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A search for CP violation in the phase-space structures of D0 and D0 decays to the final states
K − K +π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding
to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at
a centre-of-mass energy of 7 TeV. For the K − K +π−π+ final state, the four-body phase space is divided
into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP
violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the
π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The
p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than
5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Standard Model predictions for the magnitude of CP violation
(CPV) in charm meson decays are generally of O(10−3) [1,2], al-
though values up to O(10−2) cannot be ruled out [3,4]. The size
of CPV can be significantly enhanced in new physics models [5,6],
making charm transitions a promising area to search for new
physics. Previous searches for CPV in charm decays caused a large
interest in the community [7–9] and justify detailed searches for
CPV in many different final states. Direct CPV can occur when at
least two amplitudes interfere with strong and weak phases that
each differ from one another. Singly-Cabibbo-suppressed charm
hadron decays, where both tree processes and electroweak loop
processes can contribute, are promising channels with which to
search for CPV. The rich structure of interfering amplitudes makes
four-body decays ideal to perform such searches.

The phase-space structures of the D0 → K −K +π−π+ and
D0 → π−π+π+π− decays1 are investigated for localised CPV in a
manner that is independent of an amplitude model of the D0 me-
son decay. The Cabibbo-favoured D0 → K −π+π+π− decay, where
no significant direct CPV is expected within the Standard Model,
is used as a control channel. A model-dependent search for CPV in
D0 → K −K +π−π+ was previously carried out by the CLEO Collab-
oration [10] with a data set of approximately 3000 signal decays,
where no evidence for CPV was observed. This analysis is carried
out on a data set of approximately 5.7 × 104 D0 → K −K +π−π+
decays and 3.3 × 105 D0 → π−π+π+π− decays. The data set is

✩ © CERN for the benefit of the LHCb Collaboration.
1 Unless otherwise specified, inclusion of charge-conjugate processes is implied.

based on an integrated luminosity of 1.0 fb−1 of pp collisions with
a centre-of-mass energy of 7 TeV, recorded by the LHCb experi-
ment during 2011. The analysis is based on D0 mesons produced
in D∗+ → D0π+ decays. The charge of the soft pion (π+) iden-
tifies the flavour of the meson at production. The phase space is
partitioned into Nbins bins, and the significance of the difference
in population between CP conjugate decays for each bin is calcu-
lated as

Si
CP = Ni(D0) − αNi(D0)√

α(σ 2
i (D0) + σ 2

i (D0))

, α =
∑

i Ni(D0)∑
i Ni(D0)

, (1)

where Ni is the number of signal decays in bin i, and σi is the as-
sociated uncertainty in the number of signal decays in bin i [11].
The normalisation constant α removes global production and de-
tection differences between D∗+ and D∗− decays.

In the absence of any asymmetry, SCP is Gaussian distributed
with a mean of zero and a width of one. A significant variation
from a unit Gaussian distribution indicates the presence of an
asymmetry. The sum of squared SCP values is a χ2 statistic,

χ2 =
∑

i

(
Si

CP

)2
,

with Nbins − 1 degrees of freedom, from which a p-value is cal-
culated. Previous analyses of three-body D meson decays have
employed similar analysis techniques [12,13].

2. Detector

The LHCb detector [14] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for
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the study of particles containing b or c quarks. The detector in-
cludes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region, a large-
area silicon-strip detector located upstream of a dipole magnet
with a vertically oriented magnetic field and bending power of
about 4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream. To alleviate the impact of charged
particle–antiparticle detection asymmetries, the magnetic field po-
larity is switched regularly, and data are taken in each polarity. The
two magnet polarities are henceforth referred to as “magnet up”
and “magnet down”. The combined tracking system provides mo-
mentum measurement with relative uncertainty that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter res-
olution of 20 μm for tracks with high transverse momentum.
Charged hadrons are identified with two ring-imaging Cherenkov
(RICH) detectors [15]. Photon, electron, and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic calorimeter, and a
hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers.
The trigger consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software
stage [16]. Events are required to pass both hardware and software
trigger levels. The software trigger optimised for the reconstruc-
tion of four-body hadronic charm decays requires a four-track sec-
ondary vertex with a scalar sum of the transverse momenta, pT, of
the tracks greater than 2 GeV/c. At least two tracks are required
to have pT > 500 MeV/c and momentum, p, greater than 5 GeV/c.
The remaining two tracks are required to have pT > 250 MeV/c
and p > 2 GeV/c. A requirement is also imposed on the χ2 of
the impact parameter (χ2

IP) of the remaining two tracks with re-
spect to any primary interaction to be greater than 10, where χ2

IP
is defined as the difference in χ2 of a given primary vertex recon-
structed with and without the considered track.

