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Abstract
Hidden Markov Models based text-to-speech(HMM-TTS)syn-
thesis is one of the techniques for generating speech from
trained statistical models where spectrum and prosody of ba-
sic speech units are modelled altogether. This paper presents
the advances in our Spanish HMM-TTS and a perceptual test is
conducted to compare it with an extended PSOLA-based con-
catenative (E-PSOLA) system. The improvements have been
performed on phonetic information and contextual factors ac-
cording to the Castilian Spanish language and speech genera-
tion using a mixed excitation(ME) technique. The results show
the preference of the new HMM-TTS system in front of the
previous system and a better MOS in comparison with a real
E-PSOLA in terms of acceptability, intelligibility and stability.

1. Introduction
One of the main problems of concatenative text-to-speech
(TTS) systems is the degradation of quality when the database
does not comprise the best units to be synthesized. Hence,
larger databases are required for these kinds of systems. As the
database grows up, it is more suitable to contain a unit closer to
the target and more likely to have a better join [1]. In order to
reduce errors, this database could become difficult to process.
Therefore, a common solution is to use a limited domain con-
text where text to be synthesized is under control (e.g. Virtual
Weather man [2]).

Thence it follows that the final objective is to improve qual-
ity and naturalness in applications for general purpose. The
main feature of the HMM-TTS is the statistical modelling of
units producing a smoothed and natural speech that have been
shown to be a possible advantage in front of the quality discon-
tinuities in the concatenative systems [3]. Moreover, the main
benefitof HMM-TTSis the capabilityof modellingvoices in or-
der to synthesizedifferent speaker features, styles and emotions
and perform interestingadaptationsof speech [4]. Furthermore,
HMM for speech synthesiscould be used in new systemsable to
unify both approaches and to take advantage of their properties
[5]. At this point, interesting work was presented by [6] to de-
velop a fused system and last contributions have been presented
in [7].

The aim of this paper is to present the advances through-
out the development of a high-quality HMM-TTS for Castilian
Spanish based on HTS engine [8]. Previous work for Spanish
[9] identified the common problems that affect the HMM-TTS
systems and other languages as well: vocoder, modelling ac-
curacy and over-smoothing [7]. The following improvements
are related to linguisticand vocoder issues which try to solve or

alleviate these problems.
Firstly, the following linguistic features have been updated.

In the one hand, the unit clustering has been upgraded using
new contextual factors with respect to the previous approach
[9], where the HMM training was presented to use a decision
tree-based context clustering in order to improve models train-
ing. Also, clusteringis able to characterizephonemeunits intro-
ducing a counterpart approach with respect to English [3]. On
the other hand, grapheme-to-phonemeconversion now uses a
rule-basedsystem to fix pronunciationerrors instead of the Fes-
tival Spanish voice [10]. Secondly, synthesis quality has been
increased by applying a mixed excitation (ME) technique us-
ing well defined models of the parametrizedresidual excitation
[17]. The system is based on a source-filtermodel approach to
generate speech directly from HMM itself. One of the draw-
backs of these systems is the non ideal speech reconstruction
due to the parametricrepresentationof speech that the ME tech-
nique can solve by adding extra excitation parameters to the
model.

This paper is organized as follows: Section 2 describes
HMM system workflow and parameter training for spectrum,
pitch, ME and duration. Section 3 concerns to synthesis pro-
cess description. Section 4 presents measures, section 5 dis-
cusses results and final section presents the concludingremarks
and future work.

2. HMM-based TTS system training
As in any HMM-TTS system, two stages are distinguished:
training and synthesis. Figure 1 depicts the classical system
training workflow (dotted lines stand for parameters modelled
within the HMM).
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Figure 1: Training workflow
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First, mel-cepstral analysis of the speech is performed.
The first step estimates the HMM for isolated phonemes (each
HMM representsa contextual phoneme)and each of these mod-
els will be used as an initialization of the contextual phonemes.
Then, similar phonemes are clustered by means of a decision
tree using contextual informationand previouslydesignedques-
tions. Unseen units during the training stage can be synthesized
using these decisiontrees. Each contextual phonemeHMM def-
inition includes spectrum, state durations, F0, ME FFT param-
eters and the voicing strengths (VS) coefficients. During the
analysis of these information,pitch is used for subband filtering
and FFT parametrization.

