
 1

Escola Tècnica Superior d’Enginyeria
Electrònica i Informàtica La Salle

Treball Final de Màster

Màster Universitari en Enginyeria de Telecomunicació

IOT CRYPTOGRAPHY SCHEMES COMPARISON

Rosa Maria Alzina Pagès

Adrià Escolano Beltrán

Julia Sánchez Rodríguez
	
	

	

 3

Reunit el Tribunal qualificador en el dia de la data, l'alumne

 D. Adrià Escolano Beltrán

va exposar el seu Treball de Fi de Master, el qual va tractar sobre el tema següent:

IOT CRYPTOGRAPHY SCHEMES COMPARISON

Acabada l'exposició i contestades per part de l'alumne les objeccions formulades pels
Srs. membres del tribunal, aquest valorà l'esmentat Treball amb la qualificació de

Barcelona,

VOCAL DEL TRIBUNAL VOCAL DEL TRIBUNAL

 PRESIDENT DEL TRIBUNAL

IoT	Cryptography	Schemes	Comparison	

 5

Abstract	

For	many	years	now	we	have	heard	about	 the	 concept	of	 Internet	of	 Things	 (IoT),	 however,	 it	
seems	that	it	has	not	been	efficiently	applied	to	our	daily	 lives	yet.	The	reasons	for	this	are	not	
unique	and,	 therefore,	 the	complete	analysis	would	be	 long	and	cumbersome.	Still,	one	of	 the	
undeniably	critical	points	of	this	process	remains	in	the	security	of	the	information.	

Most	 IoT	 solutions	are	 conceived	as	 small	 and	 independent	networks.	 In	 these	networks	 there	
are	 relatively	 few	 flanks	 that	 can	 be	 attacked.	 Instead,	 taking	 into	 account	 the	 sustained	
development	 that	 should	be	presented,	 these	 small	 networks	will	 eventually	grow	 into	a	 giant	
network.	At	this	point,	it	will	be	much	more	complicated	to	ensure	security	which,	on	the	other	
hand,	must	be	a	factor	that	can	never	be	set	aside.	Precisely,	these	security	problems	must	be	a	
key	factor	in	deciding	the	development	of	the	IoT.	

As	mentioned	before,	no	IoT	device	network	can	pretend	to	be	connected	to	the	outside	without	
being	protected	against	possible	attacks,	both	hardware	and	software	level.	We	could	be	thinking	
about	 information	 theft,	 embezzlement	 of	 this	 information,	 impersonation,	 control	 of	 devices,	
etc.	

On	 the	 same	 line,	 within	 this	 security	 layer,	 the	 approach	 to	 the	 solution	 cannot	 be	 unique.	
Taking	the	CISCO	"Common"	Cisco	IoT	Platform	Architecture	model	as	a	reference,	 in	this	thesis	
we	 will	 focus	 on	 the	 Embedded	 Systems	 and	 Sensors	 layer,	 where	 we	 compare	 different	
cryptographic	solutions	under	the	data	encryption	and	transmission	framework	(concepts	such	
as	identity	protection,	confidentiality,	peer	communication,	authentication,	etc.	will	be	left	out	of	
the	thesis’	scope).	

The	main	issue	addressed	in	this	thesis	is	the	fact	that	the	sensors/devices	used	in	IoT	networks	
are	small	elements;	they	will	use	various	Operating	Systems,	CPU	types,	memory,	etc.	In	addition,	
many	 of	 these	 units	 will	 be	 (or	 are)	 very	 cheap,	 with	 a	 single	mode	 of	 operation	 and	 a	 basic	
network	connection	that	does	not	have	 the	power,	 storage	capacity,	 computation	capacity	or	
memory	 to	support	 the	current	encryption	protocols.	 In	order	to	overcome	this	problem,	new	
schemes	 capable	 of	 running	 on	 IoT	 devices,	 based	 on	 current	 encryption	 algorithms,	must	 be	
achieved.	

With	this	goal,	we	will	first	study	and	compare	Cryptographic	solutions	(Divided	in	Symmetric	Key	
and	 Asymmetric	 Key	 Cryptography)	 using	 different	 algorithms	 as	 examples	 to	 guide	 the	
theoretical	 study.	 After	 that,	 we	 will	 simulate	 various	 IoT	 environments	 to	 help	 us	 draw	
conclusions	about	the	usage	of	encryption	techniques	in	the	IoT	world.	

	 	

IoT	Cryptography	Schemes	Comparison	

 6

Resum	

Ja	fa	un	bon	grapat	d’anys	que	sentim	a	parlar	sobre	el	concepte	d’Internet	of	Things,	tanmateix,	
sembla	que	no	s’acaba	d’aplicar	al	nostre	dia	a	dia.	Els	motius	d’aquesta	no-implantació	no	són	
únics	 i,	per	 tant,	 l’anàlisi	 complet	 seria	 llarg	 i	 feixuc.	Tot	 i	això,	un	dels	 innegables	punts	crítics	
d’aquest	procés	roman	en	la	seguretat	de	la	informació.	

La	majoria	 de	 les	 solucions	 IoT	 es	 conceben	 com	a	 xarxes	 petites	 i	 independents.	 En	 aquestes	
xarxes	 hi	 ha,	 relativament,	 pocs	 flancs	 que	 puguin	 ser	 atacats.	 En	 canvi,	 tenint	 en	 compte	 el	
desenvolupament	sostingut	que	hauria	de	presentar,	aquestes	petites	xarxes	acabaran	unint-se	
en	una	xarxa	gegant.	És	en	aquest	punt	en	el	qual	serà	molt	més	difícil	assegurar	la	seguretat	que,	
per	 altra	 banda,	 ha	 de	 ser	 un	 factor	 que	 mai	 es	 pot	 deixar	 de	 banda.	 Precisament	 aquests	
problemes	de	seguretat	han	de	ser	un	factor	clau	a	l’hora	de	decidir	el	desenvolupament	de	l’IoT.	

Tal	i	com	hem	comentat	abans,	cap	xarxa	de	dispositius	IoT	pot	pretendre	estar	connectada	amb	
l’exterior	 sense	 que	 estigui	 protegida	 davant	 de	 possibles	 atacs,	 ja	 siguin	 tant	 a	 nivell	 de	
hardware	 com	 a	 nivell	 de	 software,	 pensant	 en	 furts	 d’informació,	malversació	 de	 la	mateixa,	
suplantació	d’identitat,	control	de	dispositius,	etc.	

De	la	mateixa	manera,	dins	aquesta	capa	de	seguretat,	l’enfocament	de	la	solució	no	pot	ser	únic.	
Prenent	 com	 a	 referència	 el	 model	 de	 CISCO	 “Common”	 Cisco	 IoT	 Platform	 Architecture	 en	
aquest	treball	ens	centrarem	a	la	capa	Embedded	Systems	and	Sensors	on	compararem	diferents	
solucions	criptogràfiques	sota	el	marc	del	 xifratje	 i	 la	 transmissió	d’aquestes	dades	 (quedaran	
fora	 de	 l’abast	 conceptes	 com	 la	 protecció	 de	 la	 identitat,	 confidencialitat,	 autenticació	 dels	
“participants”	de	la	comunicació,	etc.).	

L’interès	 principal	 d’aquest	 treball	 roman	 en	 el	 fet	 que	 els	 sensors/dispositius	 utilitzats	 a	 les	
xarxes	IoT	són	elements	petits,	utilitzaran	diversos	Sistemes	Operatius,	tipus	de	CPUs,	memòria,	
etc.	 A	 més,	 moltes	 d’aquestes	 unitats	 seran	 (o	 són)	 molt	 barates,	 amb	 un	 únic	 mode	 de	
funcionament	 i	 una	 connexió	 de	 xarxa	 bàsica.	 Això	 fa	 que	 no	 tinguin	 la	 potència,	 capacitat	
d’emmagatzematge,	 capacitat	de	 càlcul	o	memòria	per	a	 suportar	els	protocols	d’encriptació	
actuals.	 Per	 tal	 d’aconseguir	 superar	 aquest	 problema,	 s’han	d’aconseguir	 nous	 esquemes	que	
siguin	capaços	de	córrer	sobre	els	dispositius	IoT,	basant-nos	en	els	algoritmes	actuals	de	xifratge.	

Amb	aquest	objectiu,	primerament	estudiarem	i	compararem	solucions	criptogràfiques	(dividides	
entre	 criptografia	 de	 clau	 simètrica	 i	 criptografia	 de	 clau	 asimètrica)	 utilitzant	 diferents	
algoritmes	com	a	una	eina	per	guiar	 l'estudi	 teòric.	Després	d'això,	simularem	diversos	entorns	
IoT	per	ajudar-nos	a	treure	conclusions	sobre	l'ús	de	les	tècniques	de	xifrat	en	el	món	de	l’IoT.	

	 	

IoT	Cryptography	Schemes	Comparison	

 7

Resumen	

Hace	ya	un	buen	puñado	de	años	que	oímos	hablar	sobre	el	concepto	de	Internet	of	Things,	sin	
embargo,	 parece	 que	 no	 se	 acaba	 de	 aplicar	 en	 nuestro	 día	 a	 día.	 Los	 motivos	 de	 esta	 no-
implantación	no	son	únicos	y,	por	tanto,	el	análisis	completo	sería	largo	y	pesado.	Sin	embargo,	
uno	 de	 los	 innegables	 puntos	 críticos	 de	 este	 proceso	 permanece	 en	 la	 seguridad	 de	 la	
información.	

La	mayoría	de	 las	 soluciones	 IoT	 se	conciben	como	redes	pequeñas	e	 independientes.	En	estas	
redes	hay,	relativamente,	pocos	flancos	que	puedan	ser	atacados.	En	cambio,	teniendo	en	cuenta	
el	desarrollo	sostenido	que	debería	presentar,	estas	pequeñas	redes	acabarán	uniéndose	en	una	
red	gigante.	Es	en	este	punto	en	el	que	será	mucho	más	difícil	asegurar	la	seguridad	de	que,	por	
otra	parte,	debe	ser	un	factor	que	nunca	se	puede	dejar	de	lado.	Precisamente	estos	problemas	
de	seguridad	deben	ser	un	factor	clave	en	el	momento	de	decidir	el	desarrollo	del	IoT.	

Tal	 y	 como	 hemos	 comentado	 antes,	 ninguna	 red	 de	 dispositivos	 IoT	 puede	 pretender	 estar	
conectada	con	el	exterior	sin	que	esté	protegida	ante	posibles	ataques,	ya	sean	tanto	a	nivel	de	
hardware	 como	 a	 nivel	 de	 software,	 pensando	 en	 hurtos	 de	 información,	 malversación	 de	 la	
misma,	suplantación	de	identidad,	control	de	dispositivos,	etc.	

Del	mismo	modo,	dentro	de	esta	capa	de	seguridad,	el	enfoque	de	la	solución	no	puede	ser	único.	
Tomando	como	referencia	el	modelo	de	CISCO	"Common"	Cisco	IoT	Platform	Architecture	en	este	
trabajo	 nos	 centraremos	 en	 la	 capa	 Embedded	 Systems	 and	 Sensors	 donde	 compararemos	
diferentes	 soluciones	 criptográficas	 bajo	 el	 marco	 del	 cifrado	 y	 la	 transmisión	 de	 estos	 datos	
(quedarán	 fuera	 del	 alcance	 conceptos	 como	 la	 protección	 de	 la	 identidad,	 confidencialidad,	
autenticación	de	los	"participantes"	de	la	comunicación,	etc.).	

