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Abstract

We show how a Cellular Neural Networks based im-
age processing system together with a Fuzzy Logic
controller are capable of providing the necessary
signal processing to guide an autonomous mobile
robot in a maze drawn on the floor. In this way, a
non-trivial navigation task is obtained by very sim-
ple hardware, making real autonomous operation
feasible. An autonomous line-following robot has
been first simulated and is currently being imple-
mented by simulating the CNN with a DSP, while
the fuzzy algorithms run on a 386-microprocessor-
based microcontroller.

Keywords: Cellular Neural Networks, Robot Vi-
sion, Robot Navigation, Fuzzy Logic.

1 Introduction

Navigation of a mobile autonomous robot in an un-
known (or not cempletely known) environment can
be achieved by use of visual information and feed-
back. When the environment is structured, the task
required from the vision system is recognition of vi-
sual clues, and evaluation of their location relative
to the robot position and orientation. Such infor-
mation is then used to take suitable action by a
control system.

Line following is one of the reference problems
connected with navigation in a structured environ-
ment. It is a relatively simple, yet non-trivial prob-
lem that is relevant to real-life situations, such as
road navigation, or motion through a maze (e.g. in-

dustrial environments). Line (or equivalent mark-
ing) following has been considered elsewhere. So-
lutions proposed in the literature may be classified
into two main categories: simple solutions with very
limited capability, or solutions for difficult, realis-
tic problems obtained by use of rather complicated
hardware.

An example of simple system is the ARGO par-
tially autonomous vehicle [1]. It is a normal pas-
senger car fitted with an automatic steering mecha-
nism, controlled by a 486PC. The PC processes the
images taken by two B/W cameras with the aim
of finding the right line of the road, and keeping
it in the appropriate position in the field of view.
The processing is very simple, yet effective for the
purpose.

The more complex systems are generally based
on a computer which is either on board (for large
vehicles, e.g. [2, 3]), or remotely connected (e.g. [4]).
In the quoted systems, images are processed by an
additional unit, due to the necessity of high com-
puting power. Of course, these vehicles can gen-
erally tackle fairly complex problems, such as un-
structured road navigation, target following, obsta-
cle avoidance, besides line following,.

Cellular Neural Networks (CNN [5]) have been
widely applied to sophisticated nonlinear real-time
image processing tasks, so that they are natural
candidates for silicon retina applications [6]. Their
most appealing feature is the possibility of fully
parallel analogic hardware implementation, which
may include on-board image sensing capability [7],
and the possibility of executing multiple consecu-
tive and/or conditional operations without trans-
ferring images in and out of the network (CNN
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Universal Machine [8]). Such networks are the en-
gine of our image processing system. CNNs have
been applied to robot navigation tasks before, in
particular to stereo vision [9, 10], and optical flow
computation [11, 12]. A simple line-following prob-
lem was tackled by a hardware-implemented CNN
by Szolgay et al. [13]. In this paper, we consider
a simple, yet significant, robot navigation task as
testbed. Our objective is to drive an autonomous
robot equipped with a camera to follow a path in a
maze of black straight lines on white background,
crossing or joined at right angles. No other sensor
information shall be used but the visual informa-
tion given by the camera. We have put an emphasis
on using the simplest and least expensive hardware
possible; real autonomy of the robot also called for
compact and power-thrifty solutions. We decided
to start by implementing a fully functional bench-
mark autonomous robot capable of navigating in
a quite simple environment in order to thoroughly
verify the validity of our approach. The results ob-
tained will then be taken as a basis for addressing
more complex navigation tasks.

2 Background: Cellular Neu-
ral Networks

Cellular Neural Networks are arrays of continuous-
time dynamical artificial neurons (cells), that are
only locally interconnected. This is the essen-
tial feature allowing for the VLSI implementa-
tion of large networks, fitted in chips with on
board sensing, distributed memory and the ca-
pability of executing complex sequences of opera-
tions by global control (also called ’analogue’ pro-
grammes). Among the CNNs subclasses we resort
to a Discrete-Time CNN model (DTCNN [14]) be-
cause, besides being also realisable as a fully par-
allel VLSI chip,gis also more apt to our simulated
implementation.

