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Abstract

The relation between component analysis (PCA
and ICA) and Multi-resolution Filtering is ex-
plained and its use to improve the prediction er-
ror in a ftime series is shown. An example applying
the previous results to forecast the Sun-spots time
series is presented.

Keywords system identification, time series pre-
diction, multi-resolution filters, component analy-
sis.

1 Introduction

There is no need to praise the importance of time
series analysis and prediction. The spread of fields
where such tecﬁ’niques are applied, ranging from ex-
perimental physics to finance and economy through
process control, is enough to point out its relevance.
In this note we propose the combination of two
methods in order to enhance their strong points :
multi-resolution filters and independent component
analysis.

In few words, multi-resolution filters consist in a
recursive decomposition of a time series into several
sub-series, according to sum and difference opera-
tors [1, 2]. Its use in time series prediction is based
on forecasting the results of this decomposition to
build up a prediction for the original series [1, 3].

This recursive generation can be cast into an adap-
tive spanning tree in order to choose the best pos-
sible prediction.

Component analysis is a method to separate the
contribution of a number of sources on a measured
signal. According to the probability distribution
of those sources, we distinguish between Principal
Component Analysis (PCA) [4] for Gaussian sig-
nals and Independent Component Analysis (ICA)
for non-Gaussian ones [5, 6, 7, 8].

ICA has seldomly been used to analyse uni-
variate time series [9, 10, 11]. This problem is
slightly different than predicting multivariate time
series [12, 13|, where each component of the time se-
ries acts as different source. In the univariate case,
independent component analysis has been found to
extract the state variable structure of a non-linear
dynamical system [9].

The note unfolds as follows. We first recall some
facts about signal whitening and its application
to time series. Then multi-resolution filters are
sketched and component analysis described. Both
methods show to be particular cases of whitening
and, so, the tree expansion of multi-resolution fil-
ters is extended to the ICA decomposition. The
results of applying this methodology to the predic-
tion of the sun spots time series are then shown.
Some short conclusions close the paper.
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2 Whitening and time series

A common preprocessing feature in signal process-
ing is the so-called whitening process. It just con-
sists in transforming the original signal to obtain a
new set of decorrelated components {Y (k)}:

Y (k) = AY (k). (1)

The form of matrix A is easily computed. In
effect, consider the correlation matrix of the signal
vector Y (k),

C=>Y(kY(K)". (2)
k

If we ask the sources to be decorrelated,

Y Y(RY (k)T =1,
k

we obtain
C = AAT, (3)

All solutions of equation (3) are of the form (see,
for instance, reference [6])

A= AcuR, (4)

being Acy the Cholesky decomposition [18] of C
and R an N-dimensional orthogonal matrix.

All solutions can thus be parametrised using the
angles of an orthogonal matrix in N dimensions,
which belongs to a N(N — 1)/2 dimensional con-
tinuous Lie group. In the case of a two component
splitting, we just have a single parameter, namely
the rotation angle.

In order to use the setting described above for
univariate time series modelling and prediction, we
need to build up a signal vector, which shall be
composed the tapped delayed observations of the
series,

Y (R)T = (y(B), 5k — )y, y(k — (N = 1)7)).
(5)

The choice for the correct values of 7 and N in order
to obtain an accurate description of the dynamical
process is a matter of subtle discussion (see, for
instance, reference [19]).

If the time series comes from the evolution of
a deterministic dynamical system, vector Y(k)
in equation (5) corresponds, after Takens’ theo-
rem [20], to some state variable vector of the sys-
tem.

The application of a whitening process to Y'(k)
in equation (5) actually amounts to applying a FIR

filter on the series. If we look at the Fourier trans-
form of these filters we recover a number of high
pass, low pass and band pass characteristics, where
rotation angles select the bandwidths.

To illustrate this fact let us concentrate in two-
dimensional filters. Without loss of generality,
we can consider that the signal has unit variance
(which is just an overall normalisation choice). The
signal vector has the form

Y (k)" = (y(k),y(k — 1)), (6)

and the correlation matrix can be parametrised as

ce(i’f) (7)

The Cholesky decomposition of this matrix is then

1 0
Acn = ( z Vi > - ®)
Multiplying by a rotation transformation of angle
0, we get the general form for the whitening filter,
A= '

cosf sin @
zcosf —+/1—z%sinf zsinf ++/1— z%cosd
)

By inverting the whitening transformation,

Y(k) =AY (k) = WY (k), (10)
we obtain the filtering matrix W,
W =
1 zsinf++/1—z%cosf —sind
-z —zcosl++/1—22sinf cosf

