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Abstract: Acoustic event detection and analysis has been widely developed in the last few years for
its valuable application in monitoring elderly or dependant people, for surveillance issues, for multi-
media retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound
source identification is a key issue to give a smart technological answer to all the aforementioned ap-
plications. Diverse types of sounds and variate environments, together with a number of challenges
in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper
presents a comparative study on combining several feature extraction algorithms (Mel Frequency
Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB))
with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN),
and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work
has the goal of detailing a best practice method and evaluate the reliability of this general-purpose
algorithm for all the classes. Preliminary results show that most of the combinations of feature extrac-
tion and machine learning present acceptable results in most of the described corpora. Nevertheless,
there is a combination that outperforms the others: the use of GTCC together with kNN, and its
results are further analyzed for all the corpora.

Keywords: acoustic sensor; acoustic event detection; corpora; feature extraction; machine learning

1. Introduction

Years after the first surveillance systems, mainly based on camera networks [1], privacy
issues started to arise [2], and, for many applications, the change from image detection in
indoor or outdoor spaces tended to move to acoustic sensor networks [3], less intrusive
for the life of citizens and with a wide spectrum of possibilities in terms of identification
of events. Audio event detection (AED) and classification is of the upmost importance in
several environments and applications. Identification of certain indoor sounds has been
useful in several surveillance contexts, especially those related to human activity [4]. It
helps in monitoring old or dependant people at home and triggering an alarm when some
specific event is detected. Unobtrusive AED in smart homes has direct applications in
ambient assisted living [5]. Identifying sounds related to breaking into houses or violent
acts associated to crime or even terrorism has obvious security applications [6].

Any acoustic event detection algorithm previously analyzed and evolved in the
laboratory can today be easily deployed in a real-time signal processing Wireless Acoustic
Sensor Network (WASN) [3], due to technological advances of Internet of Things (IoT)
in the framework (mainly) of the smartcities. These advances in sensor networks have
also reached home environments, especially focusing in Ambient Assisted Living (AAL)
applications [7], with appealing challenges as providing users of an AAL environment
aimed to detect domestic accidents (e.g., falls, flooding, fire), or monitor their health by
means of the behavioural analysis, with the final pretension of improving their quality of
life [8]. Projects, such as CIRDO [9], focus on the safety of elderly and dependant people at
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home. Another project, homeSound [10], presented an AAL platform able to detect specific
audio events in real-time enabling remotely tracking of a patient status by the medical staff
using a decentralized intelligence architecture.

Detecting sounds in outdoor environments has also several applications ranging
from traffic noise mapping in a city [11] to soundscapes modeling [12] or open air surveil-
lance [13]. The DYNAMAP project [14], for instance, distributed a low-cost WASN in
Rome and Milan in order to monitor a very specific environmental noise, i.e., Road Traffic
Noise (RTN), and evaluate its impact in urban and suburban areas. The SONYC project
(Sounds of New York City) [15] monitors the urban soundscape of New York City through
a network of low-cost sensors. Characterizing and identifying acoustic scenes or sound-
scapes have also multiple uses, such as context-aware user experiences [16] or even in robot
navigation [17], where it can augment visually obtained information. AED in surveillance
systems can provide additional information about an incident or a dangerous situation
and can be used along with security cameras and CCTV circuits [18]. Finally, Biology is
also a field where these technological advances may be applied to evaluate the effects
of any human activity to the well-being of animals [19]. Bioacoustics has been studying
the acoustic monitoring of birds through the application of sound recognition techniques,
following both manual or semi-automatic approaches [20]. Even wildlife monitoring can
benefit from AED, by tracking endangered species [21] or by helping in species recognition
tasks [22].

The AED process requires extracting acoustic features out of the data available and
feeding them into a machine learning (ML) algorithm responsible for the classification.
Multiple combinations of feature extraction (FE) methods and ML algorithms have been
used in recent years on a wide range of scenarios. Mel Frequency Cepstrum Coefficients
(MFCC) [23] are often used as a baseline in addition to more sophisticated FE methods
which aim to improve the outcome of the AED applications. Gammatone Cepstrum Co-
efficients (GTCC) [24] has repeatedly achieved better identification accuracy than MFCC
both in indoor and outdoor environments. In the particular case of soundscapes modeling,
extracting Auto-Correlation Features (ACF) has been successfully used in Reference [25].
While classical ML algorithms, such as k-Nearest Neighbor (kNN), Support Vector Ma-
chines (SVM), and Gaussian Mixture Model (GMM), offer viable solutions [26], the use
of algorithms based on Neural Networks (NN) is becoming one of the preferred choices
present in many recent studies [27].