3. Selection

Candidate D0 decays are reconstructed from combinations of
pion and kaon candidate tracks. The D0 candidates are required to
have pT > 3 GeV/c. The D0 decay products are required to have
p > 3 GeV/c and pT > 350 MeV/c. The D0 decay products are re-
quired to form a vertex with a χ2 per degree of freedom (χ2/ndf)
less than 10 and a maximum distance of closest approach between
any pair of D0 decay products less than 0.12 mm. The RICH system
is used to distinguish between kaons and pions when reconstruct-
ing the D0 candidate. The D∗+ candidates are reconstructed from
D0 candidates combined with a track with pT > 120 MeV/c. De-
cays are selected with candidate D0 mass, m(hhhh), of 1804 <

m(hhhh) < 1924 MeV/c2, where the notation m(hhhh) denotes the
invariant mass of any of the considered final states; specific no-
tations are used where appropriate. The difference, �m, in the
reconstructed D∗+ mass and m(hhhh) for candidate decays is re-
quired to be 137.9 < �m < 155.0 MeV/c2. The decay vertex of the
D∗ is constrained to coincide with the primary vertex [17].

Differences in D∗+ and D∗− meson production and detection
efficiencies can introduce asymmetries across the phase-space dis-
tributions of the D0 decay. To ensure that the soft pion is detected
in the central region of the detector, fiducial cuts on its momentum
are applied, as in Ref. [9]. The D0 and D0 candidates are weighted
by removing events so that they have same transverse momen-
tum and pseudorapidity distributions. To further cancel detection
asymmetries the data set is selected to contain equal quantities of
data collected with each magnetic field polarity. Events are ran-
domly removed from the largest subsample of the two magnetic
field polarity configurations.

Each data sample is investigated for background contamina-
tion. The reconstructed D0 mass is searched for evidence of
backgrounds from misreconstructed D0 decays in which K/π
misidentification has occurred. Candidates in which only a single
final-state particle is misidentified are reconstructed outside the
m(hhhh) signal range. No evidence for candidates with two, three,
or four K/π misidentifications is observed. Charm mesons from
b-hadron decays are strongly suppressed by the requirement that
the D0 candidate originates from a primary vertex. This source of
background is found to have a negligible contribution.

4. Method

Fig. 1 shows the m(hhhh) and �m distributions for D0 can-
didate decays to the final states K −K +π−π+ , π−π+π+π− , and
K −π+π+π− , for data taken with magnet up polarity. The distri-
butions for D0 candidates and data taken with magnet down polar-
ity are consistent with the distributions shown. Two-dimensional
unbinned likelihood fits are made to the m(hhhh) and �m dis-
tributions to separate signal and background contributions. Each
two-dimensional [m(hhhh),�m] distribution includes contribu-
tions from the following sources: signal D0 mesons from D∗+
decays, which peak in both m(hhhh) and �m; combinatorial back-
ground candidates, which do not peak in either m(hhhh) or �m;
background candidates from an incorrect association of a soft pion
with a real D0 meson, which peak in m(hhhh) and not in �m; in-
correctly reconstructed D+

s → K −K +π−π+π+ decays, which peak
at low values of m(hhhh) but not in �m; and misreconstructed
D0 → K −π+π−π+π0 decays, which have broad distributions in
both m(hhhh) and �m. The signal distribution is described by a
Crystal Ball function [18] plus a Gaussian function, with a shared
peak value, in m(hhhh) and Johnson function [19] of the form

J (�m) ∝ exp(− 1
2 [γ + δ sinh−1(

�m−μ
σ )]2)√

1 + (
�m−μ

σ )2
(2)

in �m. The combinatorial background is modelled with a first-
order polynomial in m(hhhh), and the background from D0 can-
didates each associated with a random soft pion is modelled by
a Gaussian distribution in m(hhhh). Both combinatorial and ran-
dom soft pion backgrounds are modelled with a function of the
form

f (�m) = [
(�m − �m0) + p1(�m − �m0)

2]a
(3)

in �m, where �m0 is the kinematic threshold (fixed to the pion
mass), and the parameters p1 and a are allowed to float.

Partially reconstructed D+
s → K −K +π−π+π+ decays, where a

single pion is not reconstructed, are investigated with simulated
decays. This background is modelled with a Gaussian distribution
in m(hhhh) and with a function f (�m) as defined in Eq. (3). Mis-
reconstructed D0 → K −π+π−π+π0 decays where a single K/π
misidentification has occurred and where the π0 is not recon-
structed are modelled with a shape from simulated decays. Other
potential sources of background are found to be negligible.

