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Abstract

This paper proposes how to incorporate the
Rough Sets theory as a weighting method into
a Case-Based Classifier System. This hybrid
system has been implemented into the plat-
form called BASTIAN (case-BAsed SysTem In
clAssificatioN), which incorporate both tech-
niques.

Thus, the main goals of the paper are: present-
ing the BASTIAN system, describing the hybrid
method; and analysing this proposal for different
domains, extracted from the UCI repository.

Keywords: Case-Based Reasoning, Machine
Learning, Diagnose, Knowledge Discovery

1 Introduction

Our main goal is to develop, evaluate and improve
the classifier systems. In this paper we present a
hybrid classifier system based on Case-Based Rea-
soning and Rough Sets. The BASTIAN platform
is a Case-Based Reasoning system that incorpo-
rates Rough Sets capabilities in order to improve
the prediction accuracy rate. Rough Sets theory is
used in our system as a weighting method to select
the best feature relevance of the domain.
Case-Based Reasoning (CBR)[1] have been used
in a wide variety of fields and applications. We use
CBR as an automatic classification system [4, 21].

Rough Sets theory is a Data Mining technique.
The nature of Rough Sets theory has made them
useful for reducing the knowledge, extracting de-
pendencies in knowledge, reasoning about knowl-
edge, pattern recognition, etc.

The main research trends in Rough Sets theory
-which tries to extend the capabilities of reasoning
systems- are: :

1. The treatment of incomplete knowledge.

2. The management of inconsistent pieces of in-
formation.

3. The manipulation of various levels of represen-
tation, moving from refined universes of dis-
course to coarser ones and conversely.

The paper is structured as described. First, an
overview about the BASTIAN platform in section
2. Next section proposes the Rough Sets theory
as a weighting method for a Case-Based classifier
system. Sections 4 and 5 expose the testbed used
and the results obtained respectively. Finally, the
last section presents the conclusions and further
work.

2 BASTIAN System descrip-
tion

BASTIAN platform is a Case-Based Reasoning
system used in classification. Case-Based Reason-
ing integrates in one system two different charac-
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teristics: machine learning capabilities and prob-
lem solving capabilities. CBR. uses a similar phi-
losophy to that which humans sometimes use: it
tries to solve new cases (examples) of a problem
by using old previously solved cases [16]. The pro-
cess of solving new cases contributes with new in-
formation and new knowledge to the system. This
new information can be used for solving other fu-
ture cases. The basic method, see Figure 1, can be
easily described in terms of its four phases [1, 11]:

New Case

Retrieval

Case Memory

H

tHi

Revise

Solution

Figure 1: CBR Cycle.

The first phase retrieves old solved cases sim-
ilar to the new one. In the second phase, the
system tries to reuse the solutions of the previ-
ously retrieved cases for solving the new case. The
third phase revises the proposed solution. Finally,
the fourth phase retains the useful information ob-
tained when solving the new case. In a Case-Based
Classifier System, it is possible to simplify the reuse
phase classifying the new case with the same class
as the most similar retrieved case.

BASTIAN system is an extension of CaB-CS
(Case-Based Classifier System) system [9, 7, 6].
It allows the user to test several variants of CBR.
To be exact, the variant presented in this paper
is focused on two different phases: the retrieval
and the retain phase, and also on the case mem-
ory organisation. BASTIAN has been developed in
JAVA language and the system is being improved
with new capabilities.

2.1 General Structure

The BASTIAN general structure, see figure 2,
maintains the four phases described in [1]. The sys-
tem adds a previous phase StartupInterface, not in-

(e ]

corporate on the Case-Based Reasoning cycle, that
prepares the initial start-up of the system.

CBRParamConfiguration

— -
B = objectflow e

object or class used

= inheritance

Figure 2: General Structure in BASTIAN.

