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Abstract: Contrary to the rapid evolution experienced in the last decade of Information and
Communication Technologies and particularly the Internet of Things, electric power distribution
systems have remained exceptionally steady for a long time. Energy users are no longer passive actors;
the prosumer is expected to be the primary agent in the Future Grid. Demand Side Management
refers to the management of energy production and consumption at the demand side, and there seems
to be an increasing concern about the scalability of Demand Side Management services. The creation
of prosumer communities leveraging the Smart Grid to improve energy production and consumption
patterns has been proposed in the literature, and several works concerned with scalability of Demand
Side Management services group prosumers to improve Demand Side Management scalability. In our
previous work, we coin the term Social Internet of Energy to refer to the integration between devices,
prosumers and groups of prosumers via social relationships. In this work, we develop an algorithm to
coordinate the different clusters we create using the clustering method by load profile compatibility
(instead of similarity). Our objective is to explore the possibilities of the cluster-by-compatibility
heuristic we proposed in our previous work. We perform experiments using synthetic and real
datasets. Results show that we can obtain a global reduction in Peak-to-Average Ratio with datasets
containing up to 200 prosumers and creating up to 6 Prosumer Community Groups, and imply
that those Prosumer Community Groups can perform load rescheduling semi-autonomously and in
parallel with each other.

Keywords: social internet of things; social internet of energy; smart grid; clustering; prosumer
community groups

1. Introduction

Global energy demand is expected to increase by 50% from 2018 to 2050 [1]. Nevertheless, electric
power distribution infrastructures have remained unchanged for a long time, in opposition to the fast
evolution of Information and Communication Technologies (ICTs) during the last decade, such as the
Internet of Things (IoT) [2]. Traditional and non-renewable energy sources supply most global energy
demand; however, non-renewable energy sources are starting to be insufficient and produce harmful
climate changes in our ecosystem [3]. Therefore, society is increasing the adoption of renewable energy
sources [4]. The Smart Grid (SG) refers to the addition of ICT infrastructure to the electrical domain
(and the traditional electricity grid), and enables new services and opportunities that are guiding
a revolution in the energy field [5–8].

Motivated by the convergence of the electrical grid, ICTs, and the possibility to generate individual
energy through Renewable Energy Source (RES), new actors emerge on the SG. According to [9],
prosumers are “those customers who decide to invest in distributed energy resources (mostly solar PV)
for a variety of reasons and [...] can satisfy a portion of their electricity demand and [...] produce more
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than they consume, [...]. Apart from helping to match supply and demand, sources of flexibility can
also assist in various ancillary services such as frequency and voltage profile control [...]”.

Flexible sources of energy enable management services at the demand side; those services aim
at optimizing the use of energy resources. Thus, Demand Side Management (DSM) refers to the
management of energy consumption and production at the demand side; for instance, residential
energy users might modify their consumption behavior to reduce greenhouse gas emissions. Therefore,
a new type of active actor, the prosumer (which produces and consumes energy), is expected to be
the primary agent in the Future Grid—rather than the utility. Consequently, the number of nodes that
need to coordinate (or be coordinated) to reduce greenhouse gas emissions increases.

Furthermore, prosumers are not the last nodes that need coordination, but the energy-consuming
devices and appliances they own. There seems to be an increasing concern about the scalability of DSM
services [10,11]. To tackle such challenge, we envision a synergy between Social Internet of Things
(SIoT) [12] and SGs, and, in our previous work [8], we coined the term Social Internet of Energy (SIoE)
to refer to this union. Instead of focusing on concrete DSM algorithms, our focus is on characterizing
a social network of prosumers and their smart devices and appliances.

Works such as [13,14] consider “prosumer communities [that] aim to transform traditional
consumers to become active prosumers thereby improving the efficiency of the smart grid and
offering economic, operational and environmental benefits.” [13]. Additionally, a distributed Clean
Energy Community (CEC) is “a network of households and businesses that generate or own
distributed generation individually, connected through a controlling entity either physically or
virtually, and sharing the same rules in supplying and consuming electricity within the network” [14].
Both definitions are not exclusive, and indeed [13] proposes the first definition to encompass similar
related terms.

Our vision is to enable an overlay social network of smart devices that facilitates communication
and discovery between devices, prosumers and Prosumer Community Groups (PCGs). Prosumers in a
PCG might be from different geographical locations (and bounded by, for example, the operational
region of the utility); however, they should share a common goal such as optimal energy
management [13]. Also, in the presence of behavioral changes on prosumer’s energy consumption,
the social network of prosumers we envision could acquire a new configuration to facilitate energy
management at the demand side.

One of the last and novel configurations of IoT frameworks could be able to provide the overlay
social network of smart devices. According to a generational analysis of the IoT [2], the SIoT [12,15]
belongs to the third and most recent generation of IoT frameworks. The SIoT envisages interactions
between humans and machines, in addition to human-to-human and machine-to-machine interactions;
the former enabled by Social Network Services (SNSs), and the latter approached by the IoT [8]. In the
future SIoT, nodes of the same network represent humans and devices that provide services [16]—they
are not logically separated.

On [8], we described the kind of SIoT relationships devices and owners need to establish to create
a network of prosumers and PCGs. To group prosumers, we need a heuristic based on the attributes
of prosumers, one of these attributes is their energy-consumption behavior. Because one of the DSM
services goals is to reduce the energy peaks that occur when prosumers consume energy at the same
time, we aimed to group them by their energy profile compatibility, instead of grouping them by
energy profile similarity.

The heuristic pursued two goals at the same time: first, to reduce peaks locally; and, secondly,
to group prosumers that have opposite energy-consumption behaviors—by their compatibility.
The rationale to group by compatibility is as follows. Ideally, if two prosumers consume and produce
the same amount of energy at exactly opposite moments in a timeline, the aggregate load curve they
generate is zero during all the timeline (because consumption and production of each prosumer negate
each other). Moreover, if they are instructed to make any change on the time of use of their appliances,
the change would be smaller than if they were grouped by similarity.
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Therefore, in this work, we develop an algorithm to coordinate the different clusters we create
using the clustering method by prosumer compatibility (which we describe in [8], and summarize
in Section 4.2). We consider a simple load model, similar to the one the authors in [17,18] use that
includes fixed and time-shiftable loads. Our main objective is to explore the possibilities of the
cluster-by-compatibility heuristic we propose. Then, in future work, we will try to find answers as
to why some cluster configurations may achieve a lower Peak-to-Average Ratio (PAR) than other
configurations. For the first time, and to the best of our knowledge, the results show that we can
achieve an optimal cluster configuration using the clustering-by-compatibility heuristic.

This article is organized as follows. Section 2 sets a background on SGs, PCGs, and DSM. Section 3
describes works related to scalability of DSM services in the SG and complements the positioning of
the article we give in Section 1. Section 4 describes the load, clustering and rescheduling model we
use. We perform experiments and analyze the results in regard to our DSM model and heuristic on
Section 5. Finally, we summarize our conclusions in Section 6.

2. Background

2.1. Future Grid and New Era Technologies

Contrary to the rapid evolution experienced in the last decade of ICTs and particularly the IoT [2],
electric power distribution systems have remained exceptionally steady for a long time. Nevertheless,
energy demand in the world is increasing rapidly. Worldwide energy consumption is expected to
increase by nearly 50% from 2018 to 2050 [1]. Most of the energy demand is met by non-renewable
energy resources which are starting to be insufficient and produce undesirable climate changes that
harm the world we live in [3].

Indeed, the report of the United Nations on Sustainable Development Goals progress [4] states:
“[...] since 2012 [...] the growth of renewables (has) outpaced the growth of total energy consumption”.
We can find further evidence in relation to the COVID-19 situation: while there was a decrease of
3.8% in energy demand during the first quarter of 2020 due to lockdown, “renewables were the only
[energy] source that posted a growth in demand, driven by larger installed capacity and priority
dispatch” [19]. Hence, society is moving towards the use of renewable and sustainable energy sources.
Consequently, the increase in energy demand will not be manageable unless the traditional electricity
grid evolves.

