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Measurement of the mixing-induced CP-violating phase φs in B0
s decays is of prime importance in

probing new physics. Here 7421 ± 105 signal events from the dominantly CP-odd final state J/ψπ+π−
are selected in 1 fb−1 of pp collision data collected at

√
s = 7 TeV with the LHCb detector. A time-

dependent fit to the data yields a value of φs = −0.019+0.173+0.004
−0.174−0.003 rad, consistent with the Standard

Model expectation. No evidence of direct CP violation is found.
© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Current knowledge of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix leads to the Standard Model (SM) expectation that the
mixing-induced CP violation phase in B0

s decays proceeding via the
b → ccs transition is small and accurately predicted [1]. Therefore,
new physics can be decisively revealed by its measurement. This
phase denoted by φs is given in the SM by −2 arg[Vts V ∗

tb/V cs V ∗
cb],

where the V ij are elements of the CKM matrix. Motivated by a
prediction in Ref. [2], the LHCb Collaboration made the first ob-
servation of B0

s → J/ψ f0(980), f0(980) → π+π− [3], which was
subsequently confirmed by others [4,5]. This mode is a CP-odd
eigenstate and its use obviates the need to perform an angular
analysis in order to determine φs [6], as is required in the J/ψφ

final state [7,8]. In this Letter we measure φs using the final state
J/ψπ+π− over a large range of π+π− masses, 775–1550 MeV,1

which has been shown to be an almost pure CP-odd eigenstate
[9]. We designate events in this region as fodd. This phase is the
same as that measured in J/ψφ decays, ignoring contributions
from suppressed processes [10].

The decay time evolutions for initial B0
s and B0

s decaying into a
CP-odd eigenstate, f− , assuming only one CKM phase, are [11]

Γ
((-)

B0
s → f−

)

= N e−Γst
{

e�Γst/2

2
(1 + cosφs)

+ e−�Γst/2

2
(1 − cosφs) ± sinφs sin(�mst)

}
, (1)

where �Γs = ΓL − ΓH is the decay width difference between light
and heavy mass eigenstates, Γs = (ΓL + ΓH)/2 is the average de-
cay width, �ms = mH − mL is the mass difference, and N is a

✩ © CERN for the benefit of the LHCb Collaboration.
1 We work in units where c = h̄ = 1.

time-independent normalization factor. The plus sign in front of
the sin φs term applies to an initial B0

s and the minus sign to an
initial B0

s meson. The time evolution of the untagged rate is then

Γ
(

B0
s → f−

) + Γ (B0
s → f−)

= N e−Γst{e�Γst/2(1 + cosφs) + e−�Γst/2(1 − cosφs)
}
. (2)

Note that there is information in the shape of the lifetime dis-
tribution that correlates �Γs and φs . In this analysis we will use
samples of both flavor tagged and untagged decays. Both Eqs. (1)
and (2) are invariant under the change φs → π − φs when �Γs →
−�Γs , which gives an inherent ambiguity. Recently this ambiguity
has been resolved [12], so only the allowed solution with �Γs > 0
will be considered.

2. Data sample and selection requirements

The data sample consists of 1 fb−1 of integrated luminosity
collected with the LHCb detector [13] at 7 TeV centre-of-mass
energy in pp collisions at the LHC. The detector is a single-arm
forward spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks. Com-
ponents include a high-precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction region,
a large-area silicon-strip detector located upstream of a dipole
magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift-tubes placed downstream.
The combined tracking system has a momentum resolution δp/p
that varies from 0.4% at 5 GeV to 0.6% at 100 GeV, and an im-
pact parameter (IP) resolution of 20 μm for tracks with high
transverse momentum (pT). Charged hadrons are identified using
two ring-imaging Cherenkov (RICH) detectors. Photon, electron and
hadron candidates are identified by a calorimeter system consisting
of scintillating-pad and pre-shower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a
muon system composed of alternating layers of iron and multiwire

0370-2693 © 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2012.06.032

Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.physletb.2012.06.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2012.06.032
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


LHCb Collaboration / Physics Letters B 713 (2012) 378–386 379

Fig. 1. Distributions of the BDT variable for both training and test samples of
J/ψππ signal and background events. The signal samples are from simulation and
the background samples derived from data. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this Letter.)

proportional chambers. The trigger consists of a hardware stage,
based on information from the calorimeter and muon systems,
followed by a software stage which applies a full event recon-
struction.

