of introducing Rayleigh damping 
parameters for simulations of civil engineering structures. 

The development time for new products in the industry is shrinking. This forces engineers 
to quickly evaluate the mechanical performance of the product, which prevents carrying 
out damping tests of materials if they are too time consuming or require expensive 
equipment, or both. Thus, the main objective of this study is to develop an accurate, cheap 
and quick method to measure damping of materials and structures applicable to Finite 
Element Method (FEM) simulations. This it is achieved by the experimental work, 
simulations and correlations laid out in this paper.  

Several experiments to measure damping for different specimens are described. Measured 
damping results were introduced in simulations to reproduce the experiment and check 
the methodology. Measurements for several parameter modifications such as frequency, 
sampling rate, number of periods to read, etc. are also described. Finally this method is 
applied to a structure that works under resonance for torsion and bending in order to check 
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the usefulness of the method for real structures. Literature was reviewed to focus on the 
way of measuring damping and considering it in simulations. 

 

Theoretical background 

Theoretical resonance frequency of a cantilever beam. 

The explanation is based on a planar model of a cantilever beam where space is described 
with an (x, y) reference coordinate system. The beam has a flexural deformation with 
displacement measured along the y-axis satisfying the following equation: 
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where ρ is the density of the beam material, A is the cross section area of the beam, E is 
Young’s modulus, and I is the cross section inertia of the beam. The equation can be 
solved as follows: 
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where ωn is the n-th natural angular frequency of vibration.  

For a cantilever beam of length L, with no displacement and no rotation at x = 0, and zero 
bending moment and shear at free end x = L, the solution is simplified using the following 
boundary conditions: 
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Applying such boundary conditions to equation (2) natural frequencies are obtained by 
solving the following equation: 
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1coshcos  LL nn
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  (5) 

The roots of such an equation provide the following natural frequencies: 

3,[Hz]
4928,0

3
2

)12([rad/s]
4

)12(

[Hz]
4928,0

3
2

)16([rad/s]5,2

[Hz]
5061,0

3
2

)14(][rad/s49,1

[Hz]
2424,0

3
2
1[rad/s]597,0

3

2

42

2
2

3

2

32

2
2

3

3

2

22

2
2

2

312

2
2

1














n
Lm

EInf
L

n

Lm
EIf

L

Lm
EIf

L

Lm
EIf

L

b
n

b

b

b





















 (6) 

It is possible to apply these formulae to the case of a rectangular beam cross section as 
follows: 
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where mb is the mass of the beam, L the length, h is the height and b the width of the 
rectangular cross section. 

Resonance frequency of a cantilever beam with a mass attached to the free end. 

The same bending relation defined by equation (1) is applicable to this new situation but 
with a slight change in boundary conditions. A mass has been attached to the free end 
thereby introducing acceleration which interacts as an inertial force. The new boundary 
conditions are: 
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These boundary conditions assume that the mass is placed at one point right at the tip of 
the beam and therefore there is no bending moment at the free end with the added mass 
but just shear. Solving equation (2) with these new boundary conditions, natural 
frequencies might be found as roots of the following expression: 
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It is observed that equation (9) is identical to equation (5) when m=0. By using a notation 
to the unknown γ = nL  and by means of numerical methods the first natural frequency 

is solved as a function of the ratio of mass tip m to the mass of the beam mb. These values 
are plotted in Table 1.  

With these values the first angular frequency is calculated as 
follows: 
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By means of the least squares method, a good 
approximation to the value of γ in the whole range of table 1 
is obtained as: 
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In this case the factor applied to the mass of the beam is 0.2409 which differs from the 
0.2424 shown in equation (7) for m=0. 

Equations of linear model with damping. 

When conditions lead to a small deformation, the behavior of the first mode of vibration 
of a cantilever beam can be approximated to the behavior of a one degree of freedom 
mass-spring-damper system. (Fig. 1).  