The convergence of the ICT infrastructure to the electrical domain (the SG), has enabled new
services and opportunities (e.g., customer-side generation, real-time energy consumption, and accurate
grid monitoring), which are guiding a significant revolution in the energy field [5–8]. The SGs envisions
the improvement traditional of electric infrastructures in several dimensions [20] such as information,
scalability and business models, to meet the highest standards of power quality and ensure that the
electric power grid is cost-effective and sustainable [21].

The SG has led to the rise of new agents and components. The new energy user does not only
consume energy but performs a crucial role in the SG. Prosumer (energy producers and energy
consumers [13]) are easily the most important creators of value within the SG, as they are the last link
in the electricity value chain. Prosumers are active energy users in the Future Grid. The most important
connections for prosumers in the electricity value chain are the Distribtion Systems Operator (DSO)
or the aggregator/retailer in addition to Energy Services Companies (ESCOs), Virtual Power Plants
(VPPs) [22], Microgrids (MGs) [22] or PCGs [13,23], which are also new components in the energy
market value chain [24]. Those components are key in managing the increase of energy demand and
meet the demand with energy gathered from RESs. They range from energy-oriented commercial
businesses, ESCOs; to systems that operate Distributed Energy Resources (DERs), VPP; that can even
operate autonomously as a single unit detached from the main grid, MGs; to PCGs, that describe
prosumer collaboration towards a common goal.
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Those new agents and components of the SG could become the most enriched elements
thanks to their integration with ICTs, that upgrade information and communication capabilities [7].
However, the upgraded features at the end-user side come at the cost of requiring more technology.
Due to the complexity and magnitude (i.e., stringent levels of service reliability and availability in
large-scale areas), and new agent profiles in the SGs, practitioners have recently confronted the digital
transformation of electric networks by proposing flexible and future Internet-based architectures [21].

The SG has a heterogeneous nature which demands system architects to consider
multiple telecommunication technologies. SGs are deployed in hostile wireless communication
environments [25]. Aware protocols (cognitive radio techniques) [26] are needed to reduce
communication delay [25]; meet Quality of Service (QoS) needs in terms of bandwidth, data
reliability, and delay; improve energy harvesting techniques [26]; and provide reliable sensing
in a distributed environment [27]; to minimize interoperability issues between heterogeneous
communication networks [7,28].

The SG is considered a special use case of the IoT, with its own requirements, coined as the
Internet of Energy (IoE) [29]. A common challenge for SG and IoT is the accessibility of deployed
sensors and actuators. As long as those devices are connected to the Internet and included in the IoT,
they are potentially accessible. Nonetheless, these heterogeneous devices expose diverse interfaces,
which renders access to those resources difficult and non-scalable.

As stated, one of the most relevant agents in the SG and Future Grid are prosumers, individual
users that consume and produce energy. A prosumer is “an energy user who generates renewable
energy in his/her domestic environment and either store the surplus energy for future use or trades to
interested energy customers in smart grid” [13,30]. To meet worldwide energy demand using RESs,
recent literature proposes to group energy users (prosumers) to optimize services and opportunities,
such as energy generation, demand-side or storage resources and to increase individual DER visibility;
while allowing these groups perform those services autonomously. Those prosumer communities
are often called PCGs, and they pursue a mutual goal and compete in the energy market as a group.
Other related terms, such as Electricity Prosumer Communities (EPCs) [31], Integrated Community
Energy Systems (ICESs) [32] and CECs [14] are used to refer to the same concept [13].

Prosumers, rather than the utility, are expected to be the primary agents in the Future Grid.
Management services at the demand side (prosumers’ side) aim at optimizing the use of energy
resources. Thus, DSM refers to the management of energy consumption and production at the
demand side. There are several DSM services that usually involve an agreement with the utility
and prosumers. Those services range from using price signals to control or bias the consumption
pattern of prosumers (Real Time Pricing (RTP) [33]), to allowing the utility to remotely control the
operation and consumption of certain appliances (Direct Load Control (DLC) [33]). Energy usage
optimization pursues the reduction of energy demand peaks to reduce blackouts and successfully
manage DERs such as storage systems (batteries, Electric Vehicle (EV)) and energy gathered from RES.
Energy from RES cannot be gathered on demand since it depends on climate factors. Therefore, energy
storage systems must store surplus energy from RES to provision the grid on demand. Effectively
managing consumption patterns leads to a reduction in energy demand peaks and a decrease in overall
energy consumption.

2.2. New Era Technologies

The IoT [2,34] is emerging as the new era technology, where before were the Internet and the Web.
The IoT is one of the consequences of the Internet—that which allowed to create an intercommunicated
world and the World Wide Web that builds on top of a World Wide Network. As science and technology
advancements allowed, more and more devices were being connected to the World Wide Network,
a hyper-connected world was and is still emerging. The hyper-connected world was coined under the
umbrella term IoT, or for more concrete use cases, Internet of X. Where X receives the value of vehicles,
people, radios or energy, among other names.
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Nevertheless, more often than not, these field-specific IoT deployments operate in silos. A lack
of homogenization of data and protocols used by smart devices prevents local IoT deployments to
inter-operate and pose a challenge to realize the full potential of the IoT. “Interoperability is considered
to be the ability of two or more systems or components to exchange information and data, and use
the exchanged information and data without special effort by either system, or without any special
manipulation.” [35]. The Web and its technologies serve humankind well in facilitating the access and
globalization of information. It is envisioned by some authors as the homogenization technologies
through which rendering the IoT easily and homogeneously accessible. Yet, and although still in
development these days, the Web of Things (WoT) [36], as it is called, is far from one solution fits all.

The WoT answers the challenge of protocol and data homogenization, which enables accessibility,
findability, shareability and composition of WoT [36], enhancing the scalability of the IoT. A system
is space-time scalable “if it continues to function gracefully as the number of objects it encompasses
increases by orders of magnitude. A system may be space-time scalable if the data structures and
algorithms used to implement it are conducive to smooth and speedy operation whether the system is of
moderate size or large.” [37]. The WoT enables data accessibility and findability using already available
Web technologies. However, the discovery of billions of objects is challenging. Tackling scalability
and diversity (heterogeneity) is not an easy task. WoT search engines should support local-scale and
global-scale search at the same time while also considering diversity of search queries and services.
For that matter, WoT search engines seem to be moving towards a distributed approach [38].

Recently, another approach to scalable discovery has gained momentum. The approach is based
on the small world phenomenon [39], which states that people is connected by short chains of
acquaintances and thus, creating a worldwide network of connections where there is always a short
path between the source node and the target node. After all, if there is a natural phenomenon of
such characteristics that allows scalability and findability, why cannot devices create the same kind
of network? The term SIoT [12,15] refers to just that, a social network of things; similar to the social
structure that emerged from the ones we have created for humans, namely Facebook, Google Plus or
Twitter, but for connected devices.

The IoT enables smart objects or things to connect to the Internet, enabling them to be accessed
as their heterogeneity allows. This layer is heterogeneous in that smart devices are built by different
vendors and use different formats to structure their data and different protocols to communicate.
It is also the main reason for the existence of IoT silos; specific IoT deployments, while interconnected
locally for specific use cases, are not able to interact with the external world directly due to their
heterogeneity—although they are connected to the Internet. The WoT and the SIoT build on top the
IoT infrastructure layer. These two frameworks are not on top of the other and instead they provide
complementary mechanisms to overcome the challenges of IoT.

