
Research Article
High Performance Web of Things Architecture for
the Smart Grid Domain

David Vernet, Agustín Zaballos, Ramon Martin de Pozuelo, and Víctor Caballero

Engineering Department, Universitat Ramon Llull (URL), La Salle, 08022 Barcelona, Spain

Correspondence should be addressed to Agust́ın Zaballos; zaballos@salle.url.edu

Received 3 July 2015; Revised 26 November 2015; Accepted 29 November 2015

Academic Editor: Salvatore Distefano

Copyright © 2015 David Vernet et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The increasing complexity in the management of Smart Grids is an essential factor in the creation of new technological
infrastructures capable ofmanaging the different devices involved in the network.This network has been converted into an example
of the Internet of Things. In this regard, the Web of Things enables an improvement in the processing of these data. Besides, the
large amount of data in the Smart Grid domain means that a high performance architectural design is able to manage concurrently
the entire information processing ability.This paper presents an initial approach for a new architecture and the first results after the
system implementation.

1. Introduction

The recent growth of the Internet has fostered the inter-
action of many heterogeneous technologies under a com-
mon environment (i.e., the Internet of Things, IoT). Smart
Grids entail a sound example of this situation where several
devices from different vendors, running different protocols
and policies, are integrated in order to reach a common
goal: bringing together energy delivery and smart services.
This proposal deploys an IoT-based infrastructure that
enables machine-to-machine interactions between small and
resource-constrained devices on the Smart Grid domain
based on HTTP. It extends the IoT concept by providing a
bidirectional human-to-machine interface, inspired by the
Web of Things (WoT), which results in a ubiquitous energy
control and management system (i.e., uniform access to all
devices of the Smart Grid) coined as Web of Energy (WoE)
[1].

The recent advances on this domain have led to effec-
tive architectures that support this idea from a technical
perspective but fail to provide powerful tools to assist this
new environment. Hence, the purpose of our technological
proposal is to research a novel unified and ubiquitous sensor
management interface that uses the advantages featured by
the Web of Things to manage the Smart Grid. Therefore,
this work opens a new path from the Internet of Things to

the WoT and results in a new concept coined as the WoE [1].
Overall, the Web of Energy links all domains and permits a
bidirectional communication between electricity domain and
the application domain. More concretely, the main objective
is to carry out a proof of concept of an open web-based
interface that isolates the electricity grid domain from its
utility functions. (1) It relies on a distributed storage layer to
support themassive amount of data generated by the grid.The
database proposed is an open-source document database that
provides high performance, high availability, and automatic
scaling [2]. (2) It also relies on a Southbound RESTful
API that permits an easy and seamless management of the
distributed storage layer and the smart objects connected to
the system.

2. The Smart Grid as an IoT

Recent advances on Smart Grids have explored the feasibility
of considering the power electrical distribution network as
a particular case of the IoT [3, 4]. Certainly, this specific
domain poses appealing challenges in terms of integration,
since several distinct smart devices (also referred to as Intel-
ligent Electronic Devices or IEDs) from different vendors,
often using proprietary protocols and running at different
layers, must interact to effectively deliver energy and provide
a set of enhanced services and features (also referred to as

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 347413, 13 pages
http://dx.doi.org/10.1155/2015/347413

http://dx.doi.org/10.1155/2015/347413
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2015%2F347413&domain=pdf&date_stamp=2015-12-30


2 International Journal of Distributed Sensor Networks

smart functions) to both consumers and producers (pro-
sumers) such as network self-healing, real-time consumption
monitoring, and asset management [5]. Although the latest
developments on the IoT field have definitely contributed to
the physical connection of such an overwhelming amount of
smart devices [6], several issues have arisen when attempting
to provide a commonmanagement and monitoring interface
for the whole Smart Grid [5, 7].

Indeed, integrating the heterogeneous data generated by
every device on the Smart Grid (e.g., wired and wireless sen-
sors, smart meters, distributed generators, dispersed loads,
synchrophasors, wind turbines, solar panels, and communi-
cation network devices) into a single interface has emerged as
a hot research topic [4, 8]. So far, some experimental propos-
als [3] have been presented to face this issue by using theWeb
ofThings (WoT) concept to access a mashup of smart devices
and directly retrieve their information using reasonably thin
protocols (e.g., HTTP and SOAP) [9]. However, the specific
application of these approaches into real-world environments
is fairly dubious due to the following reasons: (1) they may
open new security breaches [10, 11] (i.e., end-users could gain
access to critical equipment), (2) there are no mature electric
devices implementing WoT-compliant standards available in
the market [5], and (3) industry is averse to include foreign
modules (i.e., web servers) on their historically tested and
established, but poorly evolved, proprietary systems [12].

Therefore, the authors of this paper explore a new way to
overcome these issues through the European project INTel-
ligent Electrical GRId Sensor Communications (INTEGRIS)
[5] and Future INtErnet Smart Utility ServiCEs (FINESCE)
project [13]. This work provides a management interface for
the Smart Grid inspired by the WoT. Continuing the work
done in these projects, the aim is to implement an ICT
infrastructure, based on the IoT paradigm, to handle the
Smart Grid storage and communications requirements [14]
to manage the whole Smart Grid and link it with end-users
using a WoT-based approach, which results in a new bridge
between the IoT and WoT. This proposal, which takes the
pioneering new form of the WoT, is targeted at providing
a context-aware and uniform web-based novel environment
to effectively manage, monitor, and configure the whole
Smart Grid. Moreover, conducted developments prove the
feasibility and reliability of our approach and encourage
practitioners to further research in this direction and to
envisage new business models [15, 16].

The open IoT-based infrastructure presented in our Web
of Energy proposal will provide new tools to manage energy
infrastructures at different levels from IoT-based infrastruc-
ture enabledmachine-to-machine interactions between small
and resource-constrained devices on the Smart Grid domain.
Thus, we have extended the IoT concept by providing a
bidirectional human-to-machine interface, inspired by the
WoT, which results in a ubiquitous energy control and man-
agement system coined as Web of Energy [1]. This proposal
will combine the web-based visualization and tracking tools
with the Internet protocols, which enables a uniform access
to all devices of the Smart Grid. In order to provide such
an effective and reliable management interface to address the
heterogeneous nature of devices residing on the grid, we will

continue the deployment of an intelligent subsystem devoted
to (1) learn from the real-world events, (2) predict future
situations, and (3) assist in the decision-making process.