(11)
Each row of matrix W displays the coefficients of
the filter applied to obtain the corresponding com-
ponent of the whitened signal. Assuming the se-
ries is regularly sampled, the nature of the filter
response can be seen studying their Fourier trans-
form, in particular the squared modulus. If we de-
note by T the sampling time and we take 7 = 1, for
the first filter we have
o (WT) = s
(1~ z?cos20 + z/1 — 22 sin 26
+ (—z + zcos 20 + V1 — 22 5in 20) coswT) ,
(12)

and for the second,
2
|w2(wT)| = \/11_7
(1 + 22 c0s20 — zv/1 — 22sin 26
+ (—x —zcos20 + /1 —z2 sin20) cosz) .
(13)

).
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Squared Modulus of the first filter frequency response

Figgre 1: Modulus response of the two-dimensional whitening filters at lag 1
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These functions are plotted in figure 1 where it can
be appreciated how the nature of the filter (high
pass, low pass) changes with the value of 6.

3 Multi-resolution filtering

Inspired in the wavelet transform techniques, a
multi-resolution filter splits a time series into a
number of sub-series recursively according to sum
and difference operators [1, 2]. Let us unfold this
description following a typical case.

Consider a time series {y(k)}. We construct two
sub-series, by performing the following linear oper-
ation,

{ s1(k) = 3 (y(k) +y(k = 1;; (14)

sa(k) = g (y(k) —y(k -1

These sum and difference operators have several in-
terpretations. They can be viewed as an integral
and a derivative or, in signal processing terms, as a
low pass and high pass filters. In any case, two are
the important properties of this decomposition :

1. the original series is reconstructed by summing
up its terms,

y(k) = s1(k) + s2(k),

2. resulting series are decorrelated,

o0

Z Sl(k)S‘z(k) =0.

k=—o0

These two properties justify the use of this tech-
nique in time series prediction. In effect, if we de-
note §1(k) and $2(k) two predictions of s;(k) and
s2(k), a prediction for the original series, §(k), is
immediately o‘gtained,

g(k) = §1(k) + &2(k). (15)

The quadratic error of this prediction is directly the
sum of the quadratic errors of the prediction of each
sub-series because of the decorrelation property.
Recursively, series s1(k) and sa(k) can be decom-
posed following equation (14) and generate in turn
new series s11(k), s12(k), s21(k), s22(k). This pro-
cess can go on repeatedly. A binary tree whose root
is the original series y(k) is then generated. Using
the same process described in equation (15), we can
reconstruct a prediction for y(k) with a prediction

of the series in the leaves of the tree. The quality of
this prediction depends, of course, on what leaves
are used.

An inspection to equations (14) and (2) reveals
that, up to normalisation, the filtering procedure is
a whitening process.

4 Component analysis

Component Analysis is a statistical method to sep-
arate random signals using N measurements of the
mixing of N decorrelated sources. If we call Y (k)
the measured signals and S(k) its sources, we look
for a linear relation,

Y (k) = US(k). (16)

This transformation can be found using second
order methods. They consist in finding a faith-
ful representation of data by minimising the mean
square error [5]. This is equivalent to assume that
the signal follows a Gaussian probability distribu-
tion. The resulting sources S follow a Gaussian
distribution and are mutually decorrelated, which
amounts to be independent in this Gaussian ap-
proximation. This method is known as Principal
Component Analysis [5].

For non-Gaussian distributed signals, the sepa-
ration is based on the minimisation of the mutual
information between signals and sources. Recall the
mutual information is defined after Shannon’s en-
tropy. If the signal Y is distributed according to a
probability density function p(Y'), the entropy is

H(Y)= —/dY p(Y)Inp(Y). (17)
Once the entropy is known, the mutual information
is between Y and the sources S is given by

I(Y,S) = H(Y) - H(S/Y),  (18)

where H(S/Y) denotes the entropy for the condi-
tional distribution of the sources with respect to the
signal.

Minimising the mutual information is equiva-
lent to look for independent sources fulfilling equa-
tion (16). This is a stronger requirement than mere
decorrelation. The method is called Independent
Component Analysis [5, 6, 7, 8]. Under these con-
ditions, the mutual information (18) can be written

N
I(Y,S) = H(Y) =)  H(S)
=0

(19)
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and is usually evaluated by the Fraser-Swinney al-
gorithm [17].

