102

Aprenentatge

MultiObjective Learning in a Genetic Classifier
System (MOLeCS)

Ester Bernadd i Mansilla Josep Maria Garrell i Guiu

esterb@salleURL.edu

josepmg@salleURL.edu

Departament d’Informatica
Enginyeria i Arquitectura La Salle
Universitat Ramon Llull (URL)
Passeig Bonanova, 8. 08022-Barcelona
Tel. 932 902 433 Fax. 932 902 416

Abstract

MOLeCS is a new Classifier System which addresses its
learning as a multiobjective optimization of two goals:
classifier accuracy and generality. These objectives are
both emphasized in the fitness evaluation stage, driving
the GA search towards the formation of accurate and
general rules. We consider several existing multiobjec-
tive optimization strategies which establish a compro-
mise between generality and accuracy in different ways.
The system introduces two new proposals which balance
both objectives with a bias towards accuracy, resulting
in better classification performance.

The system also considers a third major objective:
covering. It is achieved using some niching mechanisms
that favour the maintenance of a set of cooperative
rules.

Keywords: Genetic Algorithms, Machine Learn-
ing.

1 Introduction

The system described in this paper (MOLeCS) is a
Genetic Algorithm (GA) which evolves sets of rules
in order to perform classification tasks [2]. The sys-
tem, which is related to previous Genetic Classifier
Systems in some aspects [9, 10, 16], introduces a
new way of evaluating the classifiers, promoting the
formation of accurate and general classifiers.
Accuracy and generality are two major goals en-
forced in the rule-level. Accuracy is desirable for
each rule, since the performance of the overall sys-
tem depends on each rule accuracy. Generality is

also desirable for several related reasons. First, we
are looking for a minimum set of accurate rules.
The more general the rules are, the smaller is the
rule set. Besides, when the rule set is smaller the
search space is reduced and thus it can be obtained
more easily. And finally, as the rules are more gen-
eral they cover more examples, promoting covering.

Covering is also a major objective to achieve: the
rule set developed by the system should cover all
the training examples. Covering is not guaranteed
by the rule-level generality. This is due to the GA
convergence, which drives the population toward a
uniform distribution of the most highly fit individ-
ual (or rule). From the point of view of covering,
this uniform convergence is not desirable. We want
the GA to evolve a set of diverse and cooperative
rules that together cover the problem. To prevent
this convergence pressure, a restorative pressure is
introduced with niching mechanisms. Niching bal-
ances competition and cooperation, promoting the
formation of stable subpopulations or niches [10].

The paper analyses the achievement of the three
stated goals: accuracy, generality and covering,
through the experimentation of the new evaluation
method proposed by MOLeCS, combined with dif-
ferent niching mechanisms.

The paper is structured as follows. First, a
brief overview of Genetic Classifier Systems (CS)
is given. The overview compares the related points
between MOLeCS and previous CSs and empha-
sizes the motivations and aims of our new propos-
als. Next, MOLeCS is described in detail. Section
4 contains a description of the experimentation and
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the obtained results. Finally, section 5 outlines our
main conclusions and further work.

2 Brief Overview

The application of GAs to classification tasks has
traditionally been addressed from two perspectives:
the Pittsburgh approach and the Michigan ap-
proach, first exemplified by LS-1 [9] and CS-1 [14]
respectively.

The Pittsburgh approach codifies each individual
as a complete solution of the problem. Then, the
solution returned by the system is the best indi-
vidual to which the system has converged. Since
each individual codifies a complete set of rules, its
evaluation is directly based on the percentage of
correctly classified examples, computed from the
training set of examples [15]. The basic scheme of
this approach presents a high computational cost.
Besides, it usually has difficulties in the accuracy
of learning because it performs a blind search in-
side each rule set [3]. The accuracy of a complete
rule set is not a sufficient measure to guide the GA
search to select the more accurate rules and dis-
card the inaccurate ones. Some improved systems
based on the Pittsburgh approach have overcome
this problem in different ways [11, 8].

