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Abstract. One of the main keys in case-based reasoning system is the retrieval
phase, where the most similar cases are retrieved by means of a similarity function.
According to the problem, the similarity function must be selected and adapted
depending on the characteristics and properties of the problem’s domain. The goal
of this article is to present a platform called BRAIN, which incorporates strategies
based on different evolutionary approaches to design similarity functions ad hoc
for a domain to be used in a case-based reasoning system. The strategies are based
on Genetic Programming and Grammar Evolution approaches. Both are applied to
different data sets to study the influence of their characteristic in the accuracy rate
and in the execution time.
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1. Introduction

Case-Based Reasoning (CBR) [1] tries to solve new problems using others previously
solved. When talking about improving accuracy rates, traditionally the focus lands on the
similarity function. It allows to compute the degree of similarity between the previously
solved cases and the new case, and using the most similar cases CBR proposes a possible
solution. Therefore, the accuracy rate is highly influenced by the similarity function.
General purpose similarity functions are normally adapted and adjusted according to the
problem’s domain, but it is a complex task due to the complexity of the real domains.
If the similarity function can not model the problem’s domain, the accuracy rates will
usually not be the desirable. Also, adding specific knowledge to these functions is very
complex.

Genetic Programming (GP) [2] is a well-known variant of Evolutionary Computa-
tion (EC) designed to find programs or optimize functions. It seems reasonable to think
that using CBR and GP together in hybrid system it is possible to find a similarity func-
tion ad hoc for a domain. The hybrid can use the GP to generate functions, and the CBR
to evaluate their reliability. However, the searching space is infinity and it could be im-
possible to find the desirable solution. For this reason, specific knowledge of the domain



can be added to GP’s individuals in order to reduce it, but it is very complex to add them
because GP does not allow it in a natural way. On the other hand, Grammar Evolution
(GE) [3] allows finding programs like GP with the ability of using a Backus Naur Form
(BNF) grammar to lead the searching process. Therefore, it is easy to add knowledge
because it only implies modifying the grammar. The goal of this article is to compare
between GP-CBR [4] [5] and GE-CBR [6] approaches, comparing the accuracy rates of
the similarity functions found, and the execution time needed to find a solution. We also
measure the significance of the results in relation to general purpose similarity functions
using different configurations and data sets.

The article is organized as follows. Section 2 surveys related work using evolution-
ary computation approaches to improve the retrieval phase of CBR. Section 3 presents
the main ideas of CBR, GP and GE to introduce their interconnections later. Section 4
summarizes the experiments. Finally, we end with a discussion on the related work and
an outlook on future research issues.

2. Background Work

The most used similarity functions are Minkowski [7], Mahalanobis [8], Camberra,
Chebychev, Quadratic, Correlation, and Chi-square [9], Hiperrectangle based functions
[10] or Heterogenous distance functions [11]. The CBR’s results obtained can be im-
proved if CBR uses an adjusted similarity function.

Several strategies based on evolutionary computation are used in order to make this
’adaptation’ possible. For example, Genetic Algorithms (GA) [12] can be used as a
weighting algorithm [13] [14] or as a feature selection algorithm [15]; GP can be used as
a features extraction algorithm as in [16] [17].

Our research group works in breast cancer diagnosis [18]. At the moment, in one
of the projects of this area we are developing a tool to obtain mammography images by
content to help experts in the diagnosis of breast cancer. One of the aims of the project
(TIC2002-04160-C02-02) is to define the strategy for retrieving the most similar patient’s
records. In [4] and [5] we propose an automatic system for discovering similarity func-
tions using a GP-CBR approach, in breast cancer and synthetic problems respectively.
The results were good, but it was very complicated to add specific knowledge to improve
the searching process. In [6] we propose a strategy based on the GE-CBR approach in
order to introduce experts specific knowledge, and consequently improve the searching
process.

3. BRAIN: The Framework

BRAIN (hyBRid system to find And Improve similarity fuNctions) is a framework de-
veloped in order to define/optimize similarity functions ad hoc for a domain, using strate-
gies based on evolutionary computation (GP and GE). The adjusted similarity function
allows CBR to improve the accuracy rates. First we review CBR, GP and GE approaches,
and later we present their integration.