This paper aimed to study multiple combinations of classical ML algorithms with
FE methods. The goal was to use some of the most relevant FE methods, which include
MFCC, GTCC, and Narrow Band Auto-Correlation Features (NB-ACF), in addition to
several ML algorithms (kNN, NN, and GMM), to apply to different environments and
corpora with the final goal of obtaining the most flexible classical acoustic event detection
algorithm to be deployed in any low-cost acoustic sensor platform. Among the audio data
chosen, there are indoor, outdoor, soundscapes, surveillance-related, and birds sounds
distributed in five multi-class datasets. One of the main objectives was to spot the strengths
and weaknesses of each FE/ML pairing while assessing their performance according to
different kinds of sounds and corpora. Related literature often opts for a vertical approach
centering on a particular set of data. Results vary according to the kind of sounds and
the time window chosen when performing its detection and classification, making an
across-the-board comparison difficult. The goal of this paper was to offer a more general
approach to evaluate the performance comparison of all the implemented algorithms over
the proposed scenarios. It is known from previous works that the training and test of
machine learning algorithms varies substantially [28] when going to the simulations in the
laboratory with a small corpus into real-operation environment, where larger corpora are
used [29], and several unpredictable events can occur. This work faced only the first part
of the tests, near a proof of concept of the best combination of FE and ML for each type of
group of sounds.
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This paper is structured as follows. Section 2 describes recent related work in the
topic, specifically research on sound events recognition. Section 3 contains an accurate
description of the five datasets used. In Section 4, a brief description of the chosen FE and
ML algorithms is provided, and, in Section 5, the overall results are presented, paying
special attention to the best performing setup. Finally, Section 6 presents the conclusions of
this work.

2. Related Work

In this section, we summarize some of the most relevant recent research on audio
recognition and events detection in different environments, paying special attention to
the ones that share the same FE methods and ML techniques chosen in this paper. As the
number of studies on audio recognition is very extensive, only those that work with
datasets similar to the ones in this project have been taken into account.

2.1. Acoustic Event Detection Algorithms

AED is typically achieved by two sequentially performed stages consisting in a process
of FE followed by a ML algorithm. Firstly, the FE method provides a feature vector for
each portion of the chosen audio. This vector is a highly compacted representation of the
given signal, which is imperative to reduce the computational cost of the following step.
Secondly, the ML algorithm is trained with this representative data in order to create a
model of the sounds of interest which, in turn, will be used to predict future apparitions
of those.

2.1.1. Audio Features Extraction Methods and Its Applications

MFCC is probably one of the most broadly used methods in audio recognition, not
only for speech [30] but also for a wide range of different sounds like surveillance-related
events [31], soundscapes [32], or even animal sounds [22]. There is abundant literature
related to events and anomalies detection in an outdoor environment. In Reference [6],
the authors choose MFCC, among others, in order to extract the features out of a dataset
of surveillance-related sounds obtained under pseudo-real-world conditions. In Refer-
ence [31], three types of abnormal sounds are detected: gun-shots, broken glasses, and
screams, previously mixed with background sound successfully using a set of audio fea-
tures which includes MFCC. Shifting to a multi-class event detection scenario, there are
also several studies that have opted for MFCC as a way of obtaining meaningful features,
such as Reference [32], where a dataset of 61 classes mixed with ambient background noise
is used to analyze ten different soundscapes: basketball, beach, bus, car, hallway, office,
restaurant, shop, stadium, and street. Another example can be found in Reference [33],
where ten different classes of real-life urban sounds are classified. The dataset groups
the classes in five main categories: community, construction, emergency, mechanical, and
traffic. In this research, and many others, MFCC is chosen since it is a competitive baseline
to benchmark novelty audio event detection methods.

MFCC has been repeatedly used in studies about urban and road traffic environments.
In Reference [34], authors implement MFCC alongside MPEG-7 Low-Level Descriptors
(LLD) and Perceptual Wavelet Packets (PWP) while studying nine urban traffic audio
classes with samples obtained from professional sound effects collections including the
detection of crashes. Moreover, in Reference [11,26], Socoró et al. come up with a thorough
research on anomalous noise events within road traffic noise that also considers MFCC to
parameterize the audio data.

This general use as a baseline method for features extraction is not restricted to outdoor
and soundscape datasets. MFCC is chosen to perform a comparative between several
classifying algorithms in Reference [35], using different datasets, including both indoor and
outdoor sounds. Authors highlight its favorable properties at computing distances between
different sounds. Other examples of indoor use of MFCC would be [4,10]. In the former,
this technique is used in the design of a platform that detects audio events happening in
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daily life environments to help tracking the status of a patient in an Ambient Assisted
Living (AAL) situation, while, in the latter, MFCC are used in combination with several
other features to classify five classes of indoor audio events using six different machine
learning algorithms.

Finally, MFCC has appeared multiple times in recent studies on bird songs recogni-
tion [21,36], where the songs’ fingerprints of some endangered species were successfully
detected. In addition, in Reference [22], Somervuo et al. parameterize 14 common North-
European bird species, and, in Reference [37], 40 different birds are identified. In both
cases, MFCC is being used. More recently, MFCC has been used as a part of a two-stage
approach to detect and classify woodpecker sounds [38].

Even if MFCC is probably the most widely spread, there are other feature extraction
techniques that are being used in AED and sounds recognition. GTCC, for instance, has
been chosen lately in several AED studies showing improvements in the accuracy of the
detection when combined with different machine learning algorithms. In Reference [11],
GTCC was extracted for the purpose of detecting anomalous noise events in a road traffic
environment in addition to MFCC. Both coefficients (MFCC and GTCC) are also chosen
in other studies about environmental sound and acoustic events classification. On the
one hand, in Reference [24], two distinctly different datasets with several environmental
sounds are classified: ESC-50 and UrbanSound8K, and a modified Gammatone filterbank
is proposed. On the other hand, in Reference [39], two other publicly available datasets
containing, respectively, 12 and 16 indoor sound events are evaluated with different state-of
the-art methods.