DTCNN operation is described by the following
system of iterative equations:

D Aw—igjai(n)
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zij(n+1) = sgn(

(1)

where ;; is the state of the cell (neuron) in position
17, that corresponds to the image pixel in the same
position; u;; is the input to the same cell, represent-
ing the luminosity of the corresponding image pixel,

suitably normalised. Matrix A represents interac-
tion between cells, which is local (since summations
are taken over the set NV of indices of cells that
are nearest neighbours of the one considered) and
space-invariant (as implied by the fact that weights
depend on the difference between cell indices, rather
than their absolute values). Matrix B represents
forward connections issuing from a neighbourhood
of inputs, and I is a threshold. The operation of
the network is fully defined by the so-called cloning
template {A, B,I}. Under suitable conditions, a
time-invariant input » leads to a steady state x(o0)
that depends in general on initial state values z(0)
and input u. Images to be processed will be fed to
the network as initial state and/or input, and the
result taken as steady state value, which realisti-
cally means a state value after some (order of 10 to
100 according to the task) time steps.

Many cloning templates have been designed for
the most diverse tasks [15], so that some of the op-
erations we need in this context were immediately
obtained from the existing library.

3 Visual control system

The robot guidance problem is split into two pro-
cesses, namely, the image processing to extract the
mathematical features of the lines and the naviga-
tion of the robot to follow them. From the first,
we expect to obtain the relative position of the mo-
bile robot with respect to the line being followed, in
order to correct possible deviations owing to mis-
alignment of the wheels or mechanical or electrical
fluctuations. This correction is to be performed by
the navigation module. From the image processing
we also need to extract information on the forth-
coming crossings or bends, so as to decide which
direction is to be taken and what is the correct
moment to start turning. The mathematical in-
formation needed to control the robot is the angle
between the robot and the path A;; and the dis-
tance from the centre of the steering wheel to the
forward axis X.. The result should be the steering
angle of the front wheel Ag;.

4 Image processing

The image processing relies on the following stages:
acquisition, preprocessing (cleaning and contrast
enhancement), line recognition, extraction of line
parameters (angle, position). Acquisition of course
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A B I
1 1 1
small object killer ( 1 2 1 ) 0 0
1 1 1
0 0 O
left edge 2 ( -1 0 0 ) -1
0 0 O
-1 05 1 05 -1
-1 1 1 1 =1
vertically-tuned filter 2 -1 -1 5 -1 -1 -13
-1 1 1 1 =
-1 05 1 05 -1
0 1 0
small object killer < 0 2 O ) 0 0
0 -1 0

Table 1: Templates used in the processing stage.

depends on the actual implementation, so it is
treated below. For the pre-processing we used a so-
called “small-object-killer” template (see table 1)
to make a preliminary cleaning and binarisation of
the acquired image (figure 1 (a,b)).

The calculation of the parameters of lines vis-
ible in an image is universally performed by the
Hough transform [16]. Such approach is a very ef-
fective technique, yet computationally intensive, for
obtaining direction and positions of all lines exist-
ing in an image. However, it becomes unnecessarily
complicated when only few lines are present in the
image.

Our particular case demands of a reasonably fast
response with our limited hardware. For this rea-
son, together with the fact that the Hough trans-
form is a global operation that does not lend itself
to efficient implementation on the CNN, we chose
to devise a different approach based on CNNs.

In order to perform direction and position evalu-
ation, we need to get a thin line first. A “skele-
tonisation” algerithm, would be rather slow be-
cause it involves many iterations of an eight-step
routine (i.e. cyclical application of eight cloning
templates). For this reason, we resorted to the de-
sign [17] of a cloning template that extracts only
one of the two edges of a stripe (it actually extracts
only those parts of edges of black-and-white objects
that lie on the left of the object itself). This tem-
plate is given in table 1, and its effect is shown in
figure 1 (c¢). Of course, when dealing with approxi-
mately horizontal lines, we use a rotated version of
this template, which extracts the upper edge.