Topology used is a 5 states left-to-rightwith no-skips. Each
state is represented with 4 independent streams, one for spec-
trum, one for pitch and two more for mixed excitation part
which comprises both FFT and VS. Each parameter is com-
pleted with its delta and delta-deltacoefficients. The modelling
informationis structured in table 1.

Table 1: Informationmodelled in the HMM.

Feature vector streams
c ∆c ∆2c Spectrum
p ∆p ∆2p F0

me ∆me ∆2me FFT parameters for ME
v ∆v ∆2v Voicing strengths

2.1. Spectrum modelling

The system is based on a source-filter model and spectrum pa-
rameters are modelled as multivariate Gaussian distributions
[11]. Depending on the type and number of coefficients used
on the vocoder, the quality of the synthetic speech can signifi-
cantly vary. In this work, spectrum is updated to be modelled
from 12th to 24th order mel-cepstral coefficients which gener-
ate speech with the MLSA (Mel Log SpectrumApproximation)
filter [12]. The advantage of mel-cepstral in front of standard
MFCC is that spectrum is better represented, so it gives a bet-
ter performance of speech during synthesis [12]. Mel-cepstral
has presentedgood results improving the basic HMM system in
languages such as Arabic [13].

Last advances in high quality HMM-TTS used the
STRAIGHT-based vocoding [14]. This analysis/synthesistech-
nique is considered a high-quality solution initially used for
speech morphing though it has been successfully applied to
HMM-TTS (e.g. Blizzard 2005 [15]). Although it presents the
advantage of performing pitch-adaptative spectral analysis, it
was shown in [15] that MLSA filter was the most computation-
ally efficient synthesis approach.

2.2. Mixed excitation

The aim of using a mixed excitation is to mimic the characteris-
tics of natural human speech. It was first used in the LP vocoder
(MELP) [16], a low bit rate speech coding and later integrated
in a HMM-TTS for Japanese [17]. The reason for the vocoded
speech quality is attributed mainly to the insufficiency of the
binary source signal model which switches exclusively either
the impulse train or the white noise. To solve this, the mixed
excitation is implementedusing a multi-bandmixing structure.

As in the case of spectrum, STRAIGHT has also been used

for the design of the mixed excitation as it weights a sum of a
pulse train with phase manipulationand Gaussian noise. Other
interesting schemes proposed the design of ME using wavelet
[18].

The main informationused to train the HMM is the follow-
ing:

• Bandpass voicing strengths. The speech signal is filtered
into five frequency bands considering a sample rate of
16k Hz [17] (see figure 1). The voicing strength in each
band is estimated using normalized correlation coeffi-
cients around the pitch lag. In spite of correcting pitch
estimationsimultaneouslywith correlation,first the pitch
is marked up and later, the correlation in each band is
computed.

• Fourier magnitudes. In this work, the FFT parameters
are the first thirty magnitudesof the centred pitch period
of a 20ms excitation frame. The residual excitation is
obtained by inverting the exponentialfilter transfer func-
tion [12] and filtering.

2.3. Pitch, mixed excitationand duration modelling

Pitch marks are crucial in order to obtain a good synthesis as
they affect the representationof various parametersand the pos-
terior training of the models. On the one hand, F0 contour is
simultaneously modelled within the HMMs, hence estimated
contour is dependent on the correctnessof the pitch marks. On
the other hand, mixed excitation FFT coefficients are estimated
based on the determinedpitch sequence. Thus, the Spanish cor-
pus pitch analysis has been performed using an approach that
automaticallyreduces the mark-uperrors by using dynamicpro-
gramming [19]. Moreover, this algorithm reduces discontinu-
ities in the generated F0 curve for synthesis.

