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Abstract
This paper presents an HMM-driven hybrid speech synthesis
approach in which unit selection concatenative synthesis is used
to improve the quality of the statistical system using a Local
Minimum Generation Error (LMGE) during the synthesis stage.
The idea behind this approach is to combine the robustness due
to HMMs with the naturalness of concatenated units. Unlike
the conventional hybrid approaches to speech synthesis that use
concatenative synthesis as a backbone, the proposed system em-
ploys stable regions of natural units to improve the statistically
generated parameters. We show that this approach improves the
generation of vocal tract parameters, smoothes the bad joints
and increases the overall quality.
Index Terms: speech synthesis, HMM, unit selection, hybrid

1. Introduction
Current state-of-the-art text-to-speech (TTS) systems often pro-
duce intelligible and natural speech. The most popular ap-
proaches are the concatenative and the statistical synthesis [1].

Concatenative speech synthesis is based on the selection
and concatenation of recorded units. It is the most widely used
approach because it can produce high-quality speech. However,
its drawback is that the quality can degrade if, for some reason
(e.g., data sparsity), an incorrect joint is produced.

Statistical approach, on the other hand, is based on gener-
ating parameters from a trained model. It overcomes the prob-
lems that concatenative approach suffers from by producing a
smoother output. However, the resulting speech quality is lower
than the quality of concatenative systems due to the vocoding.
Nevertheless, statistical approach is very attractive because it
offers a range of model manipulations such as speaker adapta-
tion.

Hybrid speech synthesis evolved as an alternative to the
aforementioned systems. As its name indicates, this approach
attempts to combine the benefits of concatenative and statistical
synthesis. Several ways [2] to achieve this goal are:

• Target prediction: Parameters generated from the
HMM can: (a) constraint the features of the target units,
such as prosodic parameters [3], (b) select 5 ms seg-
ments [4] from acoustic targets or (c) be used in a cost
function [5]. It has also been shown [6] that emis-
sion probabilities of the HMMs trained using Maximum
Likelihood (ML) criterion can be used as target and joint
costs in guiding the selection of phone-sized candidate
units. In addition, a Minimum Selection Error criterion
was proposed in [7] to minimize the number of different
units between the selected and natural phone sequences
using a generalized probabilistic descent algorithm.

• Unit Smoothing: HMMs are used to alleviate the de-
gradation of quality that is due to the use of traditional
spectral techniques for smoothing the joints between the
units. In one method proposed in [8], the HMMs are used
to smooth the spectrum according to what was observed
at the junctions of real speech during training while re-
taining a filter calculated from an actual speech utter-
ance. Another interesting approach reported in [9] fuses
the units by imposing dynamic constraints.

• Unit Mixing: The approaches in this category mix nat-
ural units with the sequences generated by HMMs. This
is achieved by concatenation [10] or by using a hybrid
voice conversion [11]. In the former case, a multiform
segment algorithm determines the optimal sequence of
segments (i.e., natural or HMM-generated units) by min-
imising the degradation of speech. In case the required
phoneme context is missing, the conversion method em-
ploys combination of unit selection with spectrum gen-
eration using speaker-adapted HMMs.

One common characteristic of the hybrid systems described
above is that they are driven by concatenative approach, since
the latter guarantees the naturalness of the synthetic speech.
Moreover, they can help to reduce the effects of data sparsity,
decrease corpus footprint and improve the performance of the
search algorithms. However, the advantages of the pure statist-
ical approach, such as smooth spectral transition, are lost.

The proposed alternative hybrid HMM-driven approach
takes into account the following constraints:

• The synthesis employs HMM parameter generation.

• The synthesis process should avoid mixing units (de-
scribed above) as this can result in quality degradation
that is due to their different spectral nature.

• Concatenative mechanism should be used to improve the
quality in stable regions. This is achieved by introducing
a weight function w(f) defined over frames f that con-
trols the contribution of concatenation.

