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Abstract

This paper addresses the issue of the
induction of orthogonal, oblique and mul-
tivariate decision trees. Algorithms pro-
posed by other researchers use heuristic,
usually based on the information gain con-
cept, to induce decision trees greedily.
These algorithms are often tailored for a
given tree type (e.g orthogonal), not be-
ing able to induce other types of decision
trees. Our work presents an alternative
way. We propose to induce a decision trees
(without regarding the type) with an uni-
fied algorithm based on artificial evolution.
Experiments were performed with GALE,
our fine-grained parallel Evolutionary Al-
gorithm, and another well-known induc-
tion techmnique on several datasets. Re-
sults suggest that Evolutionary Algorithms
are competitive and robust for inducing
all kinds of decision trees, achieving some-
times better performance than traditional
approaches.

Keywords: Genetic Algorithms, Decision Trees,
Fine-Grained Parallelism.
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1 Introduction

Decision tree induction is a well-known discipline
in Machine Learning. Since the work presented by
Quinlan in 1986 [21], there has been a great number
of researchers interested in this area. Early efforts
focus on the induction of orthogonal decision trees
using heuristics (i.e. information gain) to build
the decision tree greedily. These algorithms can be
termed orthogonal due to the parallel-axis bound-
aries that generate in the instance space. Some
examples are ID3 [21] and C4.5 [22]. In order to

overcome this constrain, some researchers have pro-
posed oblique decision trees that can define non
parallel-axis boundaries (e.g. OC algorithm pro-
posed by Breiman in [4]), or multivariate decision
trees that propose non-linear boundaries (e.g. AHA
trees proposed by Llora et al. in [15]). However,
each algorithm is usually tailored for the given de-
cision tree type to induce. Moreover, there is an-
other key point when non-orthogonal decision trees
are induced, the complexity required by induction
makes it infeasible. For instance, deciding the best
hyperplane split for an oblique decision tree is NP-
Hard [12].

We present an Evolutionary Algorithm (EA)
[9, 11, 13, 14] to address some of these weaknesses
in a new way. Instead of designing a specialized
algorithm for inducing a particular kind of deci-
sion tree, we propose a general purpose EA for
tree induction. EAs have proved to be robust algo-
rithms for search, optimization and machine learn-
ing. Therefore, we use EAs robustness to induce
decision trees, independently of their type. This
evolutionary-driven algorithm, named GALE, in-
duces orthogonal, oblique or multivariate decision
trees, scaling up linearly with the number or exam-
ples and dimensions in the training set. This algo-
rithm is tested on eleven different domains, show-
ing that it can induce competitive decision trees
when compared to well-know machine learning ap-
proaches.

Section 2 presents a brief overview of decision
tree types. Section 3 summarizes some machine
learning work done in EA community for tree in-
duction. In this section we also present GALE, an
evolutionary-driven algorithm for inducing decision
trees based on fine-grained parallel EAs. Section 4
describes experiments on eleven datasets, compar-
ing the performance of GALE with a well-known
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induction technique like C4.5 [22]. Finally, section
5 summarizes some conclusions and further work.

2 Decision Trees

This section briefly describes the three kinds of de-
cision trees used along the paper. It is important to
mention here that, throughout, the problems that
this work focuses are supervised classification prob-
lems. Thus, for a given problem there is a dataset
available that contains [ instances. Each instance
is a numeric vector of dimension d and output class
X-

The simplest decision tree is the one termed or-
thogonal [21, 22]. The internal nodes of this kind
of trees define a simple test over a single attribute
of the classification problem. This test is usually
presented as:

a; <a (1)
where a; is a problem attribute and « is a numeric
constant. The leaves of the tree are labeled with
the class linked to the set of instances represented
by the path between the root of the tree and the
leaf itself. The boundaries that the equation 1 de-
fines are parallel to the axis of the instance space.
This kind of trees have been effectively build using
heuristic algorithms based on the information gain
concept.