F0 model (table 1) is a multi-space probability distribu-
tion [11] that must be used in order to store continuous log-
arithmic values of the F0 curve and a discrete indicator for
voiced/unvoiced. As in the case of spectrum, FFT magnitudes
and voicingstrengthsare modelledas multivariateGaussiandis-
tributions.

State durations of each HMM are modelled by a multivari-
ate Gaussian distribution [20]. Its dimensionalityis equal to the
number of states in the correspondingHMM.

2.4. Phonetic data

The Spanish female voice was created from a corpus developed
in conjunction with LAICOM [21]. Speech was recorded by a
professional speaker in neutral emotion. Time boundaries seg-
mentation was performed using an embedded HMM training,
segmentedand finally revised by speech processingresearchers.

Phonetic labelling was performed in the previous work [9]
using the Festival [10] Spanish voice. In order to resolve some
incorrect transcriptions, a tested rule based approach (SinLib
[22]) has been applied for text analysis in this work.

The grapheme-to-phonemeconversion has been extended
from 31 to 36 units (see table 2) with one model of silence
(types of silences are POS-tagged). It is important to notice
that the system has the feature of a continuous transcription,so
rules are applied between words (e.g. /barko/ and /miBarko/,
translatedas, “ship” and “my ship”).

• Vowels. Models for vowels are different either if they are
stressed (capital letters) as also used in other approaches
[23]. The system distinguishes various types of vowels:
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semi-vowel, half open, open, closed and half closed in-
cluding the main group of table 2.

• Consonants. New consonants (emphasized in bold) are
used to avoid some pronunciation errors and improve
intelligibility. Apart from the main groups, the sys-
tem is also able to consider dental, velar, bilabial, alve-
olar, palatal, labio-dental, inter-dental, pre-palatal and
voiced/unvoiced.

Table 2: Castilian Spanish consonants and vowels inventory
(SAMPA [24]).

Vowels
Frontal vowels j,i,I,e,E,a,A
Back vowels o,O,u,U,w

Consonants
Plosive p,b,t,d,k,g
Nasal m,n,J,N,M

Fricative B,f,tS,T,D,s,x,G
Lateral l,L
Rhotic R,r

2.5. Contextual factors

Input text is converted into a complete list of contextualized
phonemes and each one is representedby a HMM. As the con-
textual information increases, HMMs will have less training
data. To solve this problem during the training stage, similar
units are clustered using a decision tree [11].

Extracted contextual information is language dependent
and it serves as the features (attribute-value pairs) to construct
the clustering decision trees. These trees are constructed using
a set of questions designed in base of the contextual factors and
the unit features using a yes/no based decision. Information
referring to spectrum, F0, duration and ME is independently
clustered by different trees.

Basically, the new approach in this work is focused on in-
tonational improvement. English HMM-TTS included the ToBi
tags which have been widely studied and applied to many sys-
tems [25]. In our case, we apply two groups of phonemes
(Accentual group (AG) and Intonational group (IG)) in order
to better represent the expressiveness. These parameters pre-
sented good results in a F0 estimator based on a machine learn-
ing approach applied to Spanish [9]. New information related
to prosody events is the following:

• AG. Incorporates syllable influence and is related to
speech rhythm. The type of AG is specifiedin Spanishas
agudo, plano, esdrújula and sobre-esdrújula depending
on the position of the accented syllable in the word.

• IG. Structure at this level is reached concatenatingAGs.
There are three types: interrogative, declarative and ex-
clamative.

• AGs and IGs start/end flags.

• Syllable and word start/end flags.

New features are related to flags for syllable, words and in-
tonationalgroups boundaries(SinLibsystem also controls these
boundaries) and Part-of-speech (POS) that has been upgraded

using Freeling [26] (a morphological engine). The following
parameters are used to design the questions for the tree-based
clusteringand are presented in hierarchicalorder:

1. Phonemes. Current phone, left and before left phones
and identical for the right side. Each kind of phoneme is
labelled independently depending on the characteristics
of table 2.

