
Evolutionary weight tuning bas
for unit selection speec

Francesc Alı́as† and Xa

†Dept. of Communications and Signal Theory ‡Illin
Enginyeria i Arquitectura La Salle Nation

Ramon Lull University Uni
Psg. Bonanova 8, 08022-Barcelona, Spain 104 S.

falias@salleURL.edu

Abstract
Unit selection text-to-speech (TTS) conversion is an ongoing
research for the speech synthesis community. This paper is
focused on tuning the weights involved in the target and con-
catenation cost metrics. We propose a method for automati-
cally adjusting these weights simultaneously by means of di-
phone and triphone pairs. This method is based on techniques
provided by the evolutionary computation community, taking
advantage of their robustness in noisy domains. The experi-
ments and their analyses demonstrate its good performance in
this problem, thus, overcoming some constraints assumed by
previous works and leading to a new interesting framework for
further investigations.

1. Introduction
Concatenative speech synthesis based on unit selection tech-
niques has become a basic technology for Text-to-Speech (TTS)
conversion in recent years [1, 2, 3]. These techniques overcome
limitations of synthesis from diphone based methods with only
one instance per unit. They minimize the number of artificial
concatenation points, reducing the need for prosodic modifica-
tion at synthesis time. This is due to the use of a large database
of continuous read speech where many instances of every unit
are stored. The selection process makes use of dynamic pro-
gramming techniques in order to obtain the sequence of units
that minimize a cost function at run-time [4]. In fact, it is im-
portant to note that the database has to be designed to cover as
much linguistic variability as possible, given a particular lan-
guage or a limited domain [5].

Unit selection TTS systems can produce sentences with
good intelligibility and naturalness, nevertheless, this quality
cannot usually be maintained along the whole sentence. There-
fore, there is still a substantial amount of work necessary for
the tuning of all parameters and features involved in the selec-
tion process [5]. For instance, the elements of the cost func-
tion must be optimized in order to find the set of units from the
database that best matches the target sequence of the desired
speech sounds. Designing the appropriate measures, as well as
correctly tuning them (e.g. adjusting the weights), is essential
for achieving high quality synthetic speech.

Weight tuning is one of the most difficult issues in this train-
ing process. Hunt and Black presented two approaches in [4].
The first approach was based on adjusting the weights through
an exhaustive search of a prediscretized weight space (weight
space search, WSS). The second approach proposed by the au-
thors used a multilinear regression technique (MLR), across the

entire
and H
ficienc
descri
in the
synthe
on pop

Se
tion p
for we
are pr
conclu

The c
cess.
unit fr
tion b

The ta
sum o
These
prosod
their c
cess i
the lin
uttera

Differ
allowi
cent e
measu
sub-co
tion o
focuse
equati
ergy a
catena
ed on diphone pairs
h synthesis

vier Llorà‡
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database to compute the desired weights. Later, Meron
irose [6] presented a methodology that improved the ef-
y of the WSS and refined the MLR method. They also

bed an extension of these procedures by using unit pairs
training process and considering prosodic modification at
sis time. In this paper we propose a novel approach based
ulation search algorithms for weight optimization.
ction 2 presents the elements involved in the unit selec-
rocess. Then, section 3 describes the proposed method
ight training. The conducted experiments and analyses

esented in section 4. Finally, section 5 discusses some
sions about the work presented in this paper.

2. Unit Selection Cost Function
ost function plays a leading role in the unit selection pro-
It takes into account the unit distortion of the candidate
om the target (target cost, Ct), and the continuity distor-
etween consecutive units (concatenation cost, Cc) [4].

Ct(ti, ui) =

p∑

j

wt
jC

t
j(ti, ui) (1)

Cc(ui, ui+1) =

q∑

j

wc
jC

c
j (ui, ui+1) (2)

rget and concatenation costs are defined as a weighted
f p and q sub-costs, equations (1) and (2) respectively.
measures are calculated as the difference of relevant
ic and phonetic features. Once the desired features and
orresponding weights are defined, the unit selection pro-

s developed to minimize the cost function obtained from
ear combination of Ct and Cc across the n units of the

nce (see equation (3)).

C(tn
i , un

i ) =

n∑

i

Ct(ti, ui) +

n−1∑

i

Cc(ui, ui+1) (3)

ent measures have been proposed to score these sub-costs,
ng symbolic, scalar and vectorial comparisons [3]. Re-
fforts have been carried out in order to improve these
res [7, 8]. As a first approximation we have defined these
sts in the prosodic framework, simplifying the computa-

f the unit selection cost function. Therefore, this paper
s on the weight training process. The target sub-costs of
on (1) are measured scoring mean differences in pitch, en-
nd duration between units (follow equation 4). The con-
tion sub-costs of equation (2) take into account the local



differences in pitch, energy and Mel-frequency cepstral coef-
ficients (MFCC) at the point of concatenation (Right and Left
values) (see equation 5).