The tools developed can be provided in an open format
available to anyone in the research community and are able
to contribute to and enhance the platform building newmod-
ules formanaging other resources. As a first step, the platform
will be demonstrated through the management of Smart
Metering resources, based on the formats of DLMS COSEM
and IEC 61850, but the whole system will be designed for a
much wider scope where every utility, enterprise, and public
administration or any organization or single prosumer can
build their own sensor application on top of it (Figure 1).

2.1. WoE Presentation and Specified Functions. The concept
of Smart Grids has been considered in recent years as an
appropriate answer to address new challenges in the energy
domain. However, additional resources are still needed in
challenges such as the proactive operation of the grid, efficient
integration of demand into grid operation, integration of
renewable generation, or maximum network reliability to
obtain applicable solutions. The WoE will combine energy
domains and ICT technologies with the objective of building
an interoperable platform for the coordinated planning,
operation, and settlement of future distribution and access to
networks by integrating demonstrable solutions in real user
environments based on Web of Things technologies.

The current control of electricity distribution networks,
including the Advanced Distribution Automation (ADA)
and Demand Side Management (DSM), is (1) centralized,
(2) silo-oriented, (3) fragmented by applications that use
specific communication technologies for each purpose but
with a lack of integration among them, and (4) generally
based on proprietary ICT systems owned by the DSO
[18]. So, in practice, the situation is still centralized and
fragmented but with existing solutions and trials allowing
the integrated management and the distribution of selected
granular functions. This contrasts with the distributed and
fractal nature of the future Smart Grids, which can only be
based on standardization, flexibility, distributed systems, and
communication among all the actors [12, 13].

Furthermore, the increased use of renewable and dis-
tributed generation means the operation and management of
the electric power system must change radically. Increased
levels of automation, distributed intelligence, and on-line
data mining and management are required to deliver the
network control functions, reducing reconfiguration and the
restoration times. Reconfiguration of smart grids addresses
new challenges during normal operation and also for restora-
tion and management of crisis situations [10, 19]. The con-
nection of end-users (prosumers) to the energy market will
facilitate the installation and connection of devices that offer
grid services that will help mitigate capital and operational
costs of the gridmodernization required for energy transition
and minimize environmental impact, thus ensuring lower
electricity prices for everything involved. New benefits will
be generated and shared in a fair way between all actors, from
aggregators to industrial end-users and citizens.



International Journal of Distributed Sensor Networks 3

Public
subscription

model

RSS

O
pe

n
da

ta

O
pe

ra
tio

na
l

bi
g 

da
ta

rt
-n

rt
 

CoAP (ICT-IoT)

ICT NET

CAC

ONTOL.

Sensing
and

acting

Fractal
SWoT

N
et

w
or

k
G

IS
/C

IS
on

to
lo

gy

Contributor
transversal

Consulting
transversal

AMI

1

N

Virtual SubE

Vpp-AMP

IED

FIDEV

SDU

Google ALG

EV

ONTOa

ONTOb

ONTOc

ONTOd

Network

mLVL TRANS CAC

DLMS 61850 FINESCE MIB
(CMI)

1 2 3 4 5

AAA
GEO

RE
ST

fu
l m

ap
pi

ng
C

oA
P

JS
O

N
-X

M
L

S3

S3

S2

S2 S2S3

S3

S3

S2
S1

Data
function
heat map

Hybrid cloud

Processing

SD

TSOVPP

DSOuSCADA

PROSUMERuDER

U-USERSnoop

SMCTSit. room

SM_Ho

SM_Bu

SM_Ci

SM_ReN× N× N

N× N

Figure 1: WoE interactions.

A coordinated vision of the grid will providemechanisms
to tackle the challenges mentioned above showcasing them
through real and modern applications. WoE will provide
synergies at different levels: Smart Grids and other smart
networks, individuals, and communities as a first approach
to a Software Defining Utility (SDU). The potential benefits
of the WoE are framed by (a) innovative communications,
acquisition, and processing platform based on the extensive
use of the “Real-Time Services” concept providing open
and interoperable access, (b) metering integration platform
based on multiplatform web technologies, (c) advanced
medium/low voltage control centre integrating real-time grid
information coming from devices to provide a clear view of
the current and the near-future status of the grid thanks to
a high performance environment, and (d) energy services
market platform. The performance quantification of that
WoE concept will be the key to accelerate the implementation
of new policies, market rules, and emerging Smart Grid
programs [15, 16].

WoE outlines some of the challenges in improving the
resiliency of the electrical grid and proposes an approach that
makes use of advanced sensor technology (advanced sensors
are needed to improve the knowledge of state), analytics, and
agile control in a Smart Grid [20, 21]. Furthermore, WoE
proposes a Smart Grid supervision infrastructure, which
can deliver real-time and high performance notifications on
a global scale for transferring measurements from differ-
ent distributed sensors and take actions over the grid via
different communication protocols, informing the different

stakeholders (e.g., producers, consumers, aggregators, and
system operators) within the adequate time frame [8, 18]. We
propose to use a distributed infrastructure based on Web of
Things and implement a novel service platform for facilitating
distributed control, autohealing, and power grid control.

In addition, WoE technology will tackle the implemen-
tation of smart real-time distributed monitoring platforms
enabling the data fusion and knowledge extraction for the
different faults detection and prevention schemes. Intelligent
HTTP based sensors will provide a new source of relevant
distribution status information, including loadings, voltage
profiles, harmonics, and outage conditions which, combined
with equipment condition data, such as power frequency
interference signatures, will provide predictive perspectives
of potential equipment failures. This platform requires large
storage technologies that can hold the massive amounts
of information that will be generated by the millions of
sensors implemented in the Smart Grids and will make the
information available in negligible times to the system or
systems demanding it (Figure 2).