3.1. Case-Based Reasoning

CBR uses a human-inspired philosophy: it tries to solve new cases using previously
solved cases. The process of solving new cases also updates the system providing new
information and knowledge. This new knowledge can be used for solving other future
cases. The basic method can be easily described in terms of its four phases [1]. The first
phase retrieves the most similar solved cases contributing to new cases using a similarity
function (i.e. Euclidean’s metric). Then, in the second phase, the system tries to reuse the
solutions from the previously retrieved cases to solve the new case. Next, the third phase
revises the proposed solution. Finally, the fourth phase retains the useful information
when the new case is solved.

3.2. Genetic Programming

GP [2] is a machine learning technique based on EC. A population of individuals are
evolved through generations, where in each generation the individuals are evaluated,
selected, recombined and mutated. Finally, a set of them are used to build the population
of the next generation. The main characteristic of GP is that its individuals are programs
represented in tree form, which can be executed directly. Consequently, all the EC’s
operators must be adapted.

This special representation in tree form requires the definition of several arguments:
Terminal Nodes (the program’s variables and constants), Functions Nodes (operations
applied in the program), Fitness Function (the process to evaluate a program), and finally
the Ending Conditions (they indicate when the execution will stop. All these definitions
are very important to warrant the Closure, Sufficiency and Universality principles of GP
[2].

3.3. Grammar Evolution

GE [3] is a machine learning technique based on EC, where a BNF grammar is used in a
genotype to phenotype mapping process in order to transform the individual (represented
by an array of bits) into a executable program or function. GE assigns a fitness value to
the individual according to the individual’s execution.

The BNF grammar is composed by a tuple {N, T, P, S}. ’N’ and ’T’ represent the set
of non-terminals and terminals respectively, ’S’ is the starting of the production, and ’P’
defines the rules for each production of non-terminals. At the beginning of the mapping
process, each individual has a program represented by the non-terminals of the starting
production. The first step is clustering the bits of the individuals in integers of ’X’ bits
called codons, where ’X’ depends of the production with more rules. Next, the non-
terminals are replaced by the elements of the rule selected by Eq. 1 using the codons
of the individuals. This process is repeated until all the elements of the program are
terminals, and therefore the program can be executed. If the codons have run out and the
mapping process has not ended then a wrapping operator is applied. It means that codons
are reused again from the beginning.
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3.4. Integration of GE, GP and CBR in BRAIN

BRAIN is an automatic system to find similarity functions for complex data. We integrate
a system for exploring solutions (GP or GE) and another for evaluating the solutions
proposed within an only framework (CBR). The strategy based on GP and CBR [4]
allows finding similarity functions without using any specific knowledge of the domain.
However, sometimes this knowledge can be used to improve the searching process. In
this situation, the strategy based on GE and CBR [6] uses this knowledge to lead the
searching process.

Both strategies basically have the same phases (Figure 1), the main differences are in
the way they apply the operators (because they use different representations) and transfer
the individual to the CBR to evaluate it. There are basically two steps (Figure 2): First, the
individual is transformed into a linear expression. Next, CBR applies a parser (parserGP
or parserGE) in order to obtain the similarity between the new case and the previously
solved.

In the case of GP-CBR, the individual (represented in tree form) is translated into a
linear expression by means of an inorder traversal, not needing any more translating. In
the case of GE-CBR the process is a little more complex because a genotype to phenotype
mapping process must be applied, using the codons of the individual and the grammar
in BNF previously defined. At the end of this mapping, the program is represented by
a set of intermediate codes, where each code represent one possible terminal’s value
(constants, variables, operations). When CBR has executed all the test cases, it generates
a set of statistics: % of correctly classified, % of unclassified, % of sensitivity and % of
specificity. If CBR is executed in a cross-validation mode, the means and the standard
deviation of the previous parameters are also obtained. GP and GE execute Eq. 2 to get
the individual’s fitness.�� allows to adjust the fitness function according to the problem.
Nevertheless, other statistics can be used to compute the fitness.

��	���� � ���sensitivity� ���specificity� ���unclassified (2)



4. Experiments: Comparative, Results and Discussions

In this section we study the results using general purpose similarity functions, in rela-
tion to the GP-CBR and GE-CBR approaches. Table 2 and figure 3 summarize all the
configurations applied, and table 1 the data sets used. HS and SO came from the UCI
Repository [19] and MF and TA from our own repository. All of them have a different
number of features to analyse its influence on the strategies.