For the specific case of soundscape classification, ACF and, specifically, Narrow-
Band ACF (NB-ACF), have been used in the past years. For example, in Reference [25],
Valero et al. put forward a classification of audio scenes using NB-ACF. In this study,
NB-ACF is compared to other state-of-the-art signal features using 15 different audio
scenes and achieving higher recognition rates regardless of the classifying algorithm.
Later on, Jeon et al. classified urban park soundscapes in Reference [12] using ACF
parameters and validating some of them as good indicators for an effective classification of
the studied soundscapes.

2.1.2. Machine Learning Techniques

There are many classifying algorithms that appear consistently in many works related
to multi-class AED. One of the most spread choices is the Gaussian Mixture Model (GMM),
which appears in conjunction with all kinds of corpora in the literature.

In the aforementioned reference [6], the features extracted are fed into classifiers based
on GMM and Hidden Markov Models (HMM). In one of the experiments conducted in
this study (smart-home scenario), GMM clustering proved to be the best algorithm in truly
detecting abnormal audio events while keeping false detections to the minimum. Four
different machine learning methods are used in Reference [26]: Discriminant Analysis
(DA), SVM, GMM, and kNN, in order to identify anomalous noise events in a road traffic
scenario. The study sets two different areas: suburban and urban, and evaluates their
performance in terms of the macroaveraged F1 measure. kNN and SVM (followed by
GMM) are the best performers in both scenarios, while DA is the worst rated algorithm in
terms of F1-score.

In Reference [35], the indoor and outdoor corpora, including baby cries and smoke
alarms, are classified using GMM, SVM, and Deep Neural Networks (DNN). Authors point
out that GMM yields a similar Equal Error Rate (EER) or classification performance to SVM
but with a much lower computational cost. In addition, in Reference [40], a binary GMM-
based classifier is applied in an indoor AED and classification context. GMM is also one of
the most widely chosen algorithm when classifying birds sounds and birdsongs [41,42].
In Reference [43], 165 bird syllables from up to 95 bird species are classified using GMM.
Furthermore, in Reference [21], Hervás et al. model data from a synthetic dataset with
GMMs in order to detect Botaurus stellaris (an endangered bird species).
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In addition to Reference [26], kNN has been used as a classifier in other studies, as
found in Reference [11]. In this case, kNN is compared to Fisher’s Linear Discriminant
(FLD) using a 4-fold cross validation scheme and MFCC and GTCC as features extrac-
tion methods. kNN outperforms FLD in the first implementation of the detector but
underperforms it in the second one. More recently, kNN was the preferred algorithm in
Reference [13] when detecting several audio events in a forest area.

Different approaches to Neural Networks are being used as classifying methods:
standard Neural Networks (NN), Deep Neural Networks (DNN), and Convolutional
Neural Networks (CNN). It was already mentioned that DNN were used in Reference [35],
but another relevant example can be found in Reference [27], where 36 bird species from
Tonga lake were classified and recognized with the goal of monitoring their habitat.

3. Corpora Description

A total of five sound corpora were employed in this work, in order to widen the type
of sounds and environments. In this section, the composition and origin of each corpus
is described.

3.1. Indoor Sounds

The first corpus is a collection of indoor sounds originally compiled in Reference [44]
from collaborative sound libraries [45] and subsequently pruned. The sampling rate used
is 48 kHz in most of the samples and is otherwise 44.1 kHz. The total length of this corpus
is 2932 s, and the total number of samples is 142. Each one of the ten classes is composed
by 4 to 30 samples that present a variable length (between 0.2 and 211.3 s), as observed
in Table 1.

Table 1. Indoor corpus composition [44].

Category File Count Length (s) Duration Distribution (s)

Breaking Glass 30 139.14
Rain 10 452.95

Slicing 7 206.89
Printer 17 46.87

Door Knocking 15 101.57
Pouring 10 59.38

Dog Barking 15 194.88
Frying 12 607.19
Talking 8 542.16
Boiling 14 355.86

Baby Cry 4 225.53

Total 142 2932.43

3.2. Outdoor Sounds

The second corpus is composed by 15 different outdoor general sounds collected from
at least four different origins for guaranteeing data variability. It is composed by audio
samples collected from common sound libraries [46], collaborative sound databases [45],
and manual recordings performed in real environments [47]. They are high quality loss-less
(WAV) recordings obtained at a sampling rate ranging from 44.1 kHz to 48 kHz. The length
of each sample is set to 4 s, and there are between 150 and 300 samples for each class, as we
can see in Table 2. This corpus contains a total of 3472 samples (files). The total length of
the corpus is 13,888 s (almost 4 h of duration).
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Table 2. Outdoor corpus composition [47].

