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Abstract

In this paper a set of heuristic criteria devised to
address the problems encountered in designing a
fuzzy system from input-output data is presented.
In particular, we show how to discriminate unsignif-
icant linguistic variables, determine the number of
fuzzy sets, place them in the universe of scope, and
propose a set of linguistic rules. The objective is
to obtain in a simple and fast manner an algorithm
simpler than the standard ones with minimum com-
putational cost but still similar performance and
more intelligibility in most cases.

Keywords: fuzzy identification, linguistic mod-
elling.

1 Introduction

A former application of fuzzy logic was the devel-
opement of intelligent systems emulating one’s lin-
guistic capacity leading to many fuzzy identifica-
tion methods based on clustering. These algorithms
commonly consist in fitting a set of input-output
data pairs achieving a lower error in prediction than
the previous one. In most cases, the more precision
they achieve the poorer linguistic intelligibility they
present.

Among the popular ones, we can mention Fuzzy
C-means [9] or Possibilistic C-means [6]. After clus-
tering the transfer function, one can approximate
the fuzzy sets needed to define the system. Some
authors combine clustering techniques with genetic
algorithms to obtain a fine tunning for the fuzzy
sets [2]. In other methods ellipsoidal regions for the
clusters are defined obtaining a good performance
but at the price of increasing the computational

cost [1, 3]. Alternative methods include taking clus-
tering decision to obtain the minimum entropy [5].
Here we are interesed in recovering the linguistic ca-
pabilities of fuzzy identification systems rather than
improving their precision and with a computational
cost adequated for on-line applications.

Given a set of raw data, a number of problems
arise during the design procedure such as determin-
ing the relevant variables, how the universe of scope
should be partitioned or which is the best rule base.
In this paper we present an enhanced version of the
one presented in [4] as a set heuristic criteria de-
vised to address the design problems. In particular,
we are able to discriminate unsignificant linguistic
variables, determine the number of fuzzy sets, place
them in the universe of scope and propose a set of
linguistic rules.

The goal is to obtain in a simple and fast man-
ner a good starting model that explains the most
significant relations between the output and inputs.
These criteria can be set up in an algorithm which
first computes the relevance of the variables, then
determines the number and position of the neces-
sary fuzzy sets to describe each relevant variable
and finally computes a fuzzy rule base. The re-
sult is an algorithm simpler than the standard ones
with minimum computational cost but still similar
performance and more intelligibility in most cases.

2 Simplifying fuzzy systems

Among the several methods to model a system,
those based on fuzzy logic not only try to obtain
a good representation of the relations between out-
put and inputs but also a linguistic explanation.
Even inside fuzzy logic the model is not unique.
We can consider the case of a proportional (P)
and derivative (D) control of a process to exemplify
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the differences between fuzzy models. A PD control
is a system with two inputs and one output defined
by the equation
de

u_er+KDdt (1)
where the input called e is the error defined as the
difference between the current output of the process
and its desired value and de/dt is the first derivative
of this error. There are also two parameters called
Kp and Kp that are adjusced depending on the
process to control. Here we’ll consider Kp = 1
and Kp = 1 to simplify the example and a domain
between { -1,4+1 } for the three variables.

A possible solution for modelling this system is
the fuzzy model with 3 sets for each input and 5
sets for the output variable plotted in figure 1. This
model with 9 linguistic rules presented in table 1 is
commonly found in literature.
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Figure 1: Fuzzy sets of the fuzzy PD

. Rule matrix |
| de\ e [ NE [ ZE | PO |
| NE | NB | NE | ZE |
ZE [ NE | ZE [ PO |
PO | ZE | PO | PB |

Table 1: Linguistic rules of a typical fuzzy PD

An alternative to the previous solution is the sim-
plified model proposed in table 2 with 4 rules and
only two sets for each input variable and three sets
for the output variable plotted in figure 2.