The WoT provides homogenized access to smart devices through the semantic Web [40–42] and
Web protocols such as Hyper-Text Transfer Protocol/Secure (HTTP/S) [7,42]. Homogeneous access at
the semantic level allows devices to be found as they share a common framework that describes them.
The accessibility layer enables findability, sharing and composition layers in the WoT. Objects can be
discovered using already available search engines in addition to distributed discovery and lookup
infrastructures. As with a user in a SNS that shares a Web resource, such as a webpage, the resources
of a WoT-enabled thing can be shared. Describing resources using the same framework enables
their inputs and outputs to be understood and composed easily. Hence, an important contribution
of the WoT to the IoT is that it enables things to be accessed and understood anywhere using Web
technologies. Once things are rendered homogeneously accessible, other valuable features can be
developed. Nevertheless, the mechanism enabled by the WoT in terms of findability, at its current
state, might need to integrate (or be integrated with) other approaches [38,43].

The SIoT promotes a scalable and flexible network structure between things [12,15]. The basic
idea is that it enables each device to be part of a Social Network (SN) to search for required services or
things (like friends in SNSs) and build reliable social relationships between them. The SIoT allows an
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autonomous and scalable search of services, as things search for the services they need incrementally,
starting with themselves as the source node and then asking their friends for the services, the friends of
their friends, and so on, biased by the trust assigned to each device. The scalability is possible thanks to
the leverage of the small world phenomenon [39]. Furthermore, the SIoT gives “the IoT a structure that
can be shaped as required to guarantee network navigability, so as that object and service discovery is
effectively performed and scalability is guaranteed” [12]. Socially enabled things find eventually the
services they need since there will be, eventually, a path between every two nodes [44].

3. Related Work

This work is a continuation of previous work [8], were we coined the term SIoE to refer to the
synergy between DSM and SIoT. On the one hand, a survey about SG scalability [45] reports that
in terms of communication, the transition from a centralized architecture to a distributed one is
necessary for a SG. Also, it reports that machine-to-machine communications (e.g., expressed in the
SIoT paradigm), can open new opportunities and reduce communication costs. On the other hand,
the main purpose of SIoT [12,15] is to provide the IoT with a social network structure that can be
shaped as required and to provide better search efficiency. The SIoT also aims to provide autonomy
and scalability to the search process.

To relate the contributions of this work with our previous work [8], we outline their respective
contributions. We also outline our future work.

In [8], we:

• Explored how the SG can harness the SIoT technology to improve DSM services.
• Analyzed which technologies are involved when combining DSM and SIoT in a SG.
• Investigated a heuristic to elect members of a PCG via their energy profiles. On first attempts,

the heuristic created empty clusters. Next, we developed a cluster-by-compatibility heuristic,
summarized in Section 4.2, that addressed the problem of empty clusters. However, we did not
evaluate if the PCGs created with that heuristic were able to achieve a global reduction in PAR.

In this work, we:

• Evaluate if the PCGs created by the cluster-by-compatibility heuristic can achieve a global
reduction in PAR with two residential datasets.

• Perform the evaluation modifying an existing DSM algorithm. We modify the algorithm to be
partially distributed.

• Observe that while we can achieve a global reduction in PAR, the optimal reduction (that occurs
in a centralized algorithm) is hardly achieved.

Future work will aim at analyzing the composition of the PCGs that perform best in terms of
reducing PAR. The analysis will allow us to direct our efforts to modify the heuristic and obtain a
better composition of PCGs. The analysis will also allow us to develop dynamic clustering protocols to
reconfigure the composition of PCGs.

The purpose of next sections is to position our work in relation to DSM scalability and
SIoT communities.

3.1. Scalability in Demand Side Management

The authors in [10] present a partially distributed DSM algorithm which helps to aggregate
underlying energy customers’ power and energy constraints and operating preferences. In contrast to
alternative centralized methods, their approach requires less computational time to obtain decisions
and scales well with an increase in network size. Also, they avoid a fully distributed approach as
distributed approaches require several iterations to exchange locally optimized values. The authors
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propose to create MGs that aggregate underlying users’ physical devices. After they obtain aggregated
decisions for a model, these values are distributed among individual energy customers.

The consideration of MGs as the infrastructure to group customers has both advantages and
disadvantages. On the one hand, it allows groups of customers in the same MG to detach from the
main grid if necessary. For example, when a blackout occurs, customers in a detached MG can sustain
their energy demands using the energy they generate through RES. On the other hand, and considering
global energy management, it might be the case that a more optimal demand management could be
achieved if customers were attached to another group (instead of the fixed one in a MG).

The authors in [11] also consider the communication/computation overhead in fully distributed
DSM strategies. They apply a load-shifting DSM strategy while reducing costs and customer
dissatisfaction. The authors propose groups of customers (a customer and its neighbors) to coordinate
and estimate the baseline price in real time. Based on the estimated price and average energy
consumption of the system, customers schedule their appliances to reduce costs and dissatisfaction
level. On the supply side, the utility determines the exact price parameters based on customers’
consumption behavior and to make profit on the wholesale market.

Their approach does not need a concrete physical model for the electricity grid and, instead,
harnesses the rapid-evolving communication network. However, they define the neighborhood of
a customer as those customers connected by a local area network. In the SIoE [8], we do not constrain
the network to be local, only that at least one customer (more if the communication channel requires
redundancy) is connected to the utility.

Some similarities can be drawn between [10,11] and our approach. We attribute reduction in
communication/computation costs in the groups of customers and their local communication; these
groups usually exchange aggregate information with the utility, although there might be situations
that require one-to-one communication with the utility.

3.2. Social Internet of Things Communities

One of the fields of interest in SIoT is the creation of communities of objects to improve search
efficiency; because objects in the same community share similar interests, the service searched for
is more likely to be in the vicinity of the object that performs the search. We relate the creation of
SIoT communities with the creation of PCGs. In the context of a PCG —and more specifically, in our
work—the service searched for is a prosumer whose energy-consumption behavior is more likely to be
compatible with the prosumer that performs the search; actually, is not the prosumer that searches, but
the devices they own.

To create those communities, we need to investigate methods to group members with similar
interests. As explained, in this work we shift the notion of similarity to the notion of compatibility.
To provide with some background on community search, we highlight two of the latest works about
this topic.

The authors in [46] propose algorithms to discover services among SIoT communities.
They propose two types of ideas. First, they propose an algorithm to detect communities among
established SIoT networks; and second, they propose algorithms to perform efficient service discovery
among SIoT communities. On the one hand, they use three types of measurements to detect
communities: preference similarity, location similarity, and social similarity. On the other hand,
they address intra-community and inter-community search. If the search is within the local community,
the device sends the query to its most immediate neighbors. If the search is outside the local community
(meaning that the search does not have similarity with the interests of the local community), the device
sends the query to the coordinators of other communities.

The authors in [47] propose a model to create dynamic communities of objects with similar
interests. They explicitly consider the emergence of new objects in the network. When a new object
emerges, surrounding objects become aware of it and vice versa, and the object checks if there is any
community in the vicinity (within communication range) with similar interests. If not, the object tries
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to find other objects with similar interests. However, they can leave the community if there is a change
on interests of the user (that owns the social devices), or based on social interaction rules, such as
a limit on the number of communities.

To the best of our knowledge, there are no studies on how to create dynamic communities of
PCGs in the context of SIoT. Therefore, this work, which analyses the implications of a heuristic in
terms of DSM and PCG, is a necessary step towards the realization of this convergence.

4. Model

In this section, we describe the load model we use. The load model is not new and appears, more
or less complete, on the works reviewed in Section 2. Furthermore, the model was presented in our
previous work [8] were we only needed to model fixed loads. We update the model adding flexible
loads. Fixed loads are loads that cannot be shifted in time, flexible loads (or time-shiftable loads) are
those that can be shifted in time. For the sake of completeness, we describe the model in this section.

4.1. Load Model

We describe user and load characteristics as in [8]. Let U be the set of users and T the set of time
slots, where U = |U | and T = |T |. (The letter in the left-hand side of = is the cardinality of the set on
the right-hand side.) For each u ∈ U , we define the power consumption vector as

~lu = [l1
u, ..., lt

u, ..., lT
u ] (1)

where lt
u is the energy consumption of user u at time slot t. As the model allows for appliance

granularity, the set of appliances that belong to a user u are represented by Au and Au = |Au|.
Then, ~lu expands to the matrix 

lm1
u1

. . . lmt
u1

. . . lmT
u1

lm1
ua . . . lmt

ua . . . lmT
ua

...
...