Category File Count Length (s)

Dogs 150 600
Birds 245 980

Crickets 300 1200
Sea Waves 300 1200
Fountain 242 968

Wind 158 632
Thunderstorm 256 1024

Applause 172 688
Crowd 194 776

City rumble 238 952
Car 200 800

Aircraft 182 728
Train 238 952

Machinery 297 1188
Chimneys 300 1200

Total 3472 13,888

3.3. Soundscapes

The third corpus is composed by fifteen different soundscapes, including indoor and
outdoor settings. A detailed description can be found in Table 3. This corpus was first used
in Reference [48]. Part of the recordings was made using a Bruel & Kjaer 2250 sound level
meter (https://bksv.com/downloads/2250/be1713.pdf). They are high quality loss-less
(WAV) recordings obtained at a sampling rate of 48 kHz. For diversity purposes, part of the
corpus was complemented with samples extracted from Reference [45]. Each soundscape
is composed by 150 to 300 samples recorded at four (or more) different locations. As in the
second corpus mentioned, each sample has a 4-s length. The total duration of this corpus is
13,888 s (almost 4 h, too) distributed in 3472 samples.

Table 3. Soundscapes corpus composition [48].

Category File Count Length (s)

Inside Bus 284 1136
Inside Car 300 1200

Inside Train 236 944
Station 198 792

Classroom 200 800
Office 288 1152

Factory 250 1000
Stadium 269 1076

Restaurant 193 772
Library 173 692

City Park 200 800
City Traffic 253 1012
City Market 227 908
Countryside 150 600

Seaside 251 1004

Total 3472 13,888

3.4. Surveillance-Related Sounds

The fourth corpus includes six classes of environmental surveillance-related sounds.
This corpus was first used in Reference [49] and is composed by sounds obtained of

https://bksv.com/downloads/2250/be1713.pdf
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common sound libraries [45,46]. They are high quality loss-less (WAV) samples with a
sampling rate of 44.1 kHz. Each class contains between 50–100 samples that present a
variable duration (between 0.2 and 4.6 s), as we can see in Table 4. There are 470 total
samples (files) in this corpus, which account for a total of 680 s.

Table 4. Surveillance-related corpus composition [49].

Category File Count Length (s) Duration Distribution (s)

Thunders 65 136.5
Screams 50 92.05

Gunshots 85 57.83
Footsteps 100 190
Dog Barks 90 35.54

Voices 80 168

Total 470 679.93

3.5. Bird Sounds

The fifth and last corpus is thoroughly described in Reference [50]. It is a collection
of bird sounds (call, drumming, and song) of seven Picidae species obtained from the
Xeno-Canto repository [51]. The WAV files are sampled at 44.1 kHz. Each class contains
from 49 to 146 samples that also present a variable length (between 0.2 and 10.5 s), as seen
in Table 5. The original corpus also contained 523 samples from an additional class Silence,
which were removed for consistency with the other datasets used. The total file count of
the corpus amounts 1146 files, for a total length of 2190 s.

Table 5. Birds corpus composition [50].

Category File Count Length (s) Duration Distribution (s)

Dendrocopos major 146 184.98
- call

Dryocopus martius 140 197.5
- call

Dendrocopos leucotos 146 128.13
- call

Dendrocopos major 62 88.5
- drumming

Dendrocopos minor 105 209
- call

Dendrocopos minor 127 227.5
- drumming
Jynx Torquilla 102 324.35

- song
Picus viridis 49 142.5

- song
Dendrocopos leucotos 50 119

- drumming
Dryocopus martius 53 133

- drumming
Dendrocopos medius 42 136.91

- song
Dendrocopos medius 124 298.51

- call

Total 1146 2189.88
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A selection of spectrograms for some different classes of sounds contained in each
corpus is shown in Figure 1. Each row corresponds to one particular corpus. The first
two rows show the spectrograms of three indoor sounds (i.e., talking, door knocking, and
breaking glass) and three outdoor sounds (i.e., chimneys, dog barking, and mixed birds).
Talking (Figure 1a), like frying or chimneys, is quite stationary. In contrast, door knocking
(Figure 1b) and breaking glass (Figure 1c) are impulsive sounds of short duration. In the
case of door knocking or dog barking (Figure 1e), they are repetitive, and, in the case of
breaking glass, they are usually not. Chimneys (Figure 1d) and birds (Figure 1f) have
some dominant frequencies that are continuously present in time in the first case and are
intermittent in the second one.

The third row shows three examples of sound scenes (i.e., factory, city traffic and class-
room). The soundscapes, being formed by a combination of several sound sources, are quite
unchanging in time (on a spectral level) as can be seen in (Figure 1g) and (Figure 1h) even if
some discrete sounds can be spotted on occasions like in the classroom example (Figure 1i).

(a) Corpus 1 - Talking (b) Corpus 1 - Door knocking (c) Corpus 1 - Breaking glass

(d) Corpus 2 - Chimneys (e) Corpus 2 - Dogs (f) Corpus 2 - Birds

(g) Corpus 3 - Factory (h) Corpus 3 - City Traffic (i) Corpus 3 - Classroom

(j) Corpus 4 - Voices (k) Corpus 4 - Dog Bark (l) Corpus 4 - Gunshot

(m) Corpus 5 - D.medius-call (n) Corpus 5 - D.leucotos-call (o) Corpus 5 - D.major-drum.

Figure 1. Selection of representative spectrograms of some of the classes in the corpora . The temporal
window varies between approximately 0.2 and 5 s, but the vertical axis (Hz) is fixed.