Events were triggered by detecting two muons with an invari-
ant mass within 120 MeV of the nominal J/ψ mass [14]. To be
considered a J/ψ candidate, particles of opposite charge are re-
quired to have pT greater than 500 MeV, be identified as muons,
and form a vertex with fit χ2 per number of degrees of free-
dom less than 16. Only candidates with a dimuon invariant mass
between −48 MeV and +43 MeV of the J/ψ mass peak are se-
lected. For further analysis the four-momenta of the dimuons are
constrained to yield the J/ψ mass.

For this analysis we use a Boosted Decision Tree (BDT) [15] to
set the J/ψπ+π− selection requirements. We first implement a
preselection that preserves a large fraction of the signal events, in-
cluding the requirements that the pions have pT > 250 MeV and
be identified by the RICH. B0

s candidate decay tracks must form
a common vertex that is detached from the primary vertex. The
angle between the combined momentum vector of the decay prod-
ucts and the vector formed from the positions of the primary and
the B0

s decay vertices (pointing angle) is required to be consistent
with zero. If more than one primary vertex is found the one cor-
responding to the smallest IP significance of the B0

s candidate is
chosen.

The variables used in the BDT are the muon identification qual-
ity, the probability that the π± come from the primary vertex
(implemented in terms of the IP χ2), the pT of each pion, the B0

s
vertex χ2, the pointing angle and the B0

s flight distance from pro-
duction to decay vertex. For various calibrations we also analyze
samples of B0 → J/ψ K ∗0, K ∗0 → π+K − , and its charge-conjugate.
The same selections are used as for J/ψπ+π− except for particle
identification.

The BDT is trained with B0
s → J/ψ f0(980) Monte Carlo events

generated using Pythia [16] and the LHCb detector simulation
based on Geant4 [17]. The following two data samples are
used to study the background. The first contains J/ψπ+π+ and
J/ψπ−π− events with m( J/ψπ±π±) within ±50 MeV of the B0

s
mass, called the like-sign sample. The second consists of events in
the B0

s sideband having m( J/ψπ+π−) between 200 and 250 MeV
above the B0

s mass peak. In both cases we require 775 < m(ππ) <

1550 MeV.
Separate samples are used to train and test the BDT. Training

samples consist of 74,230 signal and 31,508 background events,

Fig. 2. Mass distribution of the selected J/ψπ+π− combinations in the fodd region.
The blue solid curve shows the result of a fit with a double Gaussian signal (red
solid curve) and several background components: combinatorial background (brown
dotted line), background from B− → J/ψ K − and J/ψπ− (green short-dashed line),
B0 → J/ψπ+π− (purple dot-dashed), B0

s → J/ψη′ and B0
s → J/ψφ when φ →

π+π−π0 (black dot-long-dashed), and B0 → J/ψ K −π+ (light-blue long-dashed).
(For interpretation of the references to color in this figure, the reader is referred to
the web version of this Letter.)

Fig. 3. Mass distribution of selected π+π− combinations shown as the (solid black)
histogram for events in the B0

s signal region. The (dashed red) line shows the back-
ground determined by fitting the J/ψπ+π− mass in bins of π+π− mass. The
arrows designate the limits of the fodd region. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this Letter.)

while the testing samples contain 74,100 signal and 21,100 back-
ground events. Fig. 1 shows the signal and background BDT dis-
tributions of the training and test samples. The training and test
samples are in excellent agreement. We select B0

s → J/ψπ+π−
candidates with BDT > 0 to maximize signal significance for fur-
ther analysis.