El	 interés	 principal	 de	 este	 trabajo	 permanece	 en	 el	 hecho	 de	 que	 los	 sensores	 /	 dispositivos	
utilizados	en	las	redes	IoT	son	elementos	pequeños,	utilizarán	varios	Sistemas	Operativos,	tipo	de	
CPUs,	memoria,	etc.	Además,	muchas	de	estas	unidades	serán	(o	son)	muy	baratas,	con	un	único	
modo	de	 funcionamiento	y	una	 conexión	de	 red	básica.	 Esto	hace	que	no	 tengan	 la	 potencia,	
capacidad	de	almacenamiento,	 capacidad	de	 cálculo	o	memoria	para	 soportar	 los	protocolos	
de	 encriptación	 actuales.	 Para	 conseguir	 superar	 este	 problema,	 se	 han	 de	 conseguir	 nuevos	
esquemas	que	sean	capaces	de	correr	 sobre	 los	dispositivos	 IoT,	basándonos	en	 los	algoritmos	
actuales	de	cifrado.	

Con	este	objetivo,	primero	estudiaremos	y	compararemos	soluciones	criptográficas	(divididas	en	
criptografía	de	clave	simétrica	y	criptografía	de	clave	asimétrica)	utilizando	diferentes	algoritmos	
como	herramienta	para	guiar	el	 estudio	 teórico.	Después	de	eso,	 simularemos	varios	entornos	
IoT	para	ayudarnos	a	sacar	conclusiones	sobre	el	uso	de	las	técnicas	de	cifrado	en	el	mundo	de	
IoT.	

	

 9

Dedicated	to	my	family,		

Thanks	for	all	the	support	that	you	have	given	me	during	all	these	years.	

	

 11

Acknowledgements	

I	would	 like	 to	 thank	 Julia	 Sánchez	Rodríguez,	my	project	 supervisor.	Her	 supervision	 style	 has	
helped	me	incredibly	during	the	realization	of	this	thesis.	

Giving	 me	 freedom	 during	 the	 whole	 project	 and	 advising	 me	 whenever	 it	 was	 needed	 to	
advance	firmly	through	the	process,	which	brought	me	composure	and	confidence.	

	

 13

Table	of	contents	

Table	of	contents	..	13	

List	of	Figures	..	17	

List	of	Tables	...	20	

Acronyms	..	21	

1.	 Introduction	...	23	

1.1.	 Thesis	Context	...	23	

1.2.	 Objectives	...	23	

1.3.	 Work	plan	...	24	

2.	 State	of	the	art	of	the	technology	used	in	this	thesis	..	25	

2.1.	 Symmetric-Key	Cryptography	introduction	..	25	

2.1.1.	 Block	Ciphers	...	25	

2.1.2.	 Stream	Ciphers	...	26	

2.2.	 Asymmetric	Key	Cryptography	introduction	..	26	

2.2.1.	 Hash	function	(SHA-3)	..	26	

2.2.2.	 Elliptic	Curve	Cryptography	...	26	

2.3.	 CLEFIA	(Block	Cipher)	..	27	

2.3.1.	 CLEFIA’S	Structure	..	27	

2.3.2.	 F-function	–	Feistel	function	..	29	

2.3.3.	 S-box	..	30	

2.3.4.	 Diffusion	Matrices	..	31	

2.3.5.	 Hamming	weight	..	31	

2.3.6.	 DoubleSwap	function	...	32	

2.4.	 MICKEY	v2	(Stream	Cipher)	...	32	

2.4.1.	 Input	and	Output	parameters	..	32	

2.4.2.	 Components	of	the	Keystream	generator	...	33	

2.4.2.1.	The	registers	...	33	

2.4.2.2.	Clocking	the	register	R	..	33	

2.4.3.	 Motivation	for	the	variable	clocking	..	34	

2.4.4.	 The	S	register	feedback	function	...	34	

2.5.	 Hash	function	introduction	...	35	

2.5.1.	 Basic	concepts	-	Why	SHA-3	..	35	

IoT	Cryptography	Schemes	Comparison	

 14

2.5.2.	 SHA-3	algorithm:	KECCAK	..	35	

2.5.3.	 Sponge	Construction	..	36	

2.5.3.1.	Hermetic	sponge	construction	...	37	

2.5.4.	 Bit	padding	...	38	

2.6.	 Elliptic	Curve	Cryptography	introduction	...	39	

2.6.1.	 Mathematical	resume	–	Alice	and	Bob	example	...	39	

2.6.2.	 Elliptic	Curve	definition	..	40	

2.6.3.	 Elliptic	Curve	Cryptography	in	IoT	..	41	

3.	 Methodology	/	Project	Development	..	43	

3.1.	 Keys	and	Cryptography	...	43	

3.2.	 Symmetric	Key	Cryptography	-	The	ciphers	..	46	

3.2.1.	 CLEFIA	..	47	

3.2.2.	 MICKEY	...	51	

3.3.	 Hash	function	..	57	

3.3.1.	 SHA-3	Algorithm,	Hash	implementation	simulation	..	60	

3.4.	 Elliptic	Curve	Cryptography	-	studies	and	IoT	applications	...	64	

4.	 IoT	cryptographic	algorithms	simulation	...	69	

4.1.	 Simulation	premises	-	AES	Standard	...	70	

4.2.	 Simulation	1	–	Sky	mote	–	Sink-Sender	-	WSN	without	cryptographic	algorithms	71	

4.3.	 Simulation	2	–	Z1	mote	–	Sink-Sender	-	WSN	without	cryptographic	algorithms	75	

4.4.	 Enabling	encryption	..	79	

4.5.	 Simulations	3/4	–	Sky	mote,	Z1	mote	–	Broadcast	WSN	simulation	no	encryption	81	

4.6.	 Simulations	5/6	–	Sky	mote,	Z1	mote	–	Broadcast	WSN	simulation	encryption	85	

4.7.	 Simulation	7	–	Sky	mote	–	Sink-Sender	–	WSN	with	cryptography	allowed	88	

4.8.	 Simulation	8	–	Z1	mote	–	Sink-Sender	–	WSN	with	cryptography	allowed	91	

4.9.	 Analysis	of	the	Simulation	Results	..	94	

4.9.1.	 Broadcast	scenario	...	94	

4.9.2.	 Sink-Sender	environment	..	97	

5.	 Results	and	Conclusions	...	99	

5.1.	 Ciphers	..	99	

5.2.	 SHA-3	algorithm	and	Hash	study	..	101	

5.3.	 Elliptic	Curve	Cryptography	..	102	

5.4.	 Overall	conclusions	...	102	

IoT	Cryptography	Schemes	Comparison	

 15

6.	 Future	development	..	105	

7.	 Bibliography	...	107	

8.	 Economical	study	...	111	

9.	 Appendices	..	113	

9.1.	 Log	listener	files	..	113	

9.2.	 CSC	files	...	113	

	

 17

List	of	Figures	

Figure	1:	Gantt	Diagram	

Figure	2:	Feistel	Function		

Figure	3:	F-Function	mathematical	definition	

Figure	4:	DoubleSwap	function	

Figure	5:	Clocking	the	R	Register	with	CONTROL_BIT_R=0	

Figure	6:	Clocking	the	R	Register	with	CONTROL_BIT_R=1	

Figure	7:	Clocking	the	S	Register	

Figure	8:	Sponge	Construction	

Figure	9:	ECC	Key	computation	

Figure	10:	Elliptic	Curve	representation	

Figure	11:	Symmetric	Key	Cryptography	

Figure	12:	Public	Key	Cryptography	

Figure	13:	Most	basic	Block	Cipher	schema	

Figure	14:	Lightweight	Cryptography	ciphers	comparison	

Figure	15:	Gate	efficiency	comparison	

Figure	16:	Hardware	performance:	CLEFIA	vs	PRESENT	

Figure	17:	Stream	Cipher	scheme	

Figure	18:	Stream	Cipher	HW	performance	comparison	

Figure	19:	Compactness	summary	

Figure	20:	Throughput	summary	

Figure	21:	Power	consumption	summary	

Figure	22:	Metrics	for	an	output	rate	of	10	Mbps	(estimated	typical	wireless	LAN)	

Figure	23:	Metrics	operating	at	100kHz	clock	(low-end	RFID/WSN	applications)	

Figure	24:	Hash	function	signing	/	verification	process	

Figure	25:	SHA-3	Performance	results	under	authors	ASIC	Syntheses	

Figure	26:	Hashing	phase	1	-	DataHash	function	

Figure	27:	Hashing	phase	2	-	DataHash	function	

Figure	28:	Engine	structure	initialization	

Figure	29:	Hash	output	format	

Figure	30:	Perfect	Hash	function	example	

IoT	Cryptography	Schemes	Comparison	

 18

Figure	31:	Mathematical	display	of	a	Hashing	function	f

Figure	32:	Timings	for	scalar	multiplication	(normalized	for	a	clock	frequency	of	7.37MHz)	

Figure	33:	Implementation	results,	comparison	with	two	other	implementations	

Figure	34:	ROM	and	RAM	memory	consumption	of	different	implementations	

Figure	35:	Performance	for	the	Key	agreement	case	

Figure	36:	Performance	for	the	Data	Signature	case	

Figure	37:	Latency	(μs)	of	the	encryption	process	

Figure	38:	Throughput	information	

Figure	39:	First	IoT	WSN	

Figure	40:	Client	initializations	

Figure	41:	WSN	packets	transmission	

Figure	42:	Sensor	map	of	the	first	simulation	

Figure	43:	Mote	3	network	isolation	

Figure	44:	Node	Info	table	(I)	

Figure	45:	Node	Info	table	(II)	

Figure	46:	Power	distribution	per	mote	

Figure	47:	Radio	Duty	Cycle	per	mote	

Figure	48:	IoT	WSN	

Figure	49:	Z1	client	initialization	

Figure	50:	Z1	packet	transmission	

Figure	51:	Z1	sensor	map	

Figure	52:	Node	Info	table	(I)	

Figure	53:	Node	Info	table	(II)	

Figure	54:	Power	consumption	per	mote	–	Z1	

Figure	55:	Radio	Duty	Cycle	per	mote	–	Z1	

Figure	56:	Broadcast	WSN	

Figure	57:	Broadcast	WSN	simulation	packet	sending	

Figure	58:	Mote	output	broadcast	data	

Figure	59:	Mote	output	broadcast	power	trace	data		

Figure	60:	Broadcast	WSN,	Z1	mote	

Figure	61:	Project_conf.h	file	location	

Figure	62:	Project_conf.h	file	modification	

IoT	Cryptography	Schemes	Comparison	

 19

Figure	63:	Broadcast	WSN,	Sky	mote,	encryption	enabled	

Figure	64:	Broadcast	WSN,	Z1	mote,	encryption	enabled	

Figure	65:	Sky	motes,	Sink-sender	scenario	with	cryptography	

Figure	66:	Sink-Sender	Simulation	going	on	

Figure	67:	Sensor	map	

Figure	68:	Node	Info	table	(I)	

