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Abstract
An objective way to obtain consonant visemes for any given
Spanish speaking person is proposed. Its face is recorded while
speaking a balanced set of sentences and stored as an audio-
visual sequence. Visual and auditory modes are segmented by
allophones and a distance matrix is built to find visually similar
perceived allophones. Results show high correlation with te-
dious subjective earlier evaluations regardless of being in Eng-
lish. In addition, estimation between modes is also studied, re-
vealing a tradeoff between performances in both modes: given
a set of auditory groups and another of visual ones for each
grouping criteria, increasing the estimation performance of one
mode is translated to decreasing that of the other one. More-
over, the tradeoff is very similar (<7% between maximum and
minimum values) in all observed examples.
Index Terms: Audiovisual processing, Viseme extraction, Au-
ditory visual uncertainty

1. Introduction
It is well known that speech is experienced by humans from
the beginning of their lives as a bimodal activity [1], i.e. with
two related communication channels: the visual and the audi-
tory ones. Predicting one mode from the other one has shown
to be useful in lip reading activities [2] and applications like vi-
sual telephony for the hearing impaired [3]. It has been shown
that visual mode can be estimated linearly from the auditory
one with a precision of about65% [4]. Nonlinear methods, as
artificial neural networks and hidden markov models, have been
proposed [5, 6] to account for the remaining35%.

About the particular units of each mode, auditory data is
grouped into allophones (similar auditory realizations of the
minimum abstract meaning unit called phoneme) [7], while
visual data is clustered into similar visual realizations of
phonemes (actually, allophones), also known as homophenous
sounds, visual phonemes or visemes [8]. The first viseme pro-
posals emerged in the seventies [9] and eighties [10] and were
obtained through long and tiring subjective testing processes.
In fact, it has been shown that it is possible to specify different
viseme groupings with different degrees of similarity between
visual realizations [11]. Current research works are based on
those tedious preliminary studies, like the viseme specification
of MPEG-4 [12], which is based on that of [9].

This paper deals with auditory and visual data clustering.
First, a new objective viseme grouping method using the Bhat-
tacharyya distance [13] is proposed in section 2 to overcome the
subjective testing difficulties of previous works and allow using
natural speech when obtaining visemes. Second, an analysis of

different auditory and visual clustered data detailed in section
3 reveals that better data clustering in one mode is translated to
a worse one in the other domain (section 4). Moreover, their
tradeoff appears to be nearly constant (section 4.2)

2. Viseme grouping
A new viseme grouping method is stated in this section. It is
based on simulating the experiments carried out by real people
in preliminary works like [8, 9, 10]. Simplifying their proce-
dures, tested people in those works were used as expert systems
when classifying visual appearances of different phonemes.
The resulting groups were supposed to be visually distinguish-
able among them but not inside them, i.e., each group consisted
of visual appearances so similar that it was impossible to clas-
sify them into different groups. In this paper, it is proposed to
change the expert measurement given by a person by an objec-
tive one obtained numerically by a computer. In order to achieve
this aim, a particular codification of visual appearances is pro-
posed in section 2.1 and a measure of distanced(·) between two
visual appearances is provided and stated in section 2.2.

2.1. Data representation

Audiovisual sequences containing the face of different people
(one at a time) speaking a set of balanced sentences in Spanish
at fps frames per second and sampling frequencyfs are taken
as input in this work. Synchronized audio and video channels
were then extracted and processed separately for each person.