The J/ψπ+π− mass distribution is shown in Fig. 2 for the fodd
region. In the B0

s signal region, defined as ±20 MeV around the
B0

s mass peak, there are 7421 ± 105 signal events, 1717 ± 38 com-
binatorial background events, and 66 ± 9 η′ background events,
corresponding to an 81% signal purity. The π+π− mass distribu-
tion is shown in Fig. 3. The most prominent feature is the f0(980),
containing 52% of the events within ±90 MeV of 980 MeV, called
the f0 region. The rest of the fodd region is denoted as f̃0.

3. Resonance structure in the J/ψπ+π− final state

The resonance structure in B0
s → J/ψπ+π− decays has been

studied using a modified Dalitz plot analysis including the de-
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Table 1
Resonance fractions in B0

s → J/ψπ+π− over the full mass range [9]. The
final-state helicity of the D-wave is denoted by Λ. Only statistical uncertain-
ties are quoted.

Resonance Normalized fraction (%)

f0(980) 69.7 ± 2.3
f0(1370) 21.2 ± 2.7
non-resonant π+π− 8.4 ± 1.5
f2(1270), Λ = 0 0.49 ± 0.16
f2(1270), |Λ| = 1 0.21 ± 0.65

cay angular distribution of the J/ψ meson [9]. A fit is performed
to the decay distributions of several π+π− resonant states de-
scribed by interfering decay amplitudes. The largest component
is the f0(980) that is described by a Flatté function [18]. The
data are best described by adding Breit–Wigner amplitudes for the
f0(1370) and f2(1270) resonances and a non-resonant amplitude.
The components and fractions of the best fit are given in Table 1.

The final state is dominated by CP-odd S-wave over the entire
fodd region. We also have a small D-wave component associated
with the f2(1270) resonance. Its zero helicity (Λ = 0) part is also
pure CP-odd and corresponds to (0.49 ± 0.16+0.02

−0.08)% of the to-
tal rate.2 The |Λ| = 1 part, which is of mixed CP, corresponds to
(0.21 ± 0.65+0.01

−0.03)% of the total. Performing a separate fit, we find
that a possible ρ contribution is smaller than 1.5% at 95% confi-
dence level (CL). Summing the f2(1270) |Λ| = 1 and ρ rates, we
find that the CP-odd fraction is larger than 0.977 at 95% CL. Thus
the entire mass range can be used to study CP violation in this
almost pure CP-odd final state.

4. Flavor tagging

Knowledge of the initial B0
s flavor is necessary in order to use

Eq. (1). This is realized by tagging the flavor of the other b hadron
in the event, exploiting information from four sources: the charges
of muons, electrons, kaons with significant IP, and inclusively re-
constructed secondary vertices. The decisions of the four tagging
algorithms are individually calibrated using B∓ → J/ψ K ∓ decays
and combined using a neural network as described in Ref. [19].
The tagging performance is characterized by εtag D2, where εtag is
the efficiency and D the dilution, defined as D ≡ (1 − 2ω), where
ω is the probability of an incorrect tagging decision.

We use both the information of the tag decision and of the
predicted per-event mistag probability. The calibration procedure
assumes a linear dependence between the predicted mistag prob-
ability ηi for each event and the actual mistag probability ωi
given by ωi = p0 + p1 · (ηi − 〈η〉), where p0 and p1 are calibra-
tion parameters and 〈η〉 the average estimated mistag probabil-
ity as determined from the J/ψ K ∓ calibration sample. The val-
ues are p0 = 0.392 ± 0.002 ± 0.009, p1 = 1.035 ± 0.021 ± 0.012,
and 〈η〉 = 0.391. Systematic uncertainties are evaluated by using
J/ψ K + separately from J/ψ K − , performing the calibration with

B0 → J/ψ K ∗0 and B0 → D∗+μ−νμ plus charge-conjugate chan-
nels, and viewing the dependence on different data taking periods.
We find εtag = (32.9 ± 0.6)% providing us with 2445 tagged sig-
nal events. The dilution is measured as D = 0.272 ± 0.004 ± 0.015,
leading to εtag D2 = (2.43 ± 0.08 ± 0.26)%.