Ct
j(ti, ui) =

∣∣Pj(ti) − Pj(ui)
∣∣ − m(Ct

j)

M(Ct
j) − m(Ct

j)
(4)

Cc
j (ui, ui+1) =

∑N
1

∣∣P R
j (ui) − P L

j (ui+1)
∣∣ − m(Cc

j )

M(Cc
j ) − m(Cc

j )
(5)

These measures are normalized by means of the minimum (m)
and the maximum (M ) values of the sub-cost of parameter Pj

for the analyzed unit or set of units. N represents the number
of concatenative parameters considered (see equation 5). In our
approach, N = 1 for pitch and energy sub-costs. This value is
the number of cepstral parameters for the MFCC measure.

3. Adjusting the Weights
Training the weights involved in unit selection (wt and wc, see
section 2) is not a trivial process. As a first approximation, they
can be obtained by a hand-tuning process that is perceptually
supervised [3, 7]. However, it is believed that automatic train-
ing will achieve more robust results. Due to the nature of the
problem presented in section 2, it can be modeled as an opti-
mization problem where the decision variables are real-valued.
Weighted space search and multilinear regression are the two
current main contributions to the automatic approach.

3.1. Weight Space Search

This technique discretizes the search space using a finite set of
possible weights W . The optimal weight values are obtained
by an analysis-by-synthesis exploration of the chosen variable
configurations, that is |W|p+q . Initially, this method was em-
ployed for training weights all together [4], and later applied
to concatenation weight tuning [1]. Moreover, Meron and Hi-
rose [6] accelerated the process by splitting it into two steps:
first precalculating the analysis (selection) and then, running
the synthesis (evaluation). Unfortunately, the exhaustive search
becomes non-feasible due to its prohibitive computational cost
when accurate adjustments are desired.

3.2. Multilinear Regression

This method is much more robust than WSS due to its selection
and comparison of all units thorougly, as opposed to the selec-
tion of only some data points of the weight space [6]. Moreover,
the computational cost is reduced. The regression predicts the
objective distance by weighting linearly the sub-costs measures.
This training process is fully described in [4], where it is only
applied to target weight generation. In [6], MLR is applied to
phone pairs, thus, target and concatenation weights can be tuned
simultaneously.

3.3. Genetic Algorithms

Genetic algorithms (GA) [9, 10] are population-based search
algorithms. Inspired in natural evolution ideas, GA evolve a
population of candidate solutions (i.e. weights) adapting them
to a given environment, or fitness function (i.e. unit selection
cost). This process takes advantage of mechanisms such as the
survival of the fittest and genetic material recombination.

The scheme of the proposed GA (figure 1) starts with a pop-
ulation generated at random. Each individual is a vector W
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Figure 1: Scheme of simple genetic algorithm.

ht configuration) containing the weights to be adjusted,
ng in W = (wt

1, . . . , w
t
p, wc

1, . . . , w
c
q). Then, the popu-

is evaluated. Each weight configuration is used for com-
the cost function of unit selection based on equation (3),

r explained. The next step performed by the GA is the sur-
f the fittest weight configuration. This process, known as

ion, builds a new population sampling the previous one.
rocess is biased using the computed fitness. There are
l approaches to the selection step, however, we used de-
istic binary tournament selection due to its ability to deal
oisy evaluations effectively [10]. Once the new popula-
obtained, the individuals are recombined in two differ-

ases. The first, crossover, given two randomly chosen
duals with a probability pc, recombines the weight val-
oducing two new offsprings. This process is done using
e point crossover operator [9]. Moreover, the offspring
e their parents in the population. The second phase is

as mutation. It introduces random perturbations to the
ts values with a given probability pm. At this point, we
btained a new population that replaces the original one,
g the evolutionary cycle again. This process stops when
in finalization criteria is met (i.e. a fixed number of iter-

, iter).
he fitness computation is based on a database that has
clustered into basic units. Computation follows several

Firstly, a random target unit is selected. This sampling
s allows us to reduce the computational cost required
mputing the fitness (cost function). Sampling also adds
to the evaluations. However, GA can perform efficiently
se-optimization situations [9, 10]. The second step com-
the cepstral distance between all parameterized candidates
e randomly selected target, after a time-alignment follow-
DTW path. Finally, the k-best acoustic units (this paper
es k=10) are used to obtain the final value for the cost
on (fitness). This value is computed as an average of the
ted cost function involving the retrieved k-best individu-
d using the weights of the individual W being evaluated
quation 3). Thus, the fitness f(W) can be summarized as:

f(W) =
1

k

∑

i∈k-best

C(tn
i , un

i ) (6)
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Figure 2: Final fitness (cost value) computed across the runs.