For each two-dimensional [m(hhhh),�m] distribution a fit is
first performed to the background region, 139 < �m < 143 MeV/c2

or 149 < �m < 155 MeV/c2, to obtain the shapes of the combina-
torial and soft pion backgrounds. The �m components of these
shapes are fixed and a two-dimensional fit is subsequently per-
formed simultaneously over four samples (D0 magnet up, D0 mag-
net up, D0 magnet down, and D0 magnet down). The peak posi-
tions and widths of the signal shapes and all yields are allowed
to vary independently for each sample, whilst all other parame-
ters are shared among the four samples. A signal yield of 5.7 × 104
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Fig. 1. Distributions of (a), (c), (e) m(hhhh) and (b), (d), (f) �m for (a), (b) D0 → K − K +π−π+ , (c), (d) D0 → π−π+π+π− , and (e), (f) D0 → K −π+π+π− candidates for
magnet up polarity. Projections of the two-dimensional fits are overlaid, showing the contributions for signal, combinatorial background, and random soft pion background.
The contributions from D0 → K −π+π−π+π0 and D+

s → K − K +π−π+π+ contamination are also shown for the D0 → K − K +π−π+ sample.
D0 → K −K +π−π+ , 3.3 × 105 D0 → π−π+π+π− , and 2.9 × 106

D0 → K −π+π+π− decays is extracted from the two-dimensional
fits. The sPlot statistical method [20] is used to obtain background
subtracted phase-space distributions for D0 decays to the final
states K −K +π−π+ , π−π+π+π− , and K −π+π+π− . The sWeights
are calculated from the likelihood fits to the two-dimensional
[m(hhhh),�m] distributions.

The phase space of a spin-0 decay to four pseudoscalars can be
described with five invariant mass-squared combinations: s(1,2),
s(2,3), s(1,2,3), s(2,3,4), and s(3,4), where the indices 1, 2, 3,
and 4 correspond to the decay products of the D0 meson follow-
ing the ordering of the decay definitions. The ordering of identical
final-state particles is randomised.

The rich amplitude structures are visible in the invariant mass-
squared distributions for D0 and D0 decays to the final states
K −K +π−π+ and π−π+π+π− , shown in Figs. 2 and 3, respec-
tively. The momenta of the final-state particles are calculated with
the decay vertex of the D∗ constrained to coincide with the pri-
mary vertex and the mass of the D0 candidates constrained to the
world average value of 1864.86 MeV/c2 [22].

An adaptive binning algorithm is devised to partition the phase
space of the decay into five-dimensional hypercubes. The bins are

defined such that each contains a similar number of candidates,
resulting in fine bins around resonances and coarse bins across
sparsely populated regions of phase space.

For each phase-space bin, Si
CP , defined in Eq. (1), is calculated.

The number of signal events in bin i, Ni , is calculated as the sum
of the signal weights in bin i and σ 2

i is the sum of the squared
weights. The normalisation factor, α, is calculated as the ratio of
the sum of the weights for D0 candidates and the sum of the
weights for D0 candidates and is 1.001±0.008, 0.996±0.003, and
0.998 ± 0.001 for the final states K −K +π−π+ , π−π+π+π− , and
K −π+π+π− , respectively.

5. Production and instrumental asymmetries

Checks for remaining production or reconstruction asymme-
tries are carried out by comparing the phase-space distributions
from a variety of data sets designed to test particle/antiparticle
detection asymmetries and “left/right” detection asymmetries. The
“left” direction is defined as the bending direction of a positively
charged particle with the magnet up polarity. Asymmetries in the
background are studied with weighted background candidates and
mass sidebands.
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Fig. 2. Invariant mass-squared distributions for D0 meson (black, closed circles) and D0 meson (red, open squares) decays to the final state K − K +π−π+ . The invariant
mass-squared combinations s(1,2), s(2,3), s(1,2,3), s(2,3,4), and s(3,4) correspond to s(K −, K +), s(K +,π−), s(K −, K +,π−), s(K +,π−,π+), and s(π−,π+), respectively
for the D0 mode. The charge conjugate is taken for the D0 mode. The phase-space distribution of the D0 → K − K +π−π+ decay is expected to be dominated by the
quasi-two-body decay D0 → φρ0 with additional contributions from D0 → K1(1270)± K ∓ and D0 → K ∗(1410)± K ∓ decays [10]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this Letter.)
Left/right asymmetries in detection efficiencies are investigated
by comparing the phase-space distributions of D0 candidates in
data taken with opposite magnet polarities, thus investigating the
same flavour particles in opposite sides of the detector. Parti-
cle/antiparticle asymmetries are studied with the control channel
D0 → K −π+π+π− . The weighting based on pT and pseudorapid-
ity of the D0 candidate and the normalisation across the phase
space of the D0 decay cancel the K +/K − detection asymmetry
in this control channel. The phase-space distribution of D0 decays
from data taken with one magnet polarity is compared with that of
D0 decays from data taken with the opposite magnet polarity, for
any sources of particle/antiparticle detection asymmetry, localised
across the phase space of the D0 decay.