An HMM-driven hybrid system sacrifices part of the qual-
ity of the natural units, but creates a more flexible structure able
to improve the quality of state-of-the-art pure HMM systems
while keeping their main advantages. By the definition of these
constraints, the resulting system cannot be described as a unit
selection smoother because in the limit, the speech would con-
stitute a vocoded version of the concatenative system.

This paper is organized as follows: section 2 introduces the
proposed system (training and synthesis stages), section 3 and
section 4 describe the LMGE algorithm and the weight function
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respectively and section 5 presents the experiments results. Sec-
tion 6 is the discussion and Section 7 concludes by presenting a
summary of our findings and outline of the future work.

2. The Overview of Hybrid System
The proposed hybrid system is shown in Figure 1. It is com-
posed of two modules: one is HMM-specific and another is
concatenative. Both components are phone-based.
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Figure 1: The hybrid system work flow.

The training stage consists of two steps. First, an average
multi-speaker HMM voice is adapted to target speaker data. The
next step builds the concatenative representation. This step es-
sentially constructs an HMM-based unit selection system that
uses decision trees produced during the HMM training in the
first step. The aim of the second step is to produce the best
sequence of natural units that will be used by the HMM to en-
hance the vocal tract parameters. Since both training steps use
the same decision tree based clustering, low spectral distortion
is expected.

During the synthesis stage, the text to be synthesized is con-
verted to corresponding linguistic specification. Decision trees
are then used to select the corresponding HMM units.

First, durations from the HMMs are used to generate the
parameters of vocal tract, F0 and excitation. The natural units
are then selected from the decision trees by the concatenative
module. A weight function is generated considering the concat-
enation boundaries. In order to guarantee an optimal synchron-
ization between vocal tract sequences, mel-cepstral informa-
tion generated by the concatenative and HMM components are
aligned using DTW (Dynamic Time Warping) algorithm.

Next, the means and variances of the current HMM units
are updated using Local Minimum Generation Error (LMGE)
criterion (described in more detail in section 3 below) based
on the aligned mel-cepstral sequence of natural units and the
weight function. Finally, synthetic speech is generated from
mel-cepstral coefficients using MLSA filter driven by multiband
excitation. Next sections describe the above steps in detail.

2.1. Speaker-independent HMM training

An average voice model is trained using a set of different speak-
ers in order to obtain a robust voice with only some samples of
the target speaker.

At the core of an HMM module we employ a standard mel-
cepstral HMM system [12] that uses the latest quality improve-
ments. STRAIGHT vocoding [13] is used for the multiband
excitation to reduce the buziness of the vocoder. Global vari-
ance is used to alleviate the effects of over-smoothing [14].
We also use explicit state duration probability density function
(HSMM) [15].

The model training for HMM-based synthesis constructs a
set of context-dependent HMM models, where the vocal tract,
pitch and excitation parameters are simultaneously modelled.
The high quality speech vocoder (STRAIGHT) is used to ana-
lyse the spectral envelope (39-th order mel-cepstral coefficients
including delta and delta-delta features) and to get the excita-
tion parameters as an aperiodicity measurement in 5 sub-bands
(0-1, 1-2, 2-4, 4-6 and 6-8 kHz). Pitch information (represented
in logarithmic domain) is modelled by an MSD (Multi-space
probability distribution). Durations use HSMMs to explicitly
model state duration probability density functions. In addition,
we also train a global variance model. Decision trees are con-
structed using Minimum Description Length (MDL) criterion.
More details can be found in [16].

The adaptation uses Constrained Maximum Likelihood
Linear Regression (CMLLR) technique. Mean and covariance
matrices are obtained by simultaneously transforming all the
parameters. In addition, we employ single bias removal and
maximum a posteriori criterion [17]. The adaptation process
is attractive because it does not require a huge amount of data
and reliable quality can be obtained even with a few adaptation
utterances.

2.2. Concatenative system

The aim of the concatenative module is to provide the best nat-
ural units to the hybrid system in order to improve the HMM-
generated parameters. The method we employ is based on a
simplified version of the HMM-based unit selection system de-
scribed in [6]. The processing consists of two main stages. Dur-
ing the first stage, Kullbak-Leibler Divergence (KLD) measure
is used by unit pre-selection algorithm in order to restrict the
search space. The leaf nodes of the decision trees obtained dur-
ing the HMM training (described in previous section) are used
to provide target cost estimates. The second stage consists of a
classical unit selection search that is carried out to get the best
acoustic joints.