Vibration of such a linear system is described by the well-known equation: 

02 2
11  xxx    (13) 

Table 1: values of 
frequency parameter γ 
[rad] as function of 
mass ratio [-]. 

m/mb γ 
100 0.4160 
50 0.4943 
20 0.6205 
10 0.7357 
5 0.8610 
3 0.9812 
2 1.0762 
1 1.2479 

0.5 1.4110 
0.2 1.6164 
0.1 1.7227 

0.05 1.7912 
0.02 1.8393 
0.01 1.8568 
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Where the resonance angular frequency is mk1  and the damping ratio 

122 
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         (14) 

where k is the stiffness, c is the damping coefficient and m is the mass. The general 
solution to this equation is obtained as follows: 
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If the tip of the cantilever beam is driven to an initial displacement and then left free to 
oscillate, the vibration is analytically obtained for the following initial conditions:

0)0(;)0( 0  xxx . In this case the value of the vibration amplitude and phase are as 
follows: 
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The method to measure the damping coefficient described in this work consists of the 
determination of parameters ξ and ω1 in order to adjust equation (15) to the experimental 
data measured of a vibrating cantilever beam. 

Fitting of experimental data to vibration equations. 

In order to determine the natural frequency and damping ratio, a test specimen, fixed at 
one end (Figure 2), is moved away from the static equilibrium position. The displacement 
of its free end is measured using a laser transducer. The parameters of the formula (15) 
are adjusted to the data collected using the least squares method, with a Nelder-Mead 
Simplex algorithm. The optimization parameters are A, φ, ω1 and ξ. 

 

 

m 

c k 

 

  

x 

Fig. 1: Linear model: m = mass, c 
= damping coefficient, k = elastic 
stiffness 
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Finite Elements calculations with damping. 

In ANSYS ™ there are several ways to introduce the damping factor, each of them being 
suitable for a particular case. In this case -a transient dynamic analysis- the way to enter 
the damping factor is by Rayleigh's equivalent damping. The free vibration equation for 
a structure is formulated as: 

0)()()(  xkxcxm         (17) 

where x is a vector representing the displacement of every element of the structure (or 
every element, in FEM calculations), and (m), (c) and (k) are the mass, damping and 
stiffness matrices. Rayleigh’s theory assumes that the damping matrix (c) is a function of 
mass and stiffness matrices that can be linearized with α and β as constants that multiply 
the matrices of mass (m) and stiffness (k): 

)()()( kmc           (18) 

As a consequence of the mathematical theory of matrices, the same orthogonal 
transformation that allows to diagonalize (m) and (k) allows to diagonalize (c). This 
allows for the equivalent expression: 

0)()()(   KCM         (19) 

where (M), (C) and (K) are the diagonalized matrices, for a set of coordinates η (modal 
coordinates). System (19) is a set of uncoupled equations. For each mode 
of vibration, there is an equation: 

0 iiiiiiiii KCM          (20) 

that can also be written as (13): 

02  iiiiii          (21) 

where ωi and ξi are the resonance angular frequency and damping ratio of the i-th mode, 
respectively.  

The damping ratio for each mode of vibration, from (2021), satisfies the following 
equation: 
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More details about Rayleigh’s model of damping can be found  in Rao (1986), Newland 
(1989), Gatti and Ferrari (1999), Bottega (2006) or Cai et al. (2002). In almost all 
structural problems, the resonance frequencies are relatively high, so the damping 
component related to the mass (the term involving α) is negligible. Therefore: 

2
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For a cantilever beam, applying equation (7) we have, for the first natural frequency: 
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Materials and methods 

Experimental set. 
 
Experiments were carried out by fixing a 
specimen of the material vertically to the 
workbench. The free end of the specimen was 
then moved away from its equilibrium position, 
and allowed to vibrate freely. The displacement 
of the end of the specimen was measured for a 
time interval of 5 s.  

Laser 

transducer 

Data 

collector 

Vibrating 

beam 

Fig. 2: Experimental set. 
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In order to measure the displacements, a laser transducer, which can record data with a 
frequency of up to 100 kHz, was used. The output of the transducer is an analog voltage 
signal. The distance to the object to be measured was 90 mm (SO, Fig.3). From this 
distance, a measurement range of 45 mm (MR) was permitted. For data collection a 
Spider8 recording system of HBM™ was used, which handles analog information 

Table 2: material of the studied specimens. 
Material Usual applications section of 

specimen 
[mm] 

Density 
[kg/m3] 

E 
[MPa] 

Steel 1020 general mechanics 10.5 x 2 7850 210000 

DOCOL™ cold-rolled high strength steel for 
automotive industry 

22 x 1 7760 200000 

DOCOL 1200M™ high performance automotive 
applications steel: side impact beams, 
bumpers, seats and structural 
components 