Figure	69:	Node	Info	table	(II)	

Figure	70:	Average	Power	Consumption	

Figure	71:	Average	Radio	Duty	Cycle	

Figure	72:	Z1	motes,	Sink-Sender	scenario	with	Cryptography	

Figure	73:	Z1	motes,	sensor	map	

Figure	74:	Node	Info	table	(I)	

Figure	75:	Node	Info	table	(II)	

Figure	76:	Average	Power	consumption	

Figure	77:	Average	Radio	Duty	Cycle	

Figure	78:	loglistener.txt	file	portion	

	 	

IoT	Cryptography	Schemes	Comparison	

 20

List	of	Tables	

Table	1:	CLEFIA	Design	aspects	

Table	2:	S-Box	Matrices	

Table	3:	KECCAK	technical	details	

Table	4:	Ciphers	primitive	comparison		

Table	5:	CLEFIA	Data	

Table	6:	PowerTrace	output	parameters	

	

	 	

IoT	Cryptography	Schemes	Comparison	

 21

Acronyms	

IoT:	Internet	of	Things	

NIST:	National	Institute	of	Standards	and	Technology	

ECC:	Elliptic	Curve	Cryptography	

SHA:	Secure	Hash	Algorithm	

WSN:	Wireless	Sensor	Network	

ETX:	Expected	Transmition	Count	

LPM:	Low	Power	Mode	

AES:	Advanced	Encryption	Standard	

CCM	mode:	Mode	of	operation	for	cryptographic	block	ciphers	(using	128	bit	key	size)	

	

 23

1. Introduction	

1.1. Thesis	Context	
The	thesis	is	developed	under	the	supervision	of	GRITS	department	“Research	Group	on	Internet	
Technologies	 &	 Storage”,	more	 precisely,	 inside	 the	 “Cybersecurity”	 branch;	 the	 supervisor	 of	
this	thesis	is	the	associate	professor,	Julia	Sánchez	Rodríguez.	

One	of	the	Cybersecurity	most	important	points	is	its	focal	presence	in	the	current	world.	We	are	
living	in	the	world	of	digital	communication	and	without	secure	communication	systems	there	is	
no	 possible	 framework	 for	 technologies	 to	 develop.	 Every	 new	 technology/technological	
implementation	must	come	with	a	practical	secure	schema	to	be	applied;	on	the	contrary,	it	will	
become	useless,	as	we	cannot	benefit	from	it	if	anyone	could	steal	information	or	retrieve	data	
from	whatever	it	is	that	we	are	doing.	

These	concepts	undeniably	apply	the	“Internet	of	Things	world”,	which	is	just	a	small	piece	of	this	
gear.	 It	 seems	 that	 the	 Internet	 of	 Things	 is	 still	 not	widely	 spread	 in	 our	 everyday	 life,	many	
factors	may	contribute	to	this	but	security	of	information	is	one	of	them.	

Other	 researches	 regarding	 this	 topic	had	been	previously	 carried,	 the	overall	 sensation	 is	 that	
the	limitations	and	constraints	are	widely	known,	but	different	approaches	have	been	applied	to	
the	same	problem	leaving	the	topic	still	opened.	

So	basically,	the	main	features	that	differentiate	IoT	security	issues	from	the	traditional	ones	are	
the	heterogeneous	and	 large-scale	objects	and	networks.	These	two	factors,	heterogeneity	and	
complexity,	turn	the	IoT	security	into	an	issue	more	difficult	to	deal	with.	

Taking	 these	 “open”	 points	 into	 account	 it	 was	 interesting	 to	 study	 and	 compare	 different	
current	cryptographic	solutions	 in	the	specific	context	of	 the	data	encryption	and	transmission,	
knowing	the	power,	storage	capacity,	computation	capacity	or	memory	constraints	that	current	
devices	present	[i]	[vii]	[xiii].	

Taking	 all	 these	 factors	 into	 account,	 we	 can	 see	 the	 context	where	 this	 thesis	 is	 going	 to	 be	
developed.	

1.2. Objectives	
The	objectives	of	the	IoT	crypto-schemes	comparison	are:	

1. Learn	 about	 current	 cryptographic	 schemas	 and	 its	 functioning	 (ciphering,	 deciphering,	
etc.).	

2. Perform	 a	 fair	 comparison	 in	 a	 well-defined	 framework	 that	 would	 help	 to	 determine	
which	schema	is	the	best	under	the	following	premises:	

a. Computational	cost	
b. Data	transmission	rate	
c. Battery	cost	

3. Improve	 in	 my	 ability	 to	 research	 information,	 filter	 it,	 understand	 it	 and	 apply	 it.	
Specifically	under	a	 scientific	point	of	 view.	This	ability	 can	 then	be	used	 for	any	other	
project	or	activity	in	my	life,	which	would	require	from	this	knowledge	process.	

IoT	Cryptography	Schemes	Comparison	

 24

Also,	in	a	more	personal	point	of	view,	I	want	to	learn	about	an	unknown	but	interesting	subject,	
which	is	slightly	studied	in	both	the	degree	and	master.	

	

1.3. Work	plan	
The	following	figure	presents	the	project	Gantt	Diagram	of	the	master	thesis:	

	

	

	

	

	

	

	

	

	

	

	

Figure	1:	Gantt	Diagram	

This	figure	will	be	further	referenced	in	order	to	calculate	the	project	costs	in	section	8.	

	

 25

2. State	of	the	art	of	the	technology	used	in	this	thesis	

As	we	are	living	in	an	era	where	technological	development	is	constant,	the	communications	field	
could	 not	 be	 an	 exception.	 Indeed,	 some	 of	 the	 most	 interesting	 improvements	 have	 been	
performed	 in	 this	 field.	 Cybersecurity	 is	 not	 an	 exception,	 as	 it	 has	 been	 investigated	 hand	 to	
hand	with	these	improvements.	

In	this	thesis,	as	it	will	be	further	explained	in	the	Methodology/Project	Development	point,	we	
will	compare	the	performance	of	two	crypto-schemes:		

- Symmetric	Key	Cryptography:	
• Block	Cipher	
• Stream	Cipher	

- Asymmetric	Key	Cryptography:	
• Hash	function	
• Elliptic	Curve	Cryptography	

Both	 under	 the	 data	 encryption	 and	 transmission	 framework,	 that	 is	 taking	 into	 account	 the	
following	parameters	when	performing	the	comparison:	

• Security	
• Flexibility	(As	the	ability	to	be	applied	in	different	systems)	
• Performance	(Encryption	time,	transmission	speed,	etc.)	
• Power	Consumption	
• Price	

For	the	first	point,	considering	the	numerous	studies	that	have	been	carried	around	[x]	[xiii]	[xv]	
[xxi],	 it	 will	 be	 assumed	 that	 all	 the	 presented	 schemes	 accomplish	 with	 the	 current	 security	
standards	against	various	cyber	attacks	[xxxix].	

Firstly,	in	order	to	start	with	any	analysis,	an	introduction	to	the	different	concepts/technologies	
that	 those	 cryptographic	 solutions	 present	 is	 needed.	We	 will	 present	 the	 state	 of	 the	 art	 of	
current	Block	Cipher,	Stream	Cipher	and	ECC	technologies,	plus	other	necessary	concepts	(Keccak,	
Sponge	Construction,	 Feistel	 Function,	 etc.)	 in	 order	 to	 understand	 the	 above	mention	 crypto-
schemes.	

2.1. Symmetric-Key	Cryptography	introduction	
In	a	symmetric-key	algorithm	both	parties	use	the	same	key	for	encryption	and	decryption.	

•	Symmetric-key	ciphers	have	high	rates	of	data	throughput	(Mb/sec)	and	relatively	short	
keys	

•	Key	must	remain	secret	at	both	ends	and	must	change	frequently	

•	Many	key	pairs	to	be	managed	in	large	networks	

2.1.1. Block	Ciphers	
As	 stated	 in	Masanobu	 Katagi’s	 and	 Shiho	Moriai’s	 paper	 [xix],	 after	 the	 Advanced	 Encryption	
Standard	 (AES)	 was	 selected,	 many	 block	 ciphers	 with	 lightweight	 properties	 have	 been	
proposed.	 Among	 them,	 CLEFIA	 and	 PRESENT	 are	 well	 studied	 about	 their	 security	 and	

IoT	Cryptography	Schemes	Comparison	

 26

implementation.	 Both	 algorithms	 were	 under	 consideration	 in	 ISO/IEC	 29192	 “Lightweight	
Cryptography”	and	are	also	ready	to	use	in	practical	systems.	

2.1.2. Stream	Ciphers	

The	ECRYPT	II	eSTREAM	project	that	was	held	from	2004	to	2008	selected	a	portfolio	of	different	
new	 stream	 ciphers.	 The	 current	 eSTREAM	 portfolio	 contains	 7	 algorithms.	 Among	 all	 these	
algorithms	 Grain	 v1,	MICKEY	 v2,	 and	 Trivium	 have	 lightweight	 properties,	 which	may	 be	 then	
applied	in	IoT	systems	[xv].	

2.2. Asymmetric	Key	Cryptography	introduction	
Asymmetric	cryptography	algorithms	use	different	keys	for	encryption	and	decryption.	Each	node	
in	the	network	has	a	pair	of	keys,	the	private	key	and	the	public	key.	