In order to solve the limitations that parallel-
axis boundaries provide, some authors suggest to
used more elaborated tests for the internal nodes
of the decision trees. Oblique decision trees [4, 23]
base the test of the internal nodes of the tree in the
following equation:
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This test is based on an orientable hyperplane that
can be adjusted computing the vector of coeffi-
cients defined by w = (w1, ws...wy4+1). Thus, non
parallel-axis boundaries can be easily defined choos-
ing the right values for the @ vector. Unfortunately,
it has been proved that finding the coefficients for
obtaining the best split is NP-Hard [12]. There-
fore the algorithms used for building this kind of
trees use several heuristics [23] to obtain subopti-
mal trees.

The last kind of decision trees used in this pa-
per belong to multivariate decision trees. This kind

of trees look for defining non-linear boundaries on
the instance space. In order to achieve this goal,
each internal node contains a prototype § [7, 24]
(i.e. an artificially defined instance) and an activa-
tion threshold 8. A node is active if the following
equation is satisfied

K3
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where e; is the value of a; in the instance e to
classify. This activation check defines hyperspheric
boundaries across the instance space. Next, if the
node is active, the instances e is given to the nearest
child using the nearest neighbor algorithm [1] based
on the Euclidean distance. Thus, children defines
non parallel-axis hyperplane splits inside the par-
ents hyperspheres. Detailed descriptions of these
decision trees can be found in [15].

3 GALE

Genetic and Artificial Life Environment (GALE)
[15, 17] explores an alternative path for inducing
decision trees. It can induces any of the decision
trees presented in section 2 using the same algo-
rithm. The induction algorithm explored by GALE
is based on EA, being an evolutionary-driven in-
duction approach. In this section, we briefly review
some tree induction efforts of EA community. Next,
we describe in detail the EA proposed for inducing
decision trees. Finally, the section concludes dis-
cussing some scalability issues of GALE.

3.1 Evolutionary Algorithms and
Machine Learning

EAs can induce several knowledge representations
like rule set or decision trees among others [5, 6, 13,
14, 25, 26]. Some relevant efforts have been done
by the Genetic Algorithms (GA) and Genetic Pro-
gramming (GP) communities. For instance, Canti-
Paz & Kamath [5] used a GA to overcome the com-
plexity constrains of oblique decision trees comput-
ing the orientation coeflicients (o) along the tree
induction process proposed by OC algorithm [4].
They also proposes alternative approaches based on
Evolution Strategies (ES) [9]. Other approaches fo-
cus on the induction of decision trees using GP. A
representative algorithm is proposed by Bot [3], in-
ducing decision trees evolving them directly using
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a specially tailored GP model. However, these al-
gorithms tend to be time-consuming and some au-
thors have proposed to exploit the parallel behavior
of evolution to reduce the time required for the EA
to achieve a solution [2, 8, 10, 15, 16, 17].

3.2 Induction Algorithm

GALE uses a fine-grained parallel EA to obtain a
decision tree induced from a set of training exam-
ples 7. EAs usually evolve a population of indi-
viduals (set of feasible solutions) that fit the envi-
ronment where they are placed (solve efficiently a
given problem). The survival of the fittest and their
genetic material recombination model the artificial
evolution of GALE. Detailed descriptions of EAs
can be found in [11, 13].

Each individual in the population of GALE is
a decision tree (to be chosen among orthogonal,
oblique or multivariate). The population is placed
on a 2D grid. Every cell of the grid contains up to
one individual that has a fitness measure of its de-
gree of adaptation (accuracy solving the problem).
The fitness measure chosen is (%)2; ¢ is the number
of instances in 7 that are classified correctly by the
individual (decision tree), and ¢ is the number of in-
stances in 7. This fitness measure provides a non-
linear bias toward correctly classifying instances in
7T while providing differential reward for imperfect
decision trees [6]. Each individual codifies a deci-
sion tree into its genotype (genetic representation
of the decision tree that undergoes evolution) ar-
ranging the tree as a dynamic structure.

