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Abstract— Speaking avatars are present in many Human
Computer Interaction (HCI) applications. Their importance
lies in communicative goals which entail interaction within
other avatars in virtual worlds or in marketing where they
have become useful in customer push strategies. Generating
automatic and plausible animations from speech cues have
become a challenge. We present BodySpeech, an automatic
system to generate gesture and facial animations driven by
speech. Body gestures are aligned with pitch accents and
selected based on the strength relation between speech and
body gestures. Concurrently, facial animation is generated
for lip sync, adding emphatic hints according to intonation
strength. Furthermore, we have implemented a tool for
animators. This tool enables us to modify the detection of
pitch accents and the intonation strength influence on output
animations, allowing animators to define the activation of
gestural performances.
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animation; facial animation

1. Introduction

Face-to-face communication has the goal of transmitting a
message from one person to another. Besides the semantics,
the way a message is transmitted can change how the
receiver perceives it. Body language and facial animations
accompany the acoustic signal of speech, and moreover,
they enrich communication and make it believable [1]. So,
in order to make human computer interfaces believable,
we must take into account the characteristics of the visual
speech. Given the difficulty of creating realistic speech
animations automatically, many companies use hand-crafted
animations. Generating specific animations for any speech
utterance results in increased production time and budget. On
the other hand, automatic synthesis of gestures according to
speech have been broadly studied in the character animation
research community [2][3], providing a solution for the
mentioned issues.

In this paper we present BodySpeech: an automatic
method to generate appropriate body gestures and facial
expressions according to an arbitrary speech. The system
is able to select body gestures based on speech intonation
and to concatenate them generating a smooth motion stream.
We use mocap data to create a motion graph [4] which is
named gesture motion graph (GMG). The animation system

generates a continuous stream of gestures by concatenating
units included in the GMG. The gesture selection process
is driven by prosodic features of pitch accents (changes
in speech intonation) in speech. Pitch accents and their
corresponding features (time and strength) are automatically
detected based on [5]. For every pitch accent, the system
selects a gesture phrase with an equivalent strength (see
Figure 1). Moreover, gestures and pitch accents are aligned
in time. At same time, facial animation is generated by lip
sync. We use the blendshapes approach to create visemes
(facial shapes) that are assigned to phonemes. Additionally,
we modify output visemes based on pitch accent strength
for each pitch accent.
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Fig. 1: BodySpeech. Gestural phrases (GP) are matched with
pitch accents (PA) times and strength.

Moreover, we have implemented an application for anima-
tors that makes the generation of gesture and facial anima-
tions for speaking avatars easier. Using this application, an-
imators can modify the speaker style by changing emphasis
parameters. Emphasis of output animations depends on the
frequency of performed gestures and the kinematic features
of gestural movements. So, we facilitate the parameterized
detection of pitch accents and determine how their strength
affects output body and facial animations.

We summarize the related work in Section 2. Then,
we describe the BodySpeech system in Section 3. Finally,
we present an application for animators (Section 4) and
conclude our work in Section 5.

This work expands on our prior work [6], primarily in



the automatization of gesture synthesis. In this paper we
consider the automatic detection of pitch accents avoiding a
manual annotation phase. This new way of detecting pitch
accents is accompanied by a new pitch accent strength
computation (more details in Section 3.3.1). Thanks to this,
we have defined a new gesture-speech strength relation
used in gesture selection (3.3.2.2). In terms of animation,
we have enriched the GMG by reusing the input data to
create more gestures (3.2.1). In addition, in order to avoid
stroke modification (the most meaningful part of gestures)
we have improved gesture temporal alignment with speech
(3.3.2.1). Moreover, to improve output motion quality we
use optimal blend length [7] to create blended transitions
between gestures. Furthermore, as we have mentioned, we
have added facial animation and implemented an authoring
animation tool.

2. Related work

The generation of appropriate body language to a specific
speech stream is a complex task. It is known that speech
and gestures are related [8][9][10]. However, it is difficult
to extract a set of rules capable of covering the broad
variety of gestures taxonomy [1] (iconic, metaphoric, deictic
and beats) and then to use that information to drive a
gesture synthesis system. Another challenge arises from the
attempt to automatize the gesture selection and animation
synthesis processes, avoiding the time-consuming step of
manual annotation.