Both models perform well because their transfer
functions are very similar and close to the origi-
nal one depending on the implication and defuzzy-
fication methods selected. Nevertheless, the best
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Figure 2: Fuzzy sets of the simplified fuzzy PD

Rule matrix
de\ e | NE | PO
NE NE | ZE
PO ZE | PO

Table 2: Linguistic rules of the simplified fuzzy PD

linguistic model of this problem should match two
characteristics: linguistic interpretation and low
computational cost, and the last solution seems to
be very close to it. In fact we can demonstrate that
the simplest fuzzy model of a plane (a PD control
has a planar transfer function) is given by the last
proposed solution if we use product-product impli-
cation and weight counting defuzzyfication®.

So a clue to obtain fuzzy models with a mini-
mum number of rules is identifying planes (or hy-
perplanes for more than two input variables) each
of them defining the necessary fuzzy sets. The fuzzy
sets of the input variables are given by the margins
of those planes (or hyperplanes) while the output
sets of each possible rule are given by the value of
the plane (or hyperplane) itself. So the problem
when looking for a simple model is reduced to a
planar decomposition of the input-output data.

3 Fuzzy curves

In general, applications related with identification
appear as high computational cost methods. Any
reduction in this aspect would be appreciated if on-
line processing is required. The method we pro-

1Proof of assessment 1 at the end of the article
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pose consist basically in identifying planes (or hy-
perplanes) and the conventional solutions to this
problem require a high number of operations.

In fact, most algorithms applied to define those
planes (or hyperplanes) have a computational cost
proportional to Hfil b; considering N input vari-
ables and each one defined with B; n bits. An
alternative to reduce this time is obtained using
fuzzy curves [7] because the computational cost is
then proportional to Zivzl b;. Obviouslly, the ad-
vantage of reducing execution time is counteracted
by eliminating the possible correlations between in-
put variables.

Original fuzzy curves proposed in [7] for an input
variable z; with m input-output samples (i, yx)
are defined as

feilm) = G e

where ¢, (x;) represents a fuzzy set placed at

dir () = exp (— (“T‘)> 3)

and ( is a constant proportional to the length of
the universe of the scope (typically 20%). Can be
easily observed that fuzzy curves work as weighted
interpolation functions of the samples close to x;
similar to other methods like radial basis functions
but with fuzzy approximations. Even more, in or-
der to reduce the computational cost, exponential
functions can be changed by linear functions.

Fuzzy curves can be used to extract the fuzzy
sets of each input variable computing the first, sec-
ond and/or third derivative of the fuzzy curve and
looking for its values close to zero because these
values match planes (or hyperplanes) similar to the
real transfer function. The first derivative gives
information about the maximums and minimums,
the second one gives information of inflexion points
and the third one gives information about sudden
change of slopes.

In this point, a low-pass filter is necessary to
smooth the fuzzy curve before computing its deriva-
tives as well as a threshold to avoid noise problems
when searching for the zeros.

Let’s illustrate this fact through the following ex-
ample. Consider the resulting fuzzy curve of an in-
put variable plotted in figure 3 whose most signifi-
cant points, namely those necessary to approximate
the original function with a piecewise function, have
to be found.
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Figure 3: Example of a fuzzy curve

These points can be selected after considering the
first, second and third derivative of the fuzzy curve
whose values are plotted in figure 4 together with
the threshold applied in each case which will be de-
fined in the next section. From the first derivative
we can observe that a fuzzy set should be placed
close to 0. From the second derivative we can ob-
serve that two fuzzy sets should be placed close to
-0.25 and 0.25. From the third derivative we can
observe that three fuzzy sets should be placed close
to -0.48, 0 and 0.48.