In the fourth row, there are three examples of surveillance-related sounds (voices,
dog barks, and gunshots). Most of these sounds are impulsive (like footsteps, dog barks
(Figure 1k), and gunshots). In the gunshot case, the duration of the main sound event
is extremely short, as shown in Figure 1l. Finally, in the last row, three examples of the
Picidae species contained in the fifth and last corpus can be found. While some birds have
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a repetitive call pattern, like the Dendrocopos medius (Figure 1m), other species present a
single impulsive one, like the Dendrocopos leucotos (Figure 1n). Changes in the frequency
range, periodicity, and duration can be observed between the various Picidae species.

4. Description of Selected Audio Features Extraction Methods and Machine
Learning Algorithms

In this section, a brief description of the key features of the FE and ML algorithms
used in this present work is provided.

4.1. Feature Extraction Techniques
4.1.1. Mel Frequency Cepstrum Coefficents (MFCC)

MFCC [23,30] is a filter banks-based cepstral-domain features extraction method.
After applying the Fast Fourier Transform (FFT) to a given windowed signal, a Mel-Scaled
filter bank (based on a nonlinear frequency scale inspired by physiological evidence of
the way the human perception of speech signals works) is used. This triangular filter
bank divides the spectrum non-linearly following the Mel scale where the lower frequency
filters have smaller bandwidth than the higher frequency ones. The Mel scale follows a
linear frequency spacing below 1 kHz and a logarithmic spacing above 1 kHz. The number
of filters and the chosen frequency range must be previously defined. The last stage
consists of ranging the coefficients according to their significance, which is accomplished
by calculating the Discrete Cosine Transform (DCT) of the logarithmic outputs from the
filter bank.

4.1.2. GammaTone Cepstral Coefficients (GTCC)

GTCC is another filter banks-based cepstral-domain features extraction method that
was proposed by Patterson et al., in Reference [52]. The GammaTone function provides
several characteristics that make these filters suitable for modeling the human auditory
system’s spectral response [53,54].

The GammaTone function is calculated as the multiplication between the Gamma
distribution function and a sinusoidal tone:

gt(t) = Ktn−1e−2πBt cos (2π fct + ϕ) t ≥ 0, (1)

where K is an amplitude factor, n is the filter order, B is a bandwidth parameter, fc is the
filter central frequency, and ϕ is the phase shift.

The duration of the filter’s impulse response is directly related to the Equal Rectangular
Bandwith (ERB), which is a measure used in psychoacoustics to approximate the bandwidth
of the human auditory filters in each point of the cochlea. For a given order n, there is
a fixed relationship between B and the ERB; for the specific case of a 4th-order GT filter,
B = 1.019 times ERB.

The ERB is calculated as:

ERB =

[(
fc

EarQ

)n
+ minBWn

] 1
n

, (2)

where fc is the filter central frequency, EarQ is the asymptotic quality of the filter at the
higher frequencies, minBW is the minimum bandwidth at the lower frequencies, and n is
the order of the approximation.

The central frequency of each filter fci can be calculated with the following equation:

fci = ( fhigh + EarQ minBW)e−
i step
EarQ − EarQ minBW, (3)
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where fhigh refers to the higher frequency considered in the filter bank, EarQ and minBW
are the ERB parameters that already appeared in Equation (2), i is the GT filter index, and
step corresponds to the distance between the filters and can be determined with:

step =
EarQ

N
ln
( fhigh + EarQ minBW

flow + EarQ minBW

)
, (4)

with N being the number of filters, and flow being the lowest frequency considered.
The process of feature extraction using the aforementioned GT filter is analogous to

the one described in Section 4 replacing the Mel-Scaled filter bank for the Gammatone
filter bank.

4.1.3. Narrow-Band Autocorrelation Function Features (NB-ACF)

To implement this technique, the chosen signal is framed and an A-weighing filter
is applied in order to model the spectral response of the human auditory system. Sub-
sequently, the windowed signal is split into N narrow band signals with the help of a
Gammatone filter bank, and the autocorrelation function (ACF) is calculated on each of
them. Finally, the ACF is analyzed by extracting the following adapted five parameters
that are merged into a single feature vector [55]:

1. φi(0): energy of the i-th narrow band signal (5). The vector φi(0) ∀i ∈ {1...N}
represents the power spectral response of the signal.

φi(0) =
1
T

∫ T

0
yi(t)2dt. (5)

2. τe,i: effective duration of the normalized envelope of the i-th band ACF signal. It
gives information about the reverberation component contained in this band. It is
calculated as the time that the 10 log (φi(τ)) function takes to decay 10dB.

3. τ1,i: delay of the first peak found in the i-th band ACF signal. This parameter is related
to the dominant frequency contained within the i-th band signal. It can be calculated
as the delay of the largest φi(τ), starting from the first zero crossing (TK), as we can
see in (6).

τ1,i = arg max
τ

{
1

φi(0)(T − TK)

∫ T

TK

yi(t)yi(t + τ)dt
}

. (6)

4. φ1,i: amplitude of the first peak found in the i-th band ACF signal (τ1,i). The vector
φ1,i ∀i ∈ {1...N} indicates the pitch strength at the different frequency bands. In other
words, a low value of φ1,i means that the dominant frequency of this band is not
important within the overall signal. On the contrary, a high value of this feature
represents a strong pitch in the i-th band. Both τ1,i and φ1,i are especially useful in
auditory soundscapes and other scenarios where coexist different sound sources. This
parameter can be computed as follows:

φ1,i = max
{

1
φi(0)(T − TK)

∫ T

TK

yi(t)yi(t + τ)dt
}

. (7)

5. AZCRi: the autocorrelation zero crossing rate is the number of times that the ACF of
the i-th band crosses the zero amplitude level (8).