2. AG. The number of phonemes in current, previous and
next AG; start/end flag and type of AG.

3. IG. Start/end flag and types of IG.

4. Syllable. Stress of current, previous and next syllables;
position forward and backward of current syllable in
current word and in current phrase; number of stressed
syllables with respect to contextual syllables (this com-
prises 4 factors); vowel of the syllable and start/endflag.

5. Word. POS of the current, next and previous words; the
number of syllables of current, next and previous words
and position (forward and backward) of word in phrase
and start/End flag.

6. Phrase. Number of syllables and number of words in
current, previous and next phrases; positions (forward
and backward) of current phrase in the utterance.

7. Utterance. Number of syllables, words and phrases in
the utterance.

3. HMM-based TTS system synthesis
Figure 2 shows the synthesis workflow. Once the system has
been trained, it has a set of phonemes representedby contextual
factors. The first step is devoted to produce a complete contex-
tualized list of phonemes from a text to be synthesized. Chosen
units are converted into a sequence of HMM.
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Figure 2: Synthesis workflow

Necessary parameters to synthesize are generated from the
HMM using the algorithmproposed in [27]. The HMM is com-
posed of the data and its ∆ and ∆2 features (see table 1). By
taking into account the constraints between static an dynamic
features, the algorithm avoid generatingidenticalparametersfor
each state of the same HMM which results on an improved and
smoothedspeech envelope. Generateddata are mel-cepstral,F0
and ME parameters. Duration is also estimated to maximize the
probabilityof state durations.

Excitation signal is generated from the F0 curve, voiced
and unvoiced information and the FFT parameters. Figure 3
presents the scheme to generate the mixed excitation (dotted
lines indicates parameters generated from HMM). The pulse
excitation is calculated from Fourier magnitudes using an in-
verse DFT of one pitch period in length. The bandpass fil-
ter for voiced and unvoiced parts are given by the sum of all
the bandpass filter coefficients for the voiced and unvoiced fre-
quency bands respectively. Voicing strengthsare used to decide
whether each filter coefficients belong to the voiced or unvoiced
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part. The excitation is generated as the sum of the filtered peri-
odic and noise excitations.

In order to reconstruct speech, the system uses spectrum
parametersas the MLSA filter coefficients and excitation as the
signal to filter. Finally, the obtained speech is filtered by a pulse
dispersionfilter which is a 130th order FIR derived from a spec-
trally flattened trianglepulse based on a typical female pitch pe-
riod. The pulse dispersion filter can reduce some of the harsh
quality of the synthesizedspeech [16].
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Figure 3: Mixed excitation generation during the synthesis
stage.

One of the main problems during parameter generation is
over-smoothing [28] that decreases the expressiveness and nat-
uralness. Although the first solution would be to increase the
size of the trees, its effect does not represent a substantial im-
provement in quality [9]. Another solution to improve the ex-
pressiveness could be to use an external F0 estimator though it
can reproduce a forced intonation in some cases [9].

Last advances presented in [7] focus their study on reduc-
ing the error of the generated parameters. The HMM likelihood
for a parameter trajectory generated by the conventional algo-
rithm is too large compared with that for a natural one. This
implies that is not only necessary to maximize the HMM likeli-
hood [28]. For this case, minimumgenerationerror (MGE) [29]
or global variance (GV) [28] presented good results. GV intro-
duces new constraints to the method of training and generation
in order to avoid over-smoothing. The results reported were
very good though at the moment is only showed to perceptually
improve speech quality when applied to both mel-cepstral and
F0.

4. Experiments
Experiments are conducted on a female corpus and evaluated
using perceptual tests. The system was trained with HTS [8]
using 620 phrasesof a total of 833 (25% of the corpus is used for
testing purposes). Contextual factors represent around 20000
units to be trained and around 5000 are unseen units.