The system functionalities are developed to work
separately and independent in co-operation among
the rest. Each functionality described in the gen-
eral structure has a description of the general be-
haviour that has to achieve. The main goal is to
obtain a general structure that could change dy-
namically depending on the type of Case-Based
Reasoner we want to develop. The main function-
alities are:

e The CBRParamConfiguration allows us to
change and get the configuration. The config-
uration could be changed independent of the
system, this means that is not necessary to ex-
ecute the system in order to change the con-
figuration and it can be changed during the
CBR cycle too.

e The CBRFErrors is the error control function-
ality which detects all the possible problems
during one execution.

e The CBRStatistics aims to develop all the pos-
sible statistics during execution of the system.
It computes the statistics in EXCEL, LATEX
and EPS format.

e The CaseMemory goal is to develop different
case memory organisations.

e The SimilarityFunctionInterface concentrates
all the characteristics related to similarity
functions. It let us change the similarity func-
tion dynamically into the system during one
execution.
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e The WeightingInterface, contains the main
abilities to compute the feature relevance in
a Case-Based Classifier System. It is related
to the Retrievallnterface and the Similarity-
FunctionInterface.

e The {Retrieval, Reuse, Revise, Re-
tain}Interface are the four phases of the
CBR. cycle. These interfaces describe the
behaviour of each phase.

The kernel in a Case-Based Reasoning system is
the retrieval phase (phase 1). Phase 1 retrieves
the most similar case or cases to the new case.
Obviously, the meaning of most similar will be a
key concept in the whole system. Similarity be-
tween two cases is computed using different simi-
larity functions. Our aim is to improve this simi-
larity functions accuracy using a weighting method
that computes automatically the feature relevance
(2, 5, 10].

2.2 Similarity Functions

For our purpose in this paper, we use the similarity
functions based on the distance concept introduced
in BASTIAN. The most used similarity function is
the Nearest Neighbour algorithm, which computes
the similarity between two cases using a global sim-
ilarity measure [2, 3]. The practical implementa-
tion (used in our system) of this function is based
on theMinkowsky’s metric [6, 12] and we also use
the Clark’s distance and the Cosine distance [17].

2.2.1 Minkowsky’s metric

The Minkowsky’s metric is defined as:

Sim(Case_z, Case_y) sz |z: — yi|”
(1)
Where Case_xz and Case_y are two cases, whose
similarity is computed; F'is the number of features
that describes the case; z;, y; represent the value
of the ith feature of cases Case_z and Case_y re-
spectively; and w; is the weight of the ith feature.
In this study we test the Minkowsky’s metric for
three different values of r: Hamming distance for
r = 1, Fuclidean distance for r = 2, and Cubic
distance for r = 3.

2.2.2 Clark’s distance

The Clark’s distance is defined as:

Sim(Case_z, Casey) =

[S Ltz

| (2 + vi) |
(2)
Where Case_z and Case_y are two cases, whose
similarity is computed; F' is the number of features
that describes the case; and z;,y; represent the
value of the ith feature of cases Case-x and Case_y
respectively; and w; is the weight of the ith feature.

2.2.3 Cosine distance

The Cosine distance is based on vector properties
in an Euclidean space. It measures the Cosine an-
gle in a n-dimensional vector space. This metric is
defined as:

Zf‘:l (z; - 'U?)

Sim(Case_z,Case_y) = w;:

YL, e (S8, v)

3)

Where F' represents the number of features that

describe the cases; and x;,y; represent the value of

the 4th feature of cases Case_x and Case_y respec-
tively; and w; is the weight of the ith feature.

2.3 Memory Representation

The case memory structure is specified in figure 3.
As it can be seen, there are three structures that
can be used in BASTIAN: the first one is a list,
the second one is a SingleList (a vector) and the
last one is a tree. The memory representation used
in the experiments has been the first one, a list of
cases. The second part of the figure 3 shows the
problems that we have used in this work.

The representation used in each sample is based
on an attribute-value representation, see equation
4.

Case = {ag,a1,as2, - -,an, CLASS} (4)

Where a; are the value for the attribute ¢; and
CLASS is the class that the case belongs to.

2.4 Retain Policies

In order to decide whether a case is representative
enough to be stored in the case memory, we use
three different policies, see figure 4:
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Figure 3: Case Memory Structure in BASTIAN.