•	 Only	 the	 private	 key	 must	 be	 kept	 secret;	 a	 private/public	 key	 pair	 may	 remain	
unchanged	for	considerable	periods	of	time,	efficient	digital	signature	mechanisms,	and	
smaller	number	of	necessary	keys	in	large	networks	

•	Much	slower	throughput	rates	than	symmetric-key	cryptography	and	larger	key	sizes	

2.2.1. Hash	function	(SHA-3)	
The	 NIST’s	 new	 cryptographic	 hash	 algorithm	 SHA-3	 is	 based	 on	 an	 instance	 of	 the	 KECCAK	
algorithm	 that	 NIST	 selected	 as	 the	 winner	 of	 the	 SHA-3	 Cryptographic	 Hash	 Algorithm	
Competition.	The	SHA-3	family	consists	of	four	cryptographic	hash	functions	and	two	extendable-
output	functions.	Just	as	block	ciphers	can	be	used	to	build	hash	functions,	hash	functions	can	be	
used	 to	 build	 block	 ciphers.	 Indeed,	 Cryptographic	 hash	 functions	 are	 a	 third	 type	 of	
cryptographic	algorithm	appart	from	Block	Ciphers	and	Stream	Ciphers.	More	preciselly	they	are	
also	considered	as	part	of	Public	Key	Cryptography.	[xiv]	[xxii]	

2.2.2. Elliptic	Curve	Cryptography	
While	 lightweight	public	 key	primitives	 are	 in	demand	 for	 key	management	protocols	 in	 smart	
objects	 networks,	 the	 required	 resource	 for	 public	 key	 primitives	 is	 much	 larger	 than	 the	
resources	needed	in	symmetric	key	primitives	so,	apparently,	it	seems	that	this	solution	is	not	the	
smartest	when	it	comes	to	IoT	networks.	Still,	we	will	study	it,	as	some	researches	implement	this	
solution	in	IoT	devices	due	to	the	smaller	number	of	necessary	keys	in	large	networks.	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 27

2.3. CLEFIA	(Block	Cipher)	
As	 a	 part	 of	 the	 Symmetric	 Key	 Cryptography,	 the	 CLEFIA	 block	 cipher	 was	 chosen.	 It	 is	 a	
proprietary	block	cipher	algorithm,	developed	by	Sony. The	block	size	is	128	bits	and	the	key	size	
can	 be	 128	 bits,	 192	 bits	 or	 256	 bits.	 It	 is	 intended	 to	 be	 used	 in	 Digital	 Right	 Management	
systems.	This	block	cipher	algorithm	was	chosen	due	to	its	open	source	of	information,	plus	it	is	
one	of	the	algorithms	that	was	under	consideration	in	ISO/IEC	29192	“Lightweight	Cryptography”	
and	also	ready	to	use	in	practical	systems.	That	provided	enough	amount	of	information	to	use	it	
as	a	pivotal	point	to	study	the	block	ciphers.	[xxv]	

The	design	strategy	of	CLEFIA	is	to	realize	good	balance	on	three	fundamental	directions	required	
for	practical	ciphers:	

•	Security	

•	Speed	

•	Cost	for	implementations	

	

2.3.1. CLEFIA’S	Structure	
CLEFIA	employs	a	4-branch	Type-2	generalized	Feistel	structure.	The	type-2	Feistel	structure	has	

two	 F-functions	 in	 one	 round	 for	 the	 four	 data	 lines	 case.	 The	 type-2	 Feistel	 structure	has	 the	

following	features:	

•	F-functions	are	smaller	than	that	of	the	traditional	Feistel	structure	

•	Plural	F-functions	can	be	processed	simultaneously	

•	Tends	to	require	more	rounds	than	the	traditional	Feistel	structure	

The	 first	 feature	 is	 a	 great	 advantage	 for	 software	 and	 hardware	 implementations,	 and	 the	
second	one	 is	 suitable	 for	efficient	 implementation	especially	 in	hardware.	 It	 is	 concluded	 that	
the	advantages	of	the	type-2	Feistel	structure	surpass	the	disadvantage	of	the	third	one	for	the	
CLEFIA	blockcipher	design.	Moreover,	the	new	design	technique,	which	is	explained	next,	enables	
to	reduce	the	number	of	rounds	effectively.	[xxv]	

Diffusion	 Switching	 Mechanism	 (DSM)	 is	 one	 of	 the	 novel	 design	 approaches	 of	 CLEFIA.	 F-
functions	 employ	 the	Diffusion	 Switching	Mechanism.	 These	 F-functions	use	different	diffusion	
matrices	to	obtain	stronger	immunity	against	differential	and	linear	cryptanalyses.	Consequently,	
the	required	number	of	rounds	can	be	reduced.	

Two	 S-boxes	 system	 CLEFIA	 employs	 two	 different	 S-boxes	 based	 on	 different	 algebraic	
structures,	which	is	expected	to	increase	algebraic	immunity.	

Secure	and	compact	key	scheduling	algorithm.	It	is	introduced	a	new	key	scheduling	design.	The	
key	scheduling	part	uses	a	generalized	Feistel	structure,	and	it	is	possible	to	share	it	with	the	data	
processing	part.	Moreover,	 this	 structure	 facilitates	 easy	 analysis,	 and	 security	 against	 related-
key	attacks	is	evaluated.	The	DoubleSwap	function	used	in	the	key	scheduling	part	has	a	low	cost	
but	 also	 has	 a	 good	 diffusion	 property.	 By	 using	 the	 DoubleSwap	 function,	 round	 keys	 are	
generated	 sequentially	 and	 efficiently	 from	 the	 intermediate	 key	 both	 in	 encryption	 and	
decryption	[xxv].	

	

IoT	Cryptography	Schemes	Comparison	

 28

Table	1:	CLEFIA	Design	aspects	[xxv]	
Design	aspects	of	CLEFIA	

	

Generalized	 Feistel	
Network	

·	Small	size	F-functions	(32	bit	in/out)	

·	No	need	for	the	inverse	F-functions	

S-Type	F-function	 ·	Enabling	fast	table	implementation	in	software	

DSM	 ·	Reducing	the	number	of	rounds	

S-boxes	 ·	Very	small	footprint	of	S0	and	S1	in	hardware	

Matrices	 ·	Using	elements	with	low	hamming	weights	only	

Key	Schedule	 ·	Same	structure	with	the	data	processing	part	

·	Only	a	128-bit	register	is	required	for	CLEFIA	with	128-bit	keys	

·	Small	footprint	of	DoubleSwap	function	

	

High	 efficiency:	CLEFIA	was	designed	to	achieve	high	efficiency	 in	both	software	and	hardware	
implementations	 as	 well	 as	 to	 hold	 enough	 security	 based	 on	 the	 current	 cryptanalyses.	 The	
hardware	 performance	 of	 CLEFIA	 is	 particularly	 advantageous	 among	 other	 block	 ciphers.	 In	
software,	CLEFIA	with	128-bit	keys	achieves	about	13	cycles/byte,	1.48	Gbps	on	a	2.4	GHz	AMD	
Athlon	 64.	 This	 result	 shows	 that	 software	 performance	 of	 CLEFIA	 is	 classified	 into	 the	 fastest	
class	 among	 block	 ciphers.	 [xxv].	 During	 the	 next	 chapter,	 3,	 we	will	 look	 deeper	 into	 various	
studies	to	analyze	whether	these	results	are	effective	in	different	cases	or	not.		

	

In	hardware,	an	implementation	of	CLEFIA	with	128-bit	keys	is	very	small,	occupying	less	than	5K	
gates	 by	 0.09	 μm	 CMOS	 ASIC	 library.	 This	 is	 in	 the	 smallest	 class	 among	 block	 ciphers	 in	 the	
current	e-Government	(Japan)	recommended	Ciphers	list.	For	speed-optimized	implementations,	
the	 performance	 of	 CLEFIA	 achieves	 1.6	 Gbps	with	 about	 6	 Kgates	 and	 3	 Gbps	with	 about	 12	
Kgates.	 From	 these	 results,	 CLEFIA	 is	 unique	 in	 hardware	 efficiency,	 which	 is	 defined	 by	
throughput	per	gate.	[xxv]	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 29

Figure	2:	Feistel	Function	[4].	

2.3.2. F-function	–	Feistel	function	
The	F-function,	operates	on	half	a	block	(32	bits)	at	a	time	and	consists	of	four	stages:	

1. Expansion:	the	32-bit	half-block	is	expanded	to	48	bits	using	the	expansion	permutation,	
denoted	E	in	the	diagram,	by	duplicating	half	of	the	bits.	The	output	consists	of	eight	6-
bit	 (8	*	6	=	48	bits)	pieces,	each	containing	a	copy	of	4	corresponding	 input	bits,	plus	a	
copy	of	the	immediately	adjacent	bit	from	each	of	the	input	pieces	to	either	side.	

	
2. Key	mixing:	the	result	is	combined	with	a	subkey	using	an	XOR	operation.	Sixteen	48-bit	

subkeys—one	for	each	round—are	derived	from	the	main	key	using	the	key	schedule.	
	

3. Substitution:	after	mixing	in	the	subkey,	
the	 block	 is	 divided	 into	 eight	 6-bit	
pieces	 before	 processing	 by	 the	 S-
boxes,	 or	 substitution	 boxes.	 Each	 of	
the	 eight	 S-boxes	 replaces	 its	 six	 input	
bits	with	four	output	bits	according	to	a	
non-linear	 transformation,	 provided	 in	
the	form	of	a	lookup	table.	The	S-boxes	
provide	 the	 core	 of	 the	 security	 of	
DES—without	 them;	 the	 cipher	 would	
be	linear,	and	trivially	breakable.	

	
	
	
	
	
	
	

4. Permutation:	finally,	the	32	outputs	from	the	S-boxes	are	rearranged	according	to	a	fixed	
permutation,	 the	 P-box.	 This	 is	 designed	 so	 that,	 after	 permutation,	 the	 bits	 from	 the	
output	of	each	S-box	 in	 this	 round	are	 spread	across	 four	different	S-boxes	 in	 the	next	
round.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

IoT	Cryptography	Schemes	Comparison	

 30

Figure	3:	F-Function	mathematical	definition	[xxv]	

The	alternation	of	substitution	from	the	S-boxes,	and	permutation	of	bits	from	the	P-box	and	E-
expansion	 provides	 so-called	 "confusion	 and	 diffusion"	 respectively,	 a	 concept	 identified	 by	
Claude	Shannon	in	the	1940s	as	a	necessary	condition	for	a	secure	yet	practical	cipher.	

	

In	 this	 figure	we	 see	 the	mathematical	 definition	
of	the	two	F-functions	[F0,	F1].	We	can	see:	

	 ·	S-Boxes	[S0,	S1]	

	 ·	Diffusion	Matrices	[M0,	M1]	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

2.3.3. S-box	
In	cryptography,	an	S-box	(substitution-box)	 is	a	basic	component	of	symmetric	key	algorithms,	
which	performs	substitution.	In	block	ciphers,	they	are	typically	used	to	obscure	the	relationship	
between	the	key	and	the	ciphertext	—	Shannon's	property	of	confusion.	

In	general,	an	S-box	takes	some	number	of	input	bits,	m,	and	transforms	them	into	some	number	
of	output	bits,	n,	where	n	is	not	necessarily	equal	to	m.	An	m×n	S-box	can	be	implemented	as	a	
lookup	 table	 with	 2m	 words	 of	 n	 bits	 each.	 Fixed	 tables	 are	 normally	 used,	 as	 in	 the	 Data	
Encryption	Standard	 (DES),	but	 in	 some	ciphers	 the	 tables	are	generated	dynamically	 from	 the	
key	(e.g.	the	Blowfish	and	the	Twofish	encryption	algorithms).	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 31

One	good	example	of	a	 fixed	 table	 is	 the	S-box	 from	DES	 (S5),	mapping	6-bit	 input	 into	a	4-bit	
output:	

Table	2:	S-Box	Matrix	

S5
Middle 4 bits of input

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Outer
bits

00 0010 1100 0100 0001 0111 1010 1011 0110 1000 0101 0011 1111 1101 0000 1110 1001

01 1110 1011 0010 1100 0100 0111 1101 0001 0101 0000 1111 1010 0011 1001 1000 0110

10 0100 0010 0001 1011 1010 1101 0111 1000 1111 1001 1100 0101 0110 0011 0000 1110

11 1011 1000 1100 0111 0001 1110 0010 1101 0110 1111 0000 1001 1010 0100 0101 0011

Given	a	6-bit	 input,	the	4-bit	output	 is	found	by	selecting	the	row	using	the	outer	two	bits	(the	
first	and	last	bits),	and	the	column	using	the	inner	four	bits.	For	example,	an	input	"011011"	has	
outer	bits	"01"	and	inner	bits	"1101";	the	corresponding	output	would	be	"1001".	

