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Abstract The present study examines the possibility of
attenuating blood pulses by means of introducing prosthetic
viscoelastic materials able to absorb energy and damp such
pulses. Vascular prostheses made of polymeric materials
modify the mechanical properties of blood vessels. The
effect of these materials on the blood pulse propagation
remains to be fully understood. Several materials for medical
applications, such as medical polydimethylsiloxane or poly-
tetrafluoroethylene, show viscoelastic behavior, modifying
the original vessel stiffness and affecting the propagation of
blood pulses. This study focuses on the propagation of pres-
sure waves along a pipe with viscoelastic materials using the
Maxwell and theZenermodels.An expression of exponential
decay has been obtained for theMaxwell material model and
also for lowviscous coefficient values in theZenermodel. For
relatively high values of the viscous term in the Zener model,
the steepest part of the pulse can be damped quickly, leaving
a smooth, slowly decaying wave. These mathematical mod-
els are critical to tailor those materials used in cardiovascular
implants to the mechanical environment they are confronted
with to repair or improve blood vessel function.
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1 Introduction

Recent evidence suggests a link between cardiovascular
and neurodegenerative diseases. Indeed, changes in pulsatile
shear stress provoked by arterial stiffening inherent to the
aging process, or indirect flow effects on the immunolog-
ical system, can extend to the brain (Benetos et al. 1993;
Martorell et al. 2012, 2014; Garcia-Polite et al. 2016), an
organ with low peripheral resistance. This problem is com-
mon in hydraulic engineering, where pressure surges are
damped by means of additional pipes or viscoelastic materi-
als (Pezzinga andScandura 1995; Pezzinga 2002;Covas et al.
2004). Herein, we hypothesize that a polymeric prosthesis
implanted in a stiffened major vessel such as the aorta or the
carotid could attenuate blood pulses. The viscoelastic proper-
ties of thematerial should absorb pulsatile energy and smooth
such pulses to prevent brain damage. Several materials with
medical applications, like polydimethylsiloxane (PDMS, sil-
icone) or polytetrafluoroethylene (PTFE), show viscoelastic
behavior (Calvo Aguilar 2013; Mahomed et al. 2015). These
materials, widely used in many medical devices, vary the
vessel stiffness and affect the propagation of blood pulses.
As a first step, the study is focused on evaluating the damping
rate of a pulse moving along a vessel of viscoelastic mate-
rial. The aim of this manuscript is to study the mathematical
model of a pressure wave propagating along a viscoelastic
tube for Maxwell-type material models. This paper’s novelty
resides in the design of prostheses able to damp changes in
pulsatile flow which may jeopardize the brain microvascula-
ture (Garcia-Polite et al. 2016).
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Mathematical and computational models of the blood cir-
culation are nowadays a topic of hard debate and scrutiny due
to the myriad of conditions and pathologies associated with
cardiovascular disease. The Windkessel model is a classic
one (Keener and Sneyd 2009; Manning et al. 2002; Segers
et al. 2003; Olufsen and Nadim 2004; Ellwein et al. 2008).
Windkessel-type models account for the impedance to blood
flow of the whole or of a part of the circulatory system.
This reduces the whole vessel to a single-point equation
and does not allow studying the damping phenomena that
occurs along the vessel. To study the attenuation of a pulse, a
pointwise model becomes necessary. One-dimensional mod-
els have also been extensively used to study pressure and flow
wave propagation in the arteries (Olufsen et al. 2000; Alas-
truey et al. 2009; Qureshi et al. 2014;Willemet andAlastruey
2015; Alfonso et al. 2016), even coupled to the cerebrospinal
fluid system (Martin et al. 2012). These models assume an
elastic behavior of the vessels’ walls; therefore, the pressure
is considered proportional to the cross-section area of the
vessel with no viscoelastic component.

Propagation of a pressure wave in a filled pipe is a classic
topic in engineering, with different applications, like water
hammer or nondestructive testing of pipelines (Jiang et al.
2011; Liu et al. 2013; Meniconi et al. 2012). When the
pipe material is elastic (and the friction effects negligible),
the mathematical model leads to the wave equation. Vis-
coelastic materials characterization is not a simple task, and
many mathematical models describe different phenomena
like creep, relaxation and recovery. Modeling the viscoelas-
tic properties of the arterial wall is not straightforward. There
are a number of studies that consider different viscoelastic
behaviors of the material of the vessel (Erbay et al. 1992;
Demiray 1997; Kudryashov and Chernyavskii 2006; Guala
et al. 2015), including fractional elements (Pérez Zerpa et al.
2015; Giusti andMainardi 2016). A general approach using a
Hook’s Law correctedwith a quadratic termwas deeply stud-
ied by Kudryashov and Chernyavskii (2006). Some works
(Pezzinga et al. 2014, 2016) present quasi 2-D models, to
take into account the viscous friction in the transients. Dif-
ferential constitutive models, which present linearity, are a
classic choice for studying a viscoelastic prosthesis (Droz-
dov 1996; Bergström and Hilbert 2005). Among them, the
Kelvin–Voigt material model has been thoroughly studied
and is broadly used in several engineering fields (Meniconi
et al. 2012; Apollonio et al. 2014; Kundu et al. 2015; Warda
et al. 2001; Barclay and Moodie 1987; Moodie et al. 1985).
Unlike Kelvin–Voigt model, Maxwell and Zener models can
simulate materials that show permanent deformation (Covas
et al. 2004) and can be adjusted to the mechanical proper-
ties of vascular prostheses (Blaise et al. 2016). In this work,
we have explored Maxwell and Zener models to study pres-
sure waves’ attenuation when traveling along viscoelastic
pipes. The final outcome of this study is explicit formulae

that quantify the decaying rate of pressure waves in vascular
viscoelastic prostheses. To the best of our knowledge, there
is not such explicit formula for this class of materials. We
will exploit these formulae to determine the material prop-
erties that fulfill a desired level of attenuation. This will be
useful to choose commercially available materials or design
and manufacture our own material to design a prosthesis that
suits the patient’s attenuation needs.