[ IrisCase

e Test mode, in this mode system does not
store any new case in the case memory. This
criterion has been used for two reasons. On
one hand, the results obtained using this mode
can be compared, in equal conditions, to those
obtained using other machine learning meth-
ods that do not include learning while solving
new problems. On the other hand, it allows
us to evaluate the initial corpus of the case
memory.

e DifSim mode, under this policy the system
stores the new case if its similarity with the
retrieved case is not zero. In other words, the
new case will be stored if there is not any iden-
tical case in the case memory.

e DifClass mode, this is an intermediate solu-
tion between the previous ones. The system
will store the new case if it has been impossi-
ble to classify it correctly. Otherwise, it will
not be stored.

LEGEND

> = object or class nsed

RetainDifSim ‘ RetainDifClass RetainTest

Figure 4: Retain Structure in BASTIAN.

The system let us also to train the initial case
memory to store only the most representative
cases.

3 Feature Relevance

BASTIAN includes 3 variants to weight the feature
relevance. The first one is the Sample Correlation
[9]; the second one is the Shannon Entropy [13];
and the third is the Rough Sets theory [18]. The
aim of this paper is to explain the integration of the
third one into the BASTTIAN system. The Rough
Sets into the BASTIAN system can be applied us-
ing two policies:

e Static: we compute the weight of the features
only using the initial case memory. Our paper
will be focused on that variant.

e Dynamic: the relevance is computed in the
initial case memory, and every time that a new
case is learned by the system. It is an incre-
mental weighting method.

The section is divided in an introduction to the
Rough Sets theory, the basis concepts of Rough
Sets theory and the incorporation of Rough Sets
into the Case-Based Reasoning System.

3.1 Rough Sets Theory

Zdzislaw Pawlak introduced Rough Sets theory in
1982 14, 15, 20]. The idea of the Rough Sets con-
sists of the approximation of a set by a pair of
sets, called the lower and the upper approximation
of this set. In fact, these approximations are inner
and closure operations in a certain topology gen-
erated by the available data about elements of the
set.

The nature of Rough Sets theory made them use-
ful for reducing the knowledge, extracting depen-
dencies in knowledge, reasoning about knowledge,
pattern recognition, etc.

We use Rough Sets theory for reducing and ex-
tracting the dependencies in the knowledge. These
dependencies are the basis for computing the rele-
vance of each feature into the Case-Based Classifier
System.

3.2 Rough Sets inside Case Based
Reasoning System

How Rough Sets theory is incorporated into our
Case-Based Classifier System?

First of all, we incorporate some concepts in this
paper to explain how the dependencies we are look-
ing forward from the domain are obtained to select
the best weighting.
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3.2.1 Basic Concepts and Definitions

We compute from our Universe (U) (finite set
and not null set of objects that describes our prob-
lem, the case memory) the concepts (objects or
cases) that form partitions of that Universe. The
union of all the concepts make the entire Uni-
verse. Using all the concepts we can describe all
the equivalence relations (R) over the universe
(U). Let an equivalence relation be a set of fea-
tures that describe a specific concept. U/R are the
family of all equivalence classes of (R).

The universe and the relations form the knowl-
edge base (KB), defined as KB = < U, R >.
Where R is the family of equivalence relations over
U. Every relation over the universe is an elemen-
tary concept in the knowledge base.

All the concepts are formed by a set of equiva-
lence relations that describe them. Thus, we search
for the minimum set of equivalence relations that
define the same concept as the initial set.

DEFINITION 1 (INDISCERNIBILITY RELATIONS)

It can be defined as IND(P)= (| R where P C R.
The indiscernibility relation is the intersection of
properties over P. The indiscernibility shows the
refined information over a concept and gives all
the information about the equivalence relation
that exists in P.

ExampLE 3.1

If we consider a set of 8 objects in our Universe,
U= ($1,$2,$3,ZL’4,.’E5,$6,11,'7,11,'8), I.AISiIlg asafamily
of equivalence relations over U:R = (P, Q, S).
Where P are colours (green, blue, red, yellow); @
are sizes (small, large, medium); and S are shapes
(square, round, triangular, rectangular).

U/P = ((z1,%4,%5), (T2,%8), (x3),(z6,27) )
U/Q =( (z1,23,%5), (z6), (3,24, T7,28) )
U/S = ( (z1,25), (z6), (2, 27,28), (x3,24) )

As it can be seen, every indiscernibility relation
divides the Universe in a different way.