	

2.3.4. Diffusion	Matrices	

Two	matrices	M0	and	M1	used	in	each	F-function,	named	after	the	Difusion	Switching	Mechanism	
(DSM).	 The	 multiplications	 of	 a	 matrix	 and	 a	 vector	 are	 performed	 in	 GF(28)	 defined	 by	 the	
lexicographically	first	primitive	polynomial	z8+z4+z3+z2+1.	Used	in	the	Permutation	step	[xxv].

	

M0	=	

0𝑥01 0𝑥02 0𝑥04 0𝑥06
0𝑥02 0𝑥01 0𝑥06 0𝑥04
0𝑥04 0𝑥06 0𝑥01 0𝑥02
0𝑥06 0𝑥04 0𝑥02 0𝑥01

;								M1	=	

0𝑥01 0𝑥08 0𝑥02 0𝑥0𝑎
0𝑥08 0𝑥01 0𝑥0𝑎 0𝑥02
0𝑥02 0𝑥0𝑎 0𝑥01 0𝑥08
0𝑥0𝑎 0𝑥02 0𝑥08 0𝑥01

	

	

2.3.5. Hamming	weight	

The	 Hamming	 weight	 of	 a	 string	 is	 the	 number	 of	 symbols	 that	 are	 different	 from	 the	 zero-
symbol	 of	 the	 alphabet	 used.	 It	 is	 thus	 equivalent	 to	 the	 Hamming	 distance	 from	 the	 all-zero	
string	of	the	same	length.	For	the	most	typical	case,	a	string	of	bits,	this	 is	the	number	of	1's	 in	
the	string,	or	the	digit	sum	of	the	binary	representation	of	a	given	number	and	the	ℓ₁	norm	of	a	
bit	vector.	In	this	binary	case,	it	is	also	called	the	population	count,	popcount,	sideways	sum,	or	
bit	summation.	Hamming	weight	calculation	can	be	seen	in	the	following	example:	

String	 Hamming	weight	

11101	 4	

11101001	 5	

	

IoT	Cryptography	Schemes	Comparison	

 32

2.3.6. DoubleSwap	function	
A	simple	linear	operation	called	DoubleSwap	is	used	in	the	key	scheduling	part.	The	DoubleSwap	
function	is	a	bit	operation	taking	a	128-bit	value	as	an	input,	then	dividing	the	input	into	4	parts	
and	 shuffling	 them	 to	 increase	 security.	 The	 DoubleSwap	 function	 can	 be	 used	 for	 rapidly	
generating	 round	 keys	 while	 maintaining	 the	 efficiency	 of	 software	 and	 hardware	
implementation.	

	

	

	

	

	

	

	

Figure	4:	DoubleSwap	Function	[xxxi].	

	

	

2.4. MICKEY	v2	(Stream	Cipher)	
In	 cryptography,	 Mutual	 Irregular	 Clocking	 KEYstream	 generator	 (MICKEY)	 is	 a	 stream	 cipher	
algorithm	developed	by	Steve	Babbage	and	Matthew	Dodd.	The	cipher	is	designed	to	be	used	in	
hardware	platforms	with	limited	resources,	that	is	why	is	interesting	to	study	in	this	thesis.	Also,	
it	was	one	of	 the	 three	 ciphers	 accepted	 into	Profile	 2	of	 the	eSTREAM	portfolio,	 providing	us	
with	 enough	 amount	 of	 information	 to	 investigate	 and	 compare.	 Finally,	 the	 algorithm	 is	 not	
patented	and	is	free	for	any	use.	These	three	properties	were	the	reason	to	choose	this	algorithm	
as	the	pivotal	point	to	study	the	stream	ciphers.	[xx]	

The	algorithm	is	based	around	two	registers	R	and	S,	each	of	which	has	two	modes	of	clocking	
selected	by	a	control	bit.	With	this	as	a	starting	point,	it	was	lead	to	design	a	clocking	rule	for	the	
ensemble	 (R, S),	 in	which	 the	 control	 bit	 for	 each	 register	 is	 formed	 from	 combination	 of	 bits	
dependent	on	both	registers.	

It	 was	 also	 intended	 from	 the	 outset	 that	R	 should	 clock	 as	 a	 Galois-stepping	 feedback	 shift	
register	 either	 1	 or	 J	 times,	 given	 that	 J	 steps	 can	 be	 implemented	 efficiently	 in	 a	 single	 clock	
cycle.	The	register	S,	on	the	other	hand,	was	intended	to	clock	non-linearly,	in	two	different	ways.	
Successive	bits	of	keystream	are	 formed	by	combining	bits	 from	the	 registers	R	 and	S.	Broadly	
speaking,	 the	 idea	 was	 that	 the	 linearity	 of	 R	 would	 ensure	 good	 statistical	 properties	 and	
guarantees	about	period,	whilst	 the	non-linearity	of	S	would	protect	against	attacks	that	might	
be	mounted	against	a	linear	system.	[xx]	

	

2.4.1. Input	and	Output	parameters	

As	 it	was	said	before,	MICKEY	2.0	 is	aimed	at	resource-constrained	hardware	platforms.	That	 is	
why	 this	 stream	cipher	 is	 intended	 to	have	 low	complexity	 in	hardware,	while	providing	a	high	
level	of	security.	

	

IoT	Cryptography	Schemes	Comparison	

 33

MICKEY	2.0	takes	two	input	parameters:	

• An	80-bit	secret	key	K,	whose	bits	are	labeled	k0, …, k79	;	
• An	 initialization	variable	 IV,	 anywhere	between	0	and	80	bits	 in	 length,	whose	bits	are	

labeled	iv0, …, ivIVLENGTH-1.		

The	 keystream	 bits	 output	 by	 MICKEY	 2.0	 are	 labeled	 z0, z1, …,	 Ciphertext	 is	 produced	 from	
plaintext	by	bitwise	XOR	with	keystream	bits,	as	in	most	stream	ciphers.	

The	maximum	length	of	keystream	sequence	that	may	be	generated	with	a	single	(K ,IV)	pair	is	
240	bits.	 It	 is	acceptable	to	generate	240	such	sequences,	all	 from	the	same	K	but	with	different	
values	of	IV.	 It	 is	not	acceptable	to	use	two	 initialization	variables	of	different	 lengths	with	the	
same	K.	And	it	is	not,	of	course,	acceptable	to	reuse	the	same	value	of	IV	with	the	same	K.	[xx]	

	

2.4.2. Components	of	the	Keystream	generator	

2.4.2.1. The	registers	

The	generator	 is	 built	 from	 two	 registers	R	 and	S.	 Each	 register	 is	 100	 stages	 long,	 each	 stage	
containing	one	bit.	It	is	labeled	the	bits	in	the	registers	r0	…	r99	and	s0	…	s99	respectively.	Broadly	
speaking,	R	is	thought	of	as	“the	linear	register”	and	S	as	“the	non-linear	register”.	

	

2.4.2.2. Clocking	the	register	R	

Register	R	has	a	set	of	feedback	taps	RTAPS,	and	clocks	in	one	of	two	ways	according	to	the	value	
of	a	control	bit	CONTROL_BIT_R.	When	the	value	of	CONTROL_BIT_R	=	0,	the	clocking	of	R	 is	a	
standard	linear	feedback	shift	register	clocking	operation	

	

	

	

	

	

Figure	5:	Clocking	the	R	Register	with	CONTROL_BIT_R=0	[xx]	

	

When	CONTROL_BIT	=	1,	as	well	as	shifting	each	bit	in	the	register	to	the	right,	it	is	also	XORed	it	
back	into	the	current	stage,	as	shown	in	Figure	6.	This	corresponds	to	multiplication	by	x	+	1	 in	
the	same	field.	

	

	

	

	

	

Figure	6:	Clocking	the	R	Register	with	CONTROL_BIT_R=1	[xx]	

	

IoT	Cryptography	Schemes	Comparison	

 34

2.4.3. Motivation	for	the	variable	clocking	

Stream	 ciphers	making	 use	 of	 variable	 clocking	 often	 lend	 themselves	 to	 statistical	 attacks,	 in	
which	the	attacker	guesses	how	many	times	the	register	has	been	clocked	at	a	particular	 time.	
There	are	a	number	of	 characteristics	of	 a	 cipher	design	 that	may	make	 such	attacks	possible.	
Attacks	based	on	guessing	a	likely	number	of	clocks	of	the	89-stage	register	may	be	possible.	

The	principles	behind	the	design	of	the	MICKEY	algorithms	are:	

• To	take	all	of	the	benefits	of	variable	clocking,	in	protecting	against	many	forms	of	attack;	
• To	guarantee	period	and	local	randomness;	
• Subject	to	those,	to	reduce	the	susceptibility	to	statistical	attacks	as	far	as	possible.	

In	the	MICKEY	family	of	stream	ciphers,	the	register	R	acts	as	the	‘engine’,	ensuring	that	the	state	
of	 the	 generator	 does	 not	 repeat	 within	 the	 generation	 of	 a	 single	 keystream	 sequence,	 and	
ensuring	good	local	statistical	properties.	The	influence	of	R	on	the	clocking	of	S	also	prevents	S	
from	becoming	stuck	in	a	short	cycle.	[xx]	

	

2.4.4. The	S	register	feedback	function	
For	any	fixed	value	of	CONTROL_BIT_S,	the	clocking	function	of	S	is	invertible	(so	that	the	space	
of	possible	register	values	is	not	reduced	by	clocking	S).	Our	design	goal	for	the	clocking	function	
of	S	can	be	stated	as	follows.	Assume	that	the	initial	state	of	S	is	randomly	selected,	and	that	the	
sequence	of	 values	of	 CONTROL	BIT	 S	 applied	 to	 the	 clocking	of	 S	 are	 also	 randomly	 selected.	
Then	consider	the	sequence	(s0(i))i=0,1,2,….	(By	s0(i)	meaning	the	contents	of	s0	after	the	generator	
has	been	clocked	 i	 times.)	 It	 is	desired	 to	avoid	any	 strong	affine	 relations	 in	 that	 sequence	—	
that	is,	it	is	not	wanted	there	to	exist	a	set	I	such	that	the	value.	[xx]	

p = ∑i∈I s0(i)	is	especially	likely	to	be	equal	to	0	(or	to	1)	as	the	initial	state	and	CONTROL_BIT_S	
range	over	all	possible	values.	

The	 reason	 for	 this	 design	 goal	 is	 to	 avoid	 attacks	 based	 on	 establishing	 a	 probabilistic	 linear	
model	(i.e.	a	set	I	as	described	above)	that	would	allow	a	linear	combination	of	keystream	bits	to	
be	strongly	correlated	to	a	combination	of	bits	only	from	the	(‘linear’,	‘weaker’)	R	register.	[xx]	

	

	

	

	

	

	

	

	

	

Figure	7:	Clocking	the	S	Register	[xx]	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 35

2.5. Hash	function	introduction	
A	cryptographic	hash	algorithm	(alternatively,	hash	"function")	 is	designed	to	provide	a	random	
mapping	from	a	string	of	binary	data	to	a	fixed-size	“message	digest”	and	achieve	certain	security	
properties.	Hash	algorithms	can	be	used	for	digital	signatures,	message	authentication	codes,	key	
derivation	functions,	pseudo	random	functions,	and	many	other	security	applications.		