Data Set Features Type # Classes # Samples Train # Samples Test

Tao (TA) 3 Numeric 2 1700 800

Heart-Statlog(HS) 15 Numeric 2 243 27

Mammography (MF) 22 Numeric 2 196 20

Sonar (SO) 61 Numeric 2 187 21

Table 1. Characteristic of the data sets used in these experiments

Approach Arguments Values

CBR Function Clark, Cosinus, Minkowsky (r=1, 2, 3)

Weighting Without Weighting (WW), Principal Component Analysis
(PCA), Sample Correlation (SC)

K-NN 1, 3, 5

GP & GE Population 500

Ending Conditions 200 generations or 0.95% of the ideal fitness

Terminals �� � � � ����� �� � � � ��������� �� �� � �� ���
Operators Prob. Crossover (0.8), Prob. Reproduction (0.2), Prob. Mu-

tation (0.3),

Selection Tournament-2 (TS) and Rank Selection (RS)

Evaluation of the indi-
viduals

CBR in 10-fold stratified cross-validation mode using the
Eq. 2 with different�� values (

�
�� � �).

Initialization Grow (GI), Full (FI), Ramped half and half (RI)

Replacement Steady-State (SR), Generational (GR)

Only GP Max. deep tree 7 levels

Only GE # Codons 10 codons by attribute and Wrapping can be applied two
times

Table 2. Configurations of CBR, GP and GE

BNF Grammar G={N, T, S, P}

N = {�expr�,�op_binary�,�op_unary�,�var�, �op_bis�,�constants�}

T = {�� � � � ����� �� � � � ��������� �� �� 	
�� ��
� }

S = �expr� / (#Features used)

P = �expr� � (�expr� �op_binary� �expr�)

� �op_unary� (�expr�)

� �constants� * (�var�)

�op_binary�� + � - � * � / � %

�op_unary� � 	
�� ���
�var� � �� �op_bis� �� � � � � � ���� �op_bis� ����

�op_bis� � + � - � * � / � %

�constants� � 0 � 0.1 � ... � 1

Figure 3. Grammar defined in GE to map the individuals into functions



Problem Function Configuration %Sensitivity %Specificity %Accuracy

TA Clark K-NN=3, PCA 95.1(2.1) 96.1(2.7) 95.3(1.4)

Cosinus K-NN=1, WW 00.0(0.0) 50.0(0.26) 50.0(0.3)

Mink.(r=1) K-NN=5, WW 96.4(2.2) 96.5(2.1) 96.4(1.5)

Mink.(r=2) K-NN=5, WW 96.7(2.4) 96.5(1.9) 96.6(1.4)

Mink.(r=3) K-NN=5, PCA 96.9(2.8) 96.4(2.1) 96.6(1.6)

GP+CBR RI, GR, RS, w{.4,.4,.2} 94.2(1.7) 96.1(2.1) 95.7(2.1)

GE+CBR FI, SR, TS, w{.4,.4,.2} 97.6(0.9) 95.3(1.5) 96.8(1.4)

HS Clark K-NN=3, SC 44.8(1.1) 0 (0) 44.44(0)

Cosinus K-NN=3, PCA 28.3(32.5) 53.5(3.4) 51.1(6.15)

Mink.(r=1) K-NN=3, SC 81.1(9.9) 82.8(6.5) 81.4(6.4)

Mink.(r=2) K-NN=3, PCA 81.2(8.2) 78.9(9.8) 79.2(6.8)

Mink.(r=3) K-NN=5, PCA 81.6(9.5) 79.2(8.6) 80.0(9.6)

GP+CBR RI, GR, RS, w{.4,.4,.2} 65.8(9.6) 82.6(8.5) 75.18(9.4)

GE+CBR RI, GR, TS, w{.4,.4,.2} 85.1(8.5) 85.8(5.4) 85.2(6.4)

MF Clark K-NN=3, SC 61.2(9.7) 70.5(7.1) 65.7(8.6)

Cosinus K-NN=3, PCA 10.0(30.0) 56.2(2.5) 56.4(4.9)