The weighted distributions for each of the background com-
ponents in the two-dimensional fits are investigated for asym-
metries in D0 → K −K +π−π+ , D0 → π−π+π+π− , and D0 →
K −π+π+π− candidates. The �m and m(hhhh) sidebands are also
investigated to identify sources of asymmetry.

The sensitivity to asymmetries is limited by the sample size, so
SCP is calculated only with statistical uncertainties.

6. Sensitivity studies

Pseudo-experiments are carried out to investigate the depen-
dence of the sensitivity on the number of bins. Each pseudo-
experiment is generated with a sample size comparable to that
available in data.

Decays are generated with MINT, a software package for am-
plitude analysis of multi-body decays that has also been used by
the CLEO Collaboration [10]. A sample of D0 → K −K +π−π+ de-
cays is generated according to the amplitude model reported by
CLEO [10], and D0 → π−π+π+π− decays are generated accord-
ing to the amplitude model from the FOCUS Collaboration [21].
Phase and magnitude differences between D0 and D0 decays
are introduced. Fig. 4 shows the SCP distributions for a typical
pseudo-experiment in which no CPV is present and for a typ-
ical pseudo-experiment with a phase difference of 10◦ between
D0 → a1(1260)+π− and D0 → a1(1260)−π+ decays.

Based on the results of the sensitivity study, a partition with
32 bins, each with approximately 1800 signal events, is chosen
for D0 → K −K +π−π+ decays while a partition with 128 bins,
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Fig. 3. Invariant mass-squared distributions for D0 meson (black, closed circles) and D0 meson (red, open squares) decays to the final state π−π+π+π− . The invariant
mass-squared combinations s(1,2), s(2,3), s(1,2,3), s(2,3,4), and s(3,4) correspond to s(π−,π+), s(π+,π+), s(π−,π+,π+), s(π+,π+,π−), and s(π+,π−), respec-
tively for the D0 mode. The charge conjugate is taken for the D0 mode. Owing to the randomisation of the order of identical final-state particles the invariant mass-squared
distributions s(2,3,4) and s(3,4) are statistically compatible with the invariant mass-squared distributions s(1,2,3) and s(1,2), respectively. As such the invariant mass-
squared distributions s(2,3,4) and s(3,4) are not shown. The phase-space distribution of the D0 → π−π+π+π− decay is expected to be dominated by contributions from

0 + − 0 0 0
D → a1(1260) π and D → ρ ρ decays [21]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
Fig. 4. Distributions of SCP for (a) a typical pseudo-experiment with generated
D0 → π−π+π+π− decays without CPV and for (b) a typical pseudo-experiment
with a generated 10◦ phase difference between D0 → a1(1260)+π− and D0 →
a1(1260)−π+ resonant decays. The points show the data distribution and the
solid line is a reference Gaussian distribution corresponding to the no CPV hy-
pothesis. The corresponding p-values under the hypothesis of no asymmetry for
(a) decays without CPV and (b) decays with a 10◦ phase difference between
D0 → a1(1260)+π− and D0 → a1(1260)−π+ resonant components are 85.6% and
1.1 × 10−16, respectively.

each with approximately 2500 signal events is chosen for D0 →
π−π+π+π− decays. The p-values for the pseudo-experiments
are uniformly distributed for the case of no CPV. The aver-
age p-value for a pseudo-experiment with a phase difference
of 10◦ or a magnitude difference of 10% between D0 → φρ0

and D0 → φρ0 decays for the D0 → K −K +π−π+ mode and be-
tween D0 → a1(1260)+π− and D0 → a1(1260)−π+ decays for the
D0 → π−π+π+π− mode is below 10−3.