2.5.1. Basic	concepts	-	Why	SHA-3	

In	 2004-2005,	 several	 cryptographic	 hash	 algorithms	 were	 successfully	 attacked,	 and	 serious	
attacks	 were	 published	 against	 the	 NIST-approved	 SHA-1.	 In	 response,	 NIST	 held	 two	 public	
workshops	to	assess	the	status	of	its	approved	hash	algorithms,	and	to	solicit	public	input	on	its	
cryptographic	hash	algorithm	policy	and	standard.	As	a	result	of	these	workshops,	NIST	decided	
to	develop	a	new	cryptographic	hash	algorithm	for	standardization	through	a	public	competition.	
The	new	hash	algorithm	would	be	referred	to	as	SHA-3	(Secure	Hash	Algorithm-3).	Competition	
ended	on	October	2,	2012,	and	KECCAK	algorithm	was	announced	as	the	winning	algorithm	to	be	
standardized	as	the	new	SHA-3.	[iv]	[vii]	

2.5.2. SHA-3	algorithm:	KECCAK	

From	 the	 creators’	 webpage	 (https://keccak.team/keccak.html):	 “Keccak	 is	 a	 versatile	
cryptographic	 function.	 Best	 known	 as	 a	 hash	 function,	 it	 nevertheless	 can	 also	 be	 used	 for	
authentication,	(authenticated)	encryption	and	pseudo-random	number	generation.	Its	structure	
is	 the	 extremely	 simple	 sponge	 construction	 and	 internally	 it	 uses	 the	 innovative	 Keccak-f	
cryptographic	permutation.”	

	

After	 its	 selection	 as	 the	 winner	 of	 the	 SHA-3	 competition,	 KECCAK	 has	 been	 standardized	 in	
3GPP	TS	35.231	for	mobile	telephony	(TUAK),	and	in	NIST	standards	FIPS	202	and	SP	800-185.	As	
a	consequence,	it	has	received	extensive	public	scrutiny	and	third-party	cryptanalysis.	

In	the	following	table	we	present	the	standard	technical	details:	

Table	3:	KECCAK	technical	details	[xliii]	

Synopsis	 The	KECCAK	sponge	functions	

Designed	by	 Guido	Bertoni,	Joan	Daemen,	Michaël	Peeters	and	Gilles	Van	Assche	

Implements	 An	 extendable-output	 function	 (XOF),	 i.e.,	 the	 generalization	 of	 a	 cryptographic	
hash	function	with	arbitrary	output	length	

Construction	 The	sponge	construction		

Primitive	 One	of	the	KECCAK-f[b]	permutations,	where	b	is	25,	50,	100,	200,	400,	800	or	1600	
bits.	In	the	scope	of	the	FIPS	202	and	SP	800-185	standards,	the	largest	permutation	
KECCAK-f[1600]	is	used.	Nevertheless,	smaller	(or	more	“lightweight”)	permutations	
can	be	used	in	constrained	environments.	

Parameterized	by	 The	capacity	c	and	by	the	bitrate	r	

Instances	 The	 instances	 are	 denoted	 KECCAK[r,	 c].	 The	 capacity	 c	 determines	 the	 proven	

IoT	Cryptography	Schemes	Comparison	

 36

security	 strength	 against	 generic	 attacks,	 i.e.,	 for	 a	 security	 level	 of	 n	 bits,	 the	
capacity	must	be	c=2n.	When	summed,	r+c	must	be	the	width	of	the	permutation	
among	25,	50,	100,	200,	400,	800	and	1600	bits.	

Status	 Winner	of	the	SHA-3	competition,	standardized	in	3GPP	TS	35.231,	FIPS	202	and	SP	
800-185	

2.5.3. Sponge	Construction	
In	the	context	of	cryptography,	the	sponge	construction	is	a	mode	of	operation,	based	on	a	fixed-
length	permutation	(or	transformation)	and	on	a	padding	rule,	which	builds	a	function	mapping	
variable-length	 input	 to	 variable-length	 output.	 Such	 a	 function	 is	 called	 a	 sponge	 function.	 It	
takes	as	input	an	element	of	𝑍!∗,	i.e.,	a	binary	string	of	any	length,	and	returns	a	binary	string	with	
any	requested	length,	i.e.,	an	element	of	𝑍!!,	with	n	a	user-supplied	value.	

A	sponge	function	 is	a	generalization	of	both	hash	functions,	which	have	a	 fixed	output	 length,	
and	 stream	ciphers,	which	have	a	 fixed	 input	 length.	 It	operates	on	a	 finite	 state	by	 iteratively	
applying	the	inner	permutation	to	it,	interleaved	with	the	entry	of	input	or	the	retrieval	of	output	
[xliii].	

Original	 motivation	 for	 introducing	 the	 sponge	 construction	 was	 to	 serve	 as	 a	 reference	 for	
expressing	security	claims.	Protocols	or	modes	of	hash	functions	are	often	proven	secure	in	the	
random	oracle	model,	i.e.,	assuming	the	hash	function	is	a	random	oracle.	The	random	oracle	is	
an	abstract	primitive	with	the	best	possible	cryptographic	properties:	it	returns	for	every	possible	
query	a	random	(infinite)	string.	In	practice,	concrete	hash	functions	are	used	instead	and	hence	
the	security	requirement	they	must	satisfy	is	to	behave	like	a	random	oracle.	All	known	practical	
hash	 functions	 operate	 in	 an	 iterated	way	 using	 finite	memory.	 This	may	 give	 rise	 to	 internal	
collisions:	 different	 inputs	 leading	 to	 the	 same	 internal	 state	 and	 consequently	 to	 the	 same	
output.	Alternatively,	applying	the	sponge	construction	with	a	random	permutation	results	 in	a	
so-called	 random	 sponge.	 It	 turns	 out	 that	 a	 random	 sponge	 is	 as	 strong	 as	 a	 random	 oracle,	
except	 for	 the	 effects	 induced	 by	 the	 finite	memory.	 Random	 sponges	 are	 thus	well	 suited	 to	
replace	random	oracles	for	expressing	security	claims	[xliii].	

Additionally,	 the	sponge	construction	can	be	used	to	 implement	a	wide	spectrum	of	symmetric	
cryptography	 functions.	 This	 includes	 hashing,	 reseedable	 pseudo	 random	 bit	 sequence	
generation,	 key	 derivation,	 encryption,	 message	 authentication	 code	 (MAC)	 computation	 and	
authenticated	encryption.	The	fundamental	cryptographic	primitive	underlying	all	this	is	a	fixed-
length	permutation.	These	permutation-based	modes	form	efficient	alternatives	for	the	current	
block-cipher	dominated	cryptographic	practice.	On	top	of	its	conceptual	elegance,	a	permutation	
has	the	advantages	that	it	does	not	have	a	key	schedule	and	that	its	inverse	does	not	need	to	be	
implemented	or	efficient	[xliii].	

The	sponge	construction	is	a	simple	iterated	construction	for	building	a	function	F	with	variable-
length	input	and	arbitrary	output	length	based	on	a	fixed-length	permutation	(or	transformation)	
F	operating	on	a	fixed	number	b	of	bits.	Here	b	is	called	the	width	[xliii].	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 37

Figure 8: Sponge construction [xxix]

The	sponge	construction	operates	on	a	state	of	b = r + c	bits.	The	value	r	 is	called	the	bitrate	
and	the	value	c	the	capacity.	

	

	

	

First,	the	input	string	is	padded	with	a	reversible	padding	rule	and	cut	into	blocks	of	r	bits.	Then	
the	b	bits	of	the	state	are	initialized	to	zero	and	the	sponge	construction	proceeds	in	two	phases:	

	

• In	the	absorbing	phase,	the	r-bit	input	blocks	are	XORed	into	the	first	r	bits	of	the	state,	
interleaved	with	applications	of	the	function	f.	When	all	input	blocks	are	processed,	the	
sponge	construction	switches	to	the	squeezing	phase.	

• In	 the	 squeezing	 phase,	 the	 first	 r	 bits	 of	 the	 state	 are	 returned	 as	 output	 blocks,	
interleaved	with	applications	of	 the	 function	 f.	The	user	chooses	 the	number	of	output	
blocks	at	will.	

The	 last	c	bits	of	the	state	are	never	directly	affected	by	the	 input	blocks	and	are	never	output	
during	the	squeezing	phase.	

	

2.5.3.1. Hermetic	sponge	construction	

Any	attack	against	a	 sponge	 function	 implies	 that	 the	permutation	 it	uses	can	be	distinguished	
from	a	 typical	 randomly	 chosen	permutation.	This	 leads	 to	 this	design	 strategy	 called	hermetic	
sponge.	[xxix]	

Adopting	the	sponge	construction	and	building	an	underlying	permutation	f	that	should	not	have	
any	properties	exploitable	in	attacks.	These	properties	are	called	structural	distinguishers	by	the	
KECCAK	developers’	team.	[xxix]	

In	 this	 approach,	 one	 designs	 a	 permutation	 f	 on	 b =	 r +	 c	 bits	 and	 uses	 it	 in	 the	 sponge	
construction	to	build	the	sponge	function	F.	

In	the	hermetic	sponge	strategy,	the	capacity	determines	the	claimed	level	of	security,	and	one	
can	 trade	 claimed	 security	 for	 speed	 by	 increasing	 the	 capacity	 c	 and	 decreasing	 the	 bitrate	 r	

IoT	Cryptography	Schemes	Comparison	

 38

accordingly,	 or	 vice-versa.	 When	 a	 padding	 rule	 is	 used	 with	 particular	 properties,	 one	 can	
securely	 instantiate	 sponge	 functions	 with	 different	 rates	 with	 the	 same	 fixed-length	
permutation.	 The	 simplest	 padding	 rule	 satisfying	 these	 properties	 are	 called	 the	multi-rate	
padding:	it	appends	a	single	1-bit,	then	a	variable	number	of	zeroes	and	finally	another	1-bit.

2.5.4. Bit	padding
Bit	padding	can	be	applied	to	messages	of	any	size.	

A	single	set	('1')	bit	is	added	to	the	message	and	then	as	many	reset	('0')	bits	as	required	(possibly	
none)	 are	 added.	 The	 number	 of	 reset	 ('0')	 bits	 added	will	 depend	 on	 the	 block	 boundary	 to	
which	the	message	needs	to	be	extended.	In	bit	terms	this	is	"1000	...	0000".	