In the Michigan approach, each individual codi-
fies one rule, and the solution must be a complete
set of rules, that is, all the population. Two major
questions arise from this approach: the evaluation
of each rule (fitness evaluation) and the mainte-
nance of a group of rules. The fitness evaluation
method must provide a scalar measure that weighs
the correctness of each rule and permits to establish
a competition between rules. In traditional classi-
fier systems, this fitness measure is based on the
payoff predié%ion; that is, the payoff that the classi-
fier would receive from the environment if its action
is selected (e.g. Holland’s CS [9]). Recently, XCS
[16, 17] has migrated the fitness from the payoff pre-
diction to the accuracy of the prediction, which re-
sults in better performance. Horn’s study [10] also
addresses the classifier’s accuracy, which is defined
as the percentage of correctly classified examples
over the covered training examples.

The GA is used as the discovery component, ex-
ploring new promising points (rules) in the search
space. In this sense, the GA uses the fitness value
learned by the performance component, as the ba-
sis for exploration. The GA selects the “best” rules,

performs crossover and mutation on them and in-
troduces the resulting offspring into the population.
Besides exploration, the GA must ensure covering,
evolving a set of cooperative rules. Different niching
mechanisms are applied in the research community
to ensure this co-evolution: sharing payoff between
active classifiers [10], performing restricted replace-
ment [7], or translating the panmitic GA to the ac-
tive classifiers (in the match set or action set) which
can be classified as a kind of restricted mating [16].

Most, Classifier Systems compute the classifier fit-
ness incrementally, example by example. The GA
application is sparse and its success can depend on
the fitness accuracy; the number of representative
examples seen by the system, its ordering, etc.

From the accuracy point of view, our approach
is more related to Horn’s study, since fitness is
based on accuracy computed as the percentage of
correctly classified examples. However, our sys-
tem is taking account of the classifier general-
ity too, which is a more complex task. General-
ity in MOLeCS is considered explicitally in the fit-
ness evaluation stage, in constrast to XCS where
generality is enforced in an implicit way [17]. Be-
sides, fitness is computed non-incrementally. We
have started with a non-incremental way because
we want to evaluate the feasibility of this approach
by itself, although the migration to an incremental
system is not discarded in future work. Cover-
ing in MOLeCS is achieved with niching methods
based on restricted replacement as described in the
following section.

Our aims with MOLeCS are: first, to analyse the
feasibility of this new approach and study its be-
haviour related to different evaluation methods and
niching methods; and second, compare our results
with previous classifier systems in solving classifi-
cation tasks, specifically in solving real world clas-
sification tasks. In this paper, we are focused on
the first goal, that is, the evaluation of the system
and the understanding of its dynamics. The exper-
imentation is given for some benchmark problems
usually tested in the CS bibliography, which are the
multiplexer and the parity problems.

3 Description of the system

MOLeCS is a Genetic Algorithm, where each indi-
vidual is a rule or classifier. The rule is a condition
represented by the ternary string {0, 1, # }*, where
# is the don’t care character, and an action repre-
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sented by a binary string {0, 1}':
rule : condition — action

Fach individual must have a fitness value, which
permits the GA to compare the rules between them
in order to maintain the useful ones and explore new
promising rules. This is not an easy task, since each
classifier does not represent a complete solution to
the overall problem. Each rule matches a set of the
examples (of variable sizes: from zero until the max-
imum of examples) and it can predict the action for
each example correctly or not. Let us call these two
characteristics generality and accuracy respectively,
and compute them in the following way:

# covered examples
# examples in the training set

(1)

generality =

# correctly classified examples
# covered examples

accuracy = (2)

Now we face the fitness evaluation method. Sup-
pose we have two classifiers. If they have the same
generality then we should prefer the most accurate.
But having different generality, should we prefer the
most accurate, though it has less generality? Or, on
the contrary, should we choose the most general?
Preferring always the most accurate classifiers may
drive the search towards accurate but too specific
classifiers, resulting in an enhancement of the so-
lution set, poor covering, etc. And, on the other
hand, choosing the most general classifiers could re-
sult in poor performance (in terms of classification
accuracy). Therefore, we have to balance these two
characteristics (generality and accuracy) in such a
way that we obtain: a complete set of rules cov-
ering accurately all examples. This is promoted
considering the classifier generality and the classi-
fier accuracy as two goals to maximize. We have
now a multiobjective optimization task, which is
addressed with different algorithms, some of them
inspired on previous works [4, 6]. Details are given
in section 3.1.