GALE spreads the population over a 2D grid in
order to exploit massive parallelism and locality re-
lations. Every cell in the grid computes in parallel
the same algorithm, that summarizes as follows:

FOR-EACH cell C in Grid
DO
initialize %he cell C
evaluate the accuracy of individual in C
REPEAT
merge among neighborhood(C)
split individual in C
evaluate the accuracy of individual
in C
survival among neighborhood(C)
UNTIL <end-criterion>
DONE

The initialization phase decides if the cell con-
tains an individual, or if it remains empty. Empir-

ical experiments show that a 70-80% of occupied
cells is a good initialization rate. The individuals
of the population are built at random, using the
growing technique presented in [14]. Next, if the
cell contains an individual, C computes the fitness of
the individual using the fitness function explained
before. At this point, the cell is ready to enter the
evolutionary process.

Merge, split, and survivel are the phases of the
evolutionary cycle that improves the accuracy of
individuals. This cycle stops when an individual
classifies correctly all the training instances in 7,
or when a certain amount of evolutionary iterations
are done. Merge and split modify the decision tree
(individual), whereas survival implements the sur-
vival of the fittest, removing poorly adapted indi-
viduals from the grid and pruning useless parts of
the evolved decision trees.

Merge recombines the individual in C with and
individual chosen at random among the neighbor-
hood of the cell, with a given p,, probability. Thus,
merge is a two-step process: (1) chooses a mate
among the neighborhood, and (2) recombines the
genetic material obtaining just one offspring. The
neighborhood of cell C is the set of its adjacent cells.
Therefore, neighborhood(C) are the eight cells that
surrounds C. The neighborhood topology is beyond
the scope of this paper. Next, merge recombines
the genetic material using one point crossover pro-
posed by GP [14]. This crossover operator chooses
for each tree a node. The two selected nodes of
the tree (one for each individual) are swapped, ex-
changing the genetic material contained on the sub-
tree that they are holding. Finally, the offspring
obtained after crossover replaces the individual in
C.

Split reproduces and mutates the individual in
C, if the probability defined as p; - fitness(ind,)
is satisfied. The split rate is proportional to the
performance of the individual. Thus, adapted indi-
viduals expand their genetic material rapidly. The
splitted individual is placed in the cell with higher
number of neighbors (occupied cells), or if all cells
in the neighborhood are occupied, it is placed in the
cell that contains the worst individual. This tech-
nique biases the evolution towards the emergence
of useful subpopulations or demes, balancing the
survival pressure introduced by the survival phase.
The mutation is done by changing some values of
the genotype randomly. For instance, if GALE is
evolving orthogonal decision trees, a; or o might
be have a new value generated at random. The
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same approach is used for oblique and multivari-
ate decision trees, where w, § and 8 are randomly
perturbed.

Survival decides if an individual is kept in the
cell for the next cycle. It also prunes the useless
parts of the decision that are never used classify-
ing the instances in 7. Survival uses the number
of neighbors in order to decide if the individual is
removed form the cell.

0-1 Neighbors: these configurations show a
quasi-isolated subpopulation without genetic
diversity, thus, there are few chances to im-
prove genetic the material exchanging it with
the neighborhood. The survival of the in-
dividual is proportional to its performance,
psr(ind.) = fitness(ind.), leading to ex-
treme survival pressures. If the individual is
removed, the cell becomes empty.

2-6 Neighbors: the subpopulations  change
rapidly, exchanging a great deal of ge-
netic material. The individual is removed,
leaving the cell empty, if fitness(ind.) <
Prei + Ksr X Oneis Tine; 18 the average fitness
value of the occupied neighbor cells, and ,¢;
their standard deviation. The parameter kg,
controls the survival pressure on the current
cell, as well as the convergence of GALE.