Smart Grids need monitoring strategies based on decen-
tralized and uncoupled architectures (service oriented and
multiagent), supported by real-time middleware (DDS)
capable of dealing with huge amounts of information at
different time scales, process events (complex event pro-
cessing), and discover sequences of them (sequence event
discovery) working together with OLAP and data mining
solutions. A multiagent conception of the grid is necessary
to deal with coordination and optimization requirements for



4 International Journal of Distributed Sensor Networks

USN middleware

Distributed 
generation monitoring

Substation monitoring
Home and building monitoring

Distributed 
generation control 

application

Substation control and 
maintenance 
application

Customer 
monitoring 
application

Integrated control 
centreGIS

BBDD

Security 
manager Open API Sensor network 

directory service

Query 
processor

Sensing data 
mining 
processor

Context-aware
rule engine processor

Event

Security
manager

Sensor network 
common interface

Sensor network 
monitor

Figure 2: Open API architecture.

an efficient and safe network. Pervasive web monitoring
devices with communication capabilities increase security
of the network as a whole but imply new cyber-security
issues and make optimal restoration and reconfiguration
more complicated [22]. Currently, heuristics, metaheuristics,
and learning methods are mature and available. Restoration
and reconfiguration techniques including autohealing will
benefit from these reasoning engines.

3. The Web of Things

Day by day, the number of connected Things is growing
exponentially. The latest data shared by Gartner finds that
4.9 Billion of Things will be accessible during 2015 and this
figure will increase to 25 Billion in 2020 [23]. The way to
access these devices from a single platform is undoubtedly
one of the biggest headaches for researchers. In this regard,
standardized solutions provided by the rapid evolution of
the Internet have laid the foundation of what we call the
Web ofThings.Therefore,WoT architectures aim to integrate
everyday objectswithweb technologies.Those devices should
be able to communicate with each other using existing
web standards. Prerequisites for those Things are minimal
processing and communication capabilities.WoT researchers
try to define and delimit concepts (e.g., what is aThing? [24])
implied on those envisioned architectures and solve some
problems that arise when every Thing may sense or actuate
on every Thing.

Applications

Composition

Sharing

Findability

Accessibility

WoT architecture proposed
by Guinard

Figure 3: Layered architecture [17].

The architecture presented by Guinard in his thesis [17]
proposes a good basis to start other WoT designs. Guinard
defines WoT general prerequisites; he also defines what a
Thing is and a virtual object is in aWoT architecture and finds
solutions to problems like how to discover and find Things
and how those Things can connect and push information
to a server. In [17], a layered architecture (see Figure 3) that
consists of four layers that address four main problems is
proposed:



International Journal of Distributed Sensor Networks 5

(i) Device Accessibility Layer: how to enable consistent
access to all kinds of connected objects?

(ii) Findability Layer: how do we find their services to
integrate them into composite applications?

(iii) Sharing Layer: how we preserve privacy?
(iv) Composition Layer: how do we get closer to end-

users?

One of the main problems of the WoT architecture is
to standardize communication protocols between different
Things. Indeed, there is still no clear standard defined for this
purpose and there are different options available. In the next
section, we present the best placed and supported protocols
by researchers and which protocols are also valid/eligible
alternatives.

4. WoT Protocols

It would be easy for WoT to use only one protocol, but
the heterogeneity of devices composing the WoT makes it
unfeasible. Thus, different communication protocols should
be considered. The use of each one depends on the final
proposed solution.

4.1. Preferred Candidates by the Community

4.1.1. MQTT. As stated in its official webpage [25], MQTT
stands for MQ Telemetry Transport. It is a publish/subscribe
(pub/sub), extremely simple, and lightweight messaging pro-
tocol, designed for constrained devices and low-bandwidth,
high-latency, or unreliable networks. The design principles
are to minimize network bandwidth and device resource
requirements while attempting to ensure reliability and some
degree of assurance of delivery. These principles also con-
tribute to the protocol ideal of the emerging “machine-to-
machine” (M2M) or “Internet ofThings” world of connected
devices and to mobile applications where bandwidth and
battery power are at a premium. MQTT was introduced by
IBM and Eurotech companies.

MQTT is a protocol that uses a pub/sub model, con-
necting publishers and subscribers via a broker (server). Its
headers are small and therefore their overhead is minimum.
MQTT can also work over SSL for security reasons, but SSL
adds an extra overhead to the communication. As publishers
and subscribers connect via a broker, the use of a centralized
server leads to a SPF (Single Point of Failure).

4.1.2. CoAP. CoAP [26] was specified and standardized by
the CoRE (Constrained RESTful Environments) group in
IETF; the Constrained Application Protocol (CoAP) is a
specialized web transfer protocol for use with constrained
nodes and constrained networks, such as those that will form
the Web of Things. This protocol shares several similarities
with HTTP like its REST architectural style but instead of
using TCP it uses UDP to achieve its goals.

As it is a request/response protocol like HTTP, bothWoT
servers and constrained devices or gateways should act as
servers and clients at the same time to ensure bidirectional

communication at any time. For example, a constrained
device using this protocol may fire an event to the WoT
server and the WoT server may request something to the
constrained device. Proxies between HTTP and CoAP will
achieve interoperability between HTTP and CoAP clients.
Translation betweenCoAP andHTTP is easy and straightfor-
ward as equivalences of response codes, options, andmethods
are present in both protocols. Security is achievable using
DTLS and a variety of key management methods.

4.2. Other Candidates

4.2.1. DDS. From [27], “DDS (Data Distributed Service) is an
API specification and an interoperability wire-protocol that
defines a data-centric publish-subscribe architecture for con-
necting anonymous information providers with information
consumers.” DDS follows a decentralized pub/sub model. It
differs fromMQTT model in the following two key points:

(i) DDS protocol starts to operate on top of the link
level layer of the OSI model creating a CommonData
Bus where every device can connect in a decentral-
ized manner. This protocol also defines several QoS
options.

(ii) As a decentralized protocol, it does not have SPF like
the broker in MQTT.

DDS has only implementations for C, C++, and Java and has
a higher learning curve compared to MQTT. On the other
hand, MQTT clients are implemented for several languages.