...
lm1

uAu
. . . lmt

uAu
. . . lmT

uAu

 (2)

where a is a specific appliance of user u (e.g., washing machine). The load scheduling vector for all
users U is~L = [L1, ..., Lt, ..., LT ] where

Lt =
U

∑
u=1

lt
u

Lt is the total load in time slot t.
Total load per user u ∈ U during T time slots is denoted by

Lu =
T

∑
t=1

lt
u (3)

The PAR is then denoted by

par(u)u∈U =
maxt∈T lt

u
1
T Lu

(4)

and is defined in a similar manner by each appliance at a more granular level and by each cluster
in a less granular level. In fact, intra-cluster consumption can be represented by a vector similar to
the one presented in Equation (1) and then dis-aggregated as per consumer in a similar manner as
in Equation (2).

As a model improvement from previous work [8] and adapting some of the models described
in [18] we differentiate from fixed loads and time-shiftable loads. Fixed loads are denoted by the set F
and time-shiftable loads are denoted by the set S ; where F = |F | and S = |S|. Hence, the set of all
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loads L is the union of fixed and time-shiftable loads, L = F ∪ S . For each user u, the set of loads is
represented as Lu and Lu = Fu ∪ Su.

As in [18], we consider time-shiftable loads, which usually represent appliances such as washing
machine or dish washer, to have sub-tasks. For example, the washing machine can be used two times
a day; we consider the washing machine as a task, and using it two times a day as two sub-tasks.
We define Sua = {S1

ua , ..., Sk
ua , ..., Sq

ua} as the set of q sub-tasks for a given task a of user u. Each sub-task
is scheduled in T k

ua timeslots, where T k
ua = {t|ts

ua ≤ t ≤ te
ua , ts ≥ 1, te

ua ≤ T, te
ua = ts

ua + |T
k

ua |},
and Tua = {T 1

ua , ..., T k
ua , ..., T q

ua} is the set of timeslots for each sub-task. |T k
ua | is the duration of the

sub-task Sk
ua . Also, Tu is the set of timeslots of each task in Su. We assume non-overlapping sub-tasks.

For any task Sua :
∀(T k

ua , T m
ua ) ∈ Tua ; k 6= m : T k

ua ∩ T
m

ua = ∅ (5)

Figure 1 depicts an example of the previous formulation for an appliance a of user u.

on period
off period

Figure 1. Task and sub-tasks.

4.2. Clustering Model

The objective in [8] was to create clusters of prosumers as much compatible as possible. The set of
load shapes is defined as L where L = { ~lu1 , ..., ~lui , ..., ~luU}. We define the set of clusters as C and its
cardinality as K = |C|, where C = {C1, ..., Ck, ..., CK} and Ck ⊂ L. Moreover, members of a cluster k
cannot pertain to other clusters: ∀(Ck, Cm) ∈ C; k 6= m : Ck ∩ Cm = ∅. Given two or more prosumers
x, y, z, ... where x 6= y 6= z, we define their compatibility as how much they contribute in reducing
the PAR of the sum of their power consumption vectors (par(~lx + ~ly + ~lz + ...). For each cluster C,
it is desirable to maximize their compatibility, which means to minimize their PAR (so it gets as closer
to 1, the lowest value). Given that each cluster is a subset of L, the compound PAR of all clusters is
equal to par(L), Equation (6).

∀Ck ∈ C : par(
⋃

Ck) = par(C) = par(L) (6)

In the same manner as ~lu expands to lmu (Equation (2), a cluster C ∈ C can be collapsed by
calculating the summation of all profile shapes ~lu ∈ C, that is the cluster profile shape. We will refer to
the latter as

~C =
|C|

∑
u=1

~lu (7)

for each ~Ck ∈ C. Also

~C =
K

∑
k=1

~Ck =
U

∑
u=1

~lu (8)
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The clustering algorithm we proposed on our previous work [8] is hierarchical and in a bottom-up
approach. For the sake of simplicity, we treat the set L as a variable. An overview of the algorithm is
as follows:

1. Choose one load ~lu from the set of all loads L.

2. Find the best compatible load ~ly in set (L− ~lu). Create a cluster with [~lu,~ly].

3. The new set of loads L becomes (L− ~lu − ~ly).
4. Repeat from (1) to (3) until L = ∅.
5. When L = ∅, add new clusters to L and repeat from (1) to (5) until the desired number of clusters

K is obtained.

4.3. Load Rescheduling Algorithm

In our previous work we provided the complete description of the clustering algorithm; however,
our attempts to apply a DSM algorithm to reduce the PAR were not successful. The reason was that we
were applying a DSM algorithm to all the intermediate clusters without any coordination mechanism.
The result was that the PAR was lower for each cluster, but not globally—which is one of the goals of
the DSM algorithm. In this work, we develop a new algorithm. We base our rationale on the work done
in [17] to explain the algorithm we develop. There, the authors present a straightforward rescheduling
algorithm that evolves from centralized, to distributed, to partially distributed.

First, they consider a centralized algorithm to reschedule flexible loads and achieve a lower PAR.
They consider all loads as input and reschedule them sequentially; once a load has been rescheduled,
the new load to reschedule is positioned (in time) according to the previously rescheduled loads.
The initial load shape is equal to the load shape of fixed loads. Their objective is not to reduce PAR
but, instead, to reduce the mean square error between the rescheduled load shape and the ideal
average load shape. The average load shape function sums all amplitudes of the users and divides the
amplitude among T timeslots, obtaining a flat load shape.

They state that the rescheduling problem is NP-hard, each reschedule of a load conditions the
position of the incoming ones. Therefore, they should try all possible combinations (i.e., all possible
orders) of flexible loads to obtain the optimal solution. Consequently, they consider a greedy algorithm:
they sort loads considering different load parameters before feeding them to the algorithm. (“A greedy
algorithm always makes the choice that looks best at the moment, i.e., it makes a locally optimal choice
in the hope that this choice will lead to a globally optimal solution” [48].) They argue that for some
NP-hard problems, sorting objects in a certain manner can outperform other heuristics. Their results
show a reduction in mean square error.

Secondly, they develop a distributed algorithm. They base the distributed algorithm on the
centralized one, and apply the centralized algorithm to the loads of each user (individually).
Users share the objective to minimize the error between their load shape and the average load shape of
all users. To down-scale the amplitude for each user, they divide the average load shape by the total
number of users. Therefore, users share the objective to minimize the error between their load shape
and the average load shape per user.

However, the results do not show a reduction in mean square error. The rationale is that the
shared objective does not contain information about where each user should move their flexible loads;
each user positions their flexible loads without considering where other users positioned their loads.
Therefore, due to the lack of coordination between users, the global mean square error is hardly
reduced and, sometimes, even increased.

Thirdly, they modify the algorithm to be partially distributed. Because the distributed
implementation lacks coordination between users, they introduce some coordination by the grid.
They have each user perform a reschedule of its loads on top of the previously rescheduled loads
of other users. Therefore, the user u reschedules their loads on top of the 1, ..., u− 1 loads of other
users. When user u finishes the reschedule it sends the aggregated result to the grid and error towards
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average load to the grid. The results are similar to the ones obtained with the centralized algorithm.
Nevertheless, the algorithm is sequential, and each user needs to wait for previous users to reschedule
their loads.

The literature we explore in Section 2 shows a concern about scalability for centralized DSM
algorithms. Continuing with the approach of recent literature, we develop a partially distributed
algorithm based on the algorithms that [17] describes. The enhancement is that our model adds
coordination by the grid and enables each PCG to reschedule their loads in parallel. The goal is to
reduce PAR globally while allowing PCGs to perform local and autonomous reschedule of their loads.