The line position and orientation computation is

based on two steps. We assume that a maximum
of two, approximately orthogonal lines are within
sight of the camera. This is not very restrictive,
because we chose a setup in which the camera is
oriented at angle that was chosen as a compromise
between looking a reasonably long distance forward,
and avoiding a large deformation due to perspec-
tive.

The first step is a directional filtering that ex-
tracts lines approximately oriented along two or-
thogonal directions. During normal operation these
directions are the vertical and horizontal ones, cor-
responding to the line being followed and a possible
orthogonal line following a bend or crossing. How-
ever, when the robot is turning or is largely dis-
placed from all lines, it is necessary to switch to
diagonal directions. As this situation is known to
the controller, it will signal to the image processing
stage which filters should be used.

Operation of a vertically tuned filter (table 1)
is depicted in figures 2 and 3. Other direction-
selective filters are obtaining by rotation of this
cloning template. After the tuned filters have been
applied, we get two images containing at most one
line. Direction and position of the line is then ex-
tracted by performing an horizontal and vertical
projection in order to read the positions of the first
and last black pixels of the two projections. These
four numbers, together with the information about
which extreme of the line is closer to one of the bor-
ders of the image, are enough to compute direction
and position of the line to the maximum precision
allowed by image definition.

Extraction of the needed projections can be done
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by means of the so-called “connected-component-
detector” cloning template (table 1). Operation of
such template at an intermediate and final stage of
processing is depicted in figure 1(d,e). It is apparent
that besides obtaining the desired projections, also
the information about which extreme is closer to
the border can be obtained from examination of
intermediate results.

Using the CNN operation described above, by
simple trigonometry, it is easy to obtain the pa-
rameters that are necessary for navigation, namely,
angle and distance. Such parameters are passed to
the controller.

5 Fuzzy navigation module

For the sake of simplicity, we chose to implement a
quite standard fuzzy controller for the line follow-
ing task. The fuzzy rule base is built according to
the Sugeno model [18]. This scheme allows for a
simpler on-line implementation since requires less
calculations. The controller, fed with distance X,
and angle Ay, to the line uses 15 rules to deliver
the steering angle A;;. They are listed in table 2

The global control strategy works as follows.
With a single line in sight, the robot tries to align
itself as fast as possible on it. When a second line
gets into the view, the type of bend or crossing is
assessed, by examining the relative positions of the
two lines. The possible actions are, then, evaluated.
If more than one is possible (e.g. go straight on or
turn right), than a command from a higher order
level is called for (in our experiments we just im-
plemented a pre-defined list of actions). If a turn
is called for, the robot continues on the current
line until the crossing is at a pre-defined optimal
distance (determined by the maximum steering an-
gle). Then, the algorithm just switches the line to
be followed. This involves also switching the direc-
tional filter that is selected for line following, and
correctly interpreting angular displacement in order
to choose the correct turn (left or right).

6 Hardware implementation

We realised a small autonomous robot that is
guided by the algorithms proposed in this paper.
It is a three-wheeled cart driven by a motor fit-
ted on the single front wheel, that also steers by
means of a second motor. The cart is approximately
27cm long, 18cm wide, 16cm tall, and weights about

4kg. A PAL camera is fitted on the front of the
robot, oriented downwards, 30° from the horizon-
tal. Images are grabbed and digitalised by dedi-
cated circuitry implemented in a CPLD (ALTERA
EPM7128STC100), which also performs image dec-
imation to reduce unnecessary definition. Image
processing (CNN simulation) is performed in a DSP
(TMS320c¢32), and the control system (fuzzy rule
base) is implemented in a 386-microprocessor-based
microcontroller. Images size is 60 x 45 pixels and
lines on the floor are obtained using black tape 2cm
wide. A power board feeds the motors, and bat-
teries are carried on board. This way the robot
it is completely autonomous. The image process-
ing stage can currently process one image per sec-
ond. We estimated by simulation that this allows
the robot to move smoothly at a speed of 2.5 cm/s.
Of course if a CNN chip were used instead of the
DSP, it would be possible to reach a much higher
speed.