4.2.2. XMPP. XMPP [28] (originally named Jabber) is a
protocol for person-to-person communication based on
XML. Its main use is for chat communication but since the
growth of the IoT concept theXMPPStandards Foundation is
working ondefining extensions (XEPs) for use in the IoT [29].
These extensions aim to specify standards for awide variety of
communication types between IoT devices such as Control,
Discovery,Multicast, or pub/submessage types.They use EXI
[30] (compressed XML) to reduce the size of messages, as
XML is known to produce larger file/message sizes than other
text based formats. Even though XEPs for the IoT are not as
much as popular asMQTT or CoAP, it is worth keeping track
of them as they are growing fast andmay be used as a basis to
model WoT message formats.

4.2.3. AMQP. AMQP [31] is a message-centric binary wire
protocol that uses a centralized broker. AMQP is built on
top of the TCP layer (at least, it is assumed to work on top
of TCP). Authentication and encryption are made available
through SASL and TLS, respectively. As AMQP was created
by businesses-to-businesses, it provides transactional modes
of operation that allow it to take part in a multiphase commit
sequence.The key feature of AMQP is that it was designed for
interoperability between vendors. It mandates the behaviour
of the messaging provider and client to the extent that
implementations from different vendors are interoperable.

Third party implementations of AMQP clients exist for
several languages. Although AMQP is a great opponent for



6 International Journal of Distributed Sensor Networks

MQTT, the latter seems more suitable to build a proof of
concept for theWoT architecture we have been talking about
in this section.

5. Some WoT Implementations
(Related Work)

This section is going to review someWoT implementations of
this architecture. Guinard joined the EVRYTHNG platform
and engine [32]. This engine allows Things (they call them
“thngs”) to be connected to this platform through a RESTful
API. They describe two types of thngs:

(i) Unconnected/tagged: they are encoded in 1D/2D bar
code or NFC/RFID tag and users can interact with
them by scanning the tag.

(ii) Connected: those thngs can interact with the RESTful
API of the EVRYTHING engine; they can be sensed
and/or actuated.

This engine offers the creation of applications that repre-
sent remote client applications (like those used in social
networks like Twitter or Facebook). Thanks to its THNG-
Push technology (currently in beta), the engine provides a
publish/subscribe MQTT M2M broker where WebSockets
wrapping MQTT are used to allow communication with
browsers. They are also working on adding CoAP support to
this technology. Node.js and JavaScript libraries are available
to facilitate the use of their API.

In [33], the authors propose and implement holistic web
architecture for the Internet of Things. They point out key
features and capabilities of holistic architecture and they use
a layered model with an abstraction layer for communication
among devices.

Node-RED [34] is a visual tool for wiring hardware
devices, APIs, and services. From the Node-RED front page,
“Node-RED provides a browser-based flow editor that makes
it easy to wire together flows using the wide range nodes
in the palette. Flows can be then deployed to the runtime
in a single-click.” Also in beta, this tool aims to provide
users with a visual manner connecting things. Node-RED is
built on Node.js and customized functions between nodes
can be created within the editor using JavaScript. There is
an EVRYTHNG Node-RED integration library to add some
functionality of the EVRYTHING platform to this tool.

Octoblu [35] is an open-source cloud platform (public,
private, or hybrid) built to connect people, devices, and
systems through a great variety of protocols like MQTT,
CoAP, HTTP(S), and WebSockets using a RESTful API. It
also offers a very powerful visual tool for connecting things
(nodes). This tool also allows developers to program their
own nodes as JavaScript functions. Node.js and JavaScript
libraries are also available to facilitate the use of their API.

Neura [36] and TempoIQ [37] are platforms for collect-
ing sensor data through a RESTful API. While Neura is
more person-oriented, TempoIQ is a general-purpose data
collector. TempoIQ (former TempoDB) also offers tools for
monitoring and analyzing this sensor data.

Finally, in [38], the concept of storage registration is
introduced for the WoT. In this storage approach a web
client announces its interest of storing some sensor data
to the server. The server will store the data until the web
client requests removal or an expiration time is reached. This
prevents the server from reaching its storage limit.

6. Proposed Architecture

The purpose of this section is to present the architecture and
announce the key parameters used to link the layers. From
our real-world experiences collected during the INTEGRIS
and FINESCE [13] projects, we have found that dividing
the Smart Grid into these logical layers poses some critical
difficulties arising from the fact that typically IEDs are closed
devices that do not allow implementing custom develop-
ments (e.g., security or information-exchange protocols) as
novel experimental devices do. Therefore, we proposed a
new device coined as I-Dev [14, 18, 22] which behaves
as a frontier between these two layers and implements
(1) a communications subsystem that allows heterogeneous
network coexistence, (2) a security subsystem that provides a
reliable and secure low layer communications infrastructure,
(3) a distributed storage subsystem that smartly stores all data
generated by IEDs, and (4) a cognitive subsystem that is aware
of all events arising from any subsystem of the network.

In Figure 4, an architecture is proposed in order to
allow Things to communicate with each other. The proposal
explanation will be divided into the following sections:
specifications, used protocols, and software design.

6.1. Specifications. In this proposal, a Thing can be under-
stood as every device that has minimum communication,
processing, and storage capabilities so it is able to be sensed or
actuated and can communicate with another device to send
or receive data. The proposed architecture has those goals to
satisfy:

(i) As standard Web protocols such as HTTP or Web-
Sockets use resources that may not be available
on some constrained Things, this architecture will
connect them using a variety of protocols (but ideally
one) like CoAP or MQTT that are more suitable for
constrained devices.

(ii) EveryThingmust be using an open standard protocol
and must be understandable by the architecture to
connect to the WoT. Gateways serving as a proxy for
those Things that use proprietary or nonunderstand-
able protocols should be used.

(iii) Things that cannot connect to theWoT infrastructure
directly should connect to a gateway instead and let
that gateway do the connection for them.

(iv) This architecturewill allowdevelopers to interactwith
Things without knowing the protocol they are really
using to communicate; hence, there is a need to pro-
vide developers with a communication abstraction
layer.