So with a maximum number of 7 fuzzy sets for
this variable placed at -1, -0.48, -0.25, 0, 0.25, 0.48
and 1 because the limits of the scope are also in-
cluded as boundary sets, we should have enough
partitions to approximate the original function with
acceptable precision. In fact, it’s not necessary to
consider all derivatives and typically only first and
at the most the third derivative should be consid-
ered and consequently only 5 sets.
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Figure 4: Derivatives of the fuzzy curve
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We have also defined extended fuzzy curves to
fix the output fuzzy sets for any combination of N
input values as

Pkt (Hjlil ik (zz‘)) Y
Y (T, ik (=)

as weighted interpolation function but only com-
puting the values we are interested in, that is the
values that result of the combinations ot Jhe input
fuzzy sets. In the previous example the resulting
values of the extended fuzzy curve would be the
values of the original fuzzy curve evaluated at -1,
-0.48, -0.25, 0, 0.25, 0.48 and 1.

efe(zi.n) =

4 Outline of the algorithm

Let us remind in this section the basic steps nec-
essary to implement the overall method. First we
show how to evaluate the fuzzy curves necessary to
compute the relevance of each linguistic variable.
The result is a real number between zero and one
proportional to the importance of each variable so
only variables with a minimum relevance are con-
sidered. Then we compute the placement of the
fuzzy sets using fuzzy curves and looking for the
most significant values of it with the first, second
or third derivatives close to zero that fix the edges
of the fuzzy sets. The last one is the assignement
of the output fuzzy sets using the extended fuzzy
curves and consequently the linguistic rules. Im-
portant refinements are given at the end.

4.1 Fuzzy curves

Fuzzy curves work as interpolation functions that
relate the output to each input. First of all it’s nec-
essary to decide the number of points of the fuzzy
curve. These will be proportional to the number of
bits of each variable which can be fixed or adjusted,
for instance, doing a first analysis of the number of
bits necessary to have at least one sample for each
point. A simplified pseudocode version is the fol-
lowing :

For each Input variable
Optimal_partition is FALSE
Numer_of bits is a constant,
While Optimal.partition is FALSE
Generate 27V¥mber-of-bits 1 gquidistant

else
Optimal_partition is TRUE

Cenerate N=2Number_of_b1.ts

— 1 equidistant
points (Pi) from min(Input) to max(Input)
Generate the fuzzy curve (Fi) with N points

Low pass filtering of the fuzzy curve

4.2 Relevance of the variables

The relevance of the variables is obtained by com-
puting the margins of the fuzzy curves (distance
between the minimum value and the maximum
value). Variables not correlated with the output
values present a short margin and can neglected for
further steps.

For each Input variable
Margin Mi = max(Fi)-min(Fi)
Relevance Ri = Mi / max ( Mi )
Eliminate if Ri<threshold

4.3 Fuzzy sets

The input fuzzy sets are obtained by evaluating the
first, second and/or third derivative of the fuzzy
curves which are defined by N = 2/Vumber-of -bits _1
equidistant points in the universe of the scope
of each variable. Therefore, when projecting the
points where the i-th derivative is close to zero onto
the universe of scope, the edge points for the differ-
ent fuzzy sets will be obtained. Sometimes a great
number of fuzzy sets in the range of the universe of
the scope can appear requiring a later adjustment.
A threshold is necessary when looking for the ze-
ros in order to reduce noise intereferences which is
proportional to half of the power of the samples as

1/2
1 LZNb z2 /
2 \ N, 2ui=1%i

For each Input variable
Compute the first (d*F), second (d?F) and/or
third derivative (d°F) of Fi
Compute the points of d'F, d*F and d*F close
to zero (with threshold)
Compute the mean of the closest points

4.4 Linguistic rules from extended
fuzzy curves

Extended fuzzy curves have been developed as in-
terpolation method of systems with more than one
input variable being the extension of the fuzzy
curves defined with only one input. We can use
extended fuzzy curves to decide the output values

points (Pi) from min(Input) to max(Input) for each possible combination of input sets. Simi-

If some Pi does not have output samples
Decrease Number_of_bits by one

larly to the input sets, this method may bring about
a great number of fuzzy sets in the range of the
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universe of the scope that requires joinning those
that are very close. Other techniques have been
tried like the popular method developed by Wang
and Mendel in [10] achieving similar results but in-
creasing the complexity of the algorithm and so its
computational time.