4. Experiments and Analysis
The acoustic corpus used in the experiments is composed of a
simple collection of 1,520 Catalan sentences read by a profes-
sional native male speaker. It is not a very large database (ap-
proximately 10,000 units), and no greedy algorithm has been
carried out in the designing process. However, it can be use-
ful for some initial experiments for our ongoing research in unit
selection. Diphones and triphones are the basic units, opposed
to half-phones (or half-diphones) [2, 7]. We assume that this
approach will provide, at least, the same speech quality as a
traditional diphone TTS system with only one instance per unit.

As depicted in [6], we chose unit pairs as training ele-
ments, however, we used diphones and triphones instead of
phones. Thus, concatenation and target weights are tuned con-
currently. In order to show the usefulness of the GA proposed
in this paper for weight adjustment, we conducted several ex-
periments on basic unit clusters containing more than 25 in-
stances. The tests were performed using the following param-
eters: population size = 200, iter = 100, pc = 0.3, and
pm = 0.003 [9, 10].

The /b@/ unit cluster (SAMPA notation) has been ran-
domly selected as a benchmark for comparing MLR, GA and
GA+MLR configurations. The latter represents a GA with a
percentage of initial population ( 10% − 50% ) obtained from
the MLR solution. Figure 2(a) presents the statistics of the
cost function across all the instances of the benchmark clus-
ter, given the best weight configuration provided by the dif-
ferent techniques. The weight solution obtained by means of
the GA presents a better performance compared to the MLR
result in terms of mean cost, despite a higher deviation. The
GA+MLR only reduces this deviation without improving the
mean cost value, thus, it was discarded throughout the rest of the
test. Moreover, we concluded that our simply designed database
presents non-comparable distributions of the chosen sub-costs,
biasing the solutions obtained by the GA.

We have noticed that the various runs of the GA have
obtained different weight values. This is due to the sam-
pling procedure introduced by means of random (noisy) selec-
tion, whereby the fitness landscape becomes highly multimodal.
Nevertheless, the GA can perform better than the classical op-
timization algorithms due to its noise tolerant nature. After
weight computation across all tested units occurred, we con-
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3: Quantile-Quantile plots of the costs achieved across
ts by the two compared methods.

that the GA outperfomed the MLR in terms of mean and
ion of the resulting cost function (fitness in figure 2(b)).
he cost function (C, see equations 3 and 6) for both al-
ms across the tested units presents a quasi-normal distri-

(see figure 3). Thus, a t-test can be used for analyz-
e statistical significance of these results. This test shows
< CMLR with a confidence level of p = 3.756 · 10−8.
esult reinforces the conclusion that the GA outperforms
for weight tuning in unit selection synthesis.
gures 4 and 5 depict two pair plots for the weights
ed by both algorithms. The ω3

i=1 are the target weights
e ω6

i=4 are the concatenation weights. The diagonal of
figures contains the histogram of each weight across all
units. The remaining sub-figures (ij cells) represent the
nship between weight pairs (wi, wj). A superimposed
h line shows the character of this correlation: linear,
atic, exponential, etc. The relationship of MLR weights
ore linear than the GA ones, however their fitness are
(see figure 2). Moreover, the biased sub-cost behavior
e unit-dependent tested clusters promote w3 (the target

on cost) to be the most relevant measure for unit selection,
ng the importance of having a well-designed database.
he GA presents a higher computational cost when com-
to MLR. However, it grows linearly with the number of
ces, in opposition to the WSS approach, which increases
entially. Locating the optimal solution (the global min-
) is not impossible, nevertheless, it becomes computa-
ly non-feasible. For the WSS approach, an intensive dis-
tion becomes essential (involving several weeks, or even
s, of computations) and for the GA method, an elitist pro-

hould be included after several runs of the algorithm.

5. Conclusions
method based on GA for simultaneously training tar-

d concatenation weights in unit selection TTS conversion,
resented. GA locates high-performing weight configura-
taking advantage of sampling and noise addition tech-
. This method overcomes some constraints from previous

aches, proving its usefulness across the developed experi-
.
ue to the use of diphone and triphone pairs, the search-
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Figure 4: Weight analysis across different units using MLR.

ing space is increased considerably, in comparison to the phone
pairs’ space. Therefore, adjusting the weights for a diphone
and triphone selection TTS system is a higher time-consuming
process. However, these units allow optimal concatenations at
synthesis time. Moreover, the proposed method can be used in
the training of weights for: (1) unit-dependent collections, or
(2) clusters of similar units, or (3) units altogether. From the
analysis presented in the previous section, we conclude that it is
essential to take into account a well-designed database for unit
selection by means of a greedy algorithm.

Our current ongoing work is focused on (1) designing a new
Catalan speech database, and (2) improving several important
areas including prosodic modifications when comparing candi-
dates to target units [6], and considering more complex mea-
sures for the cost function [7, 8]. Moreover, we are also in-
terested in analyzing context clustering [1] to avoid target cost
computation at synthesis time.

Furthermore, formal listening tests will be planned in the
near future to evaluate the performance of the GA weights.
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