22 x 1 7730 197000 

Aluminum 2030 tubes, bars, profiles, sheet 15 x 3 2760 57000 

Polyethylene 
terephtalate  (PET) 

synthetic fibers, containers and 
packaging, engineering resins 

12 x 2 1210 1580 

Polypropylene 
(PPHM) 

textiles, pipes, laboratory equipment, 
loudspeakers, automotive components, 
banknotes 

11 x 2 1310 5140 

Fig. 3: Laser transducer. 
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processing, amplifies it and converts it into a digital signal. The digitized signal is treated 
with Catman™ software for post-processing. 

 Data obtained in this manner (Fig. 4) were introduced into the adjustment program coded 
in Matlab™, to obtain the natural frequency and damping ratio. Ten trials were performed 
for each material. Specimens of several materials were studied, according to Table 2. 

A series of tests on the steel specimen were performed to test the consistency of the 
settings. Different lengths of cantilever beam were taken to cover a wide range of natural 
frequencies. Table 3 shows the results obtained for the natural vibration frequency, 
compared to the theoretical values expected according to equation (7). 

Table 3: frequencies experimentally obtained for 
several lengths of cantilever of a steel specimen (E = 
210 GPa, density = 7850 kg/m3). 

L [mm] f1 [Hz] 
experimental 

f1 [Hz] 
theoretical (7) 

Difference 
in f1 

130 85.4 98.9 -15.8% 
150 68.0 74.3 -9.3% 
170 53.0 57.9 -9.2% 
190 41.5 46.3 -11.6% 
210 34.7 37.9 -9.3% 

Fig 4: Experimental signal captured by the laser transducer, 
for the specimen of steel Docol1200M 
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The theoretical model does not consider damping, so part of the differences between the 
experimental frequency and the calculated frequency is the effect of damping. It must be 
stated that the differences seem to be too high, but the expression of the natural frequency 
is, from (7): 

2/12/12
1

   ELhf        (25) 

where λ is a generic constant. So, the relative error of the frequency is: 

eeeee ELhf 2
1

2
12

1
         (26) 

where e is the relative error of each magnitude (Demidovich and Maron, 1987). Assuming 
0.05 mm to be the measuring error for h (2.5% for h=2mm), 1 mm for L (0.8% for 
L=130mm), 5% for the values of density and 10% for E, the total relative error for the 
theoretical frequency is 10.8%. Such a variation, translated into the value of the damping 
ratio, can explain the difference found between the experimental frequency and the 
calculated frequency. 

Determination of the optimal parameters for fitting experimental data. 

The importance of the critical parameters to achieve good fits to the experimental data 
was studied. The effectiveness of adjusting the coefficients of equation (15) with 
experimental data is related to the correct choice of the initial values of optimization. 
Starting with coefficients close to their real value makes the convergence of the method 
quicker. On the other hand, a bad choice can mean that no convergence is reached and 
that the equation does not fit the experimental data. Before attempting to make a proper 
fit it is recommendable to briefly review the experimental data. For example, for the 
experimental data regarding the movement, the maximum value is recommended for an 
initial value x0. 

In addition, in the case of a cantilever beam, it is possible to know its theoretical natural 
frequency ωn (7), so that an evaluation of it would provide a good initial guess. The 
damping values can be taken depending on the material to be tested for a first 
approximation. In the literature, the approximate values of damping can be found, 
depending on the material, so these would be suitable for the values of ξ. 

Besides a proper choice of initial coefficients, there are also two parameters which 
strongly influence the fit. The first parameter is the sampling interval Δt. The other 
parameter is the amount of periods taken for each setting nT. If many periods are taken 
for analysis, the calculation time increases because of the dimensions of the vectors to be 
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analyzed (Fig. 5). This time increase seems to not be significant with the use of an Intel 
Core i5 CPU, 2.67 GHz but the effect was much larger with the original equipment used 
in the lab. On the other hand, if only a few oscillations are taken, they hardly represent a 
damped oscillatory motion and the fit will be incorrect too. 