International Journal of Distributed Sensor Networks 7

International

Country

Region

City

Neighbourhood

Building

Home

ActingSensing Processing

Prosumers

Utility
administrators

TSOs DSOs

Public
administrations

Se
cu

re
t—

sc
al

ab
le

-c
on

te
xt

-a
w

ar
e-

Ze
ro

C
on

f

Multiutility SCADA: electricity, water, gas, . . .

Figure 4: Functional architecture.

(v) It must allow on-demand deployment due to the fact
that the number ofThings will increase and therefore
more resources will be needed to connect them.

(vi) This architecture should be able to balance the load on
its servers. Load balancers will prevent or minimize
bottlenecks.

(vii) Things will become virtual objects for the architecture
and those virtual objects could be aggregated and
linked to form other virtual objects.

(viii) Eventually, every virtual object will be accessible by
RESTful URI.

(ix) The architecture must have authorization ofThings to
interact with them to preserve owner’s privacy.

(x) Third-party applications must have the architecture
authorization to interact withThings.

(xi) Every Thing must have an owner.
(xii) Things can be queried and discovered.

In Figure 5, we can see how Things are connected to
servers directly or via a gateway/aggregator being part of the
WoT.

6.2. Protocols. While the use of one protocol like HTTP for
all the Web of Things would be desirable, it is obvious that
it is not achievable due to the heterogeneity of devices. So, a
WoT architecture would need interoperability with a variety
of protocols to interconnect devices.



8 International Journal of Distributed Sensor Networks

P

CD CD

P P

P

P
WS

CoAP

CoAP

CoAP
CoAP

CoAP

CoAP

CoAP
MQTT MQTT

MQTT

MQTT

MQTT

CD-P

CD-PCD-P

HTTP

HTTPS

HTTPS

HTTP + WS

HTTP + WS

HTTP + WS

Thing CD: constrained device

P: proprietary protocol

WS: WebSockets protocol

Aggregator

Server

Figure 5: The proposed WoT architecture.

6.2.1. HTTP and WS. As the Web uses HTTP to commu-
nicate, it is mandatory for the architecture to support this
protocol. It will also provide a RESTful communication using
URIs to identify resources and methods to actuate or sense
on them.

With IPv4 still in use and incapable of addressing all
Internet connected devices, Internet connection to personal
computers, for example, is available through port transla-
tion mechanisms. This translation makes them incapable of
receiving data asynchronously from a server; hence, the use
of some sort ofmechanism to allow them to receive data in an
asynchronousmanner is required. In addition, as proposed in
[2],WebSockets [12] protocol can overcome this constraint by
providing a mechanism for browser-based applications that
need two-way communication with servers.

6.2.2. MQTT and CoAP. As described in the previous sec-
tion, MQTT and CoAP seem to be very suitable protocols
for the WoT world. We propose to use these protocols but
the architecture should be capable of understanding more
protocols (e.g., DDS).

6.3. Layered and Modular Design. To be able to seam-
lessly intercommunicate these protocols and help develop-
ers implement and provide different implementations of
functional units (e.g., how a protocol is handled, adding a
new protocol to the framework, and how VO is accessed),

the architecture relies on a layered and modular design.
It is composed of five main layers (Figure 6); they are the
following:

(i) WoT Protocol Abstraction Layer: the purpose of this
layer is to provide an abstraction mechanism for
developers to interact withThings.

(ii) REST to VO/Query: the goal of this layer is to map
dynamically generated URIs to virtual objects (VOs).
It is an interface to gather information or actuate on
VOs, that is,Things. It is also an endpoint for querying
Things like the temperature on a specific location.

(iii) Auth: this layer is responsible for requesting and
granting access between Things. As mentioned in
Section 4, everyThingmust have an owner; therefore,
WoT servers must request access to Things and VOs
must request access to other VOs.

(iv) Virtual Object Space: this is the space for virtual
objects. Things will become virtual objects in the
virtual world. Those VOs could be then sensed,
actuated, and aggregated.

(v) Proxy layer: this abstraction layer will serve as a
proxy for servers to communicate. A protocol for this
communication must be defined for the architecture.

Those layers will be backed up by the database and the
reasoner [39] modules. As theWoT architecture will generate



International Journal of Distributed Sensor Networks 9

WoT protocol
abstraction layer

REST to VO/query

Auth

VO space

Proxy
layer

Server 0

· · ·

WoT protocol
abstraction layer

REST to VO/query

Auth

VO space

Proxy
layer

Server 2

WoT protocol
abstraction layer

REST to VO/query

Auth

VO space

Proxy
layer

Server 1

Figure 6: Layered and modular design.

URIs to addressThings, a distributed database will be suitable
for routing request based on their URI. Given a query, servers
can first search in this database if this resource has been
discovered beforehand. If this were the case, no discovery
protocols would be needed; otherwise, a discovery protocol
would start a search to find the resource and once discovered
the resource URI would be stored in the distributed database.
Servers may also have local storage to implement the storage
registration mechanism.

TheWoT architecture presented in this paper is based on
the architecture proposed by Guinard.This section is focused
on the architecture but we will highlight main similarities
between two architectures.

As Guinard stated in his thesis, the upper layers presented
in Figure 7 do not hide lower layers and instead they are
development layers where users with different technical
knowledge can develop applications on top of them.

On the other hand, the definition of each of the layers
of the proposed architecture and its correspondence with
Guinard’s proposal would be as follows.

6.3.1. Virtual Object Space. The layer that shares more sim-
ilarities in Guinard’s architecture is the Composition Layer,
but in his approach this layer is a Physical Mashup where
web services and enabled smart devices can create composite
applications. In the proposed system and as in [24], this layer
serves the purpose of digitally enabling smart devices for their
use by the architecture and by WoT users. Then, applications
built on the upper layer of the architecture (e.g., Physical
Mashups) could use these digitally enabled smart devices.

6.3.2. Auth. This layer shares the same purpose as the Sharing
Layer exposed in Guinard’s thesis. The goal is to preserve the
privacy of each Thing, allowing Things to have owners that
share the capabilities of theirThings. A great approach to this
authentication and authorization layer would be the same as
the one proposed in [17].