7-8 Neighbors: this is a crowded situation, with-
out space it the grid available, extreme sur-
vival pressure is applied to the individual in
C. The individual of the cell is always replaced
by its best neighbor, thus p;,(ind;) = 0. Re-
placement introduces a distributed approach
to elitism, a selection technique usually used
in many EAs [11].

3.3 Speedup &Analysis

Throughout, GALE is a fine-grained parallel model
that induces decision trees independently of their
type. As a parallel processing algorithm, the the-
oretical degree of scalability, or speedup, is a use-
ful measure. In order to compute the theoretical
speedup equations, we need to obtain the time com-
plexity equations of both a general-purpose evolu-
tionary algorithm for machine learning (GABL [6])
and GALE. In the model equations n is the popu-
lation size, k the number of iterations of the evolu-
tionary algorithm, [ the number of instances in the
dataset, d the number of dimensions of the dataset,

7 the size of the neighborhood, and p is the number

of processors used. The time complexity equations
for GABL are:

to=kF-: tloop
=k (teval + tset + teross + tmut)

=k (tclsnld + tcopyn IOg n+ t:l:algpzn —+ tmalgpmutn)

= kn (a1ld + azlogn + as)
(4)

where ¢, is the time of classifying an instance,
tecopy the time of copying an individual, f;44 the
time of the crossover algorithm, and #,,414 the time
of the mutation algorithm. Once we have the time
complexity equations of a serial evolutionary algo-
rithm, ¢, € O (kn (Id +logn)), we need the model
of GALE. To obtain these equations we assume that
each cell of GALE contains one individual, being
mapped on a different processor, n = p. Each pro-
cessor is connected to its neighbors in the grid with
a latency of O(1). Beneath this assumptions, the
equations for GALE can be calculated as follows,

1
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1
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n
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where t.; is the time of classifying an instance,
tcopy the time of copying an individual, t,4, the
time of the merge algorithm, and %414 the time of
splitting. Thus, if » = 1 (minimizes communication
efforts) then t; € O (kld). Finally, the speedup
equation becomes:

1 ta  kn(ld+logn) logn
= = = 1 —2 )~
ST kld ")
(6)

The speedup equation shows that it grows lin-
early to the number of processors used, avoiding
the serial bottleneck selection based on roulette.
Equation 5 also shows that the expended time using
GALE does not depend on the population size, it
is just a linear function of the number of instances,
their number of dimensions, and iterations.
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4 Experimental Results

The test suit designed for evaluating the classi-
fication performance of GALE consists of several
datasets and machine learning algorithms. This
fact let us study the performance of GALE us-
ing statistical tools, like stratified ten-fold cross-
validation runs and paired #tests on these runs [27].
Time performance of GALE as a parallel process-
ing algorithm is beyond of the scope of this paper,
being part of the further work.

4.1 Datasets

In order to evaluate the performances of GALE
on different domains, we performed experiments on
eleven datasets. Datasets can be grouped up to
three different kinds of datasets: artificial, public
and private.

We used one artificial dotasets to tune GALE,
because we knew its solution in advance. Tao is a
dataset obtained from sampling the TAO figure us-
ing a grid. The grid used is 2D ranging from [-6,6]
centimeters with 4 instances per centimeter. The
class of each instance is the color (black or white)
of the sample in the TAO figure. This grid has
nothing in common to the one used by GALE, it is
just used for sampling the TAO figure.

Public datasets are obtained from UCI reposi-
tory [20]. We chose eight datasets from this repos-
itory: breast-w, diabetes (pima-indians), glass,
heart-statslog, ionosphere, iris, sonar, and
vehicle. These datasets contain numeric at-
tributes, as well as binary and n-ary classification
tasks. Finally, we also used two private datasets
from our own repository. They deal with diagnosis
of breast cancer, biopsies [19], and mammograms
[18]. Biopsies is the result of digitally processing
biopsy images, whereas mammograms uses mamimo-
graphic images,,

4.2 Classifier Schemes

As well as GALE algorithm described above, we
also run two additional classifier schemes on the
previous datasets. We want to compare the
results obtained by GALE with the ones ob-
tained using well-known non-evolutionary classi-
fier schemes. These algorithms are coded into
the Waikato Environment for Knowledge Anal-
ysis (WEKA) [27] (on-line code available from
http://www.cs.waikato.ac.nz/ml/weka).

