
Everything is INTERRELATED:
Teaching Software Engineering for Sustainability

Birgit Penzenstadler
CSU Long Beach

Long Beach, USA

birgit.penzenstadler@csulb.edu

Stefanie Betz
Karlsruhe Insitute of Technology

Karlsruhe, Germany

stefanie.betz@kit.edu

Colin C. Venters
University of Huddersfield

Huddersfield, UK

c.venters@hud.ac.uk

Ruzanna Chitchyan
University of Bristol

Bristol, UK

r.chitchyan@bristol.ac.uk

Jari Porras
LUT

Lappeenranta, Finland

jari.porras@lut.fi

Norbert Seyff
FHNW

Windisch, Switzerland

norbert.seyff@fhnw.ch

Leticia Duboc
La Salle - Ramon Llull University

Barcelona, Spain

lduboc@salleurl.edu

Christoph Becker
University of Toronto

Toronto, Canada

christoph.becker@utoronto.ca

ABSTRACT

Sustainability has become an important concern across many disci-

plines, and software systems play an increasingly central role in

addressing it. However, teaching students from software engineer-

ing and related disciplines to effectively act in this space requires

interdisciplinary courses that combines the concept of sustainabil-

ity with software engineering practice and principles. Yet, presently

little guidance exist on which subjects and materials to cover in

such courses and how, combined with a lack of reusable learning

objects. This paper describes a summer school course on Software

Engineering for Sustainability (SE4S). We provide a blueprint for

this course, in the hope that it can help the community develop a

shared approach and methods to teaching SE4S. Practical lessons

learned from delivery of this course are also reported here, and

could help iterate over the course materials, structure, and guidance

for future improvements. The course blueprint, availability of used

materials and report of the study results make this course viable

for replication and further improvement.

CCS CONCEPTS

• Software and its engineering; • Applied computing→ Edu-

cation; • Social and professional topics→ Sustainability;

KEYWORDS

Sustainability, software engineering, pedagogy, sustainability de-

sign, sustainability education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5660-2/18/05. . . $15.00
https://doi.org/10.1145/3183377.3183382

ACM Reference Format:

Birgit Penzenstadler, Stefanie Betz, Colin C. Venters, Ruzanna Chitchyan,

Jari Porras, Norbert Seyff, Leticia Duboc, and Christoph Becker. 2018. Ev-

erything is INTERRELATED: Teaching Software Engineering for Sustain-

ability. In ICSE-SEET’18: 40th International Conference on Software Engi-

neering: Software Engineering Education and Training Track, May 27-June

3 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3183377.3183382

1 INTRODUCTION

Sustainability is a major concern to humanity as a result of the

consequences of the rapid consumption of the planetsfi nite natural

resources, combined with exponential economic and population

growth [32, 33, 52]. It is suggested that to achieve a sustainable

future it is highly dependent on the creation of a professional work-

force knowledgeable about sustainable practices and processes to

optimize resource management and influence human activity on

the environmental, economic and social aspects of sustainability [2].

While it is postulated that societal change begins with the individ-

ual, evidence suggests that students often appear to be unable to

align their demonstrated unsustainable behavior with their values

related to sustainability [38, 47]. As such, there is a need to cre-

ate a cognitive dissonance to bridge the commitment gap, which

it is argued can be achieved through educational interventions to

encourage individuals to effectively balance the self-knowledge

that motivates intentional personal development towards more

sustainable behavior [12, 46].

Thefi eld of computing also plays a critical role in addressing

sustainability given its high societal leverage [14]. However, under-

graduate computing education often fails to address our social and

environmental responsibility [30]. Despite long standing calls [26],

computing education has been slow to act towards a shift in adopt-

ing sustainability education resulting in a deficit and misalignment

in knowledge in how existing basic software engineering theory

and practice relates to sustainability [17]. While the concept of sus-

tainability has gained worldwide mainstream traction in the higher

153

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering Education and Training

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden Penzenstadler et al.

education sector at an operational level [23, 24, 51, 53], few have ad-

dressed education for sustainability in a holistic, multidisciplinary,

and systematic manner [29]. However, in a crowded computing

curriculum [31], software engineering students have little chance

to learn about the concepts needed to analyze sustainability beyond

the technical scope of systems they develop in class. This requires

interdisciplinary courses that combine a wider perception and un-

derstanding of sustainability with software engineering projects

through reflective practice. Here sustainability1 is interpreted as the

capacity of a socio-technical system to endure [4]. It is a systemic

concept, as sustainability dimensions (which are social, individual,

environmental, economic, and technical) are both interwoven with

functions and constraints of any given socio-technical system, and

mutually interdependent, and contextualized by the ethical and

legal norms and social practices [50]. Despite the emergence of a

number of initiatives, little guidance exists on which subjects and

materials to cover in such an endeavor, on the interdisciplinary

challenges of mixed groups confronted with sustainability theory

and systems design practice, on teaching practices and experiences

in this space, and a lack of reusable learning objects for the wider

software engineering community to utilize.

This paper describes a blueprint for such an interdisciplinary

intensive summer school course on Software Engineering for Sus-

tainability (SE4S) targeted for an audience of mixed (both SE and

non SE) students. We provide a blueprint for this course, in the

hope that it can help the community develop a shared approach and

methods to teaching SE4S. We also outline our course evaluation

approach, which combines a pre- and post- course survey with

an independent review of artifacts resulting from the course and

participant reflections, which enables a qualitative assessment of

the course and its outcomes. After a discussion of the background

in Section 2, this article will present the design of the course and

the evaluation study in Section 3; summarize the one-week sum-

mer school course that presents the case we study in Section 4;

and discuss the implications of ourfi ndings in Section 5. Section 6

summarizes ourfi ndings and discusses further implications.

2 BACKGROUND

A number of commentators have considered the issue of how to

integrate sustainability into the computing curriculum in higher

education [5, 43]. Currently, integration of sustainability happens

sporadically through a number of avenues such as: (i) Developing

new courses, which cover selected sustainability and green comput-

ing topics [1, 20]; (ii) Designing and developing independent green

computing learning modules and projects, which can be plugged

into the existing computing courses [5, 28, 43, 56]; (iii) An integra-

tive and transformative approach where computing courses are

completely re-designed with sustainability at their heart [35, 44];

(iv) A topic-centered approach [1]. For example, Sherman [48] sug-

gested a number of steps to achieve integration of sustainability

concepts into any curriculum: (i) identify some big ideas within the

discipline; (ii) identify a link between one or more of these ideas

and the elements of sustainability; (iii) design a class component

1The notion of sustainability has been discussed extensively in a number of publica-
tions [3, 4, 8, 54], and readers are directed to these for an in depth treatment of this
topic.

that integrates the discipline with sustainability. However, it is also

suggested that regardless of the pedagogic approach adopted for

teaching sustainability, an epistemic transformative and learning

response that is able to facilitate a transformative learning experi-

ence is required to ensure that students are fully immersed in the

topic of sustainability [9, 57].