6.3.3. REST to VO/Query. The goal of this layer is to dynam-
ically generate meaningful, RESTful URIs for VOs as they are
queried for the first time. Once the device has a meaningful
base URI, its capabilities can be exposed through expanding
its URI and the common HTTP verbs. Querying Things will

Virt
ua

l o
bje

ct
sp

ace

Auth

REST
 to

 V
O/qu

ery

W
oT

 ab
str

ac
tio

n l
ay

er

Applications

Proxy layer

Figure 7: Applications can be developed over the upper layers.

involve complex semantic processing and a process such as
the one described in [32].

6.3.4. WoT Protocol Abstraction Layer and Proxy Layer. As
several protocols can join the WoT architecture, there is a
need to unify those protocols at the entrance of the proposed
architecture (WoT Protocol Abstraction Layer), translating
those protocols to an internal language. This will allow the
development of the inner layers of the architecture regardless
of the protocolThings are using to connect to the architecture.
This layer would accomplish the functions of the Accessibility
Layer proposed by Guinard. In Figure 8, the correspondence
between the layers defined by Guinard and the layers of the
proposal is presented.

As the inner architecture should be agnostic from the
outside protocols (those used by Things and the architecture
to exchange information), there is a need to develop an inter-
nal format and mechanism (proxy layer) to pass messages
between different nodes of the architecture. The next section
shows a proof of concept of this idea. Firstly, the used dataset
for testing is described and, secondly, the discovery algorithm
is depicted. Finally, two implementation approaches are
presented and the results obtained are discussed.

7. Proof of Concept

7.1. Dataset. The data used for performing the tests of this
proof of concept come from public data from the National
Statistics Institute of Spain (http://www.ine.es) concerning



10 International Journal of Distributed Sensor Networks

Applications

Composition

Proxy
layer

Sharing

Findability

Accessibility

WoT architecture proposed
by Guinard Our architecture

Applications

Virtual object space

Auth

REST to VO/query

WoT protocol abstraction
layer

Figure 8: Comparison between the proposed architecture and
Guinard’s one.

Figure 9: Snapshot of the representation of the devices response.

cities/towns and inhabitants of Spain’s municipality. Specif-
ically, all the inhabitants of Catalonia region have been
accounted (about 7.5 million), taking into account the follow-
ing two assumptions:

(i) In each house live an average of three people.

(ii) Only 1% of households have some functional and
Internet-controllable device.

Each house has been assigned to a city, and then a device is
randomly assigned to each house. Different types of sensors
are chosen, including temperature sensors and electricity
meters.

For each city, it has been possible to obtain geolocation
data (longitude and latitude) and it has been geographically
represented on the map. In Figure 9, a snapshot (from the
created application, called Semantic Web of Energy) can be
observed.The control of these devices is displayed, indicating
in color the answer to a request for consultation (Discovery
of Thing).

7.2. Algorithm. Based on the assumptions outlined above,
a first version of the architecture presented in this paper
is implemented. In this sense, we have implemented the
first “Discovery of Things” functionality. It is simulated by

the example of how to access a temperature sensor using the
steps described in the following algorithm:

(1) User A sends a request R1 to its local dispatcher node
D1 (located in Madrid).
P1 = {"action": "GET", "what":
"temperature", "loc": "Carrer de Sants"}

(2) D1 processes de address (“Carrer de Sants”), searches
for the Barcelona IP address and send a response to
user A.
R1 = {"request": {"what": "ws-conn", "to":
"@IP-BarcelonaNode"}}

(3) User A sends a request P2 to the node with the IP
address @IP-Barcelona.
P2 = {"request": {"what": "ws-conn"}}

(4) Barcelona’s D2 dispatcher rececives P2 and sends a
response R2.
R2 = {"uri": {"method": "GET", "uri": "/ws/
id/1"}}

(5) User A connects to @IP-Barcelona/ws/id/1 via Web-
Sockets (WS1 connection) and resends P1 through
this connection. This connection will be managed by
N1 node (server).

(6) N1 processes the requests and searches for an address
to forward the request and receive the temperature
of Carrer de Sants. N1 has the private address of an
aggregator/gateway (A1) that can provide the result of
the query. N1 sends a CoAP request P2 to A1.
P2 = {"action": "GET", "what":
"temperature"}

(7) A1 processes the request and sends a response R3
to N1. R3 = {"uri": {"method": "GET", "uri":
"/temperature"}, "data": {"value": 15,
"unit":"Celsius"}}.
A1 also saves an URI map to its local database:
saveUriMap: "(GET)/temperature" ->
(function to get data)

(8) N1 receives R3 response and saves to its local database:
saveUriMap: "/carrer-de-sants/" ->
(GET)@IP-A1/temperature.
N1 also saves a query map to the distributed
database: saveQueryMap: "Carrer de Sants,
temperature" -> "(GET)@IP-N1/carrer-de-
sants/temperature".
N1 sends a R4 response to user A.
R3 = {"uri": {"method": "GET", "uri":
"/carrer-de-sants/temperature"}, "data":
{"value": 15, "unit": "celsius"}}.
Moreover, if N1 has users that need the same data,
sends R4 to these users too.

(9) User A receives the requested data and a URI to
identify the resource and made future requests to it.



International Journal of Distributed Sensor Networks 11

If the same user A wants to request the same data
again, he will send a URI request ((GET)@IP-N1/carrer-de-
sants/temperature) directly to N1 and as query and URI
maps are now present the response will return faster as less
processing time will be needed.

If user B sends the same request P1 to D1, D1 will respond
saying that user B must request a WebSocket connection to
N1 and send a request to this URI “(GET)@IP-N1/carrer-de-
sants/temperature.”

As shown, the framework is capable of handling the
discovery of the new object and further processing and
storage in the system for future reference.

7.3. Implementation. In this section two implementation
approaches are compared.

7.3.1. First Approach. As a lot of services found inWeb 2.0 are
implemented using the PHP language (http://trends.built-
with.com/framework) and in order to ease Web of Things
applications at every layer for experienced PHP developers,
we have developed a prototype implementing the algorithm
presented in this section using the PHP language. Although
we have succeeded in developing basic functionalities using
PHP, several problems have arisen during the implementa-
tion.