Firstly, texts were labelled using contextual factors de-
scribed in section 2.5. Then, HMMs are trained, decision trees
for spectrum, F0, state durations and ME are built. Finally,
HMM models are clustered. These trees are different among
them because spectrum, F0 and states duration are affected by
different contextual factors. Table 3 presents only two features
to show the type of information in each tree. While spectrum
tree is focused on phoneme features, excitation tree presents
more high level information related to phrases (e.g. AG has
increased the representationwith respect to the spectrum tree).

It has been observed and discussedthat RMSE is not a valid
objective measurefor F0 as it does not reflect real improvements
showed by perceptual tests. For example, the generation al-
gorithm considering GV usually causes larger errors compared
with the conventional one [28] though GV increases the natu-

Table 3: Main contextual factors used for each tree.

Feature vector Contextual factors
Spectrum Ph. 87%, AG 2%, Syll. 4%
Excitation Ph. 45%, AG 16%, Syll. 10%
Durations Ph. 76%, AG 8%, Syll. 5%

FFT Ph. 21%, AG 11%, Syll. 28%
RV Ph. 8%, AG 7%, Syll. 34%

ralness of synthesized speech. Meanwhile, subjective speech
quality evaluation is generally seen to be the best measure of
the aesthetic aspects [30] which is used to validate most of the
TTS systems. Taking this into account, what follows presents
a set of perceptual tests 1 to measure the improvements of the
current HMM-TTS system.

In the first test, the systems with standard excitation (OLD-
HMM) and the new system (ME-HMM) are evaluated. Figure
4 presents the preference of the new system in front of the old
one. The effect of the ME (i.e. speech reconstruction buzzy
is significantly reduced) is more important than the linguistic
improvements. The preference tests evaluated single sentences
by 15 listeners.

76,4 13,9 9,7

ME-HMM Equal OLD-HMM

50,00 22,62 27,38

Figure 4: Preference test for OLD-HMM and ME-HMM sys-
tems: (up) ME and linguistic improvement, (down) only lin-
guistic improvements

Once the new system has been validated, the second test
(see figure 5) goal is to compare HMM-TTS systems with E-
PSOLA [31] in terms of acceptability, intelligibilityand natu-
ralness. The perceptual comparisons were conducted using the
same number of training sentences for both HMM-TTS and the
E-PSOLA systems. Notice that the HMM-TTS systems model
the F0 contourof a female voice with high variability(µF0=167
Hz, σF0=41 Hz) and the E-PSOLA version has real prosody
from corpus as input.

The test was performed using a five steps (1-5) Mean Opin-
ion Score (MOS) corresponding to the following quality eval-
uation: bad, poor, fair, good and excellent. The number of lis-
teners were 25, most of them students of a technical degree and
twenty phrases were randomly chosen for each system.

Different studies refer to acceptabilityas a measure of dif-
ferent components [30]. It is clear that in subjective user evalu-
ations, at least intelligibilityand naturalness play an important
role. Subjective acceptability is not necessarilya simple conse-
quence of intelligibility, and a distinctionneeds to be made be-
tween the aesthetic and functional aspects of synthetic speech.

1. Acceptability. Figure 5 shows that acceptability is
higher for ME-HMM than for the other two systems,
reaching a MOS of 2.8.

2. Naturalness. This measurement deals with quality and
intonation as a measure of the extent to which a synthe-
sizer sounds like a human [30]. In the one hand, the main

1See http://www.salle.url.edu/∼gonzalvo/hmm, for some synthesis examples
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Figure 5: Acceptability, intelligibility and naturalness MOS
tests for ME-HMM, OLD-HMM and E-PSOLA systems.

problem of the HMM-TTS is that produces a flat synthe-
sis in some phrases. Moreover, although using a ME ap-
proach, the best example of a concatenative system still
produces a better synthesis than the best HMM-TTS re-
construction[7]. On the other hand, E-PSOLA synthesis
sounds more like a human but naturalness is affected by
quality discontinuities.In any case, ME-HMM improves
quality in comparison to the OLD-HMM due to the use
of ME and new contextual factors (see section 2.5).