The codification proposed for the visual appearances is
based on eigenspaces [14] and it is obtained with the princi-
pal component analysis (PCA) [15] of the vectorized set of
aligned image mouth regions (simultaneously computed follow-
ing [16]). Therefore, a vectorized mouth regionm of P pixels
can be approximated by (1):

mP×1 ≈ UP×KcK×1 + m̄P×1 (1)

where U is an orthonormal matrix which identifies the
eigenspace (itsK columns are the largestK principal compo-
nents of the given set of mouth images),m̄ is the mean mouth
image andc is the projection ofm − m̄ with respect to basis
U or video vector. Dimensionality reduction can be optimally
obtained thanks to PCA, withK << P ; particularly,K can be
selected so the eigenspace accounts for a specific amount of sin-
gular value energy (85% in this work), obtaining high compres-
sion rates with low perceptual losses [14]. In this case,K = 12
was selected. Faster comparisons can be made using this com-
pact visual representation of mouth images. Moreover, since vi-
sual redundancy is minimized through PCA, fewer dimensions
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are obtained, allowing the computation of covariance matrices
with fewer examples. OnlyK+1 mouth images are necessary
to obtain an estimation of itsK×K covariance matrixΣ.

A labelling process was carried out over the auditory infor-
mation in order to obtain the temporal labelstn of the different
uttered allophones. This task was automatically achieved using
the HTK toolkit [17]. Fromtn, video frames could be obtained
as i = round(tn ∗ fps). Unfortunately, due to little random
asynchronies given by the recording webcam, manual supervi-
sion of video channel was needed to avoid them.

Auditory information was windowed using audio frames of
20 ms, centering them at samples = round(tn ∗ fs), where
temporal labels are represented bytl. Next, the audio frames
were parameterized with12 linear spectral frequencies (LSF),
obtaining audio vectorsa. LSF were selected since they are
closely related to the vocal tract geometry [18] and are also used
in extended standards like GSM [19].

2.2. Distance between groups

In order to find the distance between different sets of visual ap-
pearances labelled with the same allophone, or visual sets, they
must be quantified. It is proposed to approximate each setr with
a multivariate normal distributionNr, i.e., providing it with a
mean or centroidµr and a covariance matrixΣr. Let Cr be a
matrix which columns are the video vectorsc (see section 2.1)
related to those mouth regions where the particular allophoner

is uttered. Thenµr andΣr can be computed as:

µr = 1
Nr

Cr · 1 (2)

Σr = 1
Nr
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where1 is a column vector of ones. Next, the Bhattacharyya
distance [13] between normal distributionsNr andNl (4) can
then be used to find the similarity between sets of visual appear-
ances related to allophonesr andl:
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Therefore, a graph containing the distances among all visual
sets can be defined and represented as a symmetric matrixDv,
whereDv(r, l) = B(Nr,Nl) (see figure 1).

2.3. Grouping similar visual sets

The visual sets defined in section 2.2 can be grouped together
using the similarity information stored in matrixDv. The simi-
larity of visual setr to the other ones is represented by ther-th
column ofDv ordr
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Consequently, when obtainingG visemes, the columns ofDv

can be clustered intoG classes, yielding similar visual sets into
the same class. Since the resulting classes consist of similar
visual appearances of allophones, they can be called visemes,
following the original definition of [8].

3. Clustering

Once a set of visemes is found with a method like that of section
2.3, it is desired to know how well they can be estimated from
auditory information. Bayesian estimation [20] is used in this
work to obtain this goodness measurement (see section 3.3). As
can be seen in the results of section 4, viseme estimation from
audio data is far from being optimal, since auditory information
is clustered following a visual criteria, e.g., visually different al-
lophones[n] and[m] are acoustically similar, making it difficult
to distinguish among them with auditory information. However,
if allophones are clustered following an auditory criteria of sim-
ilarity (see section 3.1), an estimation improvement is obtained
(see section 4) for them. Different audio clusters are shown in
figure 2 when grouped by visemes or sets of similar allophones.
In addition, another grouping criteria is presented in section 3.2,
which does not take into account the segmentation of section
2.1. The goodness measure defined in section 3.3 can be used
to compare all clustering processes.

3.1. Audio clustering

The distance measurements of section 2.2 and the set grouping
process of section 2.3 can be extended to auditory information
with the redefinition of matrixCr to include audio vectors in-
stead of video ones. Identities (2) and (3) can be used to obtain
their respective normal distributions. Next, a symmetric ma-
trix Da can be generated using the Bhattacharyya distance (4)
among the resulting normal distributions (see figure 1) like in
Dv. TakingDa, theG groups of more similar allophones can
then be found following the same process stated in section 2.3
for obtaining visemes.