One early attempt to generate body language automati-
cally was presented by Casell et al. in BEAT [11]. They
presented a system that analyzes an input text (natural
language structure and content), and defines a set of gesture
generation algorithms that suggest gestures depending on the
result of the text analysis. The algorithms rely on a manually
created Knowledge Base, which defines the gestures that are
appropriate to certain actions or objects. Stone et al. [12]
presented another automatic gesture synthesizer. However,
in this case it uses a unit selection approach, and units
are pieces of motion captured from real performances. This
permits the generation of animation that naturally contains
the subtleties of real human motion, which are hard to repro-
duce otherwise. Stone’s synthesizer is limited to generating
utterances present in a pre-defined grammar. Although this
grammar can be extended as much as desired, the creation
of this grammar requires some manual annotation. Neff et
al. [13] proposed a novel system, that from an input text is
capable of generating animations that recreate the style of a
certain speaker. The process begins with a gesture selection
step, which is driven by a statistical model created from
performances of the speaker. In the next step the animation
engine uses parameters that define the shape of gestures
produced by the speaker and a set of predefined rules to
produce the animation. The system is fully automatic but
requires some annotation in the input text.

Other systems, do not rely in input text to generate
animation but in prosodic parameters of speech directly. This
allows to go a step further in adaptability because these pa-
rameters can be extracted either from the output of a text-to-
speech synthesizer, as well from the audio of real speech. A
limitation of these systems is that it is not possible to extract
language structure or semantic content from prosody, and
therefore they cannot be correlated with content of gestures.
Moreover, prosodic-based gesture synthesizers usually only
generate beat type gestures. Beats are a type of gesture that
do not carry meaning, and their function is to emphasize
words in a utterance [1]. It is known that prosody correlates
well with emphasis [14], which suggests that beats are
good candidates to be synthesized based on prosody. Levine
et al. proposed two algorithms [15] [2] that automatically
generate beat gestures based on input audio. Their systems
use statistical models that shape the correlations between
prosody and kinematic parameters of gestures. These models
are used to select gestural units stored in a mocap database.
Gestural units are composed of a single gestural phase. In a
further work, Chiu et al. [3] presented a similar system but
in this case units are composed by single animation frames.
This permits the generation of a greater variety of gestures at
cost of animation realism. Our approach is similar to Chiu’s
and Levine’s in the fact that it uses prosody to select motion
units from a database. However, the unit selection process
is not governed by a statistical model but by a set of rules.
This allows greater parametrization of the process, which in
turn provides greater control of the output.

3. BodySpeech

3.1 Overview

The animation system is divided into two stages: an off-
line preprocessing step and a runtime unsupervised step.
Figure 2 shows an outline of the whole system. In the
first stage, gesture mocap data is arranged in a motion
graph structure as described in Section 3.2.1. On the other
hand, we associate visemes (mouth shapes) with phonemes.
Vowel phonemes have more than one associated viseme
in order to capture emphasis in facial animation. Visemes
parameterization is further explained in Section 3.2.2.

The second stage is where the output animation is gen-
erated. Speech is used to drive both gesture synthesis and
facial animation. Input speech is analyzed in order to detect
pitch accents (time occurrence and strength indicator) and
the phoneme transcription of the message (Section 3.3.1).
Pitch accents drive gesture synthesis by selecting the most
appropriate gesture unit for each one depending on strength
levels (see more details in Section 3.3.2). We use gestural
phrases as gesture units. A gestural phrase [16] consists
of the following phases: stroke (obligatory phase where it
is contained the ’expression of the gesture’), preparation
(movement that leads to the beginning of the stroke) and
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Fig. 2: System overview. The off-line stage is used to generate a motion graph (at the bottom) and a set of visemes (on
top). Then, body and facial animation are obtained from a speech signal in the runtime stage (on the middle).

retraction (body parts are moved to the rest position).
Moreover, gestural phrases may include hold phases which
are temporary cessations of movement. At the same time,
phonemes intervals are matched with visemes to generate
facial animation. Additionally, visemes are modified based
on pitch accent strength indicators (see Section 3.3.3).

3.2 Off-line stage
3.2.1 Motion graph creation

A labeled gesture motion database is used to construct a
motion graph [4]. This database consists of 6 clips that last
slightly more than one minute each, in which an amateur
actor with mocap recording experience was asked to perform
an improvised monologue with a concrete speaking style
and performing only beat gestures. We choose neutral and
aggressive style in order to obtain a broad variety of gestures
with different strengths. Gestural phrases and their corre-
sponding gesture phases are annotated in this database. Also,
stroke apexes (the maximum extension point) are annotated.
So, we use gestural phrases (GP) motion clips to populate
a gesture motion graph (GMG). Also, stroke phases are
extracted and added as new gestural phrases. In this way,
we maximize the number of gestural phrases allowing more
variety in gesture synthesis.