5. Decay time resolution

The B0
s decay time is defined here as t = m
d · 
p/|p|2, where m

is the reconstructed invariant mass, 
p the momentum and 
d the

2 In this Letter whenever two uncertainties are given, the first is statistical and
the second systematic.

Fig. 4. Decay time distribution of prompt J/ψπ+π− candidates in the f0 region.
The dashed (red) line shows the long-lived component, and the solid curve the total.
(For interpretation of the references to color in this figure, the reader is referred to
the web version of this Letter.)

Fig. 5. Distribution of the estimated time resolution σt for opposite-sign J/ψπ+π−
signal events after background subtraction, and for like-sign background.

Table 2
Parameters of the decay time resolution function determined from fits to
J/ψπ+π− prompt data samples.

Parameter f0 region f̃0 region

μt (fs) −3.32(12) −2.91(7)

S1 1.362(4) 1.329(2)

S2 12.969(3) 9.108(3)

f T
2 0.0193(7) 0.0226(5)

vector from the primary to the secondary vertex. The time resolu-
tion for signal increases by about 20% for decay times from 0 to
10 ps, according to both the simulation and the estimate of the
resolution from the reconstruction. To take this dependence into
account, we use a double-Gaussian resolution function with widths
proportional to the event-by-event estimated resolution,

T (t − t̂;σt) =
2∑

i=1

f T
i

1√
2π Siσt

e
− (t−t̂−μt )

2

2(Siσt )2
, (3)

where t̂ is the true time, σt the estimated time resolution, μt is
the bias on the time measurement, f T

1 + f T
2 = 1 are the fractions

of each Gaussian, and S1 and S2 are scale factors.
To determine the parameters of T we use events containing

a J/ψ , found using a dimuon trigger without track impact pa-



LHCb Collaboration / Physics Letters B 713 (2012) 378–386 381
Fig. 6. (a) Mass distribution of B0 → J/ψ K ∗0 candidates. The dashed (red) line shows the background, and the solid (blue) curve the total. (b) Decay time distribution, where
the small background has been subtracted using the B0 mass sidebands. The (blue) curve shows the lifetime fit. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)
rameter requirements, plus two opposite-sign charged tracks with
similar selection criteria as for J/ψπ+π− events including that
the J/ψπ+π− mass be within ±20 MeV of the B0

s mass. Fig. 4
shows the decay time distribution for this J/ψπ+π− prompt data
sample for the f0 region; the f̃0 data are very similar. The data are
fitted with the time dependence given by

P prompt(t) = (1 − f1 − f2)T (t;σt)

+
[

f1

τ1
e−t̂/τ1 + f2

τ2
e−t̂/τ2

]
⊗ T (t − t̂;σt), (4)

where f1 and f2 are long-lived background fractions with lifetimes
τ1 and τ2, respectively. The resulting parameter values of the func-
tion T are given in Table 2.

Fig. 5 shows the σt distributions used in Eq. (3) for J/ψπ+π−
events in the fodd region after background subtraction, and for
like-sign background. Taking into account the calibration param-
eters of Table 2, the average effective decay time resolution for the
signal is 40.2 fs and 39.3 fs for the f0 and f̃0 regions, respectively.
The average of the two samples is 39.8 fs.

6. Decay time acceptance

The decay time acceptance function is written as

A(t;a,n, t0) = C
[a(t − t0)]n

1 + [a(t − t0)]n
, (5)

where C is a normalization constant. The other parameters are
determined by fitting the lifetime distribution of B0 → J/ψ K ∗0

events, where K ∗0 → K −π+ . Fig. 6(a) shows the J/ψ K ∗0 mass
when the K −π+ invariant mass is within ±300 MeV of 892 MeV.
There are 155,743 ± 434 signal events. The sideband-subtracted
decay time distribution is shown in Fig. 6(b) together with a life-
time fit taking into account the acceptance and resolution. This fit
yields a = 2.11 ± 0.04 ps−1, n = 1.82 ± 0.06, t0 = 0.105 ± 0.006 ps
and a lifetime of 1.516 ± 0.008 ps, in good agreement with the
PDG average of 1.519 ± 0.007 ps [14].