This	method	can	be	used	 to	pad	messages,	which	are	any	number	of	bits	 long.	For	example,	a	
message	of	23	bits	that	is	padded	with	9	bits	in	order	to	fill	a	32-bit	block:	

... | 1011 1001 1101 0100 0010 0111 0000 0000 |

This	padding	is	the	first	step	of	a	two-step	padding	scheme	used	in	many	hash	functions	including	
MD5	and	SHA.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 39

2.6. Elliptic	Curve	Cryptography	introduction
In	 Secret	 Key	 Cryptography	 (Block	 ciphers,	 Stream	 ciphers),	 a	 single	 key	 is	 used	 for	 both	
encryption	 and	 decryption	 cases.	 Because	 a	 single	 key	 is	 used	 for	 both	 functions,	 Secret	 Key	
Cryptography	is	also	called	Symmetric	Encryption.	For	symmetric	encryption	to	work,	two	nodes	
share	the	same	secret	key,	which	has	to	be	protected	from	access	by	others.	But,	the	process	for	
installation	of	the	key	in	the	system	is	an	important	issue	to	solve	by	using	only	symmetric	key.	
The	 main	 challenge	 is	 in	 the	 case	 of	 wide	 distributed	 area,	 where	 frequent	 key	 changes	 are	
required	in	unprotected	areas,	as	the	chance	of	an	attacker	learning	the	key	is	high.	That	is	why,	
the	cryptography	system’s	strength	rests	on	the	key	distribution	technique.	

Cryptosystems	 based	 on	 Elliptic	 Curve	 Cryptography	 are	 especially	 known	 for	 more	 efficient	
resource	 utilization	 than	 any	 other	 public	 key	 techniques.	 Also	 the	 bilinear	 pairings	 on	 elliptic	
curves	can	be	used	to	create	useful	cryptosystems.	Elliptic	Curve	Cryptography	 is	used	 in	many	
different	 commercial	 products	 such	 as	 mobile	 phones,	 smart	 cards,	 email	 systems	 and	 many	
others.	So	at	some	point	it	is	logical	to	try	to	expand	it	in	IoT	devices.	[iii]	[vi]	

In	 every	 cryptographic	 scheme	 the	 fundamental	 security	 lies	 in	 the	hardness	of	 the	underlying	
mathematical	 problem.	 As	 hardness	 of	 mathematical	 problem	 increases	 it	 will	 provide	 more	
security	as	it	 is	hard	to	hack.	The	difficulty	of	these	problems	directly	impacts	the	performance,	
and	 also	 to	 the	 size	 of	 key	 parameters.	 This	 complexity	 of	mathematical	 problem	 is	 inversely	
proportional	to	the	processor	time	and	battery	consumption.	

The	 hardness	 of	 Elliptic	 Curve	 Cryptography	 is	 based	 on	 the	 Elliptic	 Curve	 Discrete	 Logarithm	
Problem	(ECDLP).	To	find	the	hardness	of	ECC	first	scalar	point	multiplication	should	be	known,	
and	 it	 is	 given	by	Q=sP,	where	Q	 and	P	 are	 two	points	 on	 a	 certain	 elliptic	 curve.	 The	 Elliptic	
Curve	Discrete	Logarithm	problem	occurs	when	the	coordinates	of	P	and	Q	are	known	and	the	
scalar	 s	 needs	 to	 be	 calculated.	 This	 computational	 problem	 becomes	 harder	with	 the	 size	 of	
domain	parameters.	So	the	most	 important	aspect	of	this	technology	 is	the	key	size	(as	we	will	
talk	further	in	the	next	chapter)	[xii]	

The	advantages	that	can	be	gained	from	smaller	keys	 include	not	only	faster	computations	and	
smaller	memory	requirements,	but	also	energy	savings	for	sensor	devices	because	fewer	bits	are	
required	to	be	transmitted.	

Generally	speaking,	all	this	advantages	have	made	Elliptic	Curve	Cryptography	the	most	attractive	
family	of	public	key	algorithms	by	researchers,	especially	in	the	case	of	wireless	sensor	networks.	
This	is	because	although	the	key	sizes	are	smaller	(smaller	than	other	public-key	systems	such	as	
RSA)	 the	 same	 level	 of	 security	 is	 achieved	 leading	 to	 performance	 advantages	 that	 can	 be	
applied	in	these	systems.	[iii]	[vi]	

	

2.6.1. Mathematical	resume	–	Alice	and	Bob	example	

The	Alice	and	Bob	example	

Alice	and	Bob	want	to	exchange	a	key.	They	carefully	chose	an	elliptic	curve	E	and	a	public	base	
point	G(x,y)	on	the	curve	

•	Alice	chooses	her	private	key,	a	random	integer	kA	and	Bob	chooses	a	random	integer	kB	.The	
random	integers	are	kept	private	

•	 Alice	 computes	 her	 public	 key,	 a	 new	 point	 on	 the	 elliptic	 curve	 by	 performing	 scalar	
multiplication	TA = kAG	and	sends	it	to	Bob	who	simultaneously	computes	his	public key TB=kBG

IoT	Cryptography	Schemes	Comparison	

 40

	

	

	

	

	

	

Figure	9:	ECC	Key	computation	[vi]	

	

•	Alice	 receives	TB and	computes	 the	shared	secret,	a	new	point	on	elliptic	curve	K = kATB =
kAkBG.	Similarly,	Bob	takes	TA	and	computes	K = kBTA = kBkAG	

	

2.6.2. Elliptic	Curve	definition	
Just	to	put	the	problem	in	context.	It	is	important	to	remember	that	an	elliptic	curve	E	is	defined	
as	the	set	of	solutions	(x,y) ∈ ZpxZp	that	satisfy	the	equation	

y2 ≡ x3 + ax + b(modp)	along	with	the	point	at	infinity	O	

•	a, b ∈ Zp	are	constants	such	that	4a3 +27b2 ≠0(modp)	and	p > 3	

•	The	set	of	points	on	the	curve	with	coordinates	in	a	finite	field	along	with	the	point	of	infinity	O	
form	groups	with	respect	to	addition	operation	

•	P+O=O+P=P for	all P∈E	

•	P+Q=Q+P and	(P+Q)+R=P+(Q+R) where	P, Q, R ∈ E	

	

	

	

	

	

	

	

	

	

Figure	10:	Elliptic	Curve	representation	[vi]	

	

	

IoT	Cryptography	Schemes	Comparison	

 41

2.6.3. Elliptic	Curve	Cryptography	in	IoT	

Different	studies	talk	about	the	viability	of	ECC	as	an	effective	tool	to	use	in	IoT.	Many	of	these	
studies,	where	they	use	their	own	implementation	of	multiplication	of	points	on	elliptic	curves,	it	
is	argued	that	PKI	for	secret	keys’	distribution	is,	in	fact,	tractable	as	well.	These	studies	might	not	
specifically	focus	on	the	trade-offs	one	should	need	to	make	in	order	to	integrate	PKI	(Public	Key	
Infraestructure)	 with	 particular	 applications	 but,	 rather,	 on	 whether	 PKI	 is	 viable	 at	 all.	 As	 it	
stated	 in	“Implementing	Public	Key	 Infrastructure	 for	sensor	networks”	by	David	 J.	Malan,	Matt	
Welsh	and	Michael	D.	Smith,	with	elliptic	curves	over ℱ!!,	generation	of	public	keys	requires	no	
more	than	34	seconds,	and	distribution	of	shared	secrets	requires	no	more	than	that,	using	just	
over	1	KB	of	SRAM	and	34	KB	of	ROM.	[xvii]

Communication	costs,	meanwhile,	are	minimal,	with	only	2	packets	required	for	transmission	of	a	
public	key	among	nodes.	To	be	sure,	not	all	sensor	networks	(nor	their	applications)	require	PKI,	
let	 alone	 any	 form	of	 security.	 But	with	 PKI	 comes	 capabilities	 that	 can	 certainly	 prove	useful,	
among	them	the	abilities	to	distribute	symmetric	keys	securely	and	to	sign	messages	digitally.	

Other	researches	present	the	implementation	of	elliptic	curve	cryptography	in	the	MICAz	Mote,	a	
popular	sensor	platform.	Overall,	from	an	initial	state	of	the	art	point	of	view,	it	is	fair	to	say	that	
this	 type	 of	 Cryptography	 is	 not	widely	 implemented	 in	 IoT	 sensors.	 But,	 as	 stated	 in	 the	 first	
paragraph,	various	 studies	examine	ECC	as	an	option.	We	will	 also	go	 through	 that	 in	 the	next	
chapters.	

	

 43

3. Methodology	/	Project	Development		

In	order	to	carry	out	the	thesis,	data	form	previous	studies	was	taken	into	account.	Also,	MATLAB	
simulations	helped	to	understand	some	key	processes	like	the	hash	function	performance.	After	
fulfilling	all	the	documentation	needs,	supported	by	our	simulations,	a	fair	comparison	between	
the	different	schemas	(under	well-defined	environments)	was	performed,	and	we	could	draw	the	
conclusions	that	will	be	presented	in	the	fifth	stage.	

As	it	will	be	seen	in	this	chapter,	this	thesis	focuses	on	the	gathering	of	previous	work	developed	
by	 different	 top	 tier	 professors,	 enhances	 the	 process	 of	 understanding	 it	 at	 a	 high	 level	 by	
someone	whose	knowledge	of	the	topic	is	significantly	inferior,	and	complements	all	of	this	with	
specific	tests	(MATLAB	simulations)	following	the	objective	of	trying	to	learn	which	cryptographic	
schema	seems	the	most	appropriated	(focusing	on	performance	parameters)	for	IoT	devices.	Also,	
in	order	to	perform	a	better	comparison	we	will	take	a	standard	for	each	case.	

Regarding	 Symmetric	 Key	 Cryptography,	 as	 a	 Block	 Cipher	 we	 will	 use	 the	 current	 CLEFIA	
algorithm	 designed	 by	 Sony.	 As	 a	 Stream	 Cipher	 we	 will	 see	 the	 MICKEY	 v2	 standard,	 an	
algorithm	developed	by	Steve	Babbage	and	Matthew	Dodd.	After	that,	we	will	focus	on	the	SHA-
3	Hash	function,	Hash	algorithms	are	the	top	of	Symmetric	Key	Cryptography.	

After	the	Symmetric	Key	Cryptography	study	we	will	perform	the	comparison	with	the	only	Public	
Key	Cryptography	standard	that,	nowadays,	seems	to	fit	into	the	IoT	world	requirements.	This	is	
the	Elliptic	Curve	Cryptography	schema,	especially	known	for	more	efficient	resource	usage	than	
any	other	public	key	techniques.	

3.1. Keys	and	Cryptography	
As	a	 starting	case,	 research	was	done	 focusing	 into	 the	modern	 field	of	 cryptography,	which	 is	
basically	 divided	 in	 two	 main	 units;	 Symmetric	 (Private)	 Key	 Cryptography	 and	 Asymmetric	
(Public)	Key	Cryptography.	

Just	 to	 put	 us	 in	 context,	 as	 the	 development	 of	 digital	 computers	 and	 electronics	 helped	 in	
cryptographic	 analysis,	 it	 made	 possible	 much	 more	 complex	 ciphers.	 Basically,	 computers	
allowed	for	the	encryption	of	any	kind	of	data	representable	in	any	binary	format,	while	classical	
ciphers	only	encrypted	written	language	messages.	Basically,	in	classical	cryptography	neither	the	
key	 nor	 the	 algorithm	 was	 known,	 while	 in	 modern	 cryptography	 the	 algorithm	 is	 known	
remaining	the	keys	the	only	issue.	It	is	also	important	to	notice	that	although	its	application	dates	
since	1940s,	extensive	open	academic	research	into	cryptography	is	relatively	recent,	beginning	
in	the	mid	1970s.	