3. Local Minimum Generation Error
Minimum Generation Error (MGE) criterion was first intro-
duced in [18]. The idea is to minimize the error of the HMM-
generated parameters with respect to the original training data.
This is achieved by post-processing of the previously trained
models using the standard Maximum Likelihood (ML) criterion
and a distance definition.

The problem with the above approach is that when it is ap-
plied to a full corpus during the training stage, updating from
multiple files smoothes the HMM parameters too much. To al-
leviate this problem we propose an alternative application of
MGE – the Local Minimum Generation Error (LMGE) cri-
terion, which is essentially an MGE that is applied to a single
target utterance during the synthesis, rather than the training
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stage. By using the LMGE during synthesis time with an op-
timal single sequence of natural units generated by the concat-
enative module, it is possible to update the HMM model and
adapt its parameters to the current utterance.

First, it is necessary to measure the distortion between the
original (c) and the generated parameter (c̃) vectors. In our
case, the original sequence is substituted by the natural units
selected from the concatenative module. The similarity metric
we adopt is the Euclidean distance:

�(c, λ) = Dc (c, c̃) = ‖c− c̃‖2 (1)

The MGE updating rule is given by

λupdate = λold − ε

M∑
n=1

∂�(cn;λ)

∂λ

∣∣∣∣
λ=λold

(2)

where cn is the n training observation, M the number of ob-
servations, λ the HMM to be updated and ε the step size for
parameter updating. By simultaneously using all the training
samples of the sequence produced by concatenation and the up-
dating rule of equation 2, it is possible to deduce the simplified
equations 3 and 4 to update the mean and the variance [18]:

μS = μ̂S − 1

Nij

F∑
f=1

(1− w(f)) ·Df,k (3)

σ2S = σ̂2S− 1

Ni,j · σ̂2S
F∑
f=1

(1− w(f))·Df,k ·(c̃f,k − μ̂S) (4)

where Df,k = (c̃f,k − cf,k), Ni,j is the total number of
samples in distribution j in state i, f ∈ [1, F ] is the frame be-
ing analyzed, k is the order of the coefficient of the multivariate
Gaussian distribution, μS = μi,j,k and μ̂ and σ̂ are the mean
and variance prior to update and w is the weight per frame.

Note that the use of LMGE does not convert the HMM gen-
erated sequence into natural units because the updating process
is performed on the mean and variance of the HMM.

4. Weight Function for Region Updates
In order to select the regions to be updated we introduce a spe-
cial weight function. In general, the weight function can be
used for updating segments, phonemes, words or even full ut-
terances. In this paper, however, we introduce a weight function
that operates on a per-frame basis. We define w(f) ∈ (0, 1]
over frames f . The goal of this function is to weight different
regions and give higher preference to those regions that do not
contain concatenation points.
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T
3

T
3

T
3

w(f)

sU

sM

sL

wB wA wC

Figure 2: Per-frame weight function.

In the upper limit (w → 1), the weight refers to a concat-
enation point, so HMM does not need to be updated, and in the

opposite limit (w → 0), the concatenative data is considered to
be stable and as a result, LMGE is applied. Because the weights
are defined per-frame, transitions between them are smoothed
using a sigmoid representation (see Figure 2). In other words,

w(f) =

{
a

b+e−(t+f) + sL f �= wC

sU f = wC

(5)

where,

b = sM−sL
sU−sM a = b · (sU − sL) (6)

are defined with regard to the sigmoid limits (sU ≤ 1 denotes
the upper limit, sL > 0 the lower limit and sM is the middle
point). Figure 2 shows an example region, where T is the dur-
ation of a phoneme, wA is the stable concatenation region, wB

is a sample smoothed transition and wC is the concatenation
point. For each of these locations, the weight function defines
the contribution of the concatenative system.