Although limited in their generalizability, the results of feedback

from the course evaluation suggest that students responded posi-

tively to their courses. However, despite the emergence of a number

of pedagogical approaches their reproducibility to the wider soft-

ware engineering community is both limited and in most instances

take a narrow view of the concept of sustainability.

It is also suggested that the type of course that students take

significantly impacts the way in which students conceptualize this

term; the number of courses taken has no statistically significant

impact [15]. This suggests that mere exposure to a particular theme

in a class, rather than continued exposure to courses related to

sustainability, is more important in shaping students’ perceptions.

In addition, Heeren et. al., [21] demonstrated that while knowledge

had a significant bivariate correlation with behaviour, their results

revealed that as students are educated about sustainability, fostering

behaviour changewill require education not only about how actions

affect sustainability but also about social norms, attitudes towards

sustainable behaviours and the level of self-efficacy in doing those

behaviours.

In addition, a number of studies [5, 10, 13] have also identified a

range of barriers and challenges to the integration of sustainability

into the computing education curriculum including: a fundamental

lack of interest; staff training; a lack of tradition; and a lack of pri-

ority; colleagues’ scepticism; students’ expectations of the course;

an absence of policy; syllabus constraints; lack of leadership; an

unfavourable view of the role of education for sustainability; the

siloing within faculties of education; and a lack of a framework for

sustainability education [18, 36].

This raises the question of what concepts and topics we should

teach for software engineering for sustainability within the com-

puter science and software engineering curriculum? Particularly as

we observe that: (i) software development is often undertaken by

non-specialists (i.e., other developers beyond trained software engi-

neers); (ii) a software system is normally engineered for, and must

conform to the requirements of “a client". In the following sections,

we describe an approach that lays the foundation for the devel-

opment of a global educational framework for teaching software

engineering for sustainability.

3 GOALS AND STUDY DESIGN

3.1 Research objectives

The overall goal of this initiative is to establish a systematic ap-

proach for teaching software engineering for sustainability. The

discussion above suggests that this intersection of areas requires an

interdisciplinary perspective and an attention to reflective practice

in design and in teaching. The following overall questions arise in

the development of such an approach.

(1) Content. Which subject areas and modules constitute an

effective baseline for an SE4S course curriculum?

154

Everything is INTERRELATED:

Teaching Software Engineering for Sustainability
ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

(2) Structure. How can they be scaffolded and applied in a

project-based course?

(3) Process. How can we establish a reflective teaching practice

among the diverse community of educators in SE invested

in teaching SE for sustainability?

To address these questions, we developed a week-long summer

school course and describe its content and structure below; and we

evaluated and reflected on the teaching approach and the challenges

encountered through multiple perspectives.

As a keyfi rst step, the overall objective of this study [45] is thus

to understand, through this particularfi rst case, how to teach a

group of students with mixed backgrounds such that they get an

understanding of software engineering for sustainability and can

apply this knowledge to a (local) project. The research questions

addressed within this article thus are:

RQ1 Which subject areas and modules constitute an effective

initial baseline for an SE4S course curriculum?2

RQ2 How can a project-based course be effectively focused on

SE4S to synthesize diverse backgrounds?

RQ3 How difficult is it for students with varied backgrounds and

knowledge of sustainability and software engineering to

establish a shared working knowledge of this intersection

of subjects?

RQ4 What types of challenges arise and how can they be ad-

dressed?

3.2 Study Data collection

The unit of analysis in this study is the design and teaching of an

SE4S summer school course, which includes multiple embedded

units of analysis and their relations. We structure these as follows.

The course design itself covers the team of educators; the syl-

labus produced and its content; the weekly plan; as well as lecture

materials. As the content of the module represents the views of

the educators team, the team is characterised by its subject-specific

background and views on SE for sustainability.

The participants of the course are characterized in terms of

their educational background and prior experience; the learning

outcomes as evaluated by themselves and the educators; and the

reflections they provided on the learning experience and change of

perceptions.

The practice of teaching the course is characterized through ob-

served events and difficulties, challenges and strategies of adaptation

that were used to address identified challenges during the course.

3.3 Data Collection Methods

We triangulated the analysis of each unit of analysis using multiple

sources of evidence, as illustrated in Fig. 1.

We used a pre- and post-survey and a report for the students’

self-assessment and learning perceptions, and for the external as-

sessment in form of artifact analysis we used a criteria catalogue.

Pre-Survey. A short pre-survey [41] evaluates whether our (in-

formal and internal) hypothesis about the characteristics of the

student population would hold, and to be able to better tailor the

2While we are highly interested in the entire SE process, RE has the biggest impact on
sustainability [3], and the limited time for the course required us to focus on RE, some
design activities, and the hackathon.

Figure 1: Data collection and analysis during the SE4S course

Figure 2: RE4S artefact model used in the course

course to the student population that decided to register for the

course in that instance. The survey contained questions on their fa-

miliarity and experience with the general software engineering pro-

cess, requirements elicitation and modeling, UML diagrams, SysML,

IFML (Interaction Flow Modelling Language), Attribute-Driven De-

sign (ADD), user interface development, rapid prototyping, design

thinking, systems thinking, and computational thinking.

Post-Survey. We used a survey [41] that consisted of several

sections, one part dedicated to the SE4S course, one part on ethics

perceptions, and one part on value ratings.3 The part specific for the

SE4S course was composed by a background section, the motivation

for the course selection, a section on their notions of sustainability,

software and software engineering, their perceptions of the course

content, and reflections on the course.

Artifact Analysis. Over the course of the week, the objective

was to develop a specification according to a small requirements

artifact model as well as some prototypes or mock-ups. An overview

of the artifact model to be produced is given in Fig. 2. The artifacts

are a rich picture, a stakeholder model, a goal model, a use case

overview model, design thinking prototypes, and a sustainability

analysis diagram. For the artifact analysis, we used a list of jointly

elaborated quality criteria to structure their analysis (see [41]). For

each artifact, there is a number of questions and criteria to be

considered by the evaluators.

Analysis and validation procedures. Two external experts

performed the artifact analysis. They were not part of the team

that designed and carried out the study and who were not involved

3This paper only analyzes the parts of the survey dedicated to the SE4S course due to
space limitations. The additional parts on the wider ethics and value perceptions are
forthcoming in a longer journal article.

155

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden Penzenstadler et al.

with the course itself. They received the artifacts after the course

had ended and used a list of jointly elaborated quality criteria to

structure their analysis.

4 A COURSE ON SE4S

The week-long course is designed as part of a summer school held

at the Lappeenranta University of Technology (LUT) in Finland.