The first non-evolutionary scheme is 0-R that
predicts the majority class in the training data.
This scheme can be useful for determining a base-
line performance as a benchmark for other learning
schemes [27]. The second classifier tested is C4.5
revision 8 (C4.5r8). Using the training instances,
it induces an orthogonal decision tree that it is in
charge of predicting the class for test instances.
C4.518 is the result of series of improvements to ID3
[21] that include methods for dealing with numeric
attributes, missing values and noisy data [22].

4.3 Results

GALE was run using the same parameters for all
datasets. The grid was 64x64 with a 80% of occu-
pied cells after initialization. Merge and split prob-
abilities were set to p,, = 0.4 and p, = 0.01, and
ke = —0.25. The maximum number of iterations
was 150. These values have shown a good balance
between exploration and exploitation along the evo-
lutionary process [17]. The non-evolutionary clas-
sifier schemes used their default configurations.

Table 1 shows the percentage of correct clas-
sifications, averaged over stratified ten-fold cross-
validation runs, with their corresponding standard
deviations. The same folds were used for each
scheme. This table also marks GALE results with
a e if they show a significant improvement over the
corresponding results for C4.5r8, and with a o if
they show a significant degradation. Throughout,
we speak of results being “significantly different” if
the difference is statistically significant at the 1%
level according to a paired two-sided ttest, each
pair of data points consisting of the estimates ob-
tained in a stratified ten-fold cross-validation run
for the two learning schemes being compared. Fi-
nally, table 2 summarizes the performance of the
different methods compared with each other. Num-
bers indicate how often the method in row signifi-
cantly outperforms the method in column.

The results listed in tables 1 and 2 show that
0-R is clearly defeated by the rest of the algo-
rithms studied. Nevertheless, its results help us
to identify some difficult datasets for the tree
induction algorithms presented. Little improve-
ment is achieved by tree induction algorithms in
diabetes, fis, heart-statslog, and vehicle
datasets, pointing out some further work in tun-
ing specifically the algorithms for these datasets.
However, GALE performs better in these datasets
than non-evolutionary algorithms, evolving more
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Table 1: Experimental results: percentage of correct classifications and standard deviation from strat-
ified ten-fold cross-validation runs. GALE results are also marked with a e if they show a significant
improvement (1% significant level on paired two-sided t-test) over the corresponding results for C4.518,
and with a o if they show a significant degradation.

Dataset o-R C4.5r8 GALE-ort GALE-obl GALE-mul
biopsies 51.614+0.62 80.04+4.80  81.89+5.70 83.7443.94 83.64+1.61
breast-w 65.52+1.16 95.42+1.69  94.42+1.88 91.70+3.24 ° 95.70+2.23
diabetes 65.104+1.00 73.05+5.32  75.78+4.01 69.40+3.24 74.22+4.34
fis 56.024+2.95 64.81+6.48  71.3045.93 61.114+8.31 65.27+5.74
glass 35.514+-4.49 65.89+10.47 65.42+11.89 49.07+9.20 61.21+10.01
heart-statslog | 55.55+0.00 76.30+5.85  82.22+7.11 71.114+7.35 82.96+5.84
ionosphere 64.1041.19 89.744+5.23  94.02+3.27  90.31+3.57 91.46+4.99
iris 33.33+£0.00 95.331+3.26  96.00+3.46 98.671+2.98 94.0045.83
sonar 53.37+£3.78 T71.154+8.54  74.5247.42 68.27+10.03  79.3246.10°
tao 49.7940.17 95.07+2.11  89.78+2.29° 91.74+2.65°  93.2041.87
vehicle 25.06+0.54 73.64+5.42  68.3246.01° 58.87+5.37° 63.471+4.68°
Average 50.45 80.04 81.24 75.82 80.40