AZCRi =
1

T − 1

T−1

∑
t=0
|sgn(yi(t))− sgn(yi(t + 1))|. (8)
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4.2. Machine Learning Techniques
4.2.1. K-Nearest Neighbors (kNN)

kNN [56] is a widely used classification technique which has a high predictive power.
It has also the advantage of being an instance-based algorithm easy to implement. The en-
tire training dataset serves as the model for kNN. When a new data instance must be
classified, the kNN algorithm will search through all the training set for the K instances
that are deemed to be more similar following some appropriate measurement (i.e., the
Euclidean distance for real-valued data), as we can see in Figure 2. After that, the algorithm
summarizes the prediction attribute of these k-most similar instances and uses this to
predict the class for the new observed data.

K 4
Class A
Class B
New Sample

Chosen Class

Figure 2. Example of k-Nearest Neighbor (kNN) class prediction.

4.2.2. Neural Networks (NN)

NN are designed to model the human brain behavior when performing a particular
task. As such, it is a parallel distributed machine that is constituted by simple processing
units (neurons) with the capability of storing knowledge. This knowledge is acquired from
the system inputs through a learning process and uses synaptic weights to store it [57].

Several logistic units are structured in layers to form a neural network. There is always
a first layer of input units followed by one or multiple hidden layers of neurons and by a
final output layer. The activation functions are calculated using the different weights or
parameters of the network.

A neural network can be effectively used as a machine learning method by using a
training dataset to compute the fitting weights of each internode relationship through a
backpropagation algorithm. For further understanding of the way the backpropagation
algorithm works, please read Reference [57], Chapter 4.

4.2.3. Gaussian Mixture Models (GMM)

A mixture model is a combination of K component distributions that collectively make
a mixture distribution f (x) (9). In a Gaussian Mixture Model, the fi(x) components are
chosen to be normal or Gaussian distributions.

f (x) =
K

∑
i=1

wi fi(x), (9)

where wi represents a mixing weight for the i-th component.
The GMM is a multimodal distribution that allows a clustering of the data similar

to that achieved with the k-means algorithm [58]. The goal is to model the data in the
training set using a mixture of Gaussians given a number of clusters. The value of wi
and the parameters of each Gaussian distribution are estimated using the Expectation
Maximization (EM) algorithm [59].

5. Experiments

The goal of the following evaluations is to determine which of the pool of FE methods
and ML algorithms chosen achieves better classification rates in the different evaluated
datasets. To that extent, accuracy, in addition to recall, will be the main metrics used
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to sort out the different settings. Afterwards, the most accurate FE/ML pairing will
be scrutinized via its confusion matrices in the search for the most often correctly and
erroneously classified sounds.

5.1. Experimental Setup

During the process of feature extraction, a sampling rate of 48 kHz was used. The fram-
ing of the input signal depends on the feature extraction method selected. A 30-ms frame
length is chosen when working with MFCC and GTCC with a 50% overlapping of the time
frame applied (15-ms step) [47]. On the contrary, a longer time frame (500 ms) is necessary
in the case of NB-ACF [60] and a 100-ms step is used in order to improve the precision of
the analysis while avoiding information loss between consecutive frames (following the
recommendation of Reference [61]).

To generate the features vector through the baseline MFCC algorithm, the setup in
Table 6 was used. The filter bank consists in a first set of linearly-spaced overlapping filters
followed by a second set of logarithmically-spaced ones. The two sets combined cover all
the audible spectrum.

Table 6. Mel Frequency Cepstrum Coefficients (MFCC) bank filter setup.

Lower Frequency 20 Hz Linearly-spaced Filters 14
Higher Frequency 22 kHz Log-spaced Filters 34

An optimized GTCC implementation is used, adapted from the algorithm in Refer-
ence [47] with a Glasberg & Moore ERB model [62] (EarQ = 9.26 and minBW = 24.7) and
48 4th-order GT filters. The lower frequency is set at 20 Hz and the higher frequency at
the Nyquist limit of 24 kHz. The actual fci frequencies of the filters are obtained using
Equation (3).

In the NB-ACF scenario, the framed signal is passed through a filter bank that splits the
signal into N = 48 narrow band signals contained within 20 Hz and 24 kHz. The algorithm
is an adapted version of the one proposed in Reference [25]. The five parameters described
in Section 4.1.3 are subsequently calculated for each individual narrow band in order to
generate the features vector.

A heuristic approach was used during the set-up of the ML algorithms. Sweeps
involving several parameters were used to determine and choose the following higher-
performers on a classification accuracy level. The number of neighbors from the kNN
(K = 3) and the number of Gaussian from the GMM (G = 32) were empirically chosen
in order to maximize the accuracy of the classification algorithms. The neural network
used has one single hidden layer containing NHL = 100 neurons. The audio patterns
are divided into train and test datasets using a 4-fold cross validation scheme following
previous works, such as Reference [47].