2 Materials and methods

In this manuscript, we model the transmission of pressure
pulses along a straight pipe made of a viscoelastic material,
filled with a fluid. This model can be separated in two parts:
The first one refers to the dynamic stress/strain behavior of
the material of the pipe, also known as material model, and
the other one refers to the wave equation governing the pres-
sure wave transmission. We have compared this model to a
set of experimental strain/stress and strain/time curves and
adjusted the parameters for a polymer for medical devices,
polydimethylsiloxane.

2.1 Material model

We have used two well-known viscoelastic material model,
the Maxwell model (Fig. 1a) and the Zener model (Fig. 1b).
The Maxwell model is defined by Eq. (1), where ε is the
strain and σ the stress. E1 and η are the static Young mod-
ulus and the viscous factor, respectively. The Zener model
(also known as standard linear viscoelastic model or three-
parameter model) is defined by Eq. (2), where τ = η/E1.

∂ε

∂t
= 1

E1
· ∂σ

∂t
+ σ

η
(1)

∂σ

∂t
+ σ

τ
= (E0 + E1)

∂ε

∂t
+ E0

τ
ε (2)

2.2 Wave equation governing the pressure wave
transmission

The hypotheses assumed for the model are that the fluid is
incompressible; the effect of the viscosity of the fluid is neg-
ligible; and the deformation of the tube is small related to its
radius. Fluid movement is a plug flow, so the velocity does
not depend on the radial dimension. In fact, a published study
in which speed was locally measured (Pezzinga et al. 2014)
shows fairly flat velocity profiles in the hydraulic transients.
However, it should be noted that this study was carried out
for turbulent regimes, whereas flow is usually laminar in the
circulatory system.

For a pipe with wall thickness (e) small compared to the
inner radius (r), the relationship between the pressure dif-
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Fig. 1 a Maxwell model for a viscoelastic material. E1 is the elastic
modulus and η the viscous modulus. b Zener model for a viscoelastic
material. E0 and E1 are the elastic moduli and η the viscous modulus.

c Sketch of the pipe section. r is the radius, and e is the thickness of
the pipe. d One-dimensional pressure pulse propagation along a pipe in
time and space

ference between the pressure inside and outside the pipe (p)
and the tangential stress (σ ) at the pipe wall (Fig. 1c) is:

p · r = σ · e (3)

The continuity equation for a differential volume inside the
tube gives:

∂u

∂x
= −2

r
· ∂r

∂t
(4)

In addition, the balance of the momentum gives:

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ f

πr2
(5)

where u is the velocity of the fluid and ρ its density. In the
last term, f is the frictional force per unit length that depends
on the viscosity and the shape of the velocity (Willemet and
Alastruey 2015). The term of convective acceleration may
be negligible when the velocity is low. In this work, the
convective acceleration and frictional force terms have been
neglected.

2.3 Pressure propagation using the Maxwell model

If the strain is dε = dr/r , combining Eq. (1) with Eq. (4)
gives:

∂u

∂x
= −2

(
1

E1
· ∂σ

∂t
+ 1

η
σ

)
(6)

Therefore, Eqs. (5, 6), after cross-derivation, give the unique
equation:

∂2 p

∂x2
= 2ρ

(
1

E1
· ∂2σ

∂t2
+ 1

η
· ∂σ

∂t

)
(7)

Taking into account (3), if c is the pressure wave velocity,
the model results in:

c2 = eE1

2ρr
(8a)

∂2 p

∂t2
+ 1

τ
· ∂p

∂t
= c2 · ∂2 p

∂x2
(8b)

This is a wave equation with a linear dissipation term. When
η tends to infinity, τ does too and Eq. (8b) becomes the well-
knownequation for (undamped) pressure pulses inside elastic
pipes, like in a water hammer.

When the initial and boundary conditions are convenient,
Eq. (8b) can be solved by separation of variables and Sturm–
Liouville series. For the conditions set in (9), this becomes an
eigenvalue problem that allows calculating the decaying rate
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of the pressure wave. These eigenvalues define the inherent
damping ability of the material.

⎧⎪⎪⎨
⎪⎪⎩

p (0, t) = 0
p (L , t) = 0
p (x, 0) = f (x)
∂p
∂t (x, 0) = g (x)

(9)

The eigenvalues, which are the spatial frequencies, are: λn =( nπ
L

)2
, n ∈ N, and the formal solution to (8) is:

p (x, t) =
∑∞

n=1
(C1n exp (μ1nt)

+C2n exp (μ2nt)) sin
nπx

L
(10)

where μ1n,2n = 1
2τ ± √


n with the discriminant


n = 1

4τ 2
− λnc

2 = E2
1

4η2
− n2π2

L2 · eE1

2ρr
(11)

Note that μ1n,2n are always negative. Hence, if the discrimi-
nant
n is negative, the corresponding term is underdamped.
If the discriminant is zero, the corresponding term is critically
damped. If the discriminant is positive, the corresponding
term is overdamped. Note that the sequence of the values
of this discriminant (11) is decreasing and unbounded. In
consequence, there will be infinite negative terms (under-
damped). However, for low values of n, the discriminant
could be positive and hence the lowest spatial frequencies
may be overdamped. This is when

τ 2 <
L2

n2π2 · ρr

2eE1
(12)

For underdamped cases, the solution to (8) can be written as
a function of time and space:

p (x, t) = e− t
2τ · φ (x, t) (13a)

p (x, t) = e− xt
2τ ·c · φ (x, t) (13b)

where xt = c · t is the position of the pressure pulse and
x ∈ [0, L] is the spatial coordinate.