A GMG is defined by N for the set of nodes (GP’s),
E for the set of edges (transitions) and W (E) for the set
of edge weights (transition parameters). First, we connect
all the consecutive GP’s from the original database with a
directional edge. Then, we create new edges between non-
consecutive GP’s. Transitioning between non consecutive
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Fig. 3: Edge generation in gesture motion graph. We create
an edge connecting two gestural phrases if they are con-
secutive in the original recordings (original edges) or their
posture similarity is below sq (transition edges).

gesture phrases can produce jerky motions if GPs extreme
postures are not similar enough. Therefore, we compute
posture similarity between initial and ending frames from
all motion clips in the graph using joint angles distance
metric [4]. As a consequence, we create edges when the
similarity value is lower than a threshold sy (see Figure 3).
In order to search the appropriate gestures in the motion
graph and to generate smooth transitions between GP’s,
we weight the edges of the graph with posture similarity
values. We scale posture similarity values to [0,1], where 1
is the specified threshold sg. Transitions between GP’s are



generated with motion blending to ensure smoothness. To
optimize transitions, we compute the optimal blend length
[7] for each pair of connected GP’s. Finally, to avoid dead
ends in the graph, we use Tarjan’s algorithm to compute
the largest strongly connected component (SCC) which will
become the resulting GMG.

3.2.2 Visemes parameterization

We relate each phoneme with a viseme, which is repre-
sented by combination of blendshapes (shapes of the same
mesh). To create a phoneme-viseme mapping we consider
that multiple phonemes have similar mouth shapes when
they are pronounced, therefore, they are linked to the same
viseme. We use 15 categories (see Table 1).

Table 1: 15 phoneme categories. Each category maps to a
single viseme. Symbols are codified with MRPA (Machine
Readable Phonemic Alphabet).

/pau/ It/ /k/, Igl, Ing/
lael, lax/, /ah/, faal | /f/, Iv/ /ch/, /sh/, /jh/
faol, Iyl, hyl, /in/, | lowl/, loy/ n/, /dl, 1t N/
lay/, law/

leyl, leh/, lel/, lem/, | /th/, /dh/ Isl, Iz, Izh/
len/, ler/

/bl Ipl, Im/ /hh/ Iwl/, law/, /luh/

It is known that lip movements are linked to prosody [17].
Furthermore, the jaw lowers more in stressed syllables than
in unstressed syllables [18]. Based on these statements, we
propose a modification of visemes based on pitch accents
strength. To that effect, we define a viseme blending space
between high emphatic and low emphatic facial expressions,
each one with appropriate jaw positions. For each vowel,
three visemes are defined (see /ah/ and /aw/ phonemes
examples in Figure 4): neutral, high emphatic and low
emphatic.

Low emphasis Neutral

Fig. 4: Emphatic visemes for /ah/ and /aw/ phonemes.

High emphasis

Phoneme /ah/

Phoneme /aw/

3.3 Runtime stage
3.3.1 Pitch accents detection

Regarding pitch accent detection, we have developed a
straightforward algorithm inspired by [5]. By pitch accent
detection we mean detection of prominences in the speech
stream. These prominences are potential candidates to be
synchronized with gestures.

Taking a speech file as an input, we extract all the signal
cycles with their associated information (amplitude, position,
etc.). After selecting principal cycles, we extract voiced and
unvoiced regions. Then, we extract and normalize pitch and
intensity from voiced region nucleus (defined as maximum
energy cycle inside the region) and compute the strength
indicator as a sum of both parameters (see Figure 5). Finally,
we have also detected pauses and we have rewarded voiced
regions preceding a pause with extra strength indicator, as we
observed that prosody tends to decrease in these situations
causing undetected pitch accents.

Final pitch accents are detected according to the extracted
strength indicators of the voiced region nucleus. Specifically,
they are chosen depending on two tunable constraint param-
eters: strength indicator threshold and time difference thresh-
old. Basically, the strength indicator threshold represents
what percentage of the nucleus are pitch accents candidates
(taking as a reference maximum strength indicator), and the
time difference threshold defines how close pitch accents can
be. If two pitch accent candidates are too close according to
this parameter, we keep the one with the greater strength
indicator. Finally, the pitch accents strength indicator is
expressed in a [0,1] scale, taking as 1 the maximum strength
indicator of the series.
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Fig. 5: Pitch accents detection. On top, there is the speech
signal. Below, intensity (green) and pitch (blue) curves are
displayed. In addition, pitch accent (PA) strength and time
are shown. At the bottom, the intonation is represented
(using the ToBI system [19]) with the affected vowel. The
image was created thanks to the Praat software [20].