LUT has been arranging these international summer schools since

2012 and the event has attracted 150-200 students on approximately

15 different courses per year. One third to half of the students

are international exchange students and the rest local students

from various Finnish universities. For the year 2017, we proposed

a course on Software Engineering for Sustainability that included

five faculty, four lecturers and the local host. The course featured

roughly seven hours of face-to-face time with the students per day,

distributed in four sessions of 90-120 minutes each.4 This sums up

to a total of 35 hours of face-to-face time during that week, plus

about 10 hours that the students invested in their time outside of

class to prepare thefi nal reports and to do their reflections.

In its inception this course was driven by the convictions and

background for the educator team. The team comprises three soft-

ware engineering academics and an information systems researcher

all with a key research interest in requirements engineering. The

team holds a strong conviction that the key to engendering sustain-

ability through software is in treating sustainability as an integral

concern in software requirements engineering [3]. It is because

the impact that a software system will have on its (natural, so-

cial, economic, and technical) environment is primarily determined

by how the software engineers set out in the software require-

ments. Essentially, the requirements prescribe which system to

build, whose interests to support through the system (i.e., who are

the relevant stakeholders) and how will a success of this system

be evaluated [3]. To briefly illustrate this: consider a weather up-

date app. The resultant software and it socio-economic impact will

drastically differ depending on such requirements as will it have

to be informative for illiterate users (e.g., farmers orfishermen

in developing countries), be multilingual and voice operated, or

run on old hardware/software platforms? Thus, the syllabus of the

course was strongly weighted towards tools/techniques that enable

engineering sustainability into software system requirements.

Furthermore, the team is driven by conviction that all software

design professionals need to engage with the sustainability de-

sign [4]. Thus, the initial syllabus design was aimed at a diverse

population of software professionals: from HCI practitioners to

those working on mathematics foundations of computer science.

Yet, it held a silent assumption of some computer science back-

ground. We were expecting a mix of undergraduate (less) and grad-

uate (more) students from different years with a focus on computer

science and possibly a few from other disciplines. The software

engineering knowledge that these students had would be limited

but basic knowledge. We also expected little previous knowledge

on sustainability, but knew that may not be the case for all students.

The team, however, was aware that this assumption may not hold,

490 minutes per session are sufficient, 120 minutes just allow for a longer and more
detailed feedback discussion.

and made an effort to identify the actual background of the intended

audience, as discussed below.

We had prepared a brief list of readings ([4, 22, 39, 55]) to go

through, but we also knew from past experience with summer

schools that there is a limited likelihood of students following

through on such a reading list before the start of a course.

The learning outcomes for the course are detailed in Tab. 1 along

with how they are assessed.

Table 1: Learning outcomes

Goal / Objective Assessment / Measurement

Sustainability concepts and principles: Develop an

understanding of the concept of sustainability and its dif-

ferent dimensions and orders of effect and an ability to

transfer these concepts to other application domains.

Students will demonstrate their mastery of sustainabil-

ity concepts in demonstrating the transfer to a different

application domain in their team project documentation.

Requirements Engineering: Students develop an un-

derstanding of the basics of requirements engineering,

they understand and are able to apply stakeholder mod-

eling, goal modeling, process modeling, use case model-

ing, and SysML.

Students demonstrate their mastery of requirements en-

gineering by developing a consistent specification that

includes stakeholders, goals, process model, use cases,

and SysML diagrams.

Systems thinking: An understanding of the mindset of

and the general principles of systems thinking, includ-

ing holistic viewpoints and iterative development. Un-

derstand and be able to reason about long-term effects

that a system under development may have on the envi-

ronment and on society.

Students demonstrate their knowledge in taking a big-

ger picture perspective and holistic viewpoint in their

rich picture. Demonstrate the reasoning in providing an

analysis to that regard for the system under development

and pointing out risks that may or may likely occur in

the future given certain conditions.

Design thinking: Understand and be able to apply de-

sign thinking on (complex) problems, which requires al-

ternating between narrowing down and opening up the

perspective.

Demonstrate the application of design thinking on a lo-

cal problem to demonstrate understanding and transfer

of the concepts of iterative development in innovation in

their project.

The subject areas and modules are detailed in Tab. 2. For each,

we provide content, example key references, and rationale for their

inclusion in the course. For more details, please refer to [41].

Table 2: Subject areas and modules

Module Content Key

refs.

Rationale for inclusion

Sustainability

foundations

Dimensions of sustainability,

orders of effect, application

domains, Sustainable Develop-

ment Goals

[4,

19,

22]

Provides a common basis for scoping sustainabil-

ity within this course and puts the concept into a

larger perspective.

Principles of

sustainability

design

Principles of substitution, de-

coupling, and dematerialization;

Software Engineering for Sus-

tainability examples

[7,

22,

39]

Introduces the principles that can be used for

thinking of system ideas for the projects to be de-

veloped during the course.

Rich pictures Rich picture method for scoping

and high-level domain modeling

[34] Rich pictures are a simple, non-technical method

to illustrate the vision for a system or scoping of

a problem in its surrounding application domain

and operational context.

Stakeholder

and goal

models

Introduction to concepts, roles,

reference models, analysis, and

notations for both of the models.

[40,

42]

Forms the basis for eliciting requirements for

a chosen project idea. The stakeholder model

makes sure all relevant roles are included, the

goal model provides a basis for consensus, con-

flict identification and trade-offs.

Process

modeling

Introduction to concepts of and

notation for business process

modeling

[27,

37]

Provides the transition from high-level goals to

the operationalization of these objectives in exe-

cutable processes.

Software

Engineering

Overview of the general Soft-

ware Engineering process

phases and introduction to use

cases

[25] Complements the technology-agnostic processes

with the technology-aware perspective by de-

scribing the interaction between user and system.

SysML Introduction to SysML for an-

alyzing and designing complex

systems

[16] The Systems Modeling Language is a widely used

general purpose language for modeling and veri-

fying software systems.

Design

Thinking

Hands-on crash course tutorial

in design thinking

[49] The d.school’s highly interactive workshop on de-

sign thinking facilitates transition into rapid pro-

totyping.

Sustainability

analysis

Introduction to the analysis and

estimation of a system’s impact

according to the sustainability

dimensions and order of effect

[3] The overview of all impacts of a system from

short-term to long-term enables software engi-

neers to take a wider perspective and better judge

the consequences of their choices during develop-

ment.

4.1 Project Assignments

Students develop the following artefacts throughout the course: a

rich picture, a stakeholder model, a goal model, a use cases model, a

sustainability analysis diagram and physical prototypes. The assign-

ments to develop the artifacts in Fig. 2 are given in class at the end

156

Everything is INTERRELATED:

Teaching Software Engineering for Sustainability
ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

of the lecture module that introduced a specific artifact [39]. The

instructions are given orally as the students use the consecutive

hours to develop that artifact in their team. Students also receive

five sample reports from different domains from an earlier course.