(a) (b)

Figure 1:Distance graphs: (a) among sets of visual mouth ap-
pearances grouped by allophones; (b) among sets of audio vec-
tors grouped also by allophones. White color is related to max-
imum similarity while black corresponds to a minimum one.

(a) (b)

Figure 2: Auditory information clustering into six classes: (a)
grouped by visemes; (b) grouped by sets of similar allophones.
Clusters of (a) are more similar among them than those of (b).



3.2. Source data

The proposed clustering process stated in section 2.3 for video
information and used in 3.1 for audio is known in this paper
asgrouped data clustered by videoandgrouped data clustered
by audio, respectively. A strong restriction is imposed in both
cases: vectors labelled with a particular allophone cannot be
assigned to different groups in the clustering process. This re-
striction can be avoided if audio and video data are clustered
regardless of their corresponding allophone. In these cases,sin-
gle data clustered by audioandsingle data clustered by video
are obtained, respectively.

3.3. Goodness measurement

Different sets of labels are provided by the four clustering
processes defined in section 3.2. They depend on the source
data (audio or video) and if segmentation information is con-
sidered (grouped or single). Moreover, a set of clusters can be
defined from each set of labels for both the audio and video data
subspaces (see table 1). In order to measure the goodness of the
clustered data in each case, the percentage of correctly classi-
fied data vectors will be obtained with a maximum a posteriori
(MAP) Bayesian estimation technique [20]. Each cluster can be
approximated by a multivariate normal distributionN (µ,Σ)
from its own data as in section 2.2. The MAP technique finds
the estimated cluster̂θk which maximizes the following a pos-
teriori probability of data vectorxk from distributionsNi and
the a priori probabilities p(θi):

θ̂k = argmax
θi

{p(θi|xk)} = argmax
θi

{p(θi) p(xk|θi)} (9)

p(xk|θi) =
1

(2π |Σi|)M/2
e
− 1

2
(xk−µi)Σ

−1

i
(xk−µi) (10)

whereµi andΣi are the mean and covariance matrix of cluster
i andM is the dimension of vectorxk. Letθk be the real cluster
of xk. If θ̂k = θk, thenxk is correctly classified.

When evaluating the clustering goodness in the visual sub-
space,xk are the video vectors. On the contrary, they are the
auditory vectors when the evaluation is carried out in the au-
ditory subspace. The data sets used to build the distributions
N are the same as the test data sets; although this results in
global higher estimation rates, it is not considered important
in this work because relative comparisons between clustering
processes are desired rather than absolute performance results.

Table 1: Obtained cluster sets (CS). Labels are obtained from
grouped or single data from both modes and then they can be
used to cluster video and audio information.

Clustered Single Data Grouped Data
data by audio by video by audio by video

Audio CS 1 CS 3 CS 5 CS 7
Video CS 2 CS 4 CS 6 CS 8

4. Experimental results
Three audiovisual sequences of three minutes each were
recorded at25 frames per second with a sampling frequency
of 16000 Hz and image resolution of320 × 240 pixels. A set
of twelve sentences was uttered in Spanish by three non profes-
sional speakers. Then, video vectors were extracted from the

visual channel and audio vectors were obtained from the audi-
tory one following the process described in section 2.1.

The sentence set was balanced for the Spanish language and
included varied prosody because analysis of real natural data
was desired. As a result, some allophones appeared too few
times (<12) and were not taken into account in the analysis.
The considered allophones appeared between19 and199 times
each and are shown in table 2. The discarded ones were[v], [b],
[g], [M], [J], [ñ], [N], [c], [z], [L], [r], [G], [x], [d]. In Spanish,[δ]
symbol is used instead of[D] because the former is more dental
than interdental that the latter.

Table 2:Considered Spanish allophones.