If ωn = √−
n,Cn and δn are constants to be determined
from the initial conditions, the auxiliary function φ (x, t) is
defined as follows:

φ (x, t) =
∑∞

n=1
Cn cos (ωnt + δn) sin

nπx

L
(13c)

φ (x, t) is an undamped wave, and most importantly a peri-
odic function in both time and space. Consequently, it does
not show any irreversible decay, and therefore, the decay rate
of the wave is the negative exponential in (13a) with constant
of time 2τ .

For those cases where condition (12) is not fulfilled, a
number of overdamped terms arise. This happens for values
of n lower than a critical value k, which is L/ (2cπτ). Then,
the solution becomes:

p (x, t) =
∑k

n=1

[
Ane

μ1n t + Bne
μ2n t

]
+ e− t

2τ
∑∞

n=k+1
Cn cos(ωnt + δn) sin

nπx

L
(14)

Note that μ2n < −1/2τ < μ1n < 0, so the wave will show
an overdamped part and an underdamped part. One part of
the overdamped terms decay faster than the undamped terms,
and the other part decays slower. The dominant decay rate of
the overdamped part is controlled by μ11 > −1/2τ .

2.4 Pressure propagation using the Zener model

Time derivation of the Zener model (2) gives:

∂2σ

∂t2
+ 1

τ
· ∂σ

∂t
= (E0 + E1)

∂2ε

∂t2
+ E0

τ
· ∂ε

∂t
(15)

The continuity Eq. (4) gives:

∂u

∂x
= −2 · ∂ε

∂t
(16)

And, after time derivation:

∂2u

∂t∂x
= −2 · ∂2ε

∂t2
(17)

Combining (15) with (16, 17), one has:

(E0 + E1)
∂2u

∂t∂x
+ E0

τ
· ∂u

∂x
= −2 · ∂2σ

∂t2
− 2

τ
· ∂σ

∂t
(18)

And, deriving respect to time once again:

(E0 + E1)
∂3u

∂t2∂x
+ E0

τ
· ∂2u

∂t∂x
= −2 · ∂3σ

∂t3
− 2

τ
· ∂2σ

∂t2
(19)

The balance of the momentum, assuming no convective
acceleration and no friction (5) and deriving respect to space
gives:

ρ
∂2u

∂t∂x
= −∂2 p

∂x2
(20)

And deriving again respect to time:

ρ
∂3u

∂t2∂x
= − ∂3 p

∂t∂x2
(21)
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If c20 = E0e
2ρr and c21 = E1e

2ρr , one can now combine Eq. (19)
with (3, 20 and 21):

c =
√
c20 + c21 (22a)

c2 · ∂3 p

∂t∂x2
+ c20

τ
· ∂2 p

∂x2
= ∂3 p

∂t3
+ 1

τ
· ∂2 p

∂t2
(22b)

This third-order partial differential equation appears as a
linearized model in nonlinear acoustics, under the name of
Moore–Gibson–Thompson equation. Taking the dominant
terms (those of third order), this is a wave equation with a
wave velocity c. We propose the next formal solution, which
is analogous to the one found in (13):

p (x, t) =
∑∞

n=1
e− t

τn · ψn (x) (23)

where ψ is the solution of the equation:

ψ ′′
n (x) + λn · ψn (x) = 0 (24)

and

λn = 1

τ 2n
· 1 − τ

τn
τ
τn

· (c20 + c21) − c20
(25)

When pressure is zero, (25) gives λn = ( nπ
L

)2 and the func-
tion ψ is:

ψn (x) = Cn · sin nπx

L
, n ∈ N (26)

where L is the length of the spatial domain andCn every con-
stant. From (25) one gets the cubic characteristic equation,
for the unknown 1/τn :

1

τ 3n
− 1

τ
· 1

τ 2n
+ λn

(
c20 + c21

)
· 1

τn
− 1

τ
· λnc

2
0 = 0 (27)

This polynomial does not have any negative real root. Using
the formulae of Cardano, the roots of this polynomial are:

1

τn,1
= 1

3τ
+ S1 + S2 (28a)

1

τn,2
= 1

3τ
− S1 + S2

2
+

√
3

2
i (S2 − S1) (28b)

1

τn,3
= 1

3τ
− S1 + S2

2
−

√
3

2
i (S2 − S1) (28c)

where

S1 = 1

3τ
3
√
R +

√
R2 + Q3 ;

S2 = 1

3τ
3
√
R −

√
R2 + Q3 (29a)

R = 9

2
· τ 2λn

(
2c20 − c21

)
+ 1 (29b)

Q = 3τ 2λn
(
c20 + c21

)
− 1 (29c)

The lowest value of the real part of 1/τn controls the decaying
rate and that is:

1

τn
= min

(
1

3τ
+ S1 + S2,

1

3τ
− S1 + S2

2

)
(30)

The value of S1 + S2 decreases as n increases and tends to a
constant value depending on the parameters of the material
model:

limn→∞ (S1 + S2) = 1

3τ
·2c

2
0 − c21

c20 + c21
= 1

3τ
·
(
2 − 3E1

E0 + E1

)

(31)

Therefore, the limiting value of the constant 1/τncan be
stated from (30) and (31):

1

τn→∞
= min

(
1

τ
· E0

E0 + E1
,
1

2τ
· E1

E0 + E1

)
(32)

This limiting value is known as the “essential spectrum” of
the problem. Observe in the expression (30) that, for a range
of cases, the value of τn is almost independent on n and the
exponential part of the solution (23) can be taken out of the
sum. This limiting value of 1/τn can be approximated by
(32), and this is when:

τ 2 · c2 � 1 m2 (33)

The same is true when the pulse width is very short compared
with the length of the space considered, because the lowest
harmonic terms in (23) are very weak.