For each possible rule
Compute the output fuzzy sets focused on the
result of the extended fuzzy curve and
considering only the input sets of the rule
Compute the mean of the closest sets

4.5 Refinements

The whole method includes some refinements that
must be considered. Some of them are also nec-
essary to reduce the computational cost and opti-
mizing memory management and only those related
with the method are here presented.

Some statistical techniques have been included to
discriminate some samples whose value could have
been significantly altered by noise. At the beginnig,
samples are ordered in quartiles in order to locate
those values bigger than one and a half times the
range between the first and the third quartile mea-
sured from the third quartile or lower than one and
a half times this range measured from the first quar-
tile. If these values are also very different from a
linear predictor they are rejected.

Sometimes it’s necessary to divide samples in dif-
ferent groups if an input variable z; can mask the
computation of the fuzzy curve of another variable
zj. This happen if several samples with the same
value for the variable z; have the same magnitude
but different sign depending on the value of the
other input z;. An example could be the Matlab’s
peaks function plotted in the figure 5 where the
fuzzy curve from every input will be very planar
because negative values tend to compensate posi-
tive values. Another solution is working temporary
with the squared values of the samples.

Relating to the first, second and third derivative,
a simple but fast method is recommended because
we are more interested in the shape than precision.
‘We propose the simplest method based on differ-
ences (in fact correlations with [—1 0 1] vectors)
with a later windowed average. The form of the
fuzzy functions seems not to be relevant when ex-
tracting the most relevant information from sam-
ples as we’ve observed from examples. Linear func-
tions are prefered in order to reduce the computa-
tional cost but exponential functions perform better

Extended view View from a vanat'c
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Figure 5: Matlab’s peaks function

if samples are plenty of noise because of its smooth
derivatives.

When fixing the fuzzy sets by identifying the
planes (or hyperplanes) of the system with the
derivatives of the fuzzy curves, the first and third
derivatives seem to be the most important ones
while the points obtained with the second deriva-
tive are typically masked.

5 Example

In order to exemplify the whole method, we’ll con-
sider the system defined by

z = exp (—y* + 0.5y) + tanh (3 (z° — 0.52)) (5)

where the input variable z € [—1, 1] and the input
variable y € [0, 2]. Its transfer function is plotted in
figure 6 and the model resulting should explain the
dependences between the output values and both
inputs. A total amount of 441 samples are consid-
ered.

First of all, our method computes the fuzzy
curves of both inputs which are plotted in figures 7
and 8 together with the samples considered for its
estimation. Only 16 points (N=4) have been con-
sidered for each variable. Because of the margins
of both variables are similar, 1.81 and 1.11, none of
them is rejected.

The first, second and third derivative of the fuzzy
curves are computed in order to decide the best val-
ues of the universe of the scope where the fuzzy sets
should be placed. These derivatives together with
the thresholds necessaries to avoid noise problems
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Figure 7: Fuzzy curve of the variable x

are plotted in figures 9 and 10. For variable z we
will consider 5 sets placed at -1 (limit), -0.33 (min-
imum}, 0 (inflexion point), 0.33 (maximum) and 1
(limit) while for variable y we will consider 3 sets
placed at O (limit), 1 (inflexion point) and 2 (limit).
A lower threshold would give a higher number of
points but decreasing the intelligibility of the model
and also reducihg noise immunity.

The output fuzzy sets are computed with the ex-
tended fuzzy curves evaluated for each combina-
tion of input sets giving the values presented in
table 3. A last processing has joined those values
which were very close and finally only 9 sets have
been considered for the output variable placed at -
9.0e-1, -2.9¢-1, +4.8e-2, +3.0e-1, +6.7e-1, +9.3e-1,
+1.3e+0, +1.5e+0 and +2.0e+O0.