Once the fitness assignment phase is performed,
the Genetic Algorithm proceeds to the selection and
recombination stages. These methods are imple-
mented under a steady-state scheme, where only a
small fraction G of the population is created. Se-
lection is performed with Stochastic Universal Sam-
pling (SUS) [1] and crossover and mutation are ap-
plied with probabilities p. and p,, respectively.

As stated before, a major goal of the system is
covering. Promoting general classifiers is not suf-
ficient to reach it. The Genetic Algorithm can

tend, by means of the selective pressure, to one gen-
eral and accurate classifier, and usually one clas-
sifier does not solve the overall problem. There-
fore, we must enforce the co-evolution of a parallel
set of fit rules with niching mechanisms. Niching
in MOLeCS is performed in the replacement stage.
Niching with restricted replacement tries to replace
each individual by an individual of the same niche,
preventing thus than a highly fit classifier would be
spread over all the population. Different niching
algorithms are used under this proposal, which are
described in section 3.2.

3.1 Multiobjective evaluation

Our multiobjective learning consists of maximiz-
ing the generality-accuracy objective vector: X =
{g9,a}. There are several methods to address a
multiobjective optimization from the GA algorithm
perspective [6, 4]. We are focused on the following
approaches: Pareto-based, population-based non-
Pareto and plain aggregating algorithms.

Pareto-based approaches. Pareto-based ap-
proaches rank the population in non-dominated sets
and then, assign fitness according to this rank.

The ranking procedure is based on the concept
of Pareto optimally, where a vector Z* is said to be
optimal if there exists no other vector Z with an
improvement on one objective component without
causing a decreasing in at least one of the other
components. Such an optimal vector is called non-
dominated vector.

The ranking method, first proposed by Goldberg
[7] consists of assigning rank 1 to the first set of
non-dominated solutions, then removing them from
further contention assigns the next rank to the fol-
lowing non-dominated set, and so forth (see fig-
ure 1(a)). Fitness is assigned by interpolating a
decreasing function (we applied a linear function)
from the best individuals (rank 1) to the worst ones,
and then averaging the fitnesses of those individuals
of equal rank.

This algorithm explores the Pareto optimal front,
that is the set of non-dominated solutions. There is
usually needed a Decision Maker (DM) that selects
the appropriate solution from all the available so-
lutions in the Pareto-optimal front. In our system,
the DM is automatically performed by the exploit
or test phase. For each input example, a matching
classifier must be selected in order to give a suitable
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Figure 1: Multiobjective evaluation methods:
Pareto Ranking (PR) and Pareto and Accuracy
Ranking (PAR)

classification. OQur criterion is to choose the classi-
fier with the highest fitness; that is, the classifier
which is in the Pareto front, if possible. In case of
two of more matching classifiers inside the Pareto
front, the system automatically chooses the most
accurate. Therefore, we are preferring the Pareto
area, closer to the 100% of accuracy.

Since the DM prefers the most accurate classi-
fiers, we also studied a slight change on the rank
map defined in 1(a), with the aim of biasing the
search to the most accurate area. Asshown in figure
1(b), inside each group of non-dominated classifiers
a second level of ranking is performed, based on the
accuracy of classifiers. Both approaches, which we
called Pareto Ranking (PR) and Pareto-Accuracy
Ranking (PAR) respectively, are compared in the
results section.

Population-based non-Pareto approaches.
Following the idea of promoting the most accu-
rate areas, we have designed a population-ranking
method whith ranks the population according to
the accuracy objective. When two or more indi-
viduals of the same accuracy are found, they are
ordered in the generality objective. In this way,
we clearly state that the first goal to be achieved
is accuracy (in order to obtain accurate classifiers)
and second, these classifiers must be “as general as
possible”. An example of such ranking, called Ac-
curacy and Generality Ranking (AGR), is depicted
in figure 2.