To determine the correct values for these parameters, data were generated from 
expression (15) and the adjustment program was applied. This was done in order to 
establish the coefficients of the equation of the damped free movement of the signal using 
as initial values the same ones used to generate the data. Once the fit was achieved, the 
relative error of the values obtained for 1 and ξ was measured. A calculation was made 
by taking periods 1, 2, 3 up to 10. The results are shown in Figure 4. If attention is focused 
on the target of the subroutine (measuring the damping factor), for two periods, the error 
is less than 0.01%. The other errors lie within an acceptable range (Fig. 6). 

Sampling with an unsuitable frequency can lead to a great distortion in the information. 
Nyquist’s theorem establishes that the sampling frequency must be at least twice the 
highest sampled frequency. Some literature recommends taking ten times the highest 
sampled frequency. For a generic case, the sampling period is: 

max

1
fn

Ts


  (27) 

Fig. 5: Time of computation for increasing number of 
data points (with an Intel Core i5 CPU, 2.67 GHz). 
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where Ts is the sampling period, n the number of data for each period, and fmax the 
maximum frequency to be detected. For the virtual experiment, a full range of two periods 
was considered, as in the previous experiment this outcome was considered suitable. 

The study was performed with two to twenty samples per period, taking as highest 
frequency fmax = 1/π Hz, which is the frequency of the generated data. For a number of 
data per period higher than 2, the errors are below 1% for ξ and below 10-5% for ω1. For 
higher sampling frequencies, there is no significant improvement in the results. 

 

Results and discussion 

Damping ratio measurement. 

Table 4 shows the results of the resonance frequency and damping ratio of the specimens 
of the studied materials. The resonance frequency is comparable to that calculated 
theoretically using equation (7).  

There are several ways of taking damping into account in Ansys™ calculations. The most 
general way is by using Alpha & Beta Damping or Rayleigh Damping. For high 
frequencies, the α term (22) can be disregarded and the constant β can be calculated using 
equation (24) in the case of a cantilever beam. 

The value of β for the Aluminum 2030 specimen was calculated by equation (24). This 
value has been used to simulate the vibration of the specimen in Ansys™. For the 
calculations, the time step was equivalent to the sampling frequency used in the 
experiments, in order to have the same number of data. Finally, the signal (displacement 
of the free end) obtained from the simulation was introduced into the fitting program in 

Fig. 6: Relative error (%) of the damping ratio and the natural frequency, depending 
on the amount of periods taken for the fitting. 
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order to obtain ω1 and ξ. The value of the damping ratio obtained experimentally was 
0.277 %, whilst the one obtained from the simulation signal was 0.283 %. The relative 
difference is 2 %. 

Table 4: natural frequencies and damping ratio for several materials (L 
= 170 mm). Experimental and theoretical values from the equation (7). 

Material ξ [%] 
f1 

experimental 
[Hz] 

f1 
theoretical 

[Hz] 

difference 
in f1 

steel 0.15 53.1 57.9 -8% 
DOCOL™ 0.19 25.4 28.4 -11% 
DOCOL 1200M™ 0.19 25.4 28.2 -10% 
Al 2030 0.27 74.5 76.2 -2% 
PET 0.56 13.3 12.8 4% 
PP HM 1.36 24.2 22.2 9% 

 

In addition to what has already been stated about the range of error in the data used for 
the calculation, there is a certain correlation between the damping ratio and the difference 
of frequency values as can be seen in figure 7. The higher the value of damping, the 
greater the difference between the theoretical and experimental values of frequency. This 
makes sense since the theoretical value is obtained from a model without damping.  

The same study was carried out for the vibration of a sample with a mass attached to the 
free end under bending loads. The 
goal was to verify that the damping 
ratio obtained from the former tests 
could be used in a numerical 
simulation of a case with a different 
load. In addition, it was compared to 
the theoretical value (12). 

A vibration test was performed with 
a specimen of Al2030, with a mass 
of 60 grams attached to the free end. 
This experiment was simulated by 
using 50 bi-dimensional elements 
BEAM3 and MASS21 of Ansys™. 
The frequency of the first mode of 
vibration obtained from the modal 
analysis was 21.02 Hz, while the 

Fig. 7: Correlation between damping ratio and 
difference on frequency (theoretical and 
experimental). 
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result from solving the theoretical equation (12) was 21.01 Hz and from experimental 
testing 23.00 Hz. The difference is 8.7%  

Methodology validation: Measurement of the damping ratio of a structure. 