The instructors are present during the working sessions and avail-

able for guidance, questions, or preliminary feedback. In addition,

there is a hackathon planned for the weekend, where students code

prototypical implementations of their projects. As the focus is more

on the conceptual understanding of how to integrate sustainabil-

ity considerations into software, students are asked to focus on

concepts rather than specific precise diagram notations. Students

deliver their reports after thefi nal presentation, and therefore have

the chance to incorporate the lecturers’ feedback.

4.2 Learning Perception

At the beginning of the course we provided the students online

space to write down their reflection and their learning perception in

an online journal. At the end of each working session we provided

the students 5 minutes time tofi ll in their experiences in the journal.

In addition after each daywe reminded them tofi ll out the journal to

gather their experiences. While we still think this is a good teaching

instrument, due to the fact that most students participated without

a laptop, this diary was not followed through.

5 STUDY RESULTS

5.1 Participants

Which students did end up attending? Our assumption about stu-

dents’ backgrounds turned out to be off. While we had expected

that most students would have a computer science background, a

small pre-survey, which was answered by half of the students who

had signed up, revealed that we could expect hardly any software

engineering knowledge, and little knowledge about sustainability

as well. We had 13 students from various disciplines, namely com-

puter science, business and marketing, industrial engineering and

environmental engineering, and they were mostly Bachelor stu-

dents. On the second day of the course, it turned out the students

had not received any information about the course that we had tried

to get to them, so our preparation reading was rendered irrelevant

as none of the students was enrolled on the learning platform that

was set up about the course. The learning platform included, in

addition to the preparation reading, a detailed course plan and the

objectives of the course. Thus, the students did not know what to

expect from the course.

5.2 Teaching the course

The planned schedule of modules of the course and the how we

modified it according to circumstances are depicted in Fig. 3.

Day 1. Introduction to sustainability, and Software Engineering for

Sustainable Systems: The key expected outcomes from this day were

the common ground on the perception of sustainability, the role

of software systems in addressing sustainability challenges, and a

choice of a project that a group would work with through the rest of

the course, including a rich picture of it. The basic introduction to

the notions of sustainability is a necessity in such a course, as part

of the class had no previous systematic knowledge on this subject.

To keep the whole class engaged (including those with previous

knowledge of sustainability), the sessions were intersected with

a number of interactive exercises, such as hands folding to get

away from established thinking patterns [33]. On the whole, the

sessions were well received and the class was fully engaged in

all activities. However, for the system vision activity, it quickly

became apparent that there was some genuine resistance to the

broader system view idea by some engineering students. These

students perceived the visioning and broader system view activities

as irrelevant. One of the students repeated several times “We just

need to implement this system”. Such much-too early and narrow

implementation-focused attitude is one of the core symptoms of

inadequacy of the current software developers’ education, whereby

no or little consideration is given to the longer-term impact that

the technical systems have upon their situated environments. We

note that tackling such practices and attitudes will necessarily be

one of the hurdles in any SE for Sustainability curricula.

Day 2. Stakeholder and Goal Models: The key expected outputs

that day were stakeholder and goal models. Both types of models

were presented to the class and illustrated with generic and sustain-

ability specific examples. The notion of stakeholder models was

well understood and realised by the groups for their own systems.

However, the groups had difficulties with the goal modelling ac-

tivity. The groups: (1) did not understand how the high-level goals

(e.g., support environmental sustainability) relate to specific soft-

ware systems; (2) struggled with identifying appropriate goals; (3)

found it difficult to represent the complex interrelationships and in-

terdependencies due to quick growth of the model elements; (4) did

not quite know when to terminate the modelling activity. Clearly,

many of these issues are well known with respect to the goal mod-

elling technique, and some are exacerbated by the complex nature

of sustainability concerns, e.g., to support goal identification and de-

composition/termination goal, generic models and catalogues can

be used [42]. We returned to the exercise of the goal decomposition

with a step-by-step illustration of one of teams’ project, demonstrat-

ing how generic sustainability goals can be operationalised into

specific tasks and functions of a software system. We observe that

this specific example-based exercise was productive in conveying

the key notions of this technique to the students. Yet, this may lead

to blind “copy-paste” approach in problem analysis, rather than

specific and detailed consideration (see Sec. 6).

Day 3. Systems and System Boundary, Introduction to Software

Engineering, Use Cases: The key expected outcomes of Day 3 ini-

tially were design models. However, we chose to teach the use case

models only because (1) the class continued on the goal modelling

task for the 1st part of the day, (2) we observed a lack of modelling

experience on students, and (3) a considerable amount of new no-

tations had already introduced to them. Due to time constraints,

we chose not to undertake the textual description of use cases. The

flexibility in including or excluding specific techniques into the

course is quite important to help adapting the pace to the learning

capacity of a given class at a given time. Given the mix background

of the students, the general lack of familiarity with SE techniques,

and the short duration of the course, the introduction of further

models and notations would likely have overwhelmed the students.

Day 4. Design Thinking and Sustainability Analysis: The key

expected outputs from Day 4 were the design thinking artefacts

helping to review the project ideas, as well as the sustainability

157

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden Penzenstadler et al.

Figure 3: SE4S course planned schedule and actual experience

analysis diagrams of their projects decisions. The students were

paired with project members from other groups for the design

thinking exercise. This resulted in a number of radical ideas and

reviews of the projects. However, here too (as observed in Day

1) a few students were unwilling to listen to external input, as

they had already made their mind up about their own “system

implementation”. All the students commented on the usefulness

of the sustainability analysis via those diagrams, as they were able

to observe direct, indirect, and systemic effects of their decisions

upon the sustainability dimensions.

Day 5. Group Presentations and Reports: On Friday, the students

gave theirfi nal presentation and gathered feedback regarding their

artifacts as well as the learning outcomes. The last two sessions of

the week were working sessions so that the students couldfinalize

their reports. That way, they had the chance to incorporate the

lecturers’ feedback, which some addressed effectively.

For the projects, the students were prompted to think of a sus-

tainability challenge in their direct environment in Lappeenranta

and/or in campus life. They came up with the following sustain-

ability challenges:

• Consumers should be informed about the impact of their

choices, as often choices are made without appreciation of

their sustainability impact;

• Lappeenranta is a northern town, requiring a lot of energy

to be generated and used for heating and lighting; and

• Lappeenranta suffers from youth migration away to the

larger cities, as there is not enough to do for workforce,

which can cause economic and social sustainability issues.

We had four teams in total. Students organized themselves into

groups of 3 to 4 people with mixed backgrounds. The project ideas

and backgrounds were as follows:

3-D printer: The on-demand fabrication of products supports

personal choice and can facilitate product reuse and recycling. This

project proposes a system that enables customers, CAD designers

and 3-D manufacturers to exchange blueprint models of products

and have them printed in 3-D. The system gives the user the op-

portunity to recycle products (or parts) and to request the use of

recycled material in the manufacturing of their products (see Fig. 4).