7. Results

Asymmetries are searched for in the D0 → K −π+π+π− con-
trol channel. The distributions of SCP and local CP asymmetry,
defined as

Ai
CP = Ni(D0) − αNi(D0)

Ni(D0) + αNi(D0)
, (4)

are shown in Fig. 5 for the D0 → K −π+π+π− control channel.
The data set is also studied to identify sources of asymmetry with
two alternative partitions and by separating data taken with each
magnet polarity. The results, displayed in Table 1, show that no
asymmetry is observed in D0 → K −π+π+π− decays. Further-
more, the data sample is split into 10 time-ordered samples of
approximately equal size, for each polarity. The p-values under the
hypothesis of no asymmetry are uniformly distributed across the
data taking period. No evidence for a significant asymmetry in any
bin is found.

The SCP and local CP asymmetry distributions for D0 →
K −K +π−π+ decays for a partition containing 32 bins and for
D0 → π−π+π+π− decays with a partition containing 128 bins
are shown in Fig. 5. The p-values under the hypothesis of no CP vi-
olation for the decays D0 → K −K +π−π+ and D0 → π−π+π+π−
are 9.1% and 41%, respectively, the corresponding χ2/ndf’s are
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Fig. 5. Distributions of (a), (c), (e) SCP and (b), (d), (f) local CP asymmetry per bin for (a), (b) D0 → K − K +π−π+ decays partitioned with 32 bins, for (c), (d) D0 →
π−π+π+π− decays partitioned with 128 bins, and for (e), (f) the control channel D0 → K −π+π+π− partitioned with 128 bins. The points show the data distribution and
the solid line is a reference Gaussian distribution corresponding to the no CPV hypothesis.
Table 1
The χ2/ndf and p-values under the hypothesis of no CPV for the control channel
D0 → K −π+π+π− . The p-values are calculated separately for data samples taken
with magnet up polarity, magnet down polarity, and the two polarities combined.

Bins p-Value (%) (χ2/ndf)
Magnet down

p-Value (%)
(χ2/ndf) Magnet up

p-Value (%) (χ2/ndf)
Combined sample

16 80.8 (10.2/15) 21.2 (19.1/15) 34.8 (16.5/15)
128 62.0 (121.5/127) 75.9 (115.5/127) 80.0 (113.4/127)

1024 27.5 (1049.6/1023) 9.9 (1081.6/1023) 22.1 (1057.5/1023)

Table 2
The p-values and χ2/ndf under the hypothesis of no CPV with the default parti-
tions for D0 → K − K +π−π+ decays and D0 → π−π+π+π− decays. The p-values
are calculated for a combined data sample with both data taken with magnet up
polarity and data taken with magnet down polarity.

Channel Bins p-Value (%) χ2/ndf

D0 → K − K +π−π+ 32 9.1 42.0/31
D0 → π−π+π+π− 128 41.0 130.0/127

shown in Table 2. The consistency of the result is checked with
alternative partitions, shown in Table 3. In each case the result is
consistent with the no CPV hypothesis.

Table 3
The p-values and χ2/ndf under the hypothesis of no CPV with two alternative par-
titions for D0 → K − K +π−π+ decays and D0 → π−π+π+π− decays. The p-values
are calculated for a combined data sample with both data taken with magnet up
polarity and data taken with magnet down polarity.

Channel Bins p-Value (%) χ2/ndf

D0 → K − K +π−π+ 16 9.1 22.7/15
64 13.1 75.7/63

D0 → π−π+π+π− 64 28.8 68.8/63
256 61.7 247.7/255

The stability of the results is checked for each polarity in 10 ap-
proximately equal-sized, time-ordered data samples. The p-values
are uniformly distributed across the 2011 data taking period and
are consistent with the no CPV hypothesis.

8. Conclusions

A model-independent search for CPV in 5.7 × 104 D0 →
K −K +π−π+ decays and 3.3 × 105 D0 → π−π+π+π− decays
is presented. The analysis is sensitive to CPV that would arise
from a phase difference of O(10◦) or a magnitude difference
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of O(10%) between D0 → φρ0 and D0 → φρ0 decays for the
D0 → K −K +π−π+ mode and between D0 → a1(1260)+π− and
D0 → a1(1260)−π+ decays for the D0 → π−π+π+π− mode. For
none of the 32 bins, each with approximately 1800 signal events, is
an asymmetry greater than 6.5% observed for D0 → K −K +π−π+
decays, and for none of the 128 bins, each with approximately
2500 signal events, is an asymmetry greater than 5.5% observed for
D0 → π−π+π+π− decays. Assuming CP conservation, the prob-
abilities to observe local asymmetries across the phase space of
the D0 meson decay as large or larger than those in data for the
decays D0 → K −K +π−π+ and D0 → π−π+π+π− are 9.1% and
41%, respectively. All results are consistent with CP conservation at
the current sensitivity.
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