Furthermore, speech is analyzed to extract the phoneme
transcription. So, we obtain a sequence of phonemes with



its type definition and timestamps. For each phoneme, initial
time and final time are detected.

3.3.2 Body gesture synthesis

As we have explained, gesture synthesis is driven by
pitch accents. Distances between consecutive pitch accent
times define the duration of selected GPs, and pitch accents
strength are related to GP’s strength. We adopt FMDistance
[21] to define GP strength using the reported parameters
in [6]. Moreover, it is only computed for the stroke phase
and it is normalized to [0,1]. Then, we iteratively evaluate
each pitch accent and seek the most appropriate GP for each
one. Gesture performance starts with a rest pose (which is
also included in the motion graph as a node) and we use a
breadth-first search algorithm to traverse the graph according
to a proposed cost metric. Selected GP’s are concatenated
by motion blending to obtain a smooth motion stream. To
finish the animation, the avatar returns to the rest pose.

a) Temporal alignment: Before computing the cost metric,
candidate GPs (connected to the current node) are warped to
temporally align them with the current pitch accent time. Our
objective is to make the apex of the stroke coincide with the
pitch accent time. However, it is known that gesture apexes
are not exactly aligned with pitch accents [9]. In order to
allow this de-synchronization, we compute an anticipation
time for each pitch accent as a random value within a pre-
defined window (from -0.03 to 0.22 seconds [6]) .

Only stroke Gestural phrase
apex apex
Original stroke preparation stroke ’/
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Fig. 6: Gesture alignment. Body gestures are aligned with
pitch accents by modifying their length. The goal is to
match stroke apexes with pitch accents times (t), taking into
account anticipation times (7). We consider two cases: only
stroke (on the left) and gestural phrase (on the right).

Furthermore, it is important to not modify strokes because
they are the most significative part of gestures and emphasis
relation in gesture selection is based on them. Hence, we
manage two cases to align GPs with pitch accents times:
“only stroke’ and ’gestural phrase’. *Only stroke’ means that
the gestural phrase is formed by a unique stroke, in this
case, stroke length will be modified. ’Gestural phrase’ case

means that GP has more phases besides the stroke, so, we
modify phases which are not the stroke phase. Then, GP
length (and its phases length) is computed by taking into
account the mentioned cases, anticipation time and blending
length (included as an edge weight in GMG) between the
current node and the candidate one. Therefore, we obtain a w
warping factor (original length divided by target length) for
each candidate GP. In the ’only stroke’ case, we consider the
stroke length to compute w. On the other hand, we consider
the sum of non-stroke phases lengths in the ’gestural phrase’
case.

b) Gestural phrase selection: Our cost metric is based
on: length similarity between a GP and the interval to fill
(time cost), posture similarity between candidate GP and the
previous one (smooth cost) and pitch accent strength-stroke
strength relation (emphasis cost). As a result, we define our
cost metric as

C(e(ni7 nj)7pak) = Csmooth + Cemphasis + Ctime (1)

where n; is the previous GP, n; is a candidate GP, and
pay is the k-th pitch accent in speech stream. Smooth cost
(Csmootn) 18 directly the posture similarity edge weight. Em-
phasis cost (Cemphasis) is the absolute difference between
pitch accent strength indicator and gesture strength indicator.
We recompute gesture strength indicator in the *only stroke’
time alignment case due to its duration, and consequently,
its strength has changed. Time cost (Cj;e) is defined by

p . ;
w if min <w < maz

N = . 2

Crime { D otherwise &)

where w’ is the normalized warping factor from

[min,max] to [0,1]. We use min and max to not deteriorate
motion quality by excessive changes on the original lengths.
p is a penalty parameter that we use for penalizing GP’s
that exceed boundaries, avoiding their selection. Depending
on the case of warping min and maz take different values:
0.8 and 1.2 respectively for the ’gestural phrase’ case, and
0.9 and 1.1 for the ’only stroke’ case. Penalty parameter p
is set to 10.

Once we have selected a gesture (the one with the
minimum cost), this is concatenated with the previous one
by linear motion blending. We use start-end blending scheme
[7] and the blending length included in the edge weights of
the graph.