Plain Aggregating Approaches. The
Weighted Sum (WS) approach weighs and
sums up all the objectives obtaining directly a

TR
0.6

Accuracy

Figure 2: Accuracy and Generality Ranking (AGR)

scalar fitness value. Our multiobjective problem is
then solved as:

k
mazx Z @ X; (3)
=1

where w; are the weighting coeflicients that must
be set depending on the relative importance of the
objectives.

It is a fast method compared to the Pareto-
approaches, but it needs the appropriate settings
of the weighting coefficients, which are usually un-
known or depending on the problem.

We have tuned our coefficients to the values w =
(0.25,0.75) corresponding to the objective vector
X = (g,a). As described later, these coefficients
are appropriately set for the multiplexer and parity
problems used in the experimentation.

3.2 Niching

Niching methods are the key point for Classifiers
Systems to evolve a parallel set of rules. The gen-
eral niching methods are basically divided in two
families: crowding and sharing. The former was
introduced by De Jong in [5] with the algorithm

-“Crowding Factor model”. This algorithm tries to

preserve the diversity of population, by replacing
each new individual (from the offspring subpopula-
tion) by a similar one in the parents population.

Sharing is based on the concept of sharing fitness
between the individuals in the same niche. The ex-
plicit fitness sharing [7] tries to allocate a number
of individuals per niche proportional to the niche
fitness. In Classifier Systems, sharing is usually im-
plemented dividing the payoff by the number of ac-
tive classifiers.

In this paper, we are focused on the first type of
niching. We have analysed the most common types
of crowding: from De Jong’s Crowding Factor (CF),
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through some variants including convergence pres-
sure (as CIF and CC) until Deterministic Crowding
(DC) which is the most promising method. They
are described in the following sections.

CF. Given P1 a population of size PopSize and
P2 the population with G x PopSize offspring, the
algorithm has to introduce each child of P2 into P1,
deleting individuals from P1 to make room. For
each child of P2, the algorithm proceeds as follows:

1. A subpopulation of CF members is selected
randomly from P1.

2. The similarity between the child and all the
individuals in CF is computed.

3. The child replaces the individual whose simi-
larity is greater.

Different settings of the CF parameter give dif-
ferent behaviours. If CF is too high, there is a lack
of convergence pressure [12], while for CF low it is
difficult to maintain more than two or three niches.
We have tested it as the lower bound we should
obtain compared to other niching methods.

Closest of the Worst Crowding 1: CIF. In
order to induce a convergence pressure in the CF
model, two variants are tested: CIF and CC. Both
try to replace a “low fitness and similar individ-
ual”. The former differs from the CF model in the
selection of the subpopulation of CF members. In-
stead of selecting them randomly, the selection is
performed with a probability inversely proportional
to fitness. Then, the worst individuals have more
chances to be replaced.

Closest of the Worst Crowding 2: CC. An-
other way of introducing convergence pressure to-
wards the best individuals is with the model used
in Simple Classifier System (SCS) [7], which we call
CC. The method consists of selecting each mem-
ber going to the CF-subpopulation from a bucket
of CSP individuals. The worst individual of the
CSP-bucket is inserted into the CF-subpopulation.
Then, the algorithm proceeds as the CF-model.

Deterministic Crowding. Proofs with the CF-
model, with CF=PopSize, demonstrate that a high
percentage of time the child replaces its parent [12].
Deterministic Crowding takes profit of this and in-
troducing a convergence pressure, defines its algo-
rithm as follows:

e All population undergoes crossover each gen-
eration. That means that the offspring popu-
lation has PopSize members.

e Each pair of offspring competes with its respec-
tive parents. There are two possible competi-
tion models: a) offspring 1 against parent 1 and
offspring 2 against parent 2 and b) offspring 1
against parent 2 and offspring 2 against par-
ent 1. The model having the greatest sum of
similarity is used.

e Once the competition model is chosen, a win-
ner is selected for each pair of competing indi-
viduals. This winner is the individual with the
highest fitness value. Therefore, a child only
replaces its parent when its fitness is greater.