Backgrounds: mechanical engineering (2 students) and computer

science.

Trading and sharing energy platform: Household heating

takes up a lot of energy and results in high CO2 emissions. This

project proposes a trading and sharing platform of energy for lo-

cal communities, in which households are both consumers and

producers of energy. The system encourages the use of local re-

newable energy, facilitates the energy sharing among neighbors,

and reduces the environmental impact of energy production and

consumption. Backgrounds: electrical engineering (with some pre-

vious knowledge of software engineering), sustainable production,

and innovation for sustainable development.

Sustainable heating system: This project suggests a heating

system that, in addition to the usual temperature and timing setup,

provides users with information about the environmental impact

and energy cost of their heating usage patterns. The aim is to raise

awareness and change consumption patterns (see Fig. 5). Back-

grounds: mechanical engineering, industrial engineering & man-

agement, and sustainability.

Food educator app:This project aims to raise awareness about

sustainability by creating an app that informs its users about the

“sustainability meat index” of different types of meat; an index that

measures how much environmental, social and economic impacts

has produced a specific type of meat during its lifecycle. Back-

grounds: sustainability, computer science, management, and indus-

trial engineering & sustainable management.

5.3 Analysis of the course

We evaluate our course to understand whether mixed-background

students can develop a shared understanding of the intersection

between sustainability and software engineering, and to apply this

158

Everything is INTERRELATED:

Teaching Software Engineering for Sustainability

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

Figure 4: Goal Model of the 3-D printer team

Figure 5: Sustainability Analysis Diagram of the Sustainable

Heating System team

understanding to design a software that impacts the application

environment in a sustainable way.

The input for our analysis were the reports delivered by the

students at the end of the course as well as the post-survey. As

described in Sec. 4.1, the reports included the artifacts produced

during the course. For example, Figure 4 shows the goal model of

the 3-D printer group and Figure 5 illustrates the sustainability

analysis diagram for the Trading and sharing energy platform.

5.3.1 Artifact analysis. In order to analyse the artifacts them-

selves, two evaluators (also authors of this paper) who were not

involved in the summer school independently analysed the reports

following the criteria shown in the appendedfile Future Online

Supplementary Material. Evaluators analysed all artifacts, with the

exception of the 3-D prototypes. The latter was part of a design

thinking exercise and were only meant to serve as internal feedback

mechanism to help iterate solution ideas [49]. Next, they compared

their thoughts on each project for the different criteria, consolidat-

ing their impressions and going back to the original reports when

conflicts occurred. The artifact analysis indicates that the students

have understood the concept of sustainability and orders of effects,

and most importantly, that software-intensive systems can have

an effect on sustainability. The artifact analysis revealed that de-

spite the very short training period and their mixed background,

all groups were able to create diagrams that showed they grasped

the main ideas of the models. However, if compared with diagrams

normally created by software engineering students during a regular

semester course, the diagrams had more conceptual and notational

mistakes. In terms of group composition, there was no notable

differences in the general quality of the reports produced. One pos-

sible exception was the 3-D printer group, whose sustainability

challenge and how it would be achieved was not so clear. Notably,

this group did not have a member with sustainability background.

In general, groups favored free-form sketches rather than adopting

predefined notations. This is not surprising, as lectures were more

concerned with the concepts than notation. Additionally, students

mixed the descriptions of the artifacts with their own reflections on

the artifacts and the learning process; and the former were rather

poor. All this made models more difficult to understand.

5.3.2 Post-Survey results. The survey was answered by all par-

ticipants. One participant apparently lost interest halfway through

and so we couldn’t use part of that participant’s answers. However,

as the number of respondents is too small for any statistical sig-

nificance, we are limited to qualitative analysis and report on our

findings therein. Students chose the course for learning either about

coding, sustainability, software engineering, or software engineer-

ing for sustainability. They expected to learn how sustainability

can be tied into software engineering as well as to get an overview

of thefi eld. Their understanding of sustainability before starting

the course varied considerably. Some students simply stated they

had a background in it, some based their understanding on the

three pillars or on the idea to preserve for future generations, and

some narrowed it down to reducing resource consumption. Of

the students that didn’t have a background in sustainability, most

reported a widening of their understanding through the course. Be-

fore the course, about two thirds of the students thought software

could help with sustainability, and after the course all of them did.

The element of the course that changed their perception varied

quite a bit, but mainly from rich picture to goals to design think-

ing prototypes. Moreover, their perception of how software could

help with sustainability widened exceptionally, as one student put

it: “Now I feel that everything is interrelated and every task can

have a vision of sustainability”. Software engineering, before the

course, was perceived as being mainly coding by half of the respon-

dents but after the course received a more encompassing perception.

While, before the course, the majority thought software engineering

could not help with sustainability, afterwards all of them thought it

could. Therefore, their understanding of what software engineering

for sustainability means broadened considerably over the course,

including process aspects, the use of models, and wider scoping

including the society.

What helped in linking the notions of software engineering and

sustainability were the rich picture, goals, sustainability analysis,

and the systems thinking activities. Overall, these answers show the

different expectations and backgrounds of the students. However,

they also show that the students with a lack of knowledge with

159

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden Penzenstadler et al.

regard to sustainability think they gathered knowledge with regard

to sustainability and that the ones with less knowledge in Software

Engineering gathered knowledge in Software Engineering.

The key sustainability learning experiences were around the peo-

ple aspect of sustainability (stakeholders, society), the immediacy of

sustainability (“not abstract”, “sustainability is real”, overshoot day,

“everyone can take part”), and that software can help with innovat-

ing. Also, as most students did not know how Sustainability and

Software Engineering relate — this was the key learning outcome,

to see that and how they actually relate. The key SE learning experi-

ences were that SE is more than coding, the process (flow) and some

guidelines (“user must be studied”, “be patient”), and the techniques

we taught (rich picture, goals, use cases). For their plans of what

to do next with the acquired knowledge, the majority wanted to

apply their new skills, some mentioned integrating it in other areas,

and study more. They would like to continue their learning in this

area, get to know the next steps, and transfer their knowledge to

other areas. About the course, they disliked that there was no big

picture given at the beginning of the course and that lead to some

confusion. They did like the teamwork, activities (interaction) and

tools.

6 DISCUSSION

6.1 Benefits for students

The students in general benefitted frommultidisciplinary teamwork,

hands-on practice sessions with feedback rounds and iterations,

and developing a project that they can build upon for their port-

folio. They learned to appreciate the “wider” sustainability - to

look beyond their own discipline (e.g., software or environment

only), observing that various notions, which are normally not con-

sidered relevant for software itself, are linked with sustainability

concerns. They experienced this to show in multi-level and multi-

artefact influences. They received an introduction to and practice

with tools that set out the analytical framework for reasoning about

sustainability-related impact of decisions, choices, and actions. Note

that goals, stakeholders, rich picture, spider web can be applied

not only for software requirements analysis, but also for any other

requirements analysis, as argued in [6]. They can now take an ab-

stract notion of sustainability and refine it to specific actionable

steps/objectives.