We check our lifetime acceptance by comparing with a CDF
measurement of the B0

s → J/ψ f0 effective lifetime of τ eff =
1.70+0.12

−0.11 ±0.03 ps [5] obtained from a single exponential fit.3 A fit

3 This corresponds to the lifetime of the CP-odd eigenstate if φs is zero (see
Eq. (2)).

Fig. 7. Decay time distribution of B0
s → J/ψ f0 candidates fitted with a single ex-

ponential function multiplied by the acceptance and convolved with the resolution.
The dashed line is signal and the shaded area background.

of the f0 sample (see Fig. 7) yields τ eff = 1.71 ± 0.03 ps, while we
find τ eff = 1.67 ± 0.03 ps in the f̃0 sample. These two values are
consistent with each other, within the quoted statistical errors, and
with the CDF result.

7. Likelihood function definition

To determine φs an extended likelihood function is maximized
using candidates in the B0

s signal region

L(φs) = e−(Nsig+Nbkg)

Nobs∏
i=1

P (mi, ti,σt i,qi, ηi), (6)

where the signal yield, Nsig, and background yield, Nbkg, are fixed
from the fit of the J/ψπ+π− mass distribution in the fodd re-
gion (see Fig. 2). Nobs is the number of B0

s candidates, mi the
reconstructed mass, ti the reconstructed decay time, and σt i the
estimated decay time uncertainty. The flavor tag, qi , takes val-
ues of +1, −1 or 0, respectively, if the signal meson is tagged
as B0

s , B0
s , or untagged, and ηi is the estimated mistag probabil-

ity. Backgrounds are caused largely by mis-reconstructed b-hadron
decays, so it is necessary to include a long-lived background prob-
ability density function (PDF). The likelihood function includes dis-
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Table 3
Parameters used in the functions for the invariant mass and decay time describing
the signal and background. These parameters are fixed to their central values in the
fit for φs .

Function Parameters

Nsig = 7421, Nbkg = 1717 ± 38, Nη′ = 66 ± 9

P sig
m (m) m0 = 5368.2(1) MeV, σm

1 = 8.1(1) MeV, σm
2 = 18.0(2) MeV,

f m
2 = 0.196(2)

P bkg
m (m) α = (−5.35 ± 1.15) × 10−4 MeV−1

P bkg
t (t|σt ) τ

bkg
1 = 0.65(5) ps, τ

bkg
2 = 2.0(8) ps, f bkg

2 = 0.06(2)

abkg = 3.22(10) ps−1, nbkg = 3.31(14), tbkg
0 = 0 ps,

T (t − t̂;σt ) see Table 2

tinct contributions from the signal and the background. For tagged
events we have

P (mi, ti,σt i,qi, ηi)

= Nsigεtag P sig
m (mi)P sig

t (ti,qi, ηi |σt i)P sig
σt (σt i)

+ Nbkgε
bkg
tag P bkg

m (mi)P bkg
t (ti|σt i)P bkg

σt (σt i), (7)

where ε
bkg
tag refers to the flavor tagging efficiency of the back-

ground. The signal mass PDF, P sig
m (m), is a double Gaussian func-

tion, while the background mass PDF, P bkg
m (m), is proportional to

e−αm together with a very small contribution from B0
s → J/ψη′ ,

Nη′ , that is fixed in the φs fit to 66 events obtained from the fit
shown in Fig. 2.