Note that the imaginary part of (28b,28c) represents the
harmonics of an oscillationwith increasing frequency. There-
fore, the solution for (23) can be written as a function of time
and space:

p (x, t) = e
− t

τeq · ξ (x, t) (34a)

p (x, t) = e
− xt

c·τeq · ξ (x, t) (34b)

where xt = c · t is the position of the pressure pulse and
x ∈ [0, L] is the spatial coordinate. ξ (x, t) is a bounded
function which is periodic in both time and space or damped
in time and periodic in space, and τeq can be calculated by
(35).

τeq = max

(
τ · E0 + E1

E0
, 2τ · E0 + E1

E1

)
(35)
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When condition (33) is not fulfilled, the value of τn in Eq. (30)
depends on the value of n. In that case, the exponential part of
the solution (23) can’t be taken out of the sum and the decay-
ing rate becomes a weighted sum of n exponential decays
limited by n = 1 (lowest decaying rate) and n → ∞ (high-
est decaying rate).

In summary, expressions (13) and (34-35) give the decay-
ing rate of a pressure wave along a tube when condition (33)
is fulfilled only for the Zener model. Note that both expres-
sions refer to the pressure, which is proportional to stress
σ (3); therefore, the decaying rate for the stress is the same
for pressure and stress. When (33) is not fulfilled, the decay-
ing rate is bounded between the decaying rate calculated for
n = 1 and the one calculated for n → ∞ with Eq. (30).

2.5 Numerical simulations

The formulae previously developed are compared to numer-
ical one-dimensional simulations. We propose the problem
with a realistic blood pressure pulse arising from a heartbeat.
The pressure wave propagates along a straight viscoelastic
pipe of length L (Fig. 1d), with pulsatile inlet f (t) as shown
in Eq. (36):

f (t) =
{ pmax

2

(
1 − cos

( 2π
T t

))
, t ≤ T

0 , t > T
(36)

In consequence, for the Maxwell material model, the set of
conditions of the problem are defined in (37) as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2 p
∂t2

+ 1
τ

· ∂p
∂t = c2 · ∂2 p

∂x2

p (0, t) = f (t)
p (L , t) = 0
p (x, 0) = 0
∂p
∂t (x, 0) = 0

(37)

The partial differential equation (PDE) is second order both
in time and in space. It has been solved by the method of
lines (Saucez et al. 2004). The space dimension has been
discretized using finite differences, by centered formulas of
second order. This gives a system of ordinary differential
equation (ODE) in time, where h is the space step of the
discretization.

d2 pi
dt2

+ 1

τ

dpi
dt

= c2
(
pi+1 − 2pi + pi−1

h2

)
, i = 1 . . . N

(38)

To reduce these second-order ODEs to first-order ones, one
takes:

dpi
dt

(t) = ri (t) (39)

This gives 2N equations:

{ dpi
dt = ri
dri
dt = c2

(
pi+1−2pi+pi−1

h2

)
− 1

τ
ri

, i = 1 . . . N (40)

And the conditions:

p0 = f (t) ; pN+1 = 0 (41)

The ODE system (40,41) is solved using the Dormand–
Prince method (Dormand and Prince 1980), programmed in
MATLAB (ode45).

For the Zener model, the set of conditions of the problem
are defined in (42), analogous to (37), with the pressure pulse
defined previously in (36):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
c20 + c21

) ∂3 p
∂t∂x2

+ c20
τ

· ∂2 p
∂x2

= ∂3 p
∂t3

+ 1
τ

· ∂2 p
∂t2

p (0, t) = f (t)

p (L , t) = 0
∂2 p
∂t∂x (L , 0) = 0

p (x, 0) = 0
∂p
∂t (x, 0) = 0
∂2 p
∂t2

(x, 0) = 0

(42)

Taking into account (39) and (42):

∂2 pi
∂t2

(t) = ∂ri
∂t

(t) = si (t) (43)

The PDE gives the system of 3N ODE (i = 1. . .N):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dpi
dt = ri i = 1 . . . N
dri
dt = si
dsi
dt = c20

τ(h)2
· (pi+1 − 2pi + pi−1)

+ c20+c21
(h)2

· (ri+1 − 2ri + ri−1) − 1
τ

· si
(44)

And the boundary conditions give:

p0 = f (t) ; pN+1 = 0; r0 = f ′(t); rN+1 = rN−1 (45)

The ODE system (44,45) is solved using the sameMATLAB
code.

2.6 Mechanical testing and model adjustment

The ability to damp pressure waves was tested in poly-
dimethylsiloxane (PDMS, Dow Corning, Midland, MI), a
common material used in medical applications. Maxwell
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and Zener models were adjusted to represent the viscoelas-
tic behavior of PDMS using a stress/strain experiment.
Stress/strain testswere carried out using Instron® ElectroPul-
sTM E3000a tensile rig. Force was obtained from load cells
and displacement obtained from grip displacement. Briefly,
a uniaxial sinusoidal displacement at 1Hz was applied to
a flattened half cylinder of PDMS of 14.28mm diameter
and 2.37mm thickness. This tube was cut into slices of
10mm width and straightened to a length of 37.38mm. The
PDMS sample was held to the uniaxial test machine allow-
ing a length between fixations of 20 mm. (See supplemental
Video 1) Tube flattening provoked a 20% compression on the
exterior face and a 20% tension on the interior face. The dis-
placement applied deformed the sample up to 7% to obtain
stress/time and strain/time curves. Our experiment measured
the average tensile strength along the tube. We performed
a series of simulations to confirm that the significant thick-
ness of our pipe (0.166 thickness-to-diameter ratio) would
not affect our results. Indeed, we observed that, for ratios
between 0.1 and 0.2, the error between theoretical and aver-
age stress ranged approximately ± 3%.