Mink.(r=1) K-NN=3, PCA 62.3(6.9) 73.7(11.3) 68.1(10.0)

Mink.(r=2) K-NN=5, PCA 62.0(8.6) 72.3(8.7) 67.1(12.4)

Mink.(r=3) K-NN=3, WW 61.5(7.3) 71.1(7.2) 66.6(8.12)

GP+CBR RI, GR, RS, w{.4,.4,.2} 67.7(9.3) 61.8(6.8) 64.2(7.2)

GE+CBR RI, SR, TS,w{.4,.4,.2} 61.6(7.5) 81.3(10.9) 69.0(9.6)

SO Clark K-NN=3, SC 77.4(6.6) 94.6(6.5) 82.6(8.9)

Cosinus K-NN=3, PCA 49.7(13.1) 42.2(8.2) 45.1(8.3)

Mink.(r=1) K-NN=1, SC 88.0(7.4) 91.2(8.1) 88.9(7.7)
Mink.(r=2) K-NN=1, SC 88.2(6.3) 88.5(11.7) 87.9(11.4)

Mink.(r=3) K-NN=1, WW 86.0(9.2) 88.1(10.6) 86.5(12.1)

GP+CBR RI, GR, RS, w{.4,.4,.2} 75.2(11.2) 71.3(9.1) 74.1(9.6)

GE+CBR RI, SR, TS, w{.2,.2,.6} 85.7(9.1) 89.2(8.5) 86.7(8.5)

Table 3. Best configurations for each problem

Table 3 summarizes the best configurations for each problem using the general pur-
pose similarity functions and those generated by GP-CBR and GE-CBR. The exploration
of the searching space has been done using the same number of generations and individ-
uals. The results show that problems with little volume of features get the best results
(TA, HS or MF), so if the problem has a lot of features (SO) the results are not the best.
This is because GP and GE would need to explore the searching space a lot more. For
this reason, problems with a higher volume of features should use a bigger population
and apply the cycle during more generations. Nevertheless, the results obtained in SO
are good.

Another important aspect is the execution time. All the configurations have been
simulated using a cluster composed by 6 computers (P-IV 2.6Ghz with 1 GB of RAM)
managed byOpenMosix [20]. The most expensive operation is the evaluation of one in-
dividual in the CBR, which is influenced by the number of features and the train and test
samples (Table 1). Table 4 resumes the time needed to evaluate one individual and find
the solution for each problem with GP and GE. TA’s problem has the highest evaluation
time (because it has a lot of samples) but it ends before the others. This is because TA
has only two features, which makes it easier to find the solution than in other problems
with more features. Therefore, the number of features is a complexity factor.



Problem T. evaluation in GP T. total in GP T. evaluation in GE T. total in GE

TA 1.2 sec 173 min 0.09 sec 16 min

HS 0.13 sec 250 min 0.01 sec 23 min

MF 0.16 sec 300 min 0.01 sec 29 min

SO 0.24 sec 370 min 0.02 sec 38 min

Table 4. �������	�
� of one individual and����
�	�
� by the GP and GE

Finally, we expose the similarity functions found using the GP+CBR (TA - Eq. 3
and HS - Eq. 4) and GE+CBR (TA - Eq. 5 and HS - Eq. 6) approaches. The others are
not showed because they are too much long.
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5. Conclusions and Further Work

GP and GE are approaches used in order to find programs. GP individuals can be exe-
cuted directly but their management is more complex than GA individuals. Even though
GE individuals need a genotype to phenotype mapping process to execute them their
management is easier than GP. If we want to define a similarity function, some rules such
as ’only operations between equal attributes are allowed’ or ’each attribute has different
influence’ are very important. For this reason, the results in the last section show that
the GE-CBR approach improves the results better than GP-CBR. Also, GE-CBR gets
better results than CBR with general purpose similarity functions if GE-CBR is well
trained. The time needed to find a solution is lower in GE-CBR than GP-CBR because
the management of individuals is very expensive in GP due to the representation in tree
form.

The main further works to follow are (1) defining other ways to evaluate the individ-
uals in order to find more robust similarity functions, (2) adding GA improvements to the
population of individuals, and (3) incorporating mechanism based on relevance feedback
[21] in order to avoid the overfitting of functions.
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