The partially distributed implementation presented in [17] gets closer to one of the main objectives
of the SIoE: to make each PCG more autonomous and to allow distribution of computational resources.
However, the algorithm they describe enforces a sequential and dependent rescheduling from other
users, which does not promote autonomous PCGs. Furthermore, we relate central, distributed
and partially distributed algorithms with three infrastructure configurations; cloud, fog and edge
computing [49].

Cloud computing infrastructure matches a centralized algorithm; prosumers’ information is
sent to the cloud and resulting, per prosumer information is returned. On the distributed algorithm,
each prosumer performs the rescheduling of their flexible loads. Local, individual rescheduling is
best described in a fog/edge IoT infrastructure; there, an aggregator owned by the user runs the
algorithm. The partially distributed algorithm, as described in [17], off-loads the cloud by requesting
each user to run the algorithm. The process is sequential, involving both cloud and fog/edge nodes at
each iteration.

On the contrary, our approach (explained in the following sections) considers a fog infrastructure
where nodes are associated with PCGs in a one-to-one relationship. Fog nodes can run a local
rescheduling algorithm in parallel based on a coordination mechanism executed by a central resource;
potentially embodied by a cloud infrastructure (Smart Grid or cloud layer in Figure 2).

Based on the algorithms described in [17], we propose a novel partially distributed algorithm that
uses a central node as the coordination mechanism. However, it allows each PCG to autonomously
schedule loads of their users. We propose a system of weights where each user is assigned a weight or
likelihood at specific timeslots. The weight system aims to influence the load rescheduling of each user,
so they work together to improve the total PAR without communicating between them. We split the
algorithm into two phases. Although we use the same algorithm for both phases, what differentiates
each phase is the treatment of input data and output results. The first phase assigns weights to
certain timeslots for users in a PCG; the second phase reschedules time-shiftable loads of each user,
where weights influence the position shifted to.

The interaction between the coordinator and PCGs is modeled in three steps. The reader can
refer to Figure 2 along the explanation; each step corresponds to an encircled number. During the
first step, each PCG sends information about its load profile (aggregated load profiles of each user
in the PCG) to a coordinator. The second step uses this information to assign weights for each PCG;
weights are assigned to certain timeslots for each PCG. Finally, the third step refers to PCGs performing
local rescheduling to decrease global PAR. They do so by skewing their load curve according to
assigned weights.

4.3.1. PCG Representation

Once PCGs are created, each one of them sends information about the loads of their users to the
coordinator. (Figure 2 depicts this step with an encircled number 1.) The information they send is:

• the cluster profile shape ~C of fixed loads FC within the cluster (the aggregate of FC) and,
• the total energy consumed by the flexible loads of the cluster and minimum and maximum

time-span in which all flexible loads in the cluster SC (of cluster C) can be rescheduled.
The minimum time-span Dmin occurs when all sub-tasks of users in the cluster are scheduled at
the same time period, and the maximum time-span Dmax occurs when all subtasks of users in
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the cluster are scheduled one after the other (or, if the total duration exceeds T, scheduled across
all timeslots T ). We will refer to this information as the PCG representation information, which is
represented as a flexible load.

PCG

PCG

PCG

SIoT enabled devices

Multiple PCGs

Smart Grid

1

3

2

Figure 2. Multiple PCG structure with coordination. Numbers in circles indicate where each step is
performed. Circle shapes for each step coincide with line shapes of the arrows. The arrows indicate
the direction of the flow of information. The second step has no arrow. Each PCG sends information
about local load profiles to a central node or coordinator (1). The coordinator assigns weight to when
prosumers in a PCG should reschedule their loads (2). Weight information is sent back to each PCG,
and they perform a local rescheduling of their loads (3).

4.3.2. Weight Allocation

Then, during step two, the coordinator uses Algorithm 1 to assign weights for each PCG. (Figure 2
depicts this step with an encircled number 2). Algorithm 1 is based on the one described in [17].
Please note that for all algorithms described in this article, operations without an equals sign (e.g., +)
are immutable, meaning that in “cAux = cAux + s”, the + operation performs a copy of cAux and adds
s, while the = operation assigns the copy to cAux. Because we represent clusters of loads as sets of
loads, it is worth noting that operations such as +s to a given set that already contains s, replace the
old instance of s instead of doing nothing. Equality of loads (and thus set operations) is performed
based on their unique identifiers instead of other structural properties. To emphasize that ts

ua and
te
ua are properties of a sub-task, namely s, we use the dot notation (e.g., s.ts

ua reads: the start time of
sub-task s of appliance a of user u).

The algorithm used in step two (Algorithm 1) takes a set of aggregated loads: a set of fixed
loads and a set of flexible loads. Then, it is instructed to find the best starting time ts

ua for each PCG
representation information, which is transformed into a flexible load. To find the best starting time,
we want to schedule each PCG to minimize peaks, i.e., we want to position flexible loads where max(~C)
is minimized. The input parameters for Algorithm 1 are:

• F : the set of all fixed loads
• S: the set of PCG representations. One cluster is represented as one PCG representation information.
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• t(C, sr): a function that transforms a PCG representation information into a flexible load.
Algorithm 2 describes the heuristic.

Algorithm 1: PCG weight assignment algorithm.

Data: F ;S ; t(C, sr); dist(C)
Result: C

1 C = F . C contains fixed and flexible loads for a given set L = F ∪ S
2 foreach pcgRepresentation in S do
3 s = t(C, pcgRepresentation) . Described in Algorithm 2

4 C ′ = C + s
5 C = C ′
6 foreach t in T do
7 s.ts = t . Shift the start time, and consequently, the end time te

8 C ′ = C ′ + s
9 if max(~C) > max(~C ′) then

10 C = C ′

For Algorithm 2, sr is the PCG representation information. To emphasize that Dmin and Dmax

are properties of sr, we use the dot notation (e.g., sr.Dmin reads: the minimum duration of the
PCG representation information). sr.LC is the total energy consumed by the PCG, and the function
averageFlexibleLoadO f receives two parameters, a duration and an amount of energy, and creates
a load ~lu = [l1

u, ..., lt
u, ..., lT

u ] (see Equation (1)) where T is equal to the duration parameter and each
component lt

u is equal to the amount of energy parameter divided by T. The reason for Algorithm 2 to
consider both sr.Dmin and sr.Dmax is to consider edge cases. If sr.Dmin is used, the resulting weight
indicates that all flexible loads of a given cluster should be scheduled during the same time period, as
“one on top of the other”. If there is the chance that rescheduling the resulting flexible load (produced
by averageFlexibleLoadO f ), even at the lowest peak of the loads that C contains, the peak increases,
then sr.Dmax is used instead. The resulting weight using sr.Dmax indicates that all flexible loads of
a given cluster are spread so there is the less possible overlapping between them and the possible
peaks are lowest. Also, observe that the transformation performed in Line 3 of Algorithm 1 considers
transformation decisions (i.e., the ones made in Algorithm 2).

Algorithm 2: Flexible load representation transformation function.
Data: C; sr
Result: s

1 s = averageFlexibleLoadO f (sr.Dmin, sr.LC)

2 if !((min(~C) + max(s)) > max(~C)) then
3 s = averageFlexibleLoadO f (sr.Dmax, sr.LC)

Once Algorithm 1 is applied during step two, C contains a set of flexible loads that represent
each PCG. Then, these representations are converted into weights for each PCG. The weight set for
each PCG WC is equal to the timeslots where s is scheduled. For example, Tseq is the sequence of
available time slots (1, 2, 3, 4); ~F = [1, 0, 0, 1] is the load vector of F . The best possible position to
schedule a flexible load~s = [1, 1] is at start position 2. Then, ~F +~s is equal to [11, 02, 03, 14] + [12, 13] =

[11, 12, 13, 14], where each value corresponds to the energy consumption at the time slot indicated by
the super index. Then,WC = [2, 3].
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4.3.3. PCG Rescheduling

Weights for each PCG are used during step three using Algorithm 3. (Figure 2 depicts this step
with an encircled number 3.) Weight informationWC is sent back from the coordinator to each PCG.
Therefore, each PCG is able to reschedule the loads of its members both pursuing a reduction in local
PAR and a reduction in global PAR using the weights assigned by the coordinator. Each PCG can
use Algorithm 3 to reschedule their flexible loads. The flexible loads of a PCG are the flexible loads
of its users, and each flexible load or task might contain several sub-tasks. Sub-tasks that pertain to
the same task cannot overlap (for example, if a prosumer turns on the washing machine two times,
those two sub-tasks cannot start at the same time, nor can overlap). Input parameters for Algorithm 3
at step three are:

• F : the set of all fixed loads for a given cluster (FC).
• S : the set of all flexible loads (as sub-tasks) for a given cluster (SC). For the sake of simplicity,

we have omitted the constraint of non-overlapping sub-tasks expressed in Equation (5), but note
that this constraint applies during this algorithm.