The stress/strain experiment was simulated in parallel to
estimate the material models’ parameters that fit best the
experimental data. These simulations were run using the
Dormand–Prince method, with the experimental strain/time
curve as an input and the stress/time curves as an out-
put. The error between the experimental and the simulated
stress/time curveswas calculated as the average of the orthog-
onal distance from each point of the experimental data to
the simulated curve. This error was minimized using the
Nelder–Mead simplex method (Lagarias et al. 1998) to find
the material models’ parameters that best represented the
material behavior.

3 Results

3.1 Formulae validation

This first section is devoted to test and discuss the validity
of the models and the formulae developed in the methods
section. These calculations only prove the validity of the
mathematical model, and do not represent any specific physi-
cal condition. That is, these simulations calculate the pressure
wave damping for certain values of τ , c, T and L without
aiming at any particular material.

Figure 2a shows the result of a simulation using the
Maxwell material model, for a set of values where all fre-
quencies are underdamped. In this case, τ = 2 s, c = 5 m/s, T
= 0.2 s and L = 10 m. The dashed line shows the exponen-
tial decay along the spatial axis, following Eq. (13b). Solid
lines represent the pressure pulse along the pipe in incre-
ments of 0.15 s in time. The displacement of the pulse has

been simulated before it reaches the end of the pipe, to avoid
end-of-pipe reflection effects. The exponential decay adjusts
perfectly to the pressure wave damping.

Figure 2b shows the result of a simulation using the
Maxwell material model, for a set of values where some fre-
quencies are overdamped. In this case, τ = 0.2 s, c = 5 m/s,
T = 0.2 s and L = 10 m. The overdamped terms provoke that
the pressure profiles exceed the exponential. In the solution
shown in Fig. 2b, the smoothwave that develops at the bottom
corresponds to the slow-decaying terms: For these over-
damped terms, the dominant term (14) is A1 · exp (μ11 · t),
with μ11 = − 0.555 s−1. The higher-frequency terms (the
sharp peak of the pressure pulse) disappear faster than the
low-frequency terms (the smooth wave remaining). The
exponential decay adjusts fairly to the pressure wave damp-
ing.

Figure 2c shows the result of a simulation using the Zener
material model, for a case where E1 < 2 · E0. In this case:
τ = 2 s, c0 = 4 m/s, c1 = 3 m/s„ T = 0.2 s and L = 10 m.
According to (22a), c = 5 m/s, which is the same value
that is used in Fig. 2a, b. Solid lines represent the pres-
sure pulse along the pipe in increments of 0.15 s in time.
Dashed lines show the exponential decay along the spatial
axis, for n = 1 and for n → ∞ calculated with (30) and
(32), respectively. The exponential decay is almost indepen-
dent of n because condition (33) is fulfilled. The limiting
value (known as essential spectrum and with highest decay-
ing rate) is τ∞ = 11.11 s, only slightly lower than τ1 = 11.59
s (lowest decaying rate). In this case then, the decaying rate
can be calculated with Eq. (34b), and therefore, the essential
spectrum given by (35) is a good predictor for the decaying
rate.

Figure 2d shows the result of another simulation using
the Zener material model, for a case where τ = 0.2 s,
c0 = 4 m/s, c1 = 3 m/s, T = 0.2 s and L = 10 m. In
this case, condition (33) is not fulfilled as τ 2 · c2 = 1 m2.
The dashed lines show the exponential decay for different
values of τn : the extreme values (n = 1 and n → ∞) and an
intermediate τn for n = 5, the value of n that best adjusts to
the true decaying rate of the pressure wave . The maximum
value of τn was calculated using (30) for n = 1 and is 11.606
s. The intermediate value was calculated also using (30) for
n = 5 and is 1.332 s. The minimum, for n → ∞, is 1.111
s, calculated by (32). This last value does not fit properly the
decaying rate but could be used as a first approximation for
the sharpest part of the wave. The exponential decay calcu-
lated for n = 5 does fit very well the wave decaying rate
but it is a particular case for these specific conditions; vary-
ing the material model parameters or the geometry would
change the value of n that best fits the wave decaying rate. In
conclusion, when condition (33) is mildly not fulfilled, the
spectrum given by (35) for n → ∞ approximates fairly to
the true decaying rate.