PHP was born to serve CGIs, for example, to serve HTTP
requests with dynamic content. The main workflow where
PHP has been used consists in three steps: load, execute,
and die. For this reason, few efforts have been made to solve
problems such asmemory leaks or the fact that executing one
PHP statement requires more low-level instructions than the
actually needed ones.

In recent years, PHP has undergone some changes in its
usages and performance:

(i) With the arrival of Node.js [40], some PHP develop-
ers started to implement libraries with the objective of
allowing PHP users to create servers in this language
as in React PHP [41] instead of relying on web servers
like Apache HTTP.

(ii) Compiled PHP frameworks such as the Phalcon
Framework [42] with a high performance boost on
execution time have motivated the release of PHP
7, solving memory leaks and decreasing the number
of low-level instructions needed to execute a PHP
statement.

In order to build the prototype, we have used the Phalcon
Framework and React PHP to boost performance. The
Phalcon Framework presents high speed in performing oper-
ations and React PHP presents a novel manner for building
PHP applications using the reactor pattern and asynchronous
programming. However, the immaturity of React PHP and
the lack of asynchronous libraries in PHP present an obstacle
for developers to use even basic technologies such as Mon-
goDB.

In this way, PHP has succeeded in building and fast-
prototypingWeb applications thanks to its low learning curve
and its dynamic typing. However, its use at low-level/core

Table 1: Benchmarking PHP versus Scala languages.

Feature PHP Scala

Natural workflow Load, execute,
die

Always running on
a JVM

Speed 1 28 times faster
Backed by research No Yes

Libraries PHP, C
extensions

JVM compliant
libraries

Distributed libraries As C extensions Akka and other
JVM libraries

Async. libraries/constructs ReactPHP Akka and Futures
Typing Dynamic Static

layers in a WoT/IoT architecture where program correctness
is crucial facilitates the appearance of execution time errors.

7.3.2. Second Approach. After evaluating other solutions
in the market, the Scala [43] language has been selected
for reimplementation of the prototype. Although this lan-
guage usage is not wider than PHP, Scala is experiencing
an adoption growth (http://www.indeed.com/jobtrends?q=
scala&l=).

Moreover, this language presents key characteristics that
make it suitable for building a future WoT prototype archi-
tecture. Scala has also been chosen due to its research
community. In fact, Scala was born at the EPFL (École Poly-
technique Fédérale de Lausanne) thanks to Martin Odersky
[43]. Therefore, continuous investigation is being made in
order to optimize speed and provide better APIs.

7.3.3. Comparison Table. A comparison between PHP and
Scala is presented in Table 1. Data presented in this compar-
ison table have been extracted from the authors’ experimen-
tation. Speed has been extracted from benchmarks done in
[44].

8. Conclusions and Further Lines

A new framework approach and a proof of concept have
been presented in this paper. It has been shown that the
proposed architecture is feasible and that the implementation
of successive parts can be made using this design.

Although the results exposed are promising, we have real-
ized that PHP lacks libraries and implementation for themost
relevant WoT protocols. If there is a valid implementation, it
only covers basic features of the protocol.

Moreover, the reactor approach was performed to proto-
type the architecture using ReactPHP and it was found that
there are no libraries to connect the most commonly used
databases in distributed systems like Redis or MongoDB or
the WoT protocols.

For the reasons exposed, it seems that PHP is not
mature enough for the purpose, that is, to develop holistic
architecture for the Web of Things. Reimplementation of
the architecture using the Scala language has been made,
speeding up its performance and opening up the possibility



12 International Journal of Distributed Sensor Networks

to take advantage of robust libraries and frameworks built on
top of JVM compliant languages.

Heterogeneity, parallelization, and distribution as
explained in [45] are also key characteristics of a WoT archi-
tecture. More work has to be done to fully achieve these char-
acteristics. The Actor Model [46] seems to be well suited
to build an architecture with such characteristics as
asynchronous messaging, location transparency, distribu-
tion, and concurrency as its core principles.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work received funding from the European Union’s 7th
Framework Program under FI.ICT-2011 Grant no. 604677-
FINESCE (Future INtErnet Smart Utility ServiCEs).

References

[1] J. Navarro, A. Sancho, A. Zaballos, V. Jiménez, D. Vernet, and E.
Armendáriz-Iñigo, “The management system of INTEGRIS—
extending the smart grid to the web of energy,” in Proceedings
of the 4th International Conference on Cloud Computing and
Services Science (CLOSER ’14), pp. 329–336, Barcelona, Spain,
2014.

[2] MongoDB Database, https://www.mongodb.org/.
[3] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the

internet of things to the web of things: resource-oriented
architecture and best practices,” in Architecting the Internet of
Things, pp. 97–129, Springer, Berlin, Germany, 2011.

[4] A. Zaballos, A. Vallejo, and J. M. Selga, “Heterogeneous com-
munication architecture for the smart grid,” IEEE Network, vol.
25, no. 5, pp. 30–37, 2011.

[5] INTEGRIS, INTEGRIS FP7 Project INTelligent Electrical
Grid Sensor communications, ICT-Energy-2009 call (number
247938), http://fp7integris.eu.

[6] C. Bo, C. Xin, Z. Zhongyi, Z. Chengwen, and C. Junliang,
“Web of things-based remote monitoring system for coal mine
safety using wireless sensor network,” International Journal of
Distributed Sensor Networks, vol. 2014, Article ID 323127, 14
pages, 2014.

[7] S. Aman, Y. Simmhan, and V. K. Prasanna, “Energy man-
agement systems: state of the art and emerging trends,” IEEE
Communications Magazine, vol. 51, no. 1, pp. 114–119, 2013.

[8] A. Zaballos, D. Vernet, and J. M. Selga, “A genetic QoS-
aware routing protocol for the smart electricity networks,”
International Journal of Distributed Sensor Networks, vol. 2013,
Article ID 135056, 12 pages, 2013.

[9] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,
“Interacting with the SOA-based internet of things: discovery,
query, selection, and on-demand provisioning of web services,”
IEEE Transactions on Services Computing, vol. 3, no. 3, pp. 223–
235, 2010.