When applying Deterministic Crowding with PR,
PAR and AGR evaluation methods, a consideration
must be done. DC needs the fitness computation
of children in order to be compared to the parents
fitness. In the mentioned evaluation methods, the
fitness of each individual depends on the fitness of
other individuals of the population, unlike the WS
algorithm. Then, the fitness of the offspring de-
pends on the offspring population, while the fitness
of the parents depends on the parents population.
The comparison between a child fitness and a par-
ent fitness may be unfair. To avoid this problem,
the competing individuals are compared with their
objective vector, using the appropriate rank map.
Therefore, a child replaces its parent when it domi-
nates its parent in terms of the rank map criterion.

4 Experimental Results

4.1

Two types of problems are chosen for testing our
system. They are the multiplexer problem (6-mux
and 11-mux, with 6 and 11 inputs respectively) and
the parity problem (5-par, with 5 inputs), both
often tested by the CS community [16, 13]. The
6-multiplexer can be solved with 8 general rules
(shown in table 1), while 11-mux is solved with 16
general rules. On the contrary, the 5-parity prob-
lem needs 32 specific rules. These two types of
problems are useful to test the ability of the sys-
tem to adapt the generality of rules according to
the problem.

The goals of the experiments are: to test the fea-
sibility of this new approach of CS, obtain the best

Design of experiments
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Table 1: Set of maximally general rules solving the
6-mux problem.

Fitness assignment | Replacement method
PR Worst
PAR CF
AGR CIF
WS CC
DC

Table 2: Fitness assignment methods and Niching
Replacement methods tested in the MOLeCS sys-
tem.

way of evaluating the rules, demonstrate the need
of niching methods and which niching method is
more suitable. Table 2 shows the different fitness
assignment and replacement methods, all of them
described in the previous section.

The parameters required by the system are de-
scribed in table 3.

4.2 Results

All the results shown for the WS algorithm are ob-
tained with the weight vector W = (0.25,0.75).
These weights are adjusted from previous experi-

y 3

Paramater Description

PopSize Population Size

Pgen Probability of generalization (in the
initialization of population)

G generation Gap

De probability of crossover

Dm probability of mutation per gen

weights of generality and accuracy
in the WS algorithm

W = (wg, Wa)

CF Crowding Factor in CF-model and
CIF
CSP/CF size of CSP-subpopulation and CF-

subpopulation in the CC algorithm

Table 3: Parameters of MOLeCS.

ments (not reported here) but they can also be de-
duced for these known-problems as follows. The
idea is to evaluate with the highest fitness the clas-
sifiers with a 100% of accuracy and the maximum
generality. Next table shows the fitness of three
classifiers for the 11-mux problem: an optimal clas-
sifier, with maximum accuracy and generality, an
overgeneral classifier and a specific one.

classifier generality-accuracy  fitness
0000#######:0  (1/16, 1) 0.76
RS0 (1, 0.5) 0.625
00000000000:0  (1/2048, 1) 0.75

This information is obviously not available in a
real world problem. Then, the weights should be
adjusted using a previous tuning process, or by
a means of an expert. Otherwise, this evaluation
method is not suitable and other types of evalu-
ation must be chosen. Nevertheless, our study is
interesting since we are performing a comparison
between the WS algorithm with the proper weight
settings and other methods that do not need pa-
rameters. The experiments will show us the upper
bound that the WS algorithm can reach.

The replacement methods based on the Crowd-
ing Factor (CF, CIF and CC) are tested with dif-
ferent subpopulation sizes. In the 6-mux and 5-
par problems, CF-model and CIF are tested with
CF = {3,10,50}, and CC model with CSP/CF =
{10/3,10/10,30/10}, using a population size of
250. In the 11-mux problem, which works with
a population size of 800, CF = {10, 30, 160}, and
CSP/CF = {30/10,30/30,160/30}. These values
maintain the same proportion (relative to PopSize)
as the 6-mux problem.