• W : the set of weights for a given cluster (WC).

• r: the reference average. The concept of R̂ for each cluster. If R̂ is the average ideal load, r = R̂
K is

the average ideal load per cluster.
• dist(C,W , r, s): A function that weights its result on the basis of weightsW for a given cluster.

The definition is given in Algorithm 4.

Algorithm 3: Rescheduler algorithm.

Data: F ;S ;W ; r; dist(C,W , r, s)
Result: C

1 C = F . C contains fixed and flexible loads for a given set L = F ∪ S
2 foreach s in S do
3 C ′ = C + s
4 C = C ′
5 foreach t in T do
6 s.ts

ua = t . Shift the start time, and consequently, the end time s.te
ua

7 C ′ = C ′ + s
8 if dist(C,W , r, oldS) > dist(C ′,W , r, s) then
9 C = C ′

10 oldS = s

On step three, we change the distributed algorithm that [17] describes to take the additional inputs
of weights and reduce the distance to the ideal average load. In Algorithm 4, we decrease the error by
computing the overlap ratio between the individual load (a load of a time-shiftable appliance) and
the positions with weight. Then, if e is equal to the mean square error and overlapRatio (that ranges
from 0.0 to 1.0) the overlap between the position of the time-shiftable load and the weighted positions,
the final error f e is f e = e + e ∗ (1 − overlapRatio). The algorithm finds the best position of the
time-shiftable load when the distance is minimum compared with all other possible positions.

The mechanics we proposed include three steps that interact with three types of entities: the grid,
PCGs and SIoT-enabled devices. The reader can follow the next description in Figure 2. First, each PCG
sends information about the aggregated load shape of its prosumers to the grid; secondly, the grid uses
the algorithm to assign weights to each PCG by rescheduling aggregated load shapes; and, thirdly,
each PCG reschedules the load of its prosumers according to those weights. Therefore, the grid uses
the algorithm to weight the positions where individual loads should be moved to, and the load curve
of each PCG is skewed to obtain a flat load curve globally.
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Algorithm 4: Weighted distance.
Data: C;W , r, s
Result: weightedD

1 d = ∑
s.te

ua
t=s.ts

ua
(lt

c − r)2

2 overlapRatio = |W∩s.T k
ua )|

s.|T k
ua |

3 weightedD = d + d ∗ (1− overlapRatio)

5. Experimentation

To test the rescheduling method proposed in Section 4.3, we use two datasets, one with synthetic
data and the other with real data. We expect PCGs to coordinate and reduce global PAR.

For those datasets, we need to split the flexible loads in durations less than T, otherwise, we cannot
advance or delay the start time of flexible loads (the start position in T ). To do so, we assume that
flexible appliances are off when their power consumption level is equal to the lowest value found in~lu
and they are on when their power consumption level is different than the lowest value. Consecutive
non-lowest consumption defines a duration of an on period, and thus the duration of a sub-task.
Therefore, we split the initial time-shiftable load of duration T into smaller time-shiftable loads with
lower duration (|T k

ua | < T); thus, they can move forward or backwards in the line defined by T
consecutive numbers.

We have performed experiments taking samples from 50% to 100% of the total dataset at 10%
steps. The sampling procedure from 50% to 100% shuffles the entire dataset and grabs the desired
number of samples. Then the algorithm is applied for K = [1, 6]. The procedure is repeated 200 times
per each sample size and k. Also, each time we repeat the procedure (each of 200 times) the sample is
the same. We differentiate between two procedures, the clustering procedure and the rescheduling
procedure. In the text and figures that follow we refer to the clustering procedure as "s1" and to the
rescheduling procedure as "s2".

In running the experiments, we first cluster households using the hierarchical algorithm
described in [8], then we run the rescheduler described in this work. The rescheduling optimization
problem is NP-hard; consequently, we sort loads before running the rescheduler. For k = 1 there is no
coordination possible, and the loads are sorted by: (i) total energy and, (ii) ts

ua , in both increasing and
decreasing order. Hence, the algorithm is run 4 times per iteration on sample size, and the solution
with the best PAR is taken.

For k = 1 the algorithm we use is the centralized one, without any coordination step; this is
because there is only one cluster of all users in the sample. Therefore, we can consider the case for
k = 1 as the reference case, and the results we obtain will serve to compare the results for combinations
of k 6= 1 and sample size. We expect to see a trade-off between the reduction in PAR and the potential
parallelization of the rescheduling procedure, which each PCG can perform autonomously.

5.1. Synthetic Dataset

We use the synthetic load generator developed in [50] to test the algorithm. In [50] synthetic
residential loads are generated at a resolution of a 1-min interval for 24 h. The model is based on
a correlation and combination of patterns of active occupancy and daily activity profiles. The model is
also validated using comprehensive validation of statistical characteristics with a dataset containing
real measurements. The synthetic generation can be configured with occupancy level, the month of
the year and week or weekend day. The output of the simulation comprises load profiles for a set of
33 electrical appliances and a set of light bulbs.

We simulate the appliances of 200 users (U = 200) and the appliance time resolution is 30 min.
We can achieve that by adding amplitudes at batch interval of 30 min; hence, T = 48. From the
electrical appliances, we have fixed the number of flexible loads to 4 (S = 4), e.g.,: dishwasher, tumble
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dryer, washing machine and washer dryer. The remaining 29 (F = 29) appliances are set to fixed loads.
Light bulbs are also represented as fixed loads.

Figure 3 shows the average reduction in global PAR for combinations of k and sample size.
We can observe that for “s1” the lines of each k are totally overlapped; this is because each time we
repeat the process the sample is the same and the PAR of the entire sample, regardless of the number
of clusters, is the same. Also, we see that as the number of elements per sample grows, the PAR
diminishes. We depict the characteristics of the data in the lines “s1”. The lines “s2” show the result
of the clustering procedure in combination with the rescheduling procedure. As already mentioned,
the reference case is when k = 1, which shows the maximal reduction in PAR that can achieve the
centralized algorithm. For k 6= 1 there is a reduction in PAR, and it is interesting to see that regardless
of the sample size, the mean reduction in PAR is the same for different k (i.e., “s2” lines overlap).
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Figure 3. Mean PAR for “s1” (only clustering, before rescheduling) and “s2” (after scheduling) and
K = {1, 2, 4, 6} with synthetic dataset.

We take a closer look at the improvement ratio and associated standard deviation in Figure 4a,b
respectively. The improvement is maximum when k = 1 and sample size = 1.0; also, the standard
deviation is 0, showing that the centralized algorithm is deterministic. For k = 1 and sample sizes
different than 1.0, the standard deviation increases because the samples do not contain the same
elements in each iteration. We expected an increase in improvement for bigger sample sizes and
a decrease in improvement for bigger ks; nevertheless, there is not a clear impact between an increase
in the number of clusters and the sample size, and the mean improvement.