123



596 J. Menacho et al.

B

EDC

A

Fig. 2 a Decaying wave for the Maxwell material model. Solid lines
are the pressure along the pipe, for increasing times (every 0.15 s). The
dashed line is (13b). Values: τ = 2 s, c = 5 m/s, T = 0.2 s and L = 10
m. b Decaying wave for the Maxwell material model. Solid lines are
the pressure along the pipe, for increasing times (every 0.15 s). The
dashed line is (13b). Values: τ = 0.2 s, c = 5 m/s, T = 0.2 s and L =
10 m. c Decaying wave for the Zener material model. Solid lines are
the pressure along the pipe, for increasing times (every 0.15 s). Dashed
lines are the exponential decaying for n = 1 and for n → ∞ calculated
with (30) and (32), respectively. Values: τ = 2 s, c0 = 4 m/s, c1 =3 m/s,

T = 0.2 s and L = 10 m. d Decaying wave for the Zener material model:
Solid lines are the pressure along the pipe, for increasing times (every
0.15 s). Dashed lines are the exponential decaying for n = 1 and n = 5
calculated with (30) and for n → ∞ calculated with (32). Values: τ =
0.2 s, c0 = 4m/s, c1 =3m/s, T = 0.2 s and L = 10m. e Decaying wave for
the Zener material model: Solid lines are the pressure along the pipe,
for increasing times (every 0.15 s). Dashed lines are the exponential
decaying for n = 1, n = 8 and n = 10 calculated with (30) and for
n → ∞ calculated with (32). Values: τ = 0.05 s, c0 = 4 m/s, c1 =3 m/s,
T = 0.2 s and L = 10 m

When condition (33) is definitely not fulfilled, none of the
previously described estimates work. In Fig. 2e, we show
a case where τ = 0.05 s, c0 = 4 m/s, c1 = 3 m/s, and
T = 0.2 s, hence τ 2 · c2 = 0.0625 m2 and condition (33) is
not satisfied. The figure shows the exponential decay for the
extreme values of τn and two intermediate values for n = 8
and for n = 10, which are calculated and represented anal-
ogously to those shown in Fig. 2d. For n = 1, the value of
τn is 45.11 s, for n = 8 and for n = 10 the values of τn are
0.820 s and 0.588 s, respectively, and the for n → ∞, the
value is 0.278 s. The figure shows how neither the maximum
nor the minimum values of τn are useful for predicting the
pulse attenuation as none of the estimated decays adjusts to
the true decaying rate of the wave. Also, none of the inter-
mediate values completely fit the data as the true decaying
rate is the result of a weighted sum of n exponential decays

instead of a single exponential decay. The method finds its
true limit when τ 2 · c2 < 1 m2.

3.2 Pulse wave attenuation prediction

Formulae (13–14 and 34–35) give an exponential pattern of
the decay rate of a pulse for the Maxwell and the Zener
material models. This can be written, as a function of the
space:

p (x) = p0 · exp −x

c · τeq
(46)

where c is the velocity of thewave, this is (8a) for theMaxwell
model and (22a) for the Zener model.
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τeq is, for the Maxwell model:

τeq =

⎧⎪⎨
⎪⎩
2τ, 4τ 2π2 · c2

L2 ≥ 1
2τ

1−
√
1−4τ 2π2· c2

L2

> 2τ, 4τ 2π2 · c2

L2 < 1 (47)

And, for the Zener model if τ 2 · c2 � 1m2:

τeq ≈
{
2τ · E0+E1

E1
∈ (2τ, 3τ) , E1 < 2E0

τ · E0+E1
E0

≥ 3τ, E1 ≥ 2E0
(48)

Note that, for this last model, the time constant is only valid
for the steepest part of the pulse.

When the interest is to study the pulse attenuation, the
length is a critical limitation. The desired attenuation a is
defined as the pressure damping between inlet (x = 0, p0)
and outlet (x = L, p(L)):

a = 1 − pOUT

pI N
= 1 − p (L)

p0
(49)

Combining (46) and (49), one can obtain the analytical
expression of the length L of material required for a certain
attenuation a.

L = c · τeq · ln 1

1 − a
(50)

3.3 Experimental determination of the material models’
parameters

Maxwell and Zener models were used to characterize the
mechanical behavior of our PDMS samples. As seen in
Fig. 3a, b, the best fit for the Maxwell poorly adjusted to
the experimental stress/strain and stress/time cycles. The
best adjustment found for the Maxwell model was E1 =
2.827 MPa and τ = 13.38 s. In the first cycle there was an
offset of approximately +0.025 MPa in the lower side of the
cycle and of +0.05 MPa in the higher side of the cycle, and
although these differences decreased in the next cycles, the
tendency of the simulation did not fit the experimental curve.
On the other hand, the Zener model was able to properly
adjust the stress/strain and stress/time cycles of the PDMS
sample. This is shown in Fig. 3c, d. In this case, the best fit
was for the parameters E1 = 0.9365 MPa, E0 = 2.114 MPa
and τ = 0.2611 s. The rest of the work was done using the
Zener model and the parameters obtained.

3.4 Numerical simulations of pressure wave damping by
PDMS

Simulations were performed to estimate how a straight
PDMS prosthesis would be able to damp a pressure pulse.

The prosthesis was a straight cylinder of 4.0 mm in radius
and 0.5 mm in thickness. The wave velocity c, calculated
with (22a), was 13.808 m/s, and the fluid density was set at
1000 kg/m3. This simulation would correspond to a cylin-
drical PDMS device implanted in a straight vessel such as
the common carotid artery, which has an approximate radius
of 4.0 mm. The period of the pulse was set at 0.2 s, which
is the amplitude of a systole, and the simulated length was
enough for the wave to run the entire cylinder. The length
of the simulation was calculated as the multiplication of the
pulse period and the propagation speed c. The results showed
that our PDMSprosthesis would only be able to damp around
4% in the first meter of device. This is consistent with the
attenuation predicted by formulae (46,48), which matches
with the results of the numerical simulation.