5. Experiments
For our experiments, speaker independent training involves 8
speakers and a total of 21.2 hours of speech. Target adaptation
data consists of a 50 minutes recording of a male speaker. This
training corpus includes 1000 open-domain utterances automat-
ically segmented. During the pre-processing stage we extracted
log F0 information, STRAIGHT mel-cepstral coefficients and
five-band aperiodicity components.

The parameters of the weight have been empirically fixed
to the following values: sU = 0.2, sM = 0.1 and sL = 0.05.
This configuration benefits the use of the concatenative system
while smoothing the concatenation points. Note that for smaller
amounts of target speaker data sU may need to be increased.

HMM topology is the standard five-state left-to-right struc-
ture with no skips. Each state output probability density func-
tions consists of five streams, similar to the ones used in the
Nitech-HTS system [16]. Information about the global vari-
ance is also used during synthesis. Hereafter, we refer to three
systems: the standard statistical HMM system that is used as
a “backbone” of the hybrid system, the concatenative synthesis
system that is used to select the natural units to improve the
quality of the latter and, finally, the proposed hybrid system that
combines previous two approaches.

Figures 3 and 4 show examples of parameters trajectories
generated by the three systems. Same phoneme duration was
used for the three systems. Figure 3 shows a sequence of the
3rd mel-cepstral coefficient extracted from the three systems.
It can be observed that the mel-cepstral sequence generated by
the proposed hybrid system is closer to the sequence produced
by the concatenative system, except in the region of the con-
catenation point, where the weight decreases and the sequences
overlap with the HMM trajectory.

Sample spectra generated by the three systems are shown
in Figure 4. The proposed hybrid system make spectral peaks
much sharper than those generated by the HMM, except in the
concatenation point where the spectrum is made more similar
to the ”default” HMM spectrum, resulting in a smoother joint.

We conducted an AB test 1 in order to evaluate the perform-
ance of the proposed hybrid system. In this test, 8 listeners were
presented with 24 utterances randomly chosen from the test set.
The results, shown in Table 1, indicate that the proposed ap-
proach increases the average quality of synthesized speech (A
denotes the HMM system and B denotes the hybrid system).

1Samples can be found at http://www.salle.url.edu/˜gonzalvo/hmm/
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Figure 3: Mel-cepstrum sequences for the 3rd coefficient.
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Figure 4: An example of generated spectrum sequences.

6. Discussion
Although the hybrid system updates the mel-cepstral paramet-
ers, the rest of parameters (F0 and aperiodicity) remain unmod-
ified. In addition, (1) With respect to the F0 updating, we of-
ten observed the cases where overall utterance intonation is de-
graded since concatenative system is not intended to produce
natural expressiveness but to select the optimal sequence of nat-
ural units. (2) The aperiodicity is modelled in five subbands.
However it is actually a continuous representation of the length
of the STRAIGHT spectrum which results in undesirable arti-
facts if it is used within the same updating rule. (3) We anticip-
ated a better quality improvement than the one obtained, hence
the simplified assumptions of equations 3 and 4 should be re-
vised in order to obtain a better updating rule.

7. Conclusion
We have presented an HMM-based hybrid system that uses con-
catenative synthesis in order to improve the quality of the vo-
coded speech. The system is based on the LMGE algorithm
that updates the HMM parameters in order to generate more
natural speech. Additional improvement to naturalness is due to
a weight function for smoothing the errors between the joints.
Moreover, the proposed hybrid algorithm enjoys all the benefits
of the standard HMM systems such as robustness and availab-
ility of flexible adaptation techniques. In addition, because the
HMM system is used as a “backbone”, the data sparsity prob-
lem is less severe when compared to the concatenative systems.
Despite promising results, there are still several issues to be ad-
dressed. We need to design a more efficient concatenative syn-
thesis component that will provide more detailed information to
the generation module. For example, residual information can

Table 1: AB test for the HMM and hybrid systems.

A>>B A>B A=B A<B A<<B
6.8 % 15.98 % 13.88 % 48.86 % 14.48 %

be used to improve the excitation or the target cost function can
influence the behaviour of the weight function.
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