Linear component analysis, given by equa-
tion (16), either PCA or ICA, delivers decorrelated
sources and, therefore, can be considered particu-
lar cases of whitening. As such they can be ap-
plied to univariate time series analysis. In this con-
text, Independent Component Analysis is preferred
since usual time series exhibit non-Gaussian prob-
ability distribution features. Then it may be used
to improve the prediction lying on the fact that
predicting independent individual components may
be more precise than predicting the original signal.
Component predictions S;(k) can be combined us-
ing formula (16) to deliver a prediction for the orig-

inal series: R
(k) = A1;5(k). (20)
7

In the same manner described for multi-
resolution filters, a tree of series can be defined
by successive splitting of the resulting components.
Numerically, this can be achieved using, for in-
stance, the FASTICA algorithm (see for instance
reference [5]).

5 Adaptive Filters

Both for multi-resolution filters and component
analysis rotations, a time series prediction scheme
has been defined by splitting of the original uni-
variate series y(k) into a tree of components. The
spanning of the tree can easily be coded into a ge-
netic algorithm [14, 15] to explore what are the best
leaves to perform the prediction. We use the final
quadratic error on the original series prediction as
the fitness function. The operations performed on
the chromosomes shall be the standard crossover or
sexual recombination, mutation and a special pro-
cess we call add pagrents [16]. We define in this way
adaptive predictive filters.

6 Results on the Sun Spots
time series

These techniques are illustrated on the well known
Sun Spots time series. The choice of the Wolf num-
ber for measuring the solar activity by counting the
number of sun spots is based on three criteria. The
first is because it is a real experimental data time se-
ries, from which any internal dynamics is unknown.

The second reason is its benchmark condition in
the realm of time series. The third is the recovered
interest on this measurement of the solar activity
boosted by the reaching of a maximum activity pe-
riod. Our data set consists in 280 yearly values
starting in year 1700. Our goal is to predict at lag
1 the value of the series using 5 previous values.
The quality of the prediction is measured using the
mean square error. Results are obtained training
the networks with a training set of 220 points and
two probe sets, the first one from 221 to 255 and
second one from 256 to 280.

Our goal in this note is to compare predictions
made with and without filter rather than comparing
the final prediction with the standard benchmark
results for this series (see for instance reference [21]
being one of the pioneering works). Actually, best
predictions are not obtained using 5 previous val-
ues.

Results comparing the performance of a second
order polynomial fit for a straight prediction with
no filter, using adaptive multi-resolution filters and
using adaptive ICA filters is shown in table 1.

Table 2 shows the errors for the prediction made
by multi-layer perceptron with architecture 5:6:1
trained with the Levenberg-Marquardt algorithm.

Despite numerical results for these methods are of
the same order of magnitude, ICA-filtered errors are
slightly lower in all cases. By no means should we
take these results as a solid proof of the goodness of
the ICA-filtering , yet they are a clear hint of its ca-
pabilities. They show the worth of undergoing fur-
ther simulations to improve the genetic algorithm
parameters, or even tune an automated method to
select the appropriate delay for each series, not to
mention the prediction of other standard bench-
marks. Actually, the strong point of these adap-
tive methods faced to other semi-automatic predic-
tion methods is the advantage one can take out of
the selection of signals whose frequency content is
strongly restricted. Nevertheless, an excessive divi-
sion of the original series may result in no improve-
ment. It is the duty of the genetic algorithm to find
the appropriate equilibrium between splitting and
predictability. Thus, the asset of whitening-based
filtering is the information on the frequency con-
tent of the signal extracted by the predictor which
may be of help in understanding any underlying
phenomena. That is why we may state that these
methods head in the direction of defining an auto-
mated prediction system whose mechanism may be
easily interpreted.
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Training Set | Test 1 | Test 2
No Filter 0.0042 | 0.0039 | 0.0104
Multi-Resolution 0.0042 | 0.0039 | 0.0103
ICA (r=11,d =2) 0.0041 | 0.0038 | 0.0102

Table 1: Mean square error for a second order polynomial fit using 5 previous values

Training Set | Test 1 | Test 2
No Filter 0.0028 | 0.0066 | 0.0699
ICA (r1=11,d=2) 0.0018 | 0.0044 | 0.0111

Table 2: Mean square error for the prediction using 5 previous values

7 Conclusions

This work is the junction of two converging lines
to improve time series prediction : multi-resolution
filters and ICA. We have shown that both methods
are related by being to ways of whitening the signal.

To improve the behaviour of multi-resolution and
ICA filters, we have put forward the adaptation
of the spanning tree by a genetic algorithm. This
paradigm has delivered slightly better results than
the straight prediction for the Sun spots time series.

In any case, work is currently in process to con-
firm the presented results and hypotheses by en-
larging the number of benchmark series.
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