DEFINITION 2 (BAsiC KNOWLEDGE)
The basic knowledge is the family of all equiva-

lence classes of the equivalence relation IND(P).
The basic knowledge shows all the knowledge
associated with the family of equivalence relation
P.

DEFINITION 3 (P-BASIC CATEGORIES)

P-basic categories are those basic properties of the
universe, which can be expressed using knowledge
from P. They are the building blocks of the
existing knowledge.

Let K = (U, R) be a knowledge base.
IND(K) = (IND(P): 0# P C R) is the family
of all equivalence relations defined in K.

DEFINITION 4 (EQUIVALENCE, GENERALISATION)
(and specialisation of knowledge)
Let K 1 K’ be two knowledge bases:

e if IND(K) = IND(K’), it means that K and K’
are equivalent.

o if IND(K) C IND(K’) then the knowledge base
K is finer than K’, so K’ is a generalisation of
K.

3.2.2 Rough Sets

Let X C U and R be an equivalence relation. We
will say that:

e X is R-definable if X is the union of
some R-basic categories; otherwise X is R-
undefinable.

e The R-definable sets are those subsets of the
universe which can be exactly defined in the
knowledge base K, whereas the R-undefinable
sets cannot be defined in this knowledge base.

o The R-undefinable set will be also called R-
rough.

e The set X C U will be called ezact in K if
there exists R € IND(K) such that X is R-
exzact, and X is called to be rough in K, if X
is R-rough for any R € IND(K).

Approximations of Set This is the main idea
of rough sets, approximate a set by other sets. The
next definitions will explain this idea.

Suppose a given knowledge base K =< U, R>.
With each subset X C U and an equivalence rela-
tion R C IND(K) we associate two subsets called:

e Lower approximation

e Upper approximation
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DEFINITION 5 (LOWER APPROXIMATION)

The lower approximation, defined as: RX = J {
Y € U/R: Y C X}. The lower approximation is
the set of all elements of U/ which can be certainty
classified as elements of X in the knowledge R.

DEFINITION 6 (UPPER APPROXIMATION)
The upper approximation, RX = |J{Y € U/R :
XY #0 }. The upper approximation is the set
of elements of U which can be possibly classified
as elements of X, employing knowledge R.

DEFINITION 7 (BOUNDARY)

RX — RX is the boundary BNg(X). The bound-
ary is the set of elements, which cannot be classi-
fied either to X or to =X having knowledge R.

Reduct and Core of knowledge Intuitively, a
reduct of knowledge is its essential part, which
suffices to define all concepts occurring in the con-
sidered knowledge, whereas the core is the most
important part of the knowledge.

Let R be a family of equivalence relations and
let R € R. We will say that:

e R is indispensable if IND(R) # IND(R - R);
otherwise it is dispensable.

e The family R is independent if each R € R is
indispensable in R; otherwise it is dependent.

DEFINITION 8 (REDUCT)
() € Ris areduct of Rif:

1. Q is independent.

~ ~

2. IND(Q}) = IND(R). Using @ it is possible
approximate the same as using R.

DEFINITION 9 (CORE)

The set of all indispensable relations in R will
be called the core of R, and will be denoted
CORE(R).

CORE(R) = [ |RED(R) (5)

~

where RED(R) is the family of all reducts of R.

ExampLE 3.2

We continue using the example 3.1 to find the
reducts and the core of the knowledge. Our equiv-
alence classes are:

U/P = ( (131,.’174,165), (372,538), (273)’(1‘6:1‘7) )

U/Q =( (z1,23,%s5), (T6), (23,24,%7,78) )

U/S = ( (xlazf))? (xﬁ)’ ($2,$7,$8), (1173,324) )

Thus the relation IND(R) has the equivalence
classes:

U/IND(R) = ( (.’L‘]_,(L‘5), (1L‘2,$L'g), (5173), ('7"4)7 (mﬁ)a
(z7))

The relation P is indispensable in R, since:

U/IND(R - P) = ( (3}1,335)7 (1‘2, L7, mB)’ (373),
(z4), (z) ) # U/IND(R).