3. Intelligibility. This measurement marks the quality to
distinguish the maximum number of words in a phrase.
While E-PSOLA produces strong discontinuitiesthat af-
fect the comprehension of the phrases, HMM-TTS sys-
tems solve it by means of a smoother synthesis. This test
also measures the effect of the linguistic changes (see
section 2.4) with respect to the OLD-HMM.

Finally, as concluded for other languages (e.g. English [3]
or EuropeanPortuguese[32]) HMM-TTSpresents the most sta-
ble quality and although is less natural than E-PSOLA, it avoids
quality discontinuities. In order to measure this, figure 6 shows
the stability of the acceptabilitytest in a bar graph. Notice that
the E-PSOLA system is able to present more high-quality sen-
tences but the probability of producing a bad synthesis is also
higher than for the ME-HMM system. Stability of the ME-
HMM system is then guaranteed thanks to a high probability
“fair” zone.
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Figure 6: Stability comparisonbased on the acceptabilityMOS
results.

5. Discussion
In order to analyse the concrete effect of the HMM-TTS, this
work has presented a perceptual test in order to separate the
factors that make a HMM-TTS preferable for general purposes
applicationscontrollingthe length of the corpus.

In the one hand, the advantage of the HMM-TTS systems
is its ability to maintain the synthesis quality for any text to
be synthesized and the main drawback is the naturalness of the
final produced speech. Using a HMM-TTS provides a high in-
telligibilitysystem, that could even be more independentof cor-
pus label errors than a standard concatenative system. In fact,
the perceptual results could justify one of the possible aspects
to make the acceptabilitybe higher for system based on HMM-
TTS, that is, the intelligibilityand a quality able to reduce the
vocoded speech.

Therefore, HMM-TTS systems used in a non limited do-
main applicationsprovide stability. The intelligibilitytest could
be the main reason because results have shown that smooth
speech with a high intelligibilityis preferable though a concate-
native system still provided a higher naturalness.

6. Conclusionsand future work
This work has presentedthe improvements on a Spanish HMM-
TTS based on HTS updatingnew phoneticinformation,append-
ing the AG and IG to contextual factor and integrating a ME
scheme. With a set of tests we have compared the performance
against a concatenative synthesis system. Subjective measures
presented the advance of the system in terms of acceptability,
intelligibility, naturalnessand stability. The results have shown
that the HMM-TTS for Spanish presents a better intelligibility
and the ME reduced the buzzy vocoder quality. Also accept-
ability and stabilityof the system has presentedan advantage in
front of other kinds of synthesisin generalpurposesapplication.

HMM-TTS produces a flat synthesis caused by a smooth
F0 contour and mel-ceptral parameters estimation. The con-
clusion from the results is that the HMM-TTS system is more
suitable due to produce a continuousand more stable synthesis.
However, although naturalnesshas been improved with regards
to the previous system, it is still a lack and more expressive-
ness is still desirable. In this aspect, it seems to be necessary to
integrate a parameter generation using minimum error to gain
expressiveness and naturalness. New techniques and vocoders
(e.g. Harmonic-Noise Model or STRAIGHT) have presented
successful results in TTS systems, so a logical step would be to
compare its performancewith our current system. Moreover, it
would be interesting to shape the HMM generated F0 contour
with an external F0 estimationusing an extended version of the
system presented in the last approach [9].

Voice transformation and conversion techniqueswill be ap-
plied in the future. Finally, perceptual tests have been used to
measure the subjective quality of the system. Due to RMSE is
not a correct measure to objectively measure the improvements
of the systems, it would be desirable to propose a new objective
measure to evaluate the HMM-TTS systems quality that could
also be extended to other types of synthesis. Voice quality de-
scriptors could deal with this topic in the future.
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