5.2. Experimental Results

The five corpora described were tested using three feature extraction methods (MFCC,
GTCC, and NB) and three machine learning algorithms (kNN, NN, and GMM) giving
a total of 45 sets of results. It is unfeasible to explicitly include all the detailed results,
including confusion matrices, in this present paper due to their extension. Nevertheless, all
45 sets were evaluated to draw the final conclusions.

5.2.1. Accuracy Results

In this current work on audio classification, accuracy is defined as the ratio of correctly
classified data frames to the total frames attempted (10).

Accuracy =
TruePositives + TrueNegatives

TotalAudioFrames
. (10)
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Figure 3 summarize the global accuracy’s mean (resulting of the 4-fold simulation
scheme) of the studied scenarios. On the one hand, GTCC outdoes MFCC in all but one
simulation, i.e., when it is used in conjunction with the kNN algorithm on the birds dataset.
And, even in this exceptional case, their performance is almost identical. On the other
hand, NB-ACF proves to be an optimal solution in some datasets but only when it is paired
with kNN. That is especially true when it is used to classify soundscapes which is to be
expected given the continuous nature of the sounds. On the contrary, it performs especially
poorly when trying to categorize impulsive sounds, such as the surveillance-related ones.

Figure 3. Boxplot of the detailed Accuracy’s Mean and Variance in the 4-fold simulations.

When it comes to the machine learning algorithms, kNN outperforms both GMM and
NN in most of the cases. Only the surveillance-related dataset gives GMM comparable or
even slightly better results when combined with GTCC. GMM is second in the accuracy
ranking, while NN lags behind. It is to be noted that the set GMM + NB-ACF struggles to
converge when there is not enough data available in the dataset.

As we can see in Figure 3, the winning pairing is GTCC + kNN, which always gives
one of the two best performances in all simulations. On the other hand, NB-ACF + NN
proves to be the worst choice overall due to its larger variance and lower mean.

Some datasets’ results are more dependant on the combination of FE method and
ML algorithm than others. In Figure 3, when dealing with the outdoor and surveillance
datasets, similar results are achieved in most FE/ML pairings, except the aforementioned
NB-ACF + NN one. Conversely, in the remaining datasets, the accuracy varies signifi-
cantly more.

5.2.2. Recall Results

Some other metrics, such as Recall and F1-score, can give us some more insight and
validate the results presented through the previous accuracy’s analysis. Recall or sensitivity
is defined as the ratio of correctly predicted positive observations (true positives) to all the
observations of the current class (11).

Recall =
TruePositives

TruePositives + FalseNegatives
. (11)
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Indeed, in Figure 4, even if the mean and variance of Recall in the 4-fold simulations
scheme are a little bit lower and wider than the ones observed in Figure 3, the overall
relative performance of the different FE/ML combinations remains almost the same, with
two notable exceptions.

Figure 4. Boxplot of the Recall’s Mean and Variance in the 4-fold simulations.

Firstly, in some of the datasets where kNN outperformed GMM at an accuracy level,
they swap positions when Recall is taken into account. It is the case of the indoor and
surveillance-related sounds. In both cases, the pairings of GMM with GTCC or MFCC offer
better Recalls than the pairings of kNN with the same FE methods.

Secondly, in the surveillance-related database, all NB-ACF solutions widely underper-
form GTCC and MFCC on a Recall basis. Not only do they offer a below par mean figure
but also a larger variance, even with the normally robust kNN. This last observation is also
confirmed with another metric, F1-score, which otherwise parallels accuracy top to bottom.

5.2.3. Detailed Study of the Optimum Setting

As seen in Section 5.2.1. the more accurate overall set of FE method and ML algorithm
is GTCC+kNN, which consistently appears as one of the top two-tiers in each dataset both
in accuracy and F1-score metrics. Moreover, this combination is also one of the top three
performers when considering Recall.

Confusion matrices are shown in Figure 5, in order to ease our detection of which
classes are more often missclassified and otherwise. A glimpse to these matrices show us
some interesting facts. For starters, wrongly predicted classes are not evenly distributed.
Thus, erroneously classified sounds are chiefly predicted into a limited set of classes. In fact,
there are some examples were a predominant swap between two specific classes takes
place. These phenomenon happens to a greater extent in those sounds with a lower true
positives’ rate. Some examples would be slicing sounds in the indoor dataset, which are
often mistakenly predicted as rain or the library and office soundscapes, which are the
most frequently swapped.
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Indoor

Outdoor

Soundscapes

Surveillance

Birds

Figure 5. Confusion matrices of the optimum setting (Gammatone Cepstrum Coefficients (GTCC)+kNN) in the
analyzed corpora.
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Most of the classes attain very high accuracy rates, no matter the database considered,
except for one or two classes which are clearly below par. The classes that present higher
confusion are shown in Figure 6 for illustrative purposes. Regarding the first dataset, most
classes, as many as 8, are correctly classified more than 95% of the time. On the other hand,
pouring and slicing sounds have an accuracy below 90%. Pouring is mainly confused
with frying, slicing, and baby, but also with rain, which is a sound with a wide spectrum,
despite its lack of low-frequency component. Slicing, with an 88% accuracy, also presents
its main confusion with rain, which, with a visual analysis, we conclude may be confused
with the impulse sounds that slicing presents. Another misclassification is between printer
and talking, despite the fact that, in this case, the error is small, in about 3% of the times.
As shown in Figure 6, most of the classification errors found correspond to wide spectra;
some of them belonging to continuous sounds and others to temporally impulse noise,
as in slicing, baby, or printer.