U/INDR - Q) = ( (z1,2s5), (x2, z8), (z3), (z4),
(z6), (z7) ) = U/IND(R).

The information obtained is equal, so the
relation ¢} is dispensable in R.

U/IND(R_ S5) = ( (m}7$5)’ (2, g), ($3)> (‘T4)’
(z6), (7)) = U/IND(R).

Hence the relation S is also dispensable in R.

That means that the classification defined by the
set of three equivalence relations P, @ and S is the
same as the classification defined by relation P and
@Qor Pand S.

So the reducts and the core are:

RED(R) = ((P,Q), (B,9))
CORE(R) = (P)

3.2.3 How introduce the RS in our CBR
system?

We can use the information of reducts and the core
to weigh the relevance of each feature in the sys-
tem. An attribute that does not appear in the
reducts has a feature weight value of 0.0, whereas
a feature that appears in the core has a feature
weight value of 1.0. The rest of attributes has a
feature weight value depending on the proportional
appearance in the reducts. This is the weight fea-
ture information used in the Case-Based Classifier
System.

Figure 5 shows the meta-level process when the
Rough Sets are incorporated into the CBR. system.
Rough Sets are divided in three steps: the first one
discretises the examples, it is necessary to find the
most relevant information using the Rough Sets
theory; the second step searches the reducts and
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the core of knowledge using the Rough Sets the-
ory; and finally, the third step uses the core and
the reducts of knowledge to decide the feature rel-
evance value.

Weights
Examples i Search Extraction fﬁh
Discretise Reducts & CORE of Feature
Relevance each
attribute

Figure 5: High level process of Rough Sets.

The RS theory has been introduced as weight-
ing method in two phases modified of the CBR
cycle. The first phase modified with Rough Sets is
the start-up phase and the second one is the retain
phase. The start-up phase compute the weights
from the initial case memory, these weights will
be used by the retrieval phase later. The retain
phase computes the weights from the case mem-
ory whether the new case is stored and the system
works dynamically. The code of Rough Sets the-
ory into the Case-Based Reasoning has been im-
plemented using a public Rough Sets Library [8].

4 Testbed

The experiment has based on 3 data sets from the
UCT repository ( echocardiogram, iris, breast can-
cer Wisconsin), and one data set from our own
repository (mammogram problem). See table 1
and table 2 which show their characteristics. The
mammogram problem consists of detecting breast
cancer using the information found in a mammog-
raphy [12, 13, 17]. A microcalcification (uCa)
usually appears, in the mammographies, as small,
bright, arbitrarily shaped regions on the large vari-
ety of breast texture background. Thus their anal-
ysis and characterisation are performed through-
out the extraction of features and visibility descrip-
tors by means of several image processing tech-
niques [19]. Each example contains the description
of several pCa present in the image. For each of
these microcalcifications there are 23 real valued
features. In other words, the input information
used is a set of m x 23 real valued matrixes, where
m is the number of pCa present on the image. The
data set contains 216 examples.

The examples of each data set have been grouped
in two sets: the training set and the test set. We
use the first one to train the system, and the second
to test the system. The training set and the test

Table 1: Data set used for these experiments.

Domain Reference
Echocardiogram E

Iris I
Breast cancer (Wisconsin) BC
Mammogram problem M

Table 2: Characteristics of the data set used in
these experiments.

Ref Sam- Fea- Cla- Missing Incon-
ples tures sses Values sistent

E 132 9 2 132 Yes

I 150 4 3 0 No

BC 699 9 2 9 Yes

M 216 23 2 0 Yes

set are generated using different proportions of the
examples: 10% of the examples for the training
set and the rest (90%) for the test set, 20% of the
examples for the training set and the rest (80%)
for the test set, ..., until 90% for the training set
and 10% for the test set.

We have test each data set using the following
policies:

e Similarity Functions: Minkowski’s metric
(Hamming, Euclidean and Cubic distance),
Clark’s distance and Cosine distance.

e Retain Policies: DifSim, DifClass and Test.

e Training initial data set: training the ini-
tial case memory and maintaining the initial
case memory.

e Samples: we have 9 proportions of each sam-
ple and 10 versions for each proportion.