The reader can refer to Table 1 to inspect the data present in Figures 3 and 4. Table 1 shows,
for each k and sample size (s. size in the table) ranging from 0.5 (50%) to 1.0 (100%), four measures.
Rows “s1. mean” and “s2. mean” correspond to the information shown in Figure 3, and describe
the average reduction in global PAR for combinations of k and sample size. Rows “impr. mean”
and “impr. stdv” correspond to the information shown in Figure 4a,b respectively, and describe the
improvement ratio and associated standard deviation.
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Figure 4. Improvements mean and associated standard deviation for different K and sample size for
the synthetic dataset. (a) Mean of improvements; (b) Standard deviation of improvements.

Table 1. Synthetic dataset. Improvements.

s. Size 0.5 0.6 0.7 0.8 0.9 1.0
k Measure

1 impr. mean (%) 4.05 4.65 4.29 4.68 5.27 5.70
impr. stdv 3.27 2.83 2.47 2.15 1.12 0.00
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.43 1.40 1.37 1.36 1.34 1.33

2 impr. mean (%) 2.55 2.79 2.06 2.88 2.99 3.81
impr. stdv 4.67 4.74 4.82 4.03 3.53 2.81
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.45 1.43 1.40 1.39 1.37 1.36

3 impr. mean (%) 2.64 3.10 1.46 2.53 2.94 4.05
impr. stdv 4.20 3.75 4.88 3.90 3.35 2.17
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.45 1.43 1.41 1.39 1.37 1.36

4 impr. mean (%) 1.99 2.62 2.02 2.74 3.41 3.20
impr. stdv 4.79 4.33 3.99 3.32 2.85 2.52
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.46 1.43 1.40 1.39 1.37 1.37

5 impr. mean (%) 2.61 2.69 1.83 2.16 2.97 3.41
impr. stdv 3.99 4.10 4.49 4.11 3.18 2.55
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.45 1.43 1.41 1.40 1.37 1.37

6 impr. mean (%) 2.79 3.25 2.16 2.37 2.88 4.18
impr. stdv 3.47 3.34 3.73 3.78 3.02 1.46
s1. mean 1.49 1.47 1.43 1.43 1.42 1.42
s2. mean 1.45 1.42 1.40 1.40 1.37 1.36

As expected, we can see in Figure 4b that the standard deviation decreases as the sample size
grows, because the probability of taking the same elements in other iterations increases. One can
also observe this tendency in Figure 5, as the sample size grows, the results after load rescheduling
fall below the mean PAR of unscheduled samples. Furthermore, the quartile distribution shows that
maximum improvement occurs when sample size is 100% and minimal standard deviation also occurs
when sample size is 100%.
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(a) 50% of the dataset.
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(b) 60% of the dataset.
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(c) 70% of the dataset.
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(d) 80% of the dataset.
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(e) 90% of the dataset.
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(f) 100% of the dataset.
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Figure 5. For the synthetic dataset, distribution of the achieved PAR after the rescheduling algorithms
is applied. Red straight line describes the minimum PAR for K = 1 given the sample size at the stage
“s1”". Blue dash-dot line describes the minimum PAR for K = 1 given the sample size at the stage “s2”.

We can observe the relation between the increase in the number of clusters and the PAR after
rescheduling the loads within the same iteration in Figure 6, i.e., for each sample size and iteration:
first, we consider within which inter-quartile range is the achieved PAR for k = 1; and, secondly, for
each k 6= 1 we look at how many iterations still are within the same inter-quartile group (non-brown
bars) and the consecutive group (brown bars).

We observe in Figure 6 that for small sample sizes, the inter-quartile group is more likely the same
for different ks. However, as the sample size increases (from 50% to 90%), the likelihood of being in the
same inter-quartile group decreases. Moreover, the quantity of results that are not in the immediate
higher inter-quartile group (for example, that should remain in G2 but move to G4) also increases.

If we combine the information shown in Figures 5 and 6 regarding the increase in sample size,
we observe that while there is a slight “movement” of the distribution towards the minimum for “s2”
(blue line) (and thus, the inter-quartile groups are closer to the best solution), the likelihood that the
inter-quartile group is the immediate superior increases, i.e., brown bars in Figure 6 increase in height
as the sample size increases. Furthermore, the height without bars until 50 samples indicates that
the result for that sample “moves” even further away from the next consecutive inter-quartile group
(e.g., from G2 to G4).

The reader can refer to Table 2 to inspect the data present in Figure 6. Table 2 shows, for each
sample size (s. size in the table) and for each k, the number of iterations when k 6= 1 that are in the
same inter-quartile range (G1, G2, G3 or G4) as the inter-quartile ranges for k = 1. The table also shows
the number of iterations that fall in the next consecutive group (G*A).

As we state in Section 1, our objective is not to improve on DSM algorithms, but to validate
that we can achieve cluster configurations that achieve the lowest PAR if prosumers are grouped by
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compatibility. Furthermore, if we group them by compatibility, they will have to perform less changes
in their behavior to achieve a global reduction in PAR.

From the results we conclude that we can obtain cluster configurations that achieve the minimal
PAR, and that more of 50% of the times (worst case in Figure 6e) optimal or better-than-initial
configurations are maintained across different values of k.
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(a) 50% of the dataset.
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(b) 60% of the dataset.
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(c) 70% of the dataset.
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(d) 80% of the dataset.
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(e) 90% of the dataset.2 3 4 5 6
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Figure 6. For the synthetic dataset, correspondence with inter-quartile range. “G1” reads inter-quartile
group 1, “G2”, inter-quartile group 2, and so on. “G*A” accounts for the number of iterations we the
result for k 6= 1 has fallen in the range of a higher quartile.
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Table 2. Synthetic dataset. Inter-quartile groups movement.

IG G1 G1A G2 G2A G3 G3A G4 G4A
s. size k

0.5 2 30 13 31 14 44 6 46 3
3 25 20 31 16 49 1 46 3
4 25 18 28 20 29 21 48 1
5 31 12 33 16 41 9 47 2
6 33 16 28 20 42 8 47 2

0.6 2 25 17 27 18 42 8 46 2
3 24 18 27 18 42 7 47 1
4 21 16 24 17 41 9 48 0
5 26 16 31 14 36 14 47 1
6 30 16 28 19 41 8 47 1

0.7 2 20 9 23 11 38 10 38 6
3 20 7 21 19 22 25 36 8
4 15 15 15 21 30 19 42 2
5 17 19 17 15 26 22 41 3
6 17 17 14 25 29 18 42 2

0.8 2 24 10 18 18 39 11 39 3
3 15 19 16 16 25 23 39 3
4 12 17 23 14 30 19 41 1
5 15 13 11 17 18 31 39 3
6 16 15 11 17 28 22 35 7

0.9 2 9 10 15 15 31 10 42 5
3 11 10 19 13 23 21 39 8
4 16 7 20 14 24 20 41 6
5 6 12 11 20 24 24 41 6
6 5 10 9 14 28 21 42 5

5.2. Real Dataset

To validate those results with real data, we use part of the large dataset provided by Dataport [51].
We select households which have a smart meter installed with individual circuits for each appliance.
189 enrolled households (U = 189) in 1 January 2015 had a smart meter (eGauge device) with individual
circuits for each appliance. eGauge readings are per hour, meaning that each record contains power
readings for up to 12 circuits (appliances) during 24 timeslots (T = 24). From those 12 appliances
(Au = 12), we assume that 5 of them are flexible (S = 5) and the others fixed loads (F = 7). According
to the names that identify each appliance in the Dataport database, we assume that “clotheswasher1”,
“clotheswasher_dryg1”, “drye1”, “dryg1” and “dishwasher1” are flexible appliances.

The results are similar to the ones obtained using the synthetic dataset. We highlight some
similarities and differences.