4.2,1 Multiplexer

‘We show the results obtained in the 11-multiplexer
problem, which has more complexity than the 6-
multiplexer problem. The results show a summary
of the more representative results for each replace-
ment algorithm, and some of them are detailed for
the 4 evaluation methods when a significant differ-
ence between them exists. Fach figure shows the
average of five runs, each one with a different seed
number, along the GA iterations. The measures
shown are covering and global accuracy. Covering
is defined as the percentage of covered examples
over the training set. Global accuracy is the per-
centage of correctly classified examples over the to-
tal number of examples. The parameters used for
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the 11l-multiplexer in the experiments are: Pop-
Size=800, Pgen=0.7, G=0.2, p.=0.9, p,=0.005,
except in DC, where G changes to 1 and p, = 1
according to the method definition.

Worst. This experiment shows the need of nich-
ing methods. Here, replacement, is performed over
the worst individuals of the population. That is,
there is only selective pressure, without any restora-
tive pressure enforcing the diversity of population.
The population converges to a small part of classi-
fiers (sometimes only one classifier, whose fitness
was high in the earlier generations) and conse-
quently covering is not achieved.

1.0 “

l‘b‘
0.8\,

',' "‘“‘vm,_,

Vi,
0.6 Ny .
’ v — Covering
04 “"’""""'v‘w\m‘, | --- Accuracy
0.2
0.0 T T T T
0 200 400 600 800 1000

Figure 3: Results obtained in the 11-multiplexer
problem, with replacement by the worst individuals
of the population and WS algorithm. Covering and
accuracy are shown along the GA iterations.

CF model. The results obtained with CF vary
slightly respect to the CF value. Experiments are
run for the values 10, 30 and 160. Figure 4(a) shows
the best results, which are obtained with CF=160.

The introduction of this niching method has im-
proved significantly the results obtained with the
Worst Replacement method. This slight measure
to promote diversity is useful for ensuring cover-
ing, but its is not enough to develop a good set of
accurate rules. Accuracy moves from 70% to 80%.

Comparing the different evaluation methods, the
best ones are the WS and AGR algorithms. Both
outperform the Pareto based algorithms, because
the rule accuracy is more enforced.

CIF. Adding a bias for replacing low fitness indi-
viduals improves the results obtained with the CF-
model. Results are shown in figure 4(b) for the
best CF parameter, which was of 160 too. Again
the best fitness assignment methods are the WS

and AGR algorithms, with a 100% of covering and
nearly 90% of accuracy.

CC. This method provides a convergence pres-
sure in a different way than the previous algo-
rithm. There is an improvement of the results on
the Pareto-based algorithms and also in the AGR
algorithm, as shown in figure 4(c). Nevertheless,
the results, which are shown for the parameter val-
ues CSP/CF = {30/30}, are very sensitive to the
setting of these parameters. When the size of CSP-
subpopulation raises up, e.g. to 160, the results
(not reported here) begin to show a behaviour sim-
ilar to the replacement by the worst individuals. In
this sense, the CIF method is more stable in a wide
range of CF parameter.

Deterministic Crowding. The results achieved
with Deterministic Crowding (figure 5) outperform
all previous results. Covering is 100% and accuracy
reaches the 100% in the early generations (except
when combined with PR). Therefore, it is the most
efficient method and the most fast. The method
balances appropriately the selective pressure and
the maintenance of niches, reaching the optimal
performance.

Our results with DC are consistent with other
niching studies which demonstrate the superiority
of this method on different test problems [13].

4.2.2 Parity problem

The parity problem with 5 inputs has a search space
size similar to the 6-multiplexer problem. Nev-
ertheless, its complexity is even greater than the
11-multiplexer, because it is necessary to find and
maintain 32 different rules. Therefore, it is a dif-
ficult task for the niching methods. On the other
hand, all the evaluation methods are designed for
developing general and accurate rules. However,
this problem does not need any general rule: the 32
solution rules do not contain any don’t care symbol.
We will study if our evaluation mechanisms are able
to guide the GA search correctly.