7 Simulation results

The robot layout and the algorithms have been
thoroughly tested by employing a realistic simula-
tion of the vehicle realised in Working Model, in-
terfaced with a simulation of the fuzzy control and
image processing system realised in Matlab. All
mechanical and physical parameters of the actual
robot were taken into account (going from size and
weight to wheel and land materials), as well as ac-
tual processing times of the mounted board, that
has already been successfully tested. Mechanical
mount and electrical testing of the robot is cur-
rently being completed, and we expect the robot to
be fully functional soon. Meanwhile, figure 4 shows
a simulation of the path followed by the robot,
starting a little displaced (A;, = 10°,X, = 4cm)
and turning at a crossing. For each position of the
robot, a camera shot is assumed and the geometri-
cal parameters of the robot position are calculated
and passed to the controller. Some snapshots of
the model of the robot on its path are displayed in
figure 5.

8 Future Directions

In the light of the previous simulations, harder
robot vision tasks using CNNs are being envisaged.
Subjects such as curved line following or obstacle
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Figure 1: Original image, taken from the actual camera with size 60 x 45 pixels (a), cleaning and
binarisation (b), left edge (c), connected-component detector -intermediate result (d), final result (e).
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Figure 2: Vertical line extracting filter: original image (a), result (b).

Figure 3: Vertical line extracting filter applied to the image of a crossing (a) and after edge extraction

(b): result (c).

Atn
Large Positive  Small Positive =~ Almost Zero  Small Negative Large Negative
Left Medium Left Small Right  Medium Right Medium Right Large Right
X, | Centre | Medium Left Small Left Zero Small Right Medium Right
Right Large Left Medium Left Medium Left Small Left Medium Right

Table 2: Fuzzy control rule set for Ag;.
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Figure 4: Path followed by the front wheel of the robot. Axis marking in meters.

Figure 5: Snapshots of the robot simulation at time t = 0, 8, 25, 32, 41, 53s.
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avoidance are currently being formulated in terms
of CNNs.

The line following algorithm described above can
be extended to the case of curved lines by a slight
enhancement of the image processing stage, and a
modification of the fuzzy rule base. In fact, follow-
ing a curved line resorts to following the tangent
at the closest point. However, in the long term the
secant taken between the closest and the farthest
point is a better guideline for the required manoeu-
vring Anyhow, the parameter extraction for either
the tangent or the secant line is performed by the
very same signal processing used for the straight
line.

Regarding obstacle avoidance, we consider as
“obstacle” anything that stands out as different
from the floor background, assumed to be uniform.
This approximation applies fairly well to outdoor
paved roads and to most indoor floors and is consis-
tent with the approach successfully taken by other
authors [19, 20]. Our current approach is based on
detecting edges in the field of view by CNN-based
processing. When both objects and floor are quite
smooth,and clearly distinguishable from each other,
a simple edge detecting operation based on a Sobel-
like operator is appropriate. More complicated en-
vironments, involving textured surfaces, and more
confused object-background separation situations
will call for more sophisticated algorithms, which
are also available in the CNN framework, such as
anisotropic diffusion [21] or snakes [22]. Closed
edges are filled, and again projections are used
to determine obstacle position. This information
is then passed to an obstacle-avoidance guidance
module that decides on the path to be followed.

9 Conclusions

In this paper wé describe the design of a fully au-
tonomous visually guided robot, which is able to
follow a line by means of CNN-based image process-
ing and fuzzy control. The robot has been realised
and is currently being tested. Accurate and realis-
tic simulation demonstrate the effectiveness of the
approach. We are currently working at a develop-
ment of the image processing stage that will allow
the robot to deal with broken/dashed and curved
lines, and with vertical obstacles. The design pre-
sented allows straightforward integration of a CNN
Universal Chip in place of the DSP-simulated CNN,
that would allow for highly increased speed. We be-

lieve this work is a step in the direction of proving
that CNNs are a good candidate for a silicon retina
in robot guidance tasks.
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