Table 2: Results of paired one-sided #tests: number indicates how often the method in row significantly
outperforms the method in column. Table lists the t-test results using p=0.05 and p=0.01.
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t-test at p=0.05 t-test at p=0.01

0-R. - 0O 0 0 0| - 0 0 0 0
C4.5r8 1 - 2 6 2|11 - 2 4 1
GALE-ort 1 3 - 7 5|11 1 - 6 0
GALE-obl |11 2 2 - 1|10 1 0 - O
GALE-mul |11 3 1 7 - |11 1 1 4 -

accurate orthogonal trees than the ones induced by
C4.5r8. This fact happens again when regarding
to the average performance, where GALE performs
better than C4.5r8.

The oblique “decision trees evolved by GALE
perform slightly worse than the orthogonal ones.
There is one exception to this rule, and it is the
results obtained in the iris dataset. Oblique de-
cision trees clearly outperform other decision tree
types in this dataset. The runs of GALE evolv-
ing oblique decision trees suggest that some specific
tuning has to be introduced (e.g double the num-
ber of iterations done) due to the size of the search
space explored (m(d + 1) coeflicients are adjusted,

being m the number of nodes in the tree, and d the
dimensjonality of the dataset) when evolving the
trees. Similar considerations apply to the GALE
when it evolves multivariate decision trees. For in-
stance, in sonar dataset obtains impressive results
due to the non-linear boundaries that defines over
the instance space. Regarding the ttest experi-
ments, listed in table 2, the orthogonal trees evolved
by GALE clearly beats, at different significant lev-
els, the oblique and multivariate ones. Therefore,
it seems that the specific tuning for the evolution
in oblique and multivariate decision trees is a must
to take into count as further work.
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5 Conclusions and Further

work

This paper presented an evolutionary approach to
tree induction. In this paper, we have presented
a general purpose evolutionary classifier scheme
(GALE) that evolves different types of decision
trees. Usually tree induction algorithms are tai-
lored for a specific tree representation. GALE is
not bounded to this constrain because it is knowl-
edge independent, thus it can easily evolve orthogo-
nal, oblique or multivariate decision trees. Another
important point in tree induction is how the algo-
rithm scales up respect to the size of the training
set, as well as the used dimensions. Evolutionary
Algorithms tend to be time-consuming. GALE can
reduce the amount of real time required exploit-
ing fine-grained parallel processing. The classifier
scheme is based on spatial neighborhood relations
on a 2D grid, where local genetic operators and
massive parallel fitness computation are defined.
When enough processors are provided, the time
complexity of GALE is independent of the popu-
lation size, being only bounded by the number of
iterations, the size of the dataset to be mined and
the dimensions used, O (kld).

The results obtained show that GALE can effec-
tively evolve accurate decision trees, whether they
are orthogonal, oblique or multivariate. Although
these results are first step into the evolution of de-
cision trees, some conclusions can be summarized.
The orthogonal decision trees evolved by GALE
outperforms the ones induced by C4.5r8. On the
other hand, GALE also evolve accurate oblique and
multivariate decision trees. Nevertheless, the re-
sults arises the need for some specific tuning that
exploits the capabilities of these non-orthogonal de-
cision trees. ¥

Finally, we want to summarize some further
work already presented through the paper. GALE
is an inherent parallel model, moreover it is a mas-
sive fine-grained parallel model. Therefore, we are
interested in analyzing the time performance ob-
tained using parallel implementations of GALE. We
are also working on obtaining a specific tuning of
GALE to evolve more accurate oblique and orthog-
onal decision trees. Thus, we can extend the com-
parison presented including other well-known in-
duction schemes (i.e. OC [4]) and datasets.
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