6.2 Lessons learned

Content adequateness. Provide adequate level of content in a

mixed-background group. Given the dramatic variety of backgrounds,

it was difficult to teach the class at the level that was right for all

students. Some students, perceived that it was too much content

for a one week course, making it challenging for them to prop-

erly internalise the presented materials. For instance those who

did not have previous knowledge of software engineering, found

the number of analysis techniques presented somewhat difficult to

handle. Yet, those with previous SE degrees complained that the

SE content was “basic”. From this we note that the following runs

of such mixed background classes would benefit from a period of

small-group topic-specific teaching, where the topics not familiar

to a given group are discussed, aiming to bring the overall class

level to some common reasonable grounding level. From that point

onwards the class can be taught as one again. But the initial differ-

entiated group teaching will save repeated introduction of basics

to more experienced students for each group category.

Templates. The teaching team had discussed whether to pre-

pare templates or the common notions of sustainability modeled

in various artefacts. While some samples were presented to the

students before their own hands-on modelling activities (e.g, sam-

ple stakeholder and goal models), it was agreed not to provide any

template solutions, in order not to limit students’ creativity and

allow for clear emergence of domain specific characteristics. For

example, teams from the food domain and the energy domain need

very different rich pictures and hardly have overlapping elements.

Also, while in general we are in favor of templates, there might

even be a limitation to their learning if they received templates

of such a degree of detail and preparedness that the assignment

almost turns into afi ll-the-blank exercise.

Scoping sustainability. What is enough to look at? People who

were familiar with systems thinking were able to handle that better.

We even drew a picture of how to go through development steps

and artefacts iteratively and where you have a wider scope (rich

picture) and then narrow the perspective (use cases) and then widen

it again (sustainability analysis). Also, students resisted to open

up their scope and changing perspectives, especially the ones hav-

ing an engineering background. Moreover, once they came to the

point of opening up and thinking about the system from a holistic

perspective, taking sustainability effect overtime into account, it

was quite difficult for the students to focus on the system to de-

velop again. Overall, this concept of alternating between narrowing

down and opening up the perspective when designing sustainable

software systems was difficult for them.

Administrative issues. There was a lack of direct contact dur-

ing preparation and setup for the summer school between students

and teaching team: Do not rely on hosting institutions getting

all information to external participants without double-checking

they actually receive it. While the hosting institution was timely

in issuing local email addresses to students and providing them

with access to the local learning platform that contained all course

materials, most students did not have access to that local email

address or were not aware of it until the second day, after the

course had started. Consequently, they felt left in the dark about

the content and preparation for the course and did not get a chance

to go through the recommended readings beforehand. This could

have been circumvented easily by us sending a direct email to the

registered students under the email address they registered with

and provide them access to, e.g., a sharedfi le folder.

Signposting. Clear annunciation to the prospective students

of the aims, objectives, and learning outcomes as well as of the

module structure well ahead of the module run. Students had cho-

sen this module expecting different learning outcomes (e.g., one

was intending to learn “coding”, some wanted to learn about “sus-

tainability”, others were only interested in “software engineering”,

and yet others wanted to learn about integrating both software

engineering and sustainability). Consequently, the expectations

of many students were not fully met, leading to disappointment.

This could also be avoided if the participation had been chosen for

the “right” objectives. Course organizers also had offassumptions

160

Everything is INTERRELATED:

Teaching Software Engineering for Sustainability
ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

about the background of the course participants and thus different

learning objectives were not expected.

6.3 Evaluation of validity

For the evaluation of the validity of the study, we report on con-

struct, internal, and external validity as well as reliability [45].

Construct validity focuses on whether the theoretical con-

structs are interpreted and measured correctly [11]. To minimize

the threat, we based our evaluation on the established concepts

expressed in the requirements engineering artifacts and on a basic

survey that asks about the students’ state of knowledge before and

after the course and their learning experience.

Internal validity focuses on the study design, and particularly

whether the results really do follow from the data [11]. The evalua-

tion of the artifacts was performed by two researchers who were

not lecturers or participants of the course to increase the neutral-

ity of the analysis. They conducted the analysis individually and

conferred about their results in discussion until they reached joint

conclusions. The evaluation of the survey results was performed

by one researchers qualitatively coding the answers and a second

researcher checking the coding and adding codes where found rel-

evant. Concerns with regard to a couple of answers and how to

interpret them were jointly discussed and resolution agreed upon.

However, the most substantial student feedback data on the pre-

and post-course knowledge were collected through questionnaire

at the end of the course. Thus, it is possible that the responses

on the pre-course knowledge questions (e.g., what did you think

sustainability was before doing this course . . .) have been biased

either due to the students currently different level of knowledge,

and/or due to their emotional state (e.g., if a student is disappointed

that the module did not provide any coding opportunities, as he

expected, he may say he already knew the other presented material).

Such a bias could have been, to some degree, mitigated through

reference to the submitted artefacts at group level. Yet, since in

the present run of the course, each artefact had been iteratively

improved through several feedback cycles, the artefacts cannot

be objectively contracted to the validate the pre-module content

related feedback claims.

External validity focuses on whether claims for the generality

of the results are justified [11]. This is a qualitative study, reporting

on our, so far, single experience of teaching a particular mixed

group course on software engineering for sustainability. We report

on our qualitative insights from this experience. In the following

years, we are planning to replicate this study and establish a series

of related evaluations to strengthen ourfindings.

Reliability focuses on whether the study yields the same results

if other researchers replicate it [11]. We are aware that we will not

be able to exactly replicate the results of the study because the

setting of such a course will always be slightly different. As the

course materials are available and reusable, and the set-up and

implementation of the course as well as the analysis of the results

are described in detail, the study is transferable and we provide a

basis for a family of studies. Such a family of studies would provide

reliable results.

7 CONCLUSIONS AND OUTLOOK

How can we integrate sustainability in a computer science / soft-

ware engineering curriculum? This paper presented a course design

and qualitative evaluation of a summer school course on software

engineering for sustainability. The course was taught by four in-

structors to a group of students from mixed backgrounds at the

Lappeenranta University of Technology in Finland. The paper sum-

marized the content, structure and process of the course itself. Our

qualitative study explores four research questions, which are an-

swered in summary below.

(RQ1)Which subject areas and modules constitute an effective

initial baseline for an SE4S course curriculum? The course blueprint

articulated a candidate set of modules. The evaluation of the course

suggests that together with the project-based course design, the

modules presented a reasonable baseline to develop further.