The PDF used to describe the signal decay rate, P sig
t , depends

on the tagging results q and η. It is modeled by a PDF of the true
time t̂ , R(t̂,q, η), convolved with the decay time resolution and
multiplied by the decay time acceptance function found for B0 →
J/ψ K ∗0 events. From Eq. (1), it can be expressed as

R(t̂,q, η) ∝ e−Γst̂
{

cosh
�Γst̂

2
+ cosφs sinh

�Γst̂

2

− q
[
1 − 2ω(η)

]
sinφs sin(�mst̂ )

}
, (8)

where ω(η) is the calibrated mistag probability. Thus the PDF of
reconstructed time is

P sig
t (t,q, η|σt) = R(t̂,q, η) ⊗ T (t − t̂;σt) · A(t;a,n, t0). (9)

For untagged events we use

P (mi, ti,σt i,qi = 0, ηi)

= Nsig(1 − εtag)P sig
m (mi)P sig

t (ti,0, ηi |σt i)P sig
σt (σt i)

+ Nbkg
(
1 − ε

bkg
tag

)
P bkg

m (mi)P bkg
t (ti|σt i)P bkg

σt (σt i). (10)

The PDF describing the long-lived background decay rate is

P bkg
t (t|σt) =

[
1 − f bkg

2

τ
bkg
1

e
− t̂

τ
bkg
1 + f bkg

2

τ
bkg
2

e
− t̂

τ
bkg
2

]

⊗ T (t − t̂;σt) · A
(
t;abkg,nbkg, tbkg

0

)
, (11)

where τ
bkg
1 , τ

bkg
2 and f bkg

2 parameterize the underlying double ex-
ponential function. The same functional form is used to describe
the background decay time acceptance as for signal (Eq. (5)) with
different parameters that are determined by fitting the like-sign
J/ψπ±π± events in an interval ±200 MeV around the B0

s mass.

The P sig
σt (σt i) and P bkg

σt (σt i) functions are shown in Fig. 5. The pa-
rameters that are fixed in the likelihood fit are listed in Table 3.

Fig. 8. Log-likelihood difference as a function of φs for B0
s → J/ψ fodd events.

Fig. 9. Decay time distribution of B0
s → J/ψ fodd candidates. The solid line shows

the result of the fit, the dashed line shows the signal, and the shaded region the
background.

8. Results

The likelihood of Eq. (6) is multiplied by Gaussian constraints
on several of the model parameters. These are the LHCb mea-
sured value of �ms = 17.63 ± 0.11 ± 0.02 ps−1 [20], the tagging
parameters p0 and p1, the decay time acceptance parameters t0,
a, and n, and both Γs = 0.657 ± 0.009 ± 0.008 ps−1 and �Γs =
0.123 ± 0.029 ± 0.011 ps−1 given by the J/ψφ analysis [7]. The fit
has been validated with full Monte Carlo simulations.

Fig. 8 shows the difference of log-likelihood value, � ln(L),
compared to the one at the point with the best fit, as a func-
tion of φs . At each value, the likelihood function is maximized
with respect to all other parameters. The best fit value is φs =
−0.019+0.173+0.004

−0.174−0.003 rad. (The systematic uncertainty will be dis-

cussed subsequently.) Values for φs in the f0 and f̃0 regions
are −0.26 ± 0.23 rad and 0.29 ± 0.28 rad, respectively, consistent
within the uncertainties. The decay time distribution is shown in
Fig. 9.

The presence of a sinφs contribution in Eq. (1) can, in principle,
be viewed by plotting the asymmetry [N(B0

s ) − N(B0
s )]/[N(B0

s ) +
N(B0

s )] of the background-subtracted tagged yields as a function of
decay time modulo 2π/�ms , as shown in Fig. 10. The asymmetry
is consistent with the value of φs determined from the full fit and
does not show any significant structure.
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Fig. 10. CP asymmetry as a function of decay time modulo 2π/�ms . The curve
shows the expectation for φs = −0.019 rad.