As shown in Figure 7, the rescheduler algorithm achieves a reduction in PAR on average. However,
the sample size has a lesser impact on the average reduction in global PAR than with the synthetic
dataset (see Figure 8). We argue that this is due the differences in the datasets and the timeslot
resolution; T = 24 for the real dataset, and T = 48 for the synthetic dataset. For each sample size,
we also observe that there is a slight reduction in improvement as k grows, which indicates that the
number of clusters has an impact on the improvement ratio (Figure 8b).
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Figure 7. Mean PAR for “s1” and “s2” and K = {1, 2, 4, 6}. Comparison between synthetic and
real datasets.
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Figure 8. Improvements mean. Comparison between synthetic and real datasets.

The quartile group distribution is similar to the one described for the synthetic dataset; as the
sample size grows, inter-quartile groups are closer to the reference value for “s2”, as in Figure 5.
Furthermore, the correspondence between inter-quartile ranges is similar for both datasets; as the
sample size grows, the inter-quartile group is less likely to be the same for different k’s, as in Figure 6.

Finally, Tables 3 and 4 are analogous to Tables 1 and 2, but using the real dataset.
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Table 3. Real dataset. Improvements.

s. Size 0.5 0.6 0.7 0.8 0.9 1.0
k Measure

1 impr. mean (%) 1.72 1.70 1.66 1.73 1.75 1.79
impr. stdv 0.62 0.48 0.39 0.33 0.22 0.00
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.38 1.37 1.36 1.35 1.35 1.35

2 impr. mean (%) 1.34 1.36 1.29 1.27 1.24 1.30
impr. stdv 0.87 0.88 0.80 0.69 0.74 0.69
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.38 1.38 1.36 1.36 1.36 1.35

3 impr. mean (%) 1.18 1.28 1.32 1.30 1.34 1.38
impr. stdv 0.91 0.76 0.61 0.71 0.62 0.61
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.39 1.38 1.36 1.36 1.36 1.35

4 impr. mean (%) 1.34 1.27 1.24 1.28 1.22 1.36
impr. stdv 0.83 0.81 0.67 0.69 0.68 0.59
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.38 1.38 1.36 1.36 1.36 1.35

5 impr. mean (%) 1.17 1.25 1.23 1.35 1.27 1.37
impr. stdv 0.83 0.69 0.63 0.64 0.58 0.50
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.39 1.38 1.36 1.36 1.36 1.35

6 impr. mean (%) 1.20 1.25 1.21 1.27 1.29 1.33
impr. stdv 0.82 0.69 0.57 0.59 0.48 0.52
s1. mean 1.40 1.40 1.38 1.38 1.37 1.37
s2. mean 1.39 1.38 1.36 1.36 1.36 1.35

Table 4. Real dataset. Inter-quartile groups movement.

IG G1 G1A G2 G2A G3 G3A G4 G4A
s. size k

0.5 2 42 6 43 7 43 6 48 2
3 45 4 44 6 39 10 48 2
4 45 4 43 7 47 3 49 1
5 40 9 41 9 44 6 48 2
6 41 8 42 8 44 6 48 2

0.6 2 44 3 44 5 40 9 46 3
3 39 10 43 7 41 9 45 4
4 42 6 38 12 44 6 48 1
5 43 6 34 16 41 8 46 3
6 46 3 41 9 38 12 45 4

0.7 2 40 7 39 8 38 12 49 1
3 39 8 43 5 43 6 49 1
4 37 11 40 10 39 10 49 1
5 35 11 39 10 39 11 49 1
6 38 10 38 12 38 11 49 1

0.8 2 36 11 33 8 36 14 48 2
3 37 12 32 13 34 16 48 2
4 40 10 37 10 38 12 47 3
5 38 11 36 12 34 16 46 4
6 41 9 33 15 30 20 46 4

0.9 2 31 7 32 9 34 16 42 8
3 34 12 32 12 37 13 43 7
4 26 17 28 15 32 17 42 8
5 35 9 24 25 31 18 46 4
6 31 17 24 20 26 24 45 5
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5.3. Discussion

Both results, for synthetic and real datasets, show that the load rescheduling process we propose
can achieve a reduction in PAR. The algorithm also achieves a better-than-initial PAR in most cases,
and the correspondence between inter-quartile groups for different values of K is high; however, as the
sample size increases, the correspondence decreases, as seen in Figure 6. Furthermore, we observe
that in most cases, our algorithm can achieve clusters that reach the minimal PAR, we will investigate
which are the properties of the clusters that achieve the lowest PAR. Because we obtain similar results
for both datasets, we expect that our three-step algorithm will be able to obtain similar results for other
residential datasets.

Also, these results show that after a single and low resource-consuming coordination (because
prosumers in each PCG are aggregated when the coordination process takes place), each PCG can
reschedule their loads independently, regardless of the other PCGs, i.e., in parallel with other PCGs,
which allows distributing computation resources. Indeed, the rescheduling algorithm is implemented
(prototyped) in such a manner that after coordination, a dedicated thread performs the rescheduling
for each cluster.

As highlighted in Section 3, there is a growing concern about the amount of computation and
network resources necessary to carry out centralized and distributed DSM algorithms. Therefore,
some DSM solutions, besides considering energy efficiency, consider computation and network usage.
The approach we take in modeling the DSM algorithm considers both computation and network
resources. We consider computation resources by distributing the tasks among several PCGs. Moreover,
we consider network resources by only communicating information with a coordination entity on only
one round-trip.

However, we know that there must be a trade-off between a centralized solution and a distributed
one, as seen for the cases when k = 1 (centralized) and k 6= 1 (distributed) in the experiments, where
the centralized algorithm achieves a better reduction in PAR. Nonetheless, centralized solution does
not allow parallelization of the computation, while a distributed one does (i.e., creating clusters that
perform the rescheduling process autonomously). However, if we want to avoid communication
overhead between the distributed clusters, we will not be able to achieve the same optimal as with
a centralized manner.

Therefore, the rescheduling process might not only be performed in a centralized way, as in the
cloud, but in a decentralized manner using fog computing at the edge and near each PCG in
a network-sustainable manner, if it is the case that each PCG is formed using geographical constraints.
Fog nodes are IoT aggregators which run the local rescheduling algorithm (step 3 in Figure 2).
Edge nodes are sensors and actuators in the IoT: electrical appliances sending power consumption
data and even remotely actionable (e.g., on/off) by the prosumer or utility.

Moreover, and as observed in [17], if clusters (users in their paper) do not share any context
information about other clusters or about a common goal—about where they should aim as a group
of clusters—a global reduction in PAR might only be achieved randomly; each cluster can achieve
a relative optimal solution, but not the global optima. For example, with the presented algorithms,
a utility could articulate and coordinate multiple geographical areas towards the reduction of PAR and
reducing their energy production costs.

6. Conclusions and Further Work

This work is a continuation of previous work [8], which coins the term SIoE to refer to the
application of SIoT [12] to SGs and, more concretely, to DSM. The goal of [8] and this work is to provide
an overlay social network that facilitates virtual connection between smart devices, prosumers and
PCGs. This virtual connection could facilitate the scalability, decentralization and distribution of SG
services, such as DSM.

We develop a load rescheduling algorithm that allows us to analyze the implications of a heuristic
to cluster prosumers by compatibility. The load rescheduling algorithm we develop comprehends
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several PCGs with a common goal and an entity to coordinate those groups. The goal to reduce PAR
globally demands action from each PCG towards that goal. Moreover, this separation by PCG allows
each one of them to execute the rescheduling process semi-autonomously, with only the guidelines
that the entity that coordinates them provides to achieve the common goal.

We test the algorithm with multiple samples of synthetic and real datasets concerning residential
electricity demand. For each sample, we analyze the if the PAR for an increasing number of clusters is
within the same range as if there were only one cluster (the near-optimal solution, since the problem of
load rescheduling is NP-hard). The results for both synthetic and real datasets are similar, and show
that we can achieve an optimal cluster configuration using the clustering-by-compatibility heuristic.

These results will allow us to keep our investigations on the differences on the elements of the
clusters that achieve the same PAR as the best that can be achieved (with the centralized algorithm)
and the clusters that move away from the optimal PAR.
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