In order to validate the applicability of the methodology, a complex spatial structure 
holding an unbalanced rotor was simulated and tested as shown in Fig. 8. Damping ratios 
obtained in previous sections were used to feed simulation data. Experimental results 
obtained with extensometers validated simulation results. 

An unbalanced rotor supported on a four vertical steel bar structure was used as a test 
structure (Fig. 8). Two of the beams were equipped with extensometric gauges. The rotor 
starts with an initial velocity higher than the natural frequency of the system and the 
unbalanced rotor produces harmonic excitation bending support beams. The large mass 
of rotor plus a small unbalanced mass, is placed as a cantilever tip mass. As the rotor 
slows down, the exciting force decreases going first through its torsional resonance and 
then, with a slower rotating speed, through its bending resonance (Fig. 9). The strain at 
the gauges was captured and recorded by the computer. 

From the measured strain gauge and the translation of this value into displacement, the 
resonance frequency of the structure and its damping ratio may be calculated. Performing 
a Discrete Fourier Transform (by FFT algorithm) the values of the two resonance 

Fig. 8: An inertial rotor which can be unbalanced, supported by 4 
beams. Two gauges measure the deformation of the beams. 
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frequencies (Fig. 10) were obtained. Those frequencies were 9.30 Hz (torsion) and 6.83 
Hz (bending). The damping ratio was calculated from the dynamic amplification which 
was around 50 and therefore leading to a damping ratio of around 1% at 6.83 Hz, much 
larger than the 0.15% measured at 53.1 Hz for the same steel of the beams. This issue 
arises from the fact that the speed dropped too fast and there were not enough cycles in 
resonance frequency to amplify the signal to its maximum value. 

The balancing machine was simulated with Ansys ™ using a simplified model of four 
rectangular section beams, each one divided into 50 elements (BEAM188). The four 
beams were fixed by one end. At the free end they were attached to a mass point element 
(MASS21) having the properties (mass and moment of inertia) of the whole top of the 
machine (mass: 5.674 kg; Ixx =16749 kg·mm4, Iyy = 166418 kg·mm4 and Izz = 166758 
kg·mm4, where the z axis is vertical and downward; the x axis is horizontal and coaxial 
with the rotor; and the y axis is horizontal and transverse to the axis of rotation of the 
rotor). 

Figure 9: Signal of displacement at the base of the two (gray / 
black) mounting plates, with the points of resonance. 
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Once a modal analysis of this model was performed, the first two natural frequencies 
corresponding to the resonance frequencies of torsion and bending were obtained. These 
values, compared with those obtained experimentally, are shown in Table 5. 

Furthermore, through virtual experiments, the bending and torsional stiffness were 
determined. Mass was measured and compared to the computer model of the system. 
Inertia was taken directly from the computer model. From these values of stiffness, mass 
and inertia, the resonance frequencies were calculated using the formulas for the 
linearized model: 

mk flexflex ,1  (28) 

ztortor Ik,1  (29) 

Table 5: resonance frequencies of the structure [Hz]. 
 Experimental Modal 

analysis 
Virtual  

 (28) (29) 
Bending 6.83 6.97 7.80 
Torsion 9.30 10.35 11.76 

Fig. 10: Frequency spectrum of the mV signal of strain gauge in figure 
9, obtained by DFT and translated into mm of displacement. 
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Results are shown in Table 5. 

Conclusions 

A new method to calculate damping properties of rigid materials to be used in FEM 
calculations is presented. The method is simple and no expensive equipment is needed. 
No report of a similar method has been found in consulted literature. 

The results obtained in simulation have shown a good match with physical models tested. 
By applying it, errors under 0.1 % were obtained. The fitting algorithm converges very 
quickly, and also provides a value for the sum of the errors, which informs about the 
accuracy of the adjustment.  

Recommendations to select initial parameters are presented. Critical parameters to 
achieve good mathematical fits of the experimental data are identified, described and 
demonstrated.   

The correlation between theoretical data reported in literature, simulation and 
experimental results is presented and discussed. Several materials were tested with 
varying mass and geometrical properties of specimens in order to assure confidence in 
the method if used in industrial applications. 

The application to a complex hyperstatic three-dimensional structure proves the validity 
of this method and its applicability to real world situations.  
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