(a) Corpus 1 - Pouring (b) Corpus 1 - Rain (c) Corpus 1 - Slicing

(d) Corpus 1 - Baby (e) Corpus 1 - Frying (f) Corpus 1 - Printer

(g) Corpus 1 - Talking (h) Corpus 3 - Library (i) Corpus 3 - Office

Figure 6. Selection of spectrograms of the most often mis-classified classes in the corpora for illustrative
purposes. The temporal window varies between approximately 4 and 10 s, but the vertical axis (Hz)
is fixed.

As for the second database, only applause has less than 95% of true positives, while up
to 13 classes have over 98% accuracy. Nevertheless, this corpus present very stable results;
with high accuracy values of classification and no clear deviation in the misclassification
scenario, all the confusions present very low values of appearance.

In the soundscapes dataset, the situation is similar to the indoor one with 11 classes
over 95% and only libraries and offices below 93%. Despite the fact that the global perfor-
mance of the FE and ML in this corpus is brilliant with accuracy values mainly over 90%,
there are two clear confusions, between libraries and offices, which, by the way, present the
lower accuracy values. In Figure 6, it is shown that both sounds have their main energy
distribution in low frequencies but have punctual temporal components of higher frequen-
cies. This can be explained due to the high similarities between the two environments,
taking into account that this corpus works with soundscapes (and not isolated events).
Despite the fact that those spectra correspond to different soundscapes, they present a
similar spectrogram, which leads to confusion.
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Dog barking obtains the worst result in the surveillance-related dataset, with just
over 93%, and only two classes fail to reach 98% between the birds, i.e., major-drum
and medius-song.

Finally, some of the classes produce almost perfect classification records, with close to
100% accuracy rates, as seen in Table 7. The authors would like to state at this point that
the results are concluded by means of a 4-fold cross validation algorithm, which ensures
that no overfitting occurs when conducting the training and testing of the algorithms,
but none of these algorithms have been tested in a real-operation environment, where those
excellent accuracy results would be lowered by the diverse occurrences of the real-world
unexpected situations.

Table 7. Complete list of classes with a higher than 99.5% accuracy rate.

Dataset Class Accuracy Dataset Class Accuracy

Indoor Talking 99.52% Outdoor Dogs Barking 99.64%
Outdoor Birds 99.84% Outdoor Wind 99.51%
Outdoor Rumble 99.84% Outdoor Machinery 99.91%
Outdoor Chimneys 99.97% Soundscapes Countryside 99.90%

Soundscapes Factory 99.83% Birds Minor-Call 99.71%

6. Conclusions

This paper presents a detailed evaluation of three FE methods (MFCC, GTCC, and
NB-ACF), together with three ML methods (kNN, NN, and GMM), tested over five acoustic
corpora corresponding to diverse environments (indoor, outdoor, soundscapes, surveil-
lance, and birdsong), to be deployed to perform real-time in a WASN framework. Despite
the fact that the used algorithms have been widely studied in the literature, a wide sur-
vey, including the combination of the three FE algorithms with the three ML procedures,
against the five corpora, shows an extensive picture of the strengths and weaknesses of the
different approximations. The results show a moderate to high accuracy and recall results
for most of the combinations of the FE and ML methods, using a 4-fold cross-validation
technique to obtain the results.

The lower accuracy results are obtained by NB-ACF in situations where they have to
support impulsive acoustic sounds, despite the fact that pairing with kNN presents the
best possible results in soundscape detection. GTCC produces the best results in most of
the corpora, outperforming MFCC, which is traditionally considered the baseline. In terms
of ML algorithms, the best results are shown by kNN, apart from the surveillance-related
corpus, where GMM shows similar results.

These results lead us to present a general-purpose proposal using GTCC and kNN
for all the corpora class identification. A deeper analysis of this combination manifests
that the results show both high accuracy and recall, as well as that there are few classes
in the indoor corpus and the soundscape corpus that present relevant confusion values.
Nevertheless, we have to state that there is no mean accuracy value lower than 79% in any
of the tests conducted by means of the 4-fold cross-validation.

Future work is centered in testing all this test-bed over larger corpora to evaluate
their generalization capability; in terms of the outdoor corpus, it will be tested over a
wide suburban [29] and urban [28] corpora, gathering more than 300 h of labeled data,
and collected in two 24-sensor WASNs, in order to test the GTCC+kNN proposal into the
real-operation environment, not only the dataset idea. Another issue that will be studied
in the future is the feasibility of the real-time implementation of the algorithm proposal
depending on the computation capability of each of the nodes of the WASN because recent
studies in terms of privacy and data transmission efficiency show us that the most preferred
implementation [10,63] is the processing of all signals in the proper sensor when this is
already deployed in the place under study. A deeper analysis of the computational load of
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each of the algorithms, as well as the suitability of their implementation on each type of
processor in the nodes, will be analyzed.
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CNN Convolutional Neural Networks
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GPS Global Positioning System
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ML Machine Learning
NB Narrow Band
NB-ACF Narrow Band Auto-Correlation Features
NN Neural Networks
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