For each data set is tested a total of 2700 runs.

5 Results

We present in this section the main results ob-
tained for each data set tested. Table 3 presents
the results obtained during the execution of the
proportion 90% training set and 10% test set. The
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first column is the results obtained using BAS-
TIAN without weighting the attributes, the sec-
ond column shows the results for the BASTIAN
system using the Rough Sets theory as a weighting
method. This proportion has been chosen for the
accurate rate obtained, we want to notice that the
results presented are the maximum value obtained
during one run.

Table 3: Maximum results obtained for each data
set.

Ref -W RS-W
E 78.57% 78.57%
I 100% 100%

BC 98.71% 98.71%
M 77.27% 81.81%

The results presented obtain a good accuracy
rate. We want to outline that the maximum ac-
curacy percentage obtained, using the Rough Sets
as a weighting method, appears more frequently
than the results obtained without weighting the
features.

Figure 6 shows the results obtained for all the
training sets proportions in the mammogram prob-
lem. As it can be seen, the weighting feature
methods needs a huge amount of cases to develop
a good weighting for the retrieval phase. How-
ever, the system accuracy rate increases when there
are enough information in the system to develop
a good weighting criterion. Also, the system de-
creases the standard deviation value if it uses the
Rough Sets theory as a weighting method.

We can also notice that it is very important to
select a good training of the initial case memory
to achieve better results. Thus, most of the best
results obtained have been achieved using an ini-
tial training. The training set has been decreased
following this method. So, the cases chosen were
the more representatives to explain the problem.

Table 4 shows the results obtained in different
training sets proportions for the Iris problem. The
results presented are the maximum and the mean
values. As it can be seen there are few differences
between the Rough Sets hybrid system and the
original Case-Based Classifier System. The results
denote also that it is very important the number
of cases included into the case memory to achieve
a good accuracy in the weighting method.

It is important to remark that the prediction

T T
maxnotweighted ———
maxroughsets -------

95 | -‘

90 ~

80 -

75+

Accuracy Rate

70} o ——— 4

60 -

55

80

Percentage lraining set

Figure 6: Maximum results obtained in the Mam-
mogram problem.

accuracy depends on the case memory size. This
fact can be seen in all the problems.

Table 4: Results for the Iris problem.

L L L r L L L
10 20 30 40 50 60 70 80 80

Prop. Max Max Mean Mean
train -W  RS-W -W RS-W
40% 08,88 97,77 96,22 96,00
60% 97,77 97,77 95,33 95,50
70% 100,00 100,00 95,11 95,33
80% 100,00 100,00 97,00 97,00
90% 100,00 100,00 96,66 96,66

Figure 7 shows the mean results obtained for
the echocardiogram problem in all the training set
proportions. It also 7 denotes how important is the
number of cases into the case memory, and we can
also observe that the results depend on the number
of missing values.

The results obtained for the Breast Cancer Wis-
consin problem can be found in the figure 8. The
results are very similar, it is due to the great num-
ber of examples in this data set and to the data
missing.

Finally, it is important to denote that all the dis-
cretisation has been done using the same param-
eter. This parameter must be changed depending
on the upper and lower bounds of each feature.
This discretisation influences the results.
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Figure 7: Mean results obtained for the echocar-
diogram problem.

6 Conclusions and further

work

This paper has proposed how to introduce the
Rough Sets theory into a Case-Based Classifier
System as a weighting method. The work related
here deals with two main ideas: proposing a plat-
form that incorporate Case-Based Reasoning Sys-
tem and the Rough Sets into BASTIAN, and im-
proving the feature relevance mechanism.

We have tested our feature relevance mechanism
with different data set from the UCI repository.
We have notice that the Rough Sets weighting
method improves the accuracy rate if there are
enough information into the system to extract the
feature relevance. However, the system only de-
crease the accuracy rate if there are less than a 10%
of the cases in memory. The Rough Sets methods
help the system to balance the results in the sys-
tem, there are not many differences between all the
versions tested.

Our further work in this area will be to achieve
better performance using different criteria on
weighting methods and improve the platform in-
troducing new functionalities.
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