The parameters used for the b-par problem
are: PopSize=250, Pgen=0.3, G=0.2, p.=0.9,
P =0.005, except in DC, where G =1 and p, = 1.

The results with the CF-model are shown for
CF=50 in figure 6(a). They exhibit a clear lack
of pressure towards accurate classifiers, resulting in
a poor global accuracy.
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Figure 4: Results in the 1l-multiplexer problem.
Comparison between CF, CIF and CC. Each nich-
ing method is shown for each fitness evaluation
method; that is, WS, PR, PAR and AGR algo-
rithms. Curves are traced along 1000 iterations.
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Figure 5: Results obtained in the 1l-multiplexer
problem, using replacement with DC.

Crowding models like CIF and CC improve these
results -see figures 6(b) and 6(c)- specially the CC
model, as happened with the 11-multiplexer prob-
lem. From the evaluation method point of view, the
worst results are achieved with the Pareto Rank-
ing method, because this evaluation does not show
any pressure towards accurate classifiers. Given
two classifiers C1=(gl,al) and C2=(g2,a2), with
gl > g2 and al < a2, PR evaluates them equally,
while C2 should be clearly fitter in this environ-
ment. The search is not biased towards accu-
rate classifiers, but towards a compromise between
general and accurate classifiers. Nevertheless, the
exploit phase, which acts as the Decision Maker,
would choose C2 as the classifier sending the ac-
tion. This fact improves the results that we would
have obtained if such a preference was not estab-
lished in the exploit process.

Finally, Deterministic Crowding (see figure 7)
also shows a good performance, although it takes
more time than with the 11-mux problem to reach
the optimal accuracy. Besides, DC shows a more
stable performance curve, while CC and CIF fiuc-
tuate a bit. This small fluctuation is due to the
replacement errors that can cause the loss of an
important classifier.

5 Conclusions

This paper has studied a new approach of a Genetic
Classifier System. MOLeCS has introduced a new
way of evaluating the individuals, on the multiob-
jective optimization of the classifier generality and
accuracy.
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Figure 6: Results in the 5-parity problem with
CF, CIF and CC niching methods. FEach nich-
ing method is detailed for each evaluation algo-
rithm: WS, PR, PAR and AGR. Curves are dis-
played along 2000 iterations.
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Figure 7: Results obtained in the 3-parity problem,
with replacement with DC. The results are detailed
for the evaluation algorithms: WS, PR, PAR and
AGR.

The classical Pareto approach (PR) shows very
little preference towards accurate classifiers and re-
sults in low performance. The Pareto and Accuracy
Ranking (PAR) algorithm sometimes outperforms
the PR algorithm, because it tries to induce a bias
towards accurate classifiers inside a non-dominant
group. Nevertheless, we believe that the rank map
defined by the Pareto approaches is not suitable
enough for developing accurate and general classi-
fiers. It establishes a compromise between general-
ity and accuracy, but we prefer accuracy (in order
to reach the 100%) and later on, generality (in or-
der to have a small set of accurate rules and also
promote covering). For this reason, the rank map
defined by the Accuracy and Generality Ranking
(AGR) method results in the best performance. It
biases the search towards the most accurate classi-
fiers and in case of equal accuracy, the most general
are preferred. Then, the GA search first looks for
accurate classifiers and later on improves them on
the generality objective. On the other hand, the
Weighted Sum (WS) algorithm also shows good re-
sults although its applicability depends on the set-
ting of an appropriate weighting vector.

A third major objective is also studied along the
paper: covering, which is promoted with the nich-
ing mechanisms. Without niching, the selective
pressure tends to bias the GA search to a small area
of the search space, preventing thus the system to
solve the overall classification problem. The best
results are obtained with Deterministic Crowding,
because it balances appropriately the convergence
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pressure (in order to obtain well-fitted classifiers)
and the maintenance of different niches (replacing
children by their respective parents).

MOLeCS has been applied to the multiplexer
and parity problems. Current work is applying
MOLeCS to more difficult classification tasks, in-
cluding real world problems which need a change
on the rule representation. We are also analysing
the feasibility of introducing new niching mecha-
nisms based on the concept of sharing, as proposed
by other types of Classifier Systems.