[10] D. Zeng, S. Guo, and Z. Cheng, “The web of things: a survey
(invited paper),” Journal of Communications, vol. 6, no. 6, pp.
424–438, 2011.

[11] E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, and
C. Assi, “Communication security for smart grid distribution
networks,” IEEE Communications Magazine, vol. 51, no. 1, pp.
42–49, 2013.

[12] V. C. Gungor, D. Sahin, T. Kocak et al., “A survey on smart grid
potential applications and communication requirements,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28–42,
2013.

[13] FINESCE, European Union’s 7th Framework Program under
the FI.ICT-2011 Grant number 604677, http://www.finesce.eu/.

[14] J. Navarro, A. Zaballos, A. Sancho-Asensio, G. Ravera, and J.
E. Armendariz-Inigo, “The information system of INTEGRIS:
Intelligent electrical grid sensor communications,” IEEE Trans-
actions on Industrial Informatics, vol. 9, no. 3, pp. 1548–1560,
2013.

[15] A. Bari, J. Jiang, W. Saad, and A. Jaekel, “Challenges in the
smart grid applications: an overview,” International Journal of
Distributed Sensor Networks, vol. 2014, Article ID 974682, 11
pages, 2014.

[16] J. Rodŕıguez-Molina, M. Mart́ınez-Núñez, J.-F. Mart́ınez, and
W. Pérez-Aguiar, “Business models in the smart grid: chal-
lenges, opportunities and proposals for prosumer profitability,”
Energies, vol. 7, no. 9, pp. 6142–6171, 2014.

[17] D. Guinard, A web of things application architecture [Doctoral
dissertation], Eidgenössische Technische Hochschule ETH,
Zürich, Switzerland, 2011, Nr. 19891.

[18] J. M. Selga, G. Corral, A. Zaballos, and R. Mart́ın de Pozuelo,
“Smart grid ICT research lines out of the European project
INTEGRIS,” Network Protocols and Algorithms, vol. 6, no. 2,
2014.

[19] Y. Oualmakran, J. Meléndez, S. Herraiz, M. López-Perea, and E.
González, “Survey on knowledge based methods to assist fault
restoration in power distribution networks,” in Proceedings of
the International Conference on Renewable Energies and Power
Quality (ICREPQ ’11), Las Palmas, Spain, April 2011.

[20] C. Miller, The Fractal Grid: Achieving Grid Security, Reliabil-
ity, and Resiliency through Advanced Analytics and Control,
National Rural Electric Cooperative Association, 2013.

[21] C. Miller, M. Martin, D. Pinney, and G. Walker, Achieving a
Resilient and Agile Grid, National Rural Electric Cooperative
Association, Arlington, Va, USA, 2014.

[22] A. Sancho-Asensio, J. Navarro, I. Arrieta-Salinas et al., “Improv-
ing data partition schemes in Smart Grids via clustering data
streams,” Expert Systems with Applications, vol. 41, no. 13, pp.
5832–5842, 2014.

[23] Gartner Says the Internet of Things Installed Base Will Grow
to 26 Billion Units By 2020, Stamford, Conn, USA, December
2013, http://www.gartner.com/newsroom/id/2636073.

[24] E. Oriwoh and M. Conrad, “Things’ in the internet of things:
towards a definition,” International Journal of Internet ofThings,
vol. 4, no. 1, pp. 1–5, 2015.

[25] MQTT, Retrieved March 27, 2015, http://mqtt.org/.
[26] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: an applica-

tion protocol for billions of tiny internet nodes,” IEEE Internet
Computing, vol. 16, no. 2, pp. 62–67, 2012.

[27] Data Distribution Service Portal, April 2015, http://portals.omg
.org/dds/what-is-dds-3/.

[28] TheXMPP Standards Foundation (n.d.), June 2015, http://xmpp
.org.

[29] Tech pages/IoT Xeps Explained, June 2015, http://wiki.xmpp
.org/web/Tech pages/IoT XepsExplained.



International Journal of Distributed Sensor Networks 13

[30] Efficient XML Interchange Working Group. (n.d.), June 2015,
http://www.w3.org/XML/EXI/.

[31] AMQP, April 2015, https://www.amqp.org/.
[32] EVRYTHNG—Every Thing Connected, April 2015, https://

evrythng.com.
[33] D. Tracey and C. Sreenan, “A holistic architecture for the

internet of things, sensing services and big data,” in Proceedings
of the 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (CCGrid ’13), pp. 546–553, Delft,
The Netherlands, May 2013.

[34] Node-RED, April 2015, http://nodered.org/.
[35] Octoblu, “Wemake all APIs, Platforms and Devices talk to each

other. Easily,” April 2015, http://octoblu.com/.
[36] Neura, April 2015, http://www.theneura.com/.
[37] TempoIQ, April 2015, https://www.tempoiq.com.
[38] G. Bovet and J. Hennebert, “A web-of-things gateway for KNX

networks,” in Proceedings of the European Conference on Smart
Objects, Systems and Technologies (SmartSysTech ’13), pp. 1–8,
VDE, Erlangen, Germany, June 2013.

[39] B. Christophe, V. Verdot, and V. Toubiana, “Searching the
‘web of things’,” in Proceedings of the 5th IEEE International
Conference on Semantic Computing (ICSC ’11), pp. 308–315,
IEEE, Palo Alto, Calif, USA, September 2011.

[40] Node.js, June 2015, https://nodejs.org/.
[41] ReactPHP, June 2015, http://reactphp.org/.
[42] A Full-stack PHP Framework Delivered as a C-extension,

Phalcon PHP, June 2015, https://phalconphp.com/.
[43] Scala, “The Scala Programming Language,” June 2015, http://

www.scala-lang.org.
[44] The Computer Language Benchmarks Game, 2015, http://

benchmarksgame.alioth.debian.org.
[45] M. Odersky, P. Altherr, V. Cremet et al., “An overview of the

Scala programming language,” Tech. Rep. LAMP-REPORT-
2004-006, 2004.

[46] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Inter-
net of things: vision, applications and research challenges,” Ad
Hoc Networks, vol. 10, no. 7, pp. 1497–1516, 2012.