(RQ2) How can a project-based course be effectively focused on

SE4S to synthesize diverse backgrounds? Teaching the course in

practice was met with challenges, but reflections and independent

evaluations suggest that the learning experience proved valuable

and that the project theme and support by the educators was suc-

cessfully enabling the overall achievement of learning outcomes.

(RQ3) How difficult is it for students with varied backgrounds

and knowledge of sustainability and software engineering to estab-

lish a shared working knowledge of this intersection of subjects? It

is difficult, even with the excellent instructor to student ratio of a

summer school course. However, the emphasis on reflective prac-

tice over notational accuracy showed promising initial outcomes

as stepping stones for a continued engagement with SE4S; a strong

outcome for a week-long course.

(RQ4)What types of challenges arise and how can they be ad-

dressed? Challenges included administrative hurdles, expectations

on prior subject area expertise, and time. The experience report

included in this paper should prove valuable for future attempts at

similar courses.

Benefits noted by the students include: (B1) Awider perception

of sustainability and discipline-independent understanding; (B2) A

generic analysis framework using requirements engineering and de-

sign thinking; (B3)Multidisciplinary teamwork and project-based,

hands-on practice sessions.

Lessons learned in teaching SE4S to mixed background stu-

dent groups are to: (L1) Create more targeted interaction with

the students before the summer school to better guide prepara-

tion; (L2) Have more consistent signposting towards the overall

objectives for the course during the project week; (L3) Adapt the

content for background-specific subgroups to bridge the gaps be-

tween the knowledge levels; (L4) Element overviews plus examples

plus walking through their own drafts in a round of feedback works

really well for understanding the application of these methods; (L5)

Scoping sustainability requires a general understanding of systems

thinking concepts.

The course provides a blueprint for future courses, and the study

presents a baseline and design that supports future replications

to get a deeper understanding of how to best teach a group of

students with mixed backgrounds. Many opportunities to deepen

and expand on thisfi rst experiment exist. We intend to replicate

the study in various universities in a family of future studies.

161

ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden Penzenstadler et al.

ACKNOWLEDGMENTS

We thank the EU PERCCOM program for their support. The re-

search leading to these results has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation programme un-

der the Marie Skłodowska-Curie grant agreement No 712949 (TEC-

NIOspring PLUS), from the Agency for Business Competitiveness of

the Government of Catalonia, NSERC RGPIN-2016-06640, and the

UK EPSRC Refactoring Energy Systems fellowship (EP/R007373/1).

REFERENCES
[1] Ken Abernethy and Kevin Treu. 2014. Integrating Sustainability Across the

Computer Science Curriculum. J. Comput. Sci. Coll. 30, 2 (Dec. 2014), 220–228.
[2] Robert E. Beck and Daniel T. Joyce. 2013. Sustainability Improves Student Learn-

ing (SISL) in Computing (Abstract Only). In Proc. of the 44th ACM Technical
Symposium on Computer Science Education (SIGCSE ’13). ACM, 730–730.

[3] Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Steve M
Easterbrook, Birgit Penzenstadler, Norbet Seyff, and Colin C Venters. 2016. Re-
quirements: The key to sustainability. IEEE Software 33, 1 (2016), 56–65.

[4] Christoph Becker, Ruzanna Chitchyan, Leticia Duboc, Steve Easterbrook, Birgit
Penzenstadler, Norbert Seyff, and Colin C Venters. 2015. Sustainability design
and software: The karlskrona manifesto. In ICSE-SEIS, Vol. 2. IEEE, 467–476.

[5] Yu Cai. 2010. Integrating Sustainability into Undergraduate Computing Education.
In Proc. of the 41st ACM Technical Symp. on Computer Science Education. 524–528.

[6] D. Callele, K. Wnuk, and B. Penzenstadler. 2017. New Frontiers for Requirements
Engineering. In Intl. Requirements Engineering Conf. IEEE, 184–193.

[7] Ruzanna Chitchyan et al. 2015. Evidencing sustainability design through exam-
ples. In 4th Intl. Workshop RE4SuSy.

[8] Ruzanna Chitchyan, Christoph Becker, Stefanie Betz, Leticia Duboc, Birgit Pen-
zenstadler, Norbert Seyff, and Colin C Venters. 2016. Sustainability design in
requirements engineering: state of practice. In ICSE-SEIS. ACM, 533–542.

[9] A. Desai. 2015. Hands on project experience in a core class focused on sustain-
ability. In Proc. of the IEEE Frontiers in Education Conf. 1–4.

[10] Lorna Down. 2006. Addressing the challenges of mainstreaming education for
sustainable development in higher education. Int. J. of Sustainability in Higher
Education 7, 4 (2006), 390–399.

[11] S. Easterbrook, J. Singer, M.A. Storey, and D. Damian. 2007. Selecting Empirical
Methods for Software Engineering Research. Springer.

[12] Richard Emanuel and J.N. Adams. 2011. College students’ perceptions of campus
sustainability. Int. J. of Sustainability in Higher Education 12, 1 (2011), 79–92.

[13] Thomas Falkenberg and Gary Babiuk. 2014. The status of education for sustain-
ability in initial teacher education programmes: a Canadian case study. Int. J. of
Sustainability in Higher Education 15, 4 (2014), 418–430.

[14] D. H. Fisher, Z. Bian, and S. Chen. 2016. Incorporating Sustainability into Com-
puting Education. IEEE Intelligent Systems 31, 5 (2016), 93–96.

[15] P. Brian Fisher and Erin McAdams. 2015. Gaps in sustainability education: The
impact of higher education coursework on perceptions of sustainability. Int. J. of
Sustainability in Higher Education 16, 4 (2015), 407–423.

[16] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2008. OMG Systems Modeling
Language (OMG SysML) Tutorial. In INCOSE Int. Symposium, Vol. 18. 1731–1862.

[17] M. L. Gibson et al. 2017. Mind the chasm: A UKfi sheye lens view of sustainable
software engineering. In 6th Intl. Workshop on Requirements Engineering for
Sustainable Systems. 15–24.

[18] Michael Goldweber et al. 2012. A Framework for Enhancing the Social Good in
Computing Education: A Values Approach. In Reports on Innovation & Technology
in Computer Science Education Working Groups. 16–38.

[19] David Griggs et al. 2013. Policy: Sustainable development goals for people and
planet. Nature 495, 7441 (2013), 305–307.

[20] Margaret Hamilton. 2015. Learning and Teaching Computing Sustainability. In
Proc. of the 2015 ACM Conf. on Innovation and Technology in Computer Science
Education. 338–338.

[21] A. Heeren et al. 2016. Is sustainability knowledge half the battle?: An examination
of sustainability knowledge, attitudes, norms, and efficacy to understand sustain-
able behaviours. Int. J. of Sustainability in Higher Edu. 17, 5 (2016), 613–632.