Finally, Fig. 4 shows four combinations of the Zener
model parameters required to obtain different pressure atten-
uations (2–5%) in a 4.0mm in radius, 0.5mm in thickness and
100- to 200-mm-long cylinder. This was not done using the
Maxwellmaterialmodel since results depicted in Fig. 3A and
B showed that the Maxwell model did not fit properly to our
requirements. Values of E0 and E1 were set between 0.01 and
10MPa and values of τ were calculated so that Eqs. (46,48)
fitted the proposed pressure damping. The value of τ 2 · c2
was also computed to check for condition (33) fulfillment. In
those areas where τ 2 · c2 < 1 m2, the proposed attenuation
cannot be accomplishedwith any combination of thematerial
model parameters (E0, E1 and τ ) in the ranges represented
in the figure. As seen in Fig. 4a, there is a narrow range of
material properties that allow for a 2% attenuation in a 100-
mm-long cylinder. This attenuation is easier to reach when
the cylinder is expanded up to 200 mm (Fig. 4b). As seen in
Fig. 4c, the condition τ 2 · c2 ≥ 1 m2 is never satisfied and
hence an attenuation of 5% in 100 mm is impossible within
the range of E0, E1 and τ that we have studied. There is,
however, a narrow range of material properties in which a
5% damping is possible if the cylinder is extended to 200
mm (Fig. 4d).

4 Discussion

Aortic stiffness, increased pulse wave velocity, and aging are
intrinsically connected (O’Rourke 1990). Changes in blood
flow profiles can affect the vessel’s functionality and hence
the organ that this vessel feeds (Balcells et al. 2005). These
changes, which have been classically described in the most
relevant vessels for cardiovascular medicine (Li et al. 2005),
i.e., coronary arteries (Chatzizisis et al. 2007; Dancu and
Tarbell 2007), carotid bifurcation (Martorell et al. 2014) and
aorta (Renner et al. 2012; Morbiducci et al. 2007), have
been recently reported by our group at the blood–brain bar-
rier (Garcia-Polite et al. 2016). To revert these changes, the
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A

C

B

D

Fig. 3 a Best adjustment found for Maxwell model. Comparison of
stress/time curves between experimental data (solid line) and simulation
(crosses) with E1 = 2.827 MPa and τ = 13.38 s. b Best adjustment
found for Maxwell model. Comparison of hysteresis in stress/strain
curves for 5 < t < 6s between experimental data (solid line) and
simulation (crosses) with E1 = 2.827 MPa and τ = 13.38 s. c Best
adjustment found for Zener model. Comparison of stress/time curves

between experimental data (solid line) and simulation (crosses) with
E1 = 0.9365 MPa, E0 = 2.114 MPa and τ = 0.2611 s. d Best adjust-
ment found for Zener model. Comparison of hysteresis in stress/strain
curves for 5 < t < 6s between experimental data (solid line) and
simulation (crosses) with E1 = 0.9365 MPa, E0 = 2.114 MPa and
τ = 0.2611 s

medical device industry has developed hundreds of inven-
tions, with percutaneous interventions such as stents and/or
grafts becoming almost a commodity in patient care (Mar-
torell et al. 2012). These devices modify permanently the
structure of the vessel typically to allow blood circulation or
modify blood behavior, focusing on a rather local effect. We
and others have, however, proved that local modifications of
blood flowhave not only local but also downstream effects on
the vasculature (He et al. 2015; Richter and Edelman 2006;
Richter et al. 2004), which could be predicted and calculated
(Martorell et al. 2014; Grigioni et al. 2005). Based on the
knowledge that local modifications in flow could affect the
downstream vasculature, we have developed the theory that

by locally damping arterial pulses at the carotid bifurcation
we could prevent fluidodynamic damage on the blood brain
barrier. The mathematical work developed in this manuscript
is the first step toward designing a graft that could damp pres-
sure waves in the cerebrovascular system.

Several materials with medical applications, like poly-
dimethylsiloxane (PDMS), popularly called silicone or poly-
tetrafluoroethylene (PTFE), popularly called Teflon, show
viscoelastic behavior (Calvo Aguilar 2013; Mahomed et al.
2015). Thesematerials are inert and non-degradable, but their
mechanical properties are very different to those of healthy
arteries. PTFE and especially PDMS (Mahomed et al. 2015)
are significantly stiffer than arteries (Clough et al. 2015; Bij-
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D

B

C

A

Fig. 4 a Surface that correlates the values of E0 (x axis), E1 (y axis)
and τ (contour lines) to obtain a 2% pressure attenuation in a 100-mm-
long pipe. Contour lines represent the values for τ , and the color map
represents the value of τ 2 · c2 to check for condition (33) fulfillment. b
Surface that correlates the values of E0 (x axis), E1 (y axis) and τ (con-
tour lines) to obtain a 2% pressure attenuation in a 200-mm-long pipe.
Contour lines represent the values for τ , and the color map represents
the value of τ 2 ·c2 to check for condition (33) fulfillment. c Surface that

correlates the values of E0 (x axis), E1 (y axis) and τ (contour lines) to
obtain a 5% pressure attenuation in a 100-mm-long pipe. Contour lines
represent the values for τ , and the color map represents the value of
τ 2 · c2 to check for condition (33) fulfillment. d Surface that correlates
the values of E0 (x axis), E1 (y axis) and τ (contour lines) to obtain a
5% pressure attenuation in a 200-mm-long pipe. Contour lines repre-
sent the values for τ , and the color map represents the value of τ 2 · c2
to check for condition (33) fulfillment

nens et al. 2011) and have less viscous component (Mahata
et al. 2006).However, to developourmathematicalmodel,we
chose performing hysteresis tests on PDMS, which is easier
to characterize. Our experiments showed significant energy
absorption, which was then fitted to ourmathematical model.
Thanks to that, we have now a better understanding on the
damping of a pulse along a straight pipe. This damping is
exclusively due to pipe walls expansion, with minor elastic
recovery as shown in our hysteresis tests. The simulations
performed after material model adjustment showed that the
Zener model, but not the Maxwell model, can be used to pre-
dict pulse attenuation in medical materials such as PDMS.
We then estimatedwhich combinations ofmaterial properties

defined by the Zener model parameters can achieve a certain
pulse attenuation for a given cylindrical pipe, obtaining an
isosurface that depicts the required combination.