Allophones

[f], [T], [p], [B], [δ], [k],
[m], [t], [l], [R], [n], [s]

4.1. Viseme sets

Following the allophone grouping process in the visual domain
stated in section 2.3, the visemes obtained are summarized in
table 3 for each studied subject. The result with six groups is
given following the number of groups used in the literature [10]
to compare with. Note that for each subject the viseme con-
sisting of allophones[m], [p], [B], the one consisting of[f] and
the one corresponding to allophone[T] are found in separated
groups. However, there is weak agreement with other groups
involving non visible articulators of the vocal tract.

Table 3:Visemes obtained for three subjects and six groups.

Visemes Subject 1 Subject 2 Subject 3

Viseme 1 [m], [p], [B] [m], [p], [B] [m], [p], [B]
Viseme 2 [T] [T] [T]
Viseme 3 [f] [f] [f]
Viseme 4 [δ], [t] [δ], [t], [s] [δ], [k]
Viseme 5 [n], [r] [n], [l], [k] [n], [r], [l]
Viseme 6 [s], [l], [k] [r] [t], [s]

4.2. Uncertainty measurement

The goodness measure defined in section 3.3 is obtained for
every cluster set of table 1, with a number of groups ranging
from 5 to 14. Their mean values through all three people can be
seen in table 4. Note that increasing the goodness of one mode
is translated to decreasing that of the other one. Moreover, the
computed geometric mean between the goodness in both modes
for each column of table 4 is similar through all columns (<7%
of difference between maximum and minimum value).

Table 4:Goodness of each clustered data subspace of video and
audio with the geometric mean in the last row.

Clustered Grouped Data Single Data
data by audio by video by audio by video

Audio 0.682 0.630 0.916 0.326
Video 0.386 0.443 0.331 0.923

Geometric mean 0.513 0.528 0.549 0.551



5. Discussion
Dimensionality reduction of section 2.1 has been a key point
in this work because of the need of estimation of covariance
matrix: image vectors of thousand of pixels have been reduced
to 12 parameters thanks to PCA preserving85% of the energy.

The results about viseme grouping of section 4.1 follow ear-
lier studies (the reader can take a look at [10] for a good review)
in two ways: i) allophone groups involving visible articulators
are the same than those in the previous works but taking into
account Spanish instead of English: viseme[m], [p], [B], viseme
[f] and viseme[T]; ii ) as in the literature, less agreement is ob-
tained for the other allophone groups involving internal articula-
tors, with only few common allophones like[n] or [δ]. Further-
more, the results have been obtained with natural speech rather
than with the nonsense utterances of previous works. This fact
strengthens both previous and current work and suggests a new
objective way to obtain visemes from natural speech.

Another interesting result is the observed uncertainty in sec-
tion 4.2 between audio and video for a given clustering criteria.
Increasing performance in one mode seems to decrease that of
the other one. Moreover, their geometric mean remains similar
in all four kinds of clustering. This fact shows numerically the
idea stated in previous works about the limitations of working
with one isolated mode (remember that each clustering process
depends only of data of one mode). Particularly, the lower video
performance when using segmented data (grouped data) can be
explained by the fact that segmentation was made using audi-
tory information. When no segmented data was used (single
dada), the two options are nearly symmetric.

6. Concluding remarks and future work
This work has proposed an objective way to find viseme groups
from segmented audiovisual sequences with natural speech in
Spanish. The obtained results are highly correlated to earlier
works about viseme definition in English using nonsense utter-
ances and subjective long evaluation processes.

The method to find viseme groups has been generalized and
other clustering criteria have been applied to audio and video
modes. In order to keep objectivity, a goodness measurement
has been defined to obtain the quality of each clustered data ob-
tained in the different grouping processes. It has been noted a
tradeoff in the quality between clustered audio and video infor-
mation for each of the four given clustering options. Moreover,
this tradeoff seems to be near a specific value, which remains
similar in all observed examples.

Future work includes using more audiovisual sequences
with professional acquisition devices to further confirm the ob-
tained visemes. The proposed viseme grouping method can also
be useful when customizing personalized talking heads.
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