Acknowledgements

The results of this work were obtained with the
equipment co-funded by Direccié de Recerca de la
Generalitat de Catalunya (D.O.G.C 30/12/1997).
The first author acknowledges the support provided
by Epson Iberica, under Rosina Ribalta Award,
1999. We also would like to thank FEnginyeria i
Arquitectura La Salle for their support to the Al
Research Group.

References

[1] J.E. Baker. Reducing bias and inefficieny in the
selection algorithm. In J.J.Grefenstette, editor,
Genetic Algorithms and their Applications: Pro-
ceedings of the Second International Conference on
Genetic Algorithms, pages 14-21, 1987.

[2] Ester Bernadé Mansilla and Josep Maria Garrell i
Guiu. MOLeCS: A MultiObjective Classifier Sys-
tem. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), page 390,
2000.

[3] Ester Bernadé Mansilla, Abdelouahab Mekaouche,
and Josep Maria Garrell i Guiu. A Study of a Ge-
netic Classifier System Based on the Pittsburgh
Approach on a Medical Domain. In 12th Interna-
tional Conference on Industrial and Engineering
Applications of Artificial Intelligence and Ezpert
Systems, IEA/AIE-99, pages 175-184, 1999.

[4] Carlos A. Coello. A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization
Techniques. Knowledge and Information Systems.
An International Journal, 1(3):269-308, August
1999.

[5] K.A. De Jong. An analysis of the behavior of a
class of genetic adaptive systems. (Doctoral Dis-
sertation, University of Michigan) , 1975.

[6] Carlos M. Fonseca and Peter Fleming. An
Overview of Evolutionary Algorithms in Multiob-

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

jective Optimization. Ewvolutionary Computation,
3(1):1-16, 1995.

David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Publishing Company, Inc., 1989.

John J. Grefenstette, Connpie Loggia Ramsey, and
Alan C. Schultz. Learning Sequential Decision
Rules Using Simulation Models and Competition.
Machine Learning, 5(4), pages 355-381, 1990.

John H. Holland. Escaping Brittleness: The Pos-
sibilities of General Purpose Learning Algorithms
Applied to Parallel Rule-Based Systems. Machine
Learning: An Artificial Intelligence Approach, Vol.
I, pages 593-623, 1986.

J. Horn, D.E. Goldberg, and K. Deb. Implicit
Niching in a Learning Classifier System: Nature'’s
Way. Ewvolutionary Computation, 2(1), pages 37—
66, August, 1994.

Francesc Xavier Llora i Fabrega and Josep Maria
Garrell i Guiu. GENIFER: A Nearest Neigh-
bour based Classifier System using GA. In Wolf-
gang Banzhaf et al, editor, Proceedings of the Ge-
netic and Evolutionary Computation Conference,
(GECCO-99), page 797. Morgan Kaufmann, 1999.

Mahfoud, Samir W. Crowding and preselection
revisited. Tn R.Maenner and B.Manderick, editors,
Parallel Problem Solving from Nature, 2, pages 27—
36. Elsevier:Amsterdam, 1992.

Mahfoud, Samir W. Niching Methods for Genetic
Algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, 1995.

S. F. Smith. Flexible Learning of Problem Solving
Heuristics through Adaptive Search. In Proceed-
ings of the 8th International Joint Conference on
Artificial Intelligence, pages 422-425, 1983.

William M. Spears and Kenneth A. De Jong. Us-
ing Genetic Algorithms For Supervised Concept
Learning. Machine Learning, 13, pages 161-188,
1993.

Stewart W. Wilson. Classifier Fitness Based on Ac-
curacy. EBuvolutionary Computation, 3(2):149-175,
1995.

Stewart W. Wilson. Generalization in the XCS
Classifier System. In J.Koza et al., editor, Ge-
netic Programming: Proceedings of the Third An-
nual Conference. San Francisco, CA: Morgan Kauf-
mann, 1998,