This manuscript studies pulse attenuation along a pros-
thesis of an eligible viscoelastic material. The mathematical
expressions developed here suit two different purposes. On
the one hand, one can nowpredict pulse attenuation bymeans
of a cylindermade of a particularmaterial. On the other hand,
reverse engineering can be used to determine which charac-
teristics a certain material should possess in order to reach a
given pulse attenuation. We have tried which combinations
of material properties are able to deliver a certain attenu-
ation for a given pipe geometry. In the carotid device that
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we propose, we can predict an attenuation of up to 5% in a
200-mm-long cylinder using our mathematical method. This
attenuation may seem mild, but our preliminary simulations
have shown a significant decrease in shear stress at the blood–
brain barrier thanks to this pressure damping. Further in vitro
experiments will validate our initial estimations.

This is the first time, to the best of our knowledge, that
a mathematical model for pulse attenuation including vis-
coelasticity along a cylindrical pipe has been studied using
theMaxwell or the Zener material models. No definitive con-
stitutive material model has been defined for blood vessels
(Fung et al. 1979; Holzapfel et al. 2000; Valdez-Jasso et al.
2009;Masson et al. 2011; Sokolis 2013; Smoljkić et al. 2015;
Wang et al. 2016; Holzapfel andOgden 2010; Schulze-Bauer
and Holzapfel 2003; Stålhand 2009). Recent works consider
a viscoelastic Voigt (or Kelvin–Voigt) model for the vessel
(Alastruey et al. 2012; Wang et al. 2015; Valdez-Jasso et al.
2009). The Kelvin–Voigt model cannot, however, represent
the behavior of materials that show permanent deformation.
Other models lead to non-isotropic and nonlinear models,
which are different to those that fit materials for medical
applications. Understanding fluid dynamics through blood
vessels is a topic of outmost importance (Martorell et al.
2014; Garcia-Polite et al. 2016; Morbiducci et al. 2007;
Assemat et al. 2014; Frank et al. 2002; García-Herrera and
Celentano 2013; Boileau et al. 2015; Blanco et al. 2014). 3D
calculations are the cornerstone to fully characterize blood
flow behavior, and the fluid–solid coupled problem is nowa-
days one of the most exciting challenges in computational
fluid dynamics (Chen et al. 2016; Cebral et al. 2015;Moireau
et al. 2012). These models assume solid walls, elastic walls
ormore complexmodels.Windkesselmodels reduce the flow
resistance of a vascular assembly to one point (Tsanas et al.
2009). Finally, 1D simulations, which have improved expo-
nentially in recent years, usually assume elastic behavior of
vessel walls. Despite their limitations in terms of spatial res-
olution, they have exponentially lower computational costs
and can be a powerful tool to guide and constraint further
calculations.

We have chosen a 1D approach for our model to min-
imize computational costs. Our model possesses a unique
simplification that allows for easy calculations, if the mate-
rial properties criteria are fulfilled. Instead of numerically
estimating a solution for a third-order partial derivatives
equation, we solve a simple analytical equation along a cer-
tain distance, for a certain time. A recent work (Pellicer
and Solà-Morales in press) states a set of properties of the
solutions to this equation by means of spectral analysis.
The interested reader can find there the general statements
about orthogonality and completeness of the eigenfunctions
of a more general formulation. Using our simplifications,
the attenuation achieved by a cylinder of a given material

becomes a transfer function problem, which can be reduced
to a pointwise resistive element.

Due to its simplicity, we are aware that our model has
limitations. First, as already indicated, the model does not
consider the effects of blood viscosity and the effect of stress
in the longitudinal direction. In terms of wave propagation
study, our model is still limited to an isolated pulse along
a straight pipe, without considering bifurcations or arterial
curvature. In this sense, the common carotid artery is one the
straightest and flat vessels in the human body, and the device
we would design would be a non-compliant cylindrical graft.
Our model does not include the reflexive waves coming from
arterial corners and bifurcations, which could indeed inter-
act with the forward pulse wave. The overlapping of pressure
waves can have multiple contrary effects as a function of the
downstream geometry. Further research could help us reach-
ing additional damping via wave superposition. As explained
earlier, our model is also limited to a certain range of mate-
rial properties. When the multiplication of the square wave
velocity by the square time constant τ is inferior to 1 m2, our
model is unable to fit a simple exponential decay. This does
not mean that no materials can achieve the desired attenua-
tion, but it means that our simplified equations cannot predict
this attenuation anymore. In those cases, the third-order par-
tial derivatives equation must be solved numerically.

5 Conclusions

We have presented a study of the decay of a pressure pulse
propagating along a pipe made of a viscoelastic material.
TheMaxwell material model and the Zener model have been
studied in this scenario, representative of a vascular prosthe-
sis like a graft implanted in a blood vessel.

For the Maxwell material model, we have obtained an
expression of exponential decay (46,47). For the Zener
model, we have obtained an expression (46,48) that can be
useful only for a range of cases. For relatively high values
of the viscous coefficient, the steepest part of the pulse is
damped quickly, leaving a smooth wave that slowly decays.

This work opens the window to better design vascular
prosthesis made of viscoelastic materials for medical appli-
cations. In particular, it could lead to vascular devices able to
modify pressure waves that jeopardize organs and structures
sensitive to pressure waves like the blood–brain barrier.
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