3.3.3 Facial animation synthesis

We use phoneme transcription of the speech message to
match phonemes with defined visemes. As usual, coarticu-
lation between phonemes is generated by interpolating mesh
points of visemes during initial and final times of phonemes.
To include emphasis in facial expressions, we modify vowel



visemes by blending them with its emphatic visemes. This
only occurs when a vowel phoneme matchs with a pitch
accent. We relate pitch accent strength indicator with the
amount of weight from neutral and high/low emphatic
visemes. Pitch accent strength indicator is expressed in a 0
to 1 scale, so, we associate 0 values to low emphatic viseme,
and 1 to high emphatic viseme as illustrated in Figure 7. So,
pitch accent strength indicators that are lower than 0.5 will
be represented by a combination of neutral and low emphatic
viseme. Otherwise, neutral and high emphatic visemes will
be used in the morphing process. In this way, we obtain the
appropriate viseme according to speech intonation.

Neutral

Low emphasis High emphasis

Output

PA strength
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Fig. 7: Output viseme generation for pitch accents. Pitch
accent (PA) strength is used to weight low emphatic, neutral
and high emphatic visemes in the morphing process. In
this example, higher emphatic visemes have more opened
mouths.

4. Implementation

We have implemented the BodySpeech system as a plugin
for the Unity3D game engine [22]. The Unity editor was
used to create a visual interface that allows generating
animations by selecting input speech audio files. In addition,
the application uses Microsoft Speech API (SAPI) [23] to
detect speech phonemes, and the Tagarela plugin [24] for
facial morphing.

The application is able to parameterize the processes of
gesture motion graph creation and viseme generation. Also,
the process that synthesizes animations can be parameterized
in order to modify emphasis, both for gesture and facial
animations. This way,, animators can adjust output anima-
tions to satisfy plot requirements. The application is divided
into three parts: New profile, Load profile and Player. New
profile permits to generate a custom GMG (see Figure 8)
and visemes; Load profile allows to select a saved profile;
and Player lets to replay previous generated animations.

The process of generating new GMG’s can be configured
with the following parameters: joint weights (they are used in

BodySpeech : Facial and Gesture animations laSalle

New profie
Load profile
Player

About

Fig. 8: New graph screen. GMG can be parameterized by
changing input databases, joint weights for posture similarity
computation (dark blue box in the middle), threshold that
defines the existance of transitions between GP’s (slider on
top right). Once the GMG is generated, graph information
is displayed at the bottom of the screen to know graph
capabilities.

posture similarity distance metric) and similarity threshold.
Altering these parameters the GMG is modified. Moreover,
the user can select one or several motion capture databases
to be used as source of GP’s for the GMG. This allows
increasing the size of the GMG which in turn improves
animation richness. Branching factor is displayed in the
interface to lead animators know the richness of generated
graphs. Also, visemes can be customized by changing the
weights of former blendshapes.
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Fig. 9: Synthesis screen. On the upper-left corner, there are
the buttons to select an audio and generate the animations.
At the bottom, there are the configurable pitch accent detec-
tion parameters, and sliders for adjusting gestural or facial
animation emphasis.

As explained in Section 3.3.1, pitch accent detection can
be parameterized by changing the strength indicator thresh-
old and the time difference threshold. These two parameters



can be modified in the application affecting the frequency
of detected pitch accents and gestures. A greater gesture
frequency is perceived as a more emphatic animation. More-
over, emphasis of gesture and facial animations can be also
be adjusted independently with two moving sliders. The
gesture slider modifies the amount of strength that is added
or subtracted to pitch accent strength (from -1 to +1). 0
denotes that the input pitch accent strength remains equal,
positive values increase pitch accent strength value up to
1, while negative values decrease strength value down to -1.
This permits the generation of more prominent gestures from
a low emphatic speech, or contrarily, to relax gesticulation in
a high emphatic speech. Similarly, facial animation emphasis
is controlled by an analogous slider.

5. Conclusions and future work

In this paper, we have presented an automatic method
to generate body gestures and facial animation according
to speech input. Our animation system is based on motion
graphs and lip sync techniques. Gesture animation stream
is produced by concatenating gesture phrases aligned with
pitch accents. Gestures are selected in order to maintain
motion smoothness, preserve as many original motion clips
as possible and obey emphasis relation with speech. Lip
sync is generated following a standard algorithm. However,
we relate speech strength with facial expressions to im-
prove realism. Moreover, we have implemented a tool for
animators that allows controlling the output animations via
parameterization. A set of straightforward parameters are
presented which permit a change in animation emphasis
by adjusting pitch accents detection or emphasis relation
between gestures/visemes with speech.

As future work, we plan to improve facial animation
synthesis by studying the relationship between speech into-
nation and facial expressions. In addition, we plan to include
independent head motion [25] and finger motion [26] to
further increase realism of the overall animations.
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