So the final model proposed has 15 rules with
5 sets for the variable x, 3 sets for the variable y
and 9 sets for the output variable and its transfer
function is plotted in figure 11 considering linear
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Figure 8: Fuzzy curve of the variable y
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Figure 9: Derivatives of the variable x

fuzzy sets and computing the implication with the
product and the defuzzyfication with weight count-
ing. A function smoother than this could have been
obtained if applying exponential functions but in-
creasing the processing time without improving lin-
guistic intelligibility. In figure 12 the error defined
as the difference between the original transfer func-
tion and the modelled one has been plotted observ-
ing a non biased result. Thus, errors are only lo-
cated inside the planes so the more planes the more
precision but decreasing linguistic intelligibility.

6 Discussion

An algorithm that is able to give a first-approach
of the fuzzy systems and that relates input-output
pairs has been presented and discussed. Its main
feature is that it is quite simple and extracts rele-
vant linguistic information in a fast manner. This
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Figure 10: Derivatives of the variable y

Extended fuzzy curve

E\y o | 1 2

| -1 | +948e-2 | -2.97e-l | -9.0de-1
| -0.33 [ +1.27e+0 | +8.84e-1 | +2.77e-1
| 0 [ +1.00e+0 | +6.07e-1 | +9.11e-4
| 0.33 | +7.23e-1 | +3.3le-1 | -2.75e-1
|1 [ 41.90e+0 | +1.51e+0 | +9.06e-1

Table 3: Values of the extended fuzzy curve

is obviously a first-approach and the resulting sys-
tem could be fine tuned using other, more powerful
tecniques. We suggest the gradient descent algo-
rithm [8] because if we have a good approach of the
result, this algorithm converges fast to the optimal
solution. The whole algorithm will be optimized
and presented in a forthcoming work.

In spite of the surprising results that this and
other identification algorithms can offer, the most
important thing one must bear in mind when trying
to identify a system, is the necessity of a good set
of samples of all the variables because they will be
at the end the Tesponsible of the result.

We are currently working on applications where
linguistic interpretation is required such as econ-
omy modelling, social analysis and scientific stud-
ies. Other applications related with on-line control
processes of chemical reactions are being consid-
ered.
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Figure 12: Error between transfer functions

Proof of assessment 1

Statement: A planar transfer function can be ob-
tained with a four rule fuzzy system with two sets
for each input variable located at the margins of
their domains.

Consider a plane defined by

y=z+y (6)

where z € [X4,XgB), vy € [Ya,Y5] and then u €
[Xa+Ya, Xp+ Y]

An exact model can be obtained with two fuzzy
sets placed at X4 and Xpg, two fuzzy sets placed
at Y4 and Yp and four output fuzzy sets placed at
Usr=Xa+Y4,Up=X4+Yp, Uc=Xp+Ya
and Up = X + Yp as following

px (@) = 2T = 1o () ()
o (@) = 224 1@ @)

Xp—~Xa
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pv, () 573__% =1-py, () (9
() = e =1-m () (10
poy (w) = { (1) Q(jt:egiﬁise (1)
b, (u) = { (1) Zt:egjise (12)
by (u) = { é Zt;e'z("jifise (13)
po, (u) = { é :)Lt:egu?ise (14)

(15)

The output set applied to the rule defined by X4
and Y4 is obviously U4, the set applied to the rule
defined by X4 and Yp is Ug, the set applied to
the rule defined by Xp and Y4 is Ug and the set
applied to the rule defined by Xp and Yp is Up.

A product-product implication with defuzzyfica-
tion with weight counting gives the following result
for the output variable u

num

= 16
v den ( )

where num corresponds to the following expression

px, () wy, () Ua+

px, (z) py, () Up+

px, () py, (v) Uc+ (17)
HX, (JZ) 1y, (y) UD =

(@ +y)(Xa—XB)(Ya—YB)

and den corresponds to the following expression

(18)

so finally

_(z+y)(Xa—Xp)(Ya—Y5)
B (Xa—XB)(Ya—Yg)

=z+y (19)
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