The data have also been analyzed allowing for the possibility of
direct CP violation. In this case Eq. (8) must be replaced with

R(t̂,q, η) ∝ e−Γst̂
{

cosh
�Γst̂

2
+ 2|λ|

1 + |λ|2 cosφs sinh
�Γst̂

2

− q[1 − 2ω(η)]
1 + |λ|2

[
2|λ| sinφs sin(�mst̂)

− (
1 − |λ|2) cos(�mst̂)

]}
. (12)

The fit gives |λ| = 0.89 ± 0.13, consistent with no direct CP vio-
lation (|λ| = 1). The value of φs changes only by −0.002 rad, and
the uncertainty stays the same.

The systematic uncertainties are small compared to the statisti-
cal one. No additional uncertainty is introduced by the acceptance
parameters, �ms , Γs , �Γs or flavor tagging, since Gaussian con-
straints are applied in the fit. The uncertainties associated with the
fixed parameters are evaluated by changing them by ±1 standard
deviation from their nominal values and determining the change
in the fitted value of φs . These are listed in Table 4. The uncer-
tainty due to a change in the signal time acceptance function is
evaluated by multiplying A(t;a,n, t0) with a factor (1 + βt), and
redoing the B0 → J/ψ K ∗0 fit with the B0 lifetime fixed to the PDG
value. The resulting value of β = (1 ± 3 ± 3) × 10−3 is then varied
by ±4.4 × 10−3 to estimate the uncertainty in φs . An additional
uncertainty is included due to a possible CP-even component. This
has been limited to 2.3% of the total fodd rate at 95% CL, and con-
tributes an uncertainty to φs as determined by repeating the fit
with an additional multiplicative dilution of 0.954. The asymmetry
between B0

s and B0
s production is believed to be small, and sim-

ilar to the asymmetry between B0 and B0 production which has
been measured by LHCb to be about 1% [21]. The effect of neglect-
ing this production asymmetry is the same as making a relative
1% change in the tagging efficiencies, up for B0

s and down for B0
s ,

which has a negligible effect on φs .

9. Conclusions

Using 1 fb−1 of data collected with the LHCb detector, B0
s →

J/ψπ+π− decays are selected and used to measure the CP vio-
lating phase φs . The signal events have an effective decay time
resolution of 39.8 fs. The flavor tagging is based on properties of
the decay of the other b hadron in the event and has an efficiency
times dilution-squared of 2.4%. We perform a fit of the time de-
pendent rates with the B0

s lifetime and the difference in widths of

Table 4
Summary of systematic uncertainties on φs . Quantities fixed in the fit that are not
included here give negligible uncertainties. The total uncertainty is found by adding
in quadrature all the positive and negative contributions separately.

Quantity (Q ) ±�Q + Change
in φs (rad)

− Change
in φs (rad)

β 4.4 × 10−3 0.0008 −0.0007

τ
bkg
1 (ps) 0.046 −0.0006 0.0014

τ
bkg
2 (ps) 0.8 −0.0014 0.0014

f bkg
2 0.02 −0.0006 0.0012

Nbkg 38 0.0009 −0.0001
Nη′ 9 0.0006 0.0001
m0 (MeV) 0.12 0.0012 −0.0004
σm

1 (MeV) 0.1 −0.0002 0.0008
α 1.1 × 10−4 0.0003 0.0003
T function 5% 0.0005 0.0005
CP-even multiply dilution by 0.954 −0.0008 –
Direct CP free in fit −0.0020 –

Total systematic uncertainty on φs
+0.004
−0.003

the heavy and light eigenstates used as input. We measure a value
of φs = −0.019+0.173+0.004

−0.174−0.003 rad. This result subsumes our previous

measurement obtained with 0.41 fb−1 of data [6]. Combining this
result with our previous result from B0

s → J/ψφ decays [7] by
performing a joint fit to the data gives a combined LHCb value of
φs = +0.06 ± 0.12 ± 0.06 rad. Our result is consistent with the SM
prediction of −0.0363+0.0016

−0.0015 rad [1]. In addition, we find no evi-
dence for direct CP violation.
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