[22] Lorenz M Hilty and Bernard Aebischer. 2015. Ict for sustainability: An emerging
researchfi eld. In ICT Innovations for Sustainability. Springer, 3–36.

[23] Michelle Horhota et al. 2014. Identifying behavioral barriers to campus sustain-
ability: A multi-method approach. Int. J. of Sustainability in Higher Education 15,
3 (2014), 343–358.

[24] David H. Kaplan. 2015. Transportation sustainability on a university campus.
Int. J. of Sustainability in Higher Education 16, 2 (2015), 173–186.

[25] Gerald Kotonya and Ian Sommerville. 1998. Requirements engineering: processes
and techniques. Wiley Publishing.

[26] A. Kurkovsky. 2006. Educational Aspects of Sustainable Development Analysis:
Computational Models and Software. J. Comput. Sci. Coll. 21, 4 (April 2006),

24–31.
[27] Selim Larsch, Stefanie Betz, Leticia Duboc, Andréa Magalhães Magdaleno, and

Camilla Bomfim. 2016. Integrating Sustainability Aspects in Business Process
Management. In Business Process Management Workshops. 403–415.

[28] D. Lopez et al. 2014. A methodology to introduce sustainability into the final year
project to foster sustainable engineering projects. In IEEE Frontiers in Education
Conf. 1–7.

[29] Samuel Mann. 2016. Computing Education for Sustainability: What Gives Me
Hope? interactions 23, 6 (Oct. 2016), 44–47.

[30] Samuel Mann, Lesley Smith, and Logan Muller. 2008. Computing Education for
Sustainability. SIGCSE Bull. 40, 4 (Nov. 2008), 183–193.

[31] Andrew McGettrick et al. 2005. Grand Challenges in Computing: Education—A
Summary. Comput. J. 48, 1 (2005), 42–48.

[32] D. Meadows, D. Meadows, and J. Randers. 1992. Beyond the Limits: Confronting
Global Collapse, Envisioning a Sustainable Future. Chelsea Green Publishing Co.

[33] D. Meadows, D. Meadows, and J. Randers. 2004. Limits to Growth: The 30-Year
Update. Chelsea Green Publishing Co.

[34] Andrew Monk and Steve Howard. 1998. Methods & tools: the rich picture: a tool
for reasoning about work context. interactions 5, 2 (1998), 21–30.

[35] L. Morell et al. 2012. An engineering curriculum track for IT for sustainability.
In Proc. of the IEEE Frontiers in Education Conf. 1–6.

[36] Simon O’Rafferty, Hannah Curtis, and Frank O’Connor. 2014. Mainstreaming
sustainability in design education – a capacity building framework. Int. J. of
Sustainability in Higher Education 15, 2 (2014), 169–187.

[37] Martyn A Ould and MA Ould. 1995. Business Processes: Modelling and analysis
for re-engineering and improvement. Vol. 598. Wiley Chichester.

[38] J. Pappas and E. Pappas. 2015. The Sustainable Personality: Values and Behaviors
in Individual Sustainability. Int. J. of Higher Education 4, 1 (2015), 12–21.

[39] B. Penzenstadler. 2014. Infusing Green: Requirements Engineering for Green In
and Through Software Systems.. In Third Intl. Workshop RE4SuSy.

[40] B. Penzenstadler et al. 2013. Who is the advocate? Stakeholders for sustainability.
In Proc. of the 2nd Intl. Workshop on Green and Sustainable Software. IEEE, 70–77.

[41] Birgit Penzenstadler, Stefanie Betz, Colin C. Venters, Ruzanna Chitchyan, Jari
Porras, Norbert Seyff, Leticia Duboc, and Christoph Becker. 2018. Supplemen-
tary Material of “Everything is Interrelated: Teaching Software Engineering for
Sustainability”. http://arxiv.org/abs/1802.02517. (2018).

[42] B. Penzenstadler and H. Femmer. 2013. A generic model for sustainability with
process-and product-specific instances. In Workshop on Green in/by software
engineering. ACM, 3–8.

[43] B. Penzenstadler and A. Fleischmann. 2011. Teach sustainability in software
engineering?. In 24th CSEET. 454–458.

[44] J. Porras et al. 2016. PERCCOM: A Master Program in Pervasive Computing
and COMmunications for Sustainable Development. In Proc. of the IEEE 29th Int.
CSEET. 204–212.

[45] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (2009), 131–164.

[46] Kaisu Sammalisto et al. 2016. Learning about Sustainability: What Influences
Students’ Self-Perceived Sustainability Actions after Undergraduate Education?
Sustainability 8, 6 (2016).

[47] Ann E. Savageau. 2013. Let’s get personal: making sustainability tangible to
students. Intl. J. of Sust. in Higher Education 14, 1 (2013), 15–24.

[48] Daniel J. Sherman. 2008. Sustainability: What’s the Big Idea? Sustainability: The
J. of Record 1, 3 (2008), 188–195.

[49] Stanford d.school. 2017. A Virtual Crash Course in Design Think-
ing. (2017). https://dschool.stanford.edu/resources-collections/
a-virtual-crash-course-in-design-thinking last accessed Oct 21 2017.

[50] H. Sverdrup and M. Svensson. 2005. Defining the Concept of Sustainability - a
Matter of Systems Thinking and Applied Systems Analysis. Springer, 143–164.

[51] Siwaporn Tangwanichagapong et al. 2017. Greening of a campus through waste
management initiatives: Experience from a higher education institution in Thai-
land. Int. J. of Sustainability in Higher Education 18, 2 (2017), 203–217.

[52] F.E. Trainer. 1997. The global sustainability crisis: The implications for community.
International J. of Social Economics 24, 11 (1997), 1219–1240.

[53] Hans van Weenen. 2000. Towards a vision of a sustainable university. Int. J. of
Sust. in Higher Education 1, 1 (2000), 20–34.

[54] Colin C Venters, Norbert Seyff, Christoph Becker, Stefanie Betz, Ruzanna
Chitchyan, Leticia Duboc, Dan McIntyre, and Birgit Penzenstadler. 2017. Charac-
terising sustainability requirements: A new species red herring or just an odd
fish?. In ICSE-SEIS. IEEE, 3–12.

[55] Eric Williams. 2011. Environmental effects of information and communications
technologies. Nature 479, 7373 (2011), 354–358.

[56] T. Worthington. 2012. A Green computing professional education course online:
Designing and delivering a course in ICT sustainability using Internet and eBooks.
In Proc. of the 7th Intl. Conf. on Computer Science Education. 263–266.

[57] C. Zhou. 2016. Developing creativity as a scientific literacy in software engineer-
ing education towards sustainability. In 12th Intl. Conf. on Natural Computation,
Fuzzy Systems and Knowledge Discovery. 2257–2261.

162