Why	 shall	we	 start	 talking	 about	 Symmetric	 Key	 Cryptography?	 Basically	 because	 this	was	 the	
only	kind	of	encryption	publicly	known	until	June	1976.	As	we	have	seen	in	the	previous	chapters,	
symmetric	 key	 ciphers	 are	 implemented	 as	 block	 ciphers,	 stream	 ciphers.	 A	 block	 cipher	
enciphers	input	in	blocks	of	plaintext	as	opposed	to	individual	characters,	which	is	the	input	form	
used	by	a	 stream	cipher.	Unlike	block	and	 stream	ciphers,	which	are	 invertible,	hash	 functions	
produce	an	output	 (called	hashed-out)	 that	 cannot	be	used	 to	 retrieve	 the	original	 input	data.	
That	is	why	hash	functions	are	used	to	verify	the	authenticity	of	data	retrieved	from	an	untrusted	
source	or	to	add	a	layer	of	security.	The	key	concept	to	start	the	understanding	of	the	Symmetric	
Key	Cryptography	is	the	cipher	concept.	After	that,	the	transition	to	the	Hash	function	form	will	

IoT	Cryptography	Schemes	Comparison	

 44

be	 natural,	 although	 as	 stated	 in	 the	 previous	 section,	 the	 Hash	 standard	 under	 study	 in	 this	
thesis,	 SHA-3,	 uses	KECCAK,	which	 is	 built	 on	 a	 cryptographic	 sponge	 instead	 of	 a	 pure	 cipher	
structure.	

Once	 we	 are	 placed,	 before	 comparing	 ciphers	 performance	 applied	 into	 the	 IoT	 world,	 it	 is	
interesting	to	observe	the	evolution	from	one	to	another.	

So	 basically,	 as	 asserted	 before,	 in	 Symmetric	 Key	 Cryptography	 the	 encipher	 and	 decipher	
process	 is	 carried	 out	 with	 the	 same	 secret	 key.	 This	 situation	 is	 perfectly	 summarized	 in	 the	
following	schema:	

	

	

	

	

	

	

	

	

	

Figure	11:	Symmetric	Key	Cryptography	[xl]	

As	 it	 can	 be	 perfectly	 seen,	 following	 this	 schema	 we	 can	 ensure	 both	 confidentiality	 and	
authenticity.	

If	we	suppose	to	have	a	network	of	N	users	(in	the	IoT	world	that	is	N	sensors,	devices,	etc.)	that	

means	that	the	total	number	of	keys	is	 𝑁2 = !(!!!)
!

.	Also,	using	Private-Key	cryptography,	each	

user	needs	to	store	a	total	of	N-1	keys.	

If	we	take	the	Public	Key	Cryptography	instead,	each	user	possesses	2	keys,	the	private	key	and	
the	public	key.	So,	if	a	message	is	ciphered	with	one	user’s	key,	the	complementary	key	is	needed	
to	decipher	the	Cryptogram.	This	is	also	perfectly	described	in	the	following	schema:	

	

	

	

	

	

	

	

	

Figure	12:	Public	Key	Cryptography	[xli]	

IoT	Cryptography	Schemes	Comparison	

 45

In	that	case,	we	can	have	three	scenarios:	

	 ·	NO	confidentiality,	but	authenticity	

	 ·	Confidentiality,	but	NO	authenticity	

	 ·	Both	confidentiality	and	authenticity.	

The	first	case	is	obtained	by	ciphering	the	message	using	the	Sender’s	Secret	Key.	

The	second	case	is	obtained	by	ciphering	the	message	using	the	Recipient’s	Public	Key	(as	shown	
in	figure	12).	

The	third	case	is	obtained	by	sending	the	following	Ciphertext:	

𝐶 = 𝐸!!"(𝐸!!" 𝑀)	à	That	is	enciphering	the	message	with	the	Recipient’s	Public	Key	and	then	
enciphering	it	again	with	the	Sender’s	Secret	Key.	*Formula	info	at	the	bottom	of	the	page.	

Thanks	 to	 this	 Public	 Key	 Cryptography	 schema	 we	 add	 the	 following	 property	 to	 the	
communication:	

“The	authentication	is	now	verifiable	by	a	third	part”	

Again,	if	we	suppose	to	have	a	network	of	N	users	(N	sensors,	devices,	etc.)	that	means	that	the	
total	 number	 of	 keys	 is	2𝑁	(two	 keys	 per	 user	 existing	 in	 the	 system).	 Also,	 using	 Public	 Key	
cryptography,	each	user	needs	to	store	a	total	of	N+1	keys	(the	users	own	public	and	private	key	
plus	every	other	user	public	key).	

So	 arrived	 at	 this	 point	 we	 see	 the	 first	 “dilemma”.	 Is	 it	 really	 needed	 in	 an	 IoT	 network	 to	
perform	an	authentication	validation	by	3rd	parties?	Can	we	avoid	this	fact	in	order	to	make	our	
devices	faster,	computationally	speaking,	by	only	using	Symmetric	Key	Cryptography?	

In	the	following	pages	we	will	be	looking	at	the	performance	studies	that	have	been	carried	up	
until	now	in	IoT	environments,	so	we	can	obtain	some	important	information	that	will	help	us	to	
discern	 this	 questions.	 The	 truth,	 although,	 is	 that	 Cryptography	 (also	 in	 IoT)	 is	 not	 directly	
applied	in	the	form	of	Message-encryption-decryption	 in	the	lonely	form	of	a	public	or	a	private	
Key.	Modern	cryptography	is	implemented	in	the	form	of	Stream	Ciphers	or	Block	Ciphers	in	the	
case	of	Symmetric	Cryptography,	and	Public	Key	Algorithms	(such	as	Elliptic	Curve	Cryptography)	
in	the	case	of	Public	Key	Cryptography.	

	

	

	

	

	

	

*C à Cipher text

𝐸!!" à Ciphering using Alice’s (sender) Secret Key

𝐸!!" à Ciphering using Bob’s (receiver) Public Key

𝑀 à Message

IoT	Cryptography	Schemes	Comparison	

 46

3.2. Symmetric	Key	Cryptography	-	The	ciphers	
Remembering;	in	a	Stream	cipher,	each	time	an	input	symbol	arrives	an	output	ciphered	symbol	
is	generated.	In	a	block	cipher,	the	message	is	divided	into	blocks	of	K length,	which	are	ciphered	
independently,	implying	that	we	have	to	use	a	device	with	memory.	

	

	

	

	

	

	

	

Figure	13:	Most	basic	Block	Cipher	schema	

The	vast	majority	of	 Symmetric	Key	algorithms	are	based	on	Block	 Ciphers,	 as	 in	almost	every	
modern	device	we	have	 enough	 capabilities	 to	 perform	 the	block	 ciphers	 required	operations.	
The	key	aspects	here	are	those	environments	where	the	cipher	cost	(performance	cost)	could	be	
very	relevant,	such	as	the	IoT	world.	It	is	precisely	in	those	environments,	where	Stream	Ciphers	
are	useful,	making	the	comparison	between	these	two	schemas	is	very	relevant.	

The	 first	 basic	 comparison	 between	 these	 two	 structures,	 only	 under	 theoretic	 aspects,	 is	 the	
following:	

Table	4:	Ciphers	primitive	comparison	

STREAM	CIPHER	 BLOCK	CIPHER	

Operates	on	smaller	units	of	Plaintext	 Operates	on	larger	blocks	of	data	

Continuous	process	of	input	elements	 Block	process	of	input	at	each	time,	producing	
output	blocks	

Less	code	required	 More	code	required	

The	same	key	is	applied	for	every	bit	 The	key	is	applied	at	every	block	

Design	 more	 suitable	 for	 hardware	
implementation	

Easier	to	implement	on	Software	

The	ideal	Stream	Cipher	objective	would	be	to	use	a	randomly	generated	key	at	every	 input,	 in	
the	modern	 stream	ciphers	 that	 is	 achieved	by	using	pseudo-random	sequences,	 following	 the	
Coulomb’s	 random	 postulates.	 It	 is	 not	 an	 objective	 of	 this	 thesis	 to	 demonstrate	 how	 it	 is	
obtained,	but	to	study	the	performance	capabilities	between	different	cipher	schemas	in	an	IoT	
environment.	Let’s	start	with	the	behaviour	block	ciphers	schemas	in	an	IoT	environment.	

	

IoT	Cryptography	Schemes	Comparison	

 47

3.2.1. CLEFIA	

The	first	study	taken	into	account	is	the	one	presented	in:	“A	Survey	of	Lightweight	Cryptography	
Implementations”	by	Thomas	Eisenbarth	(···)	[ii], where	the	authors	review	recent	developments	
in	this	area	for	symmetric	and	asymmetric	ciphers,	targeting	embedded	hardware	and	software.	
In	the	case	of	Symmetric	Ciphers,	which	are	really	the	points	of	 interest	 in	our	case,	the	results	
will	be	presented	next.	We	also	take	into	account	the	following;	the	various	ciphers	used	in	that	
simulation	were	using	4bit	S-boxes	 (Explained	 in	2.3.3).	That	was	done	 this	way	because	 it	 can	
result	in	significant	area	savings	in	case	serialized	implementation	is	desired.	Also	the	4bit	design	
was	hardware	driven,	as	8bit	S-boxes	 require,	approximately,	40	 times	more	area	 than	4	bit	S-
boxes.	That	 is,	precisely,	an	example	of	something	that	typically	wants	to	be	avoided	in	the	IoT	
world,	as	devices	are	thought	to	be	small.	4	bit	S-boxes	must	are	cryptographically	weaker	than	8	
bit	 S-boxes,	 as	 they	 have	 less	 bits,	 which	 implies	 less	 computational	 capacity.	 Nevertheless,	
through	careful	selection,	it	is	possible	to	obtain	the	appropriate	security	level.	We	assume	that	
we	achieve	enough	security	level	with	4	bit	S-boxes	(It	has	to	be	remembered	that	this	thesis	is	
focused	on	cryptography	algorithms/schemas	performance,	assuming	a	correct	level	of	security).

Resource	 efficiency	 (which	 will	 be	mainly	measured	 by	memory	 consumption)	 is	 more	 critical	
than	throughput,	especially	because	many	embedded	applications	encrypt	only	small	payloads.	
The	 small	microcontrollers	 used	 in	 those	 studies	 offer	 as	 little	 as	 tens	 of	 kilobytes	 of	 program	
memory,	and	sometimes	less	than	1	Kbyte	of	SRAM,	plus	they	usually	operate	at	clock	speeds	of	
few	 MHz.	 In	 this	 specific	 case,	 all	 the	 discussed	 ciphers	 were	 implemented	 for	 8bit	 AVR	
microcontrollers	(AVRs	are	a	popular	family	of	8bit	RISC	microcontrollers).	Also,	in	order	to	keep	
the	 source	 code	 small,	 a	 straightforward	 approach	 for	 software	 implementations	was	 used,	 as	
only	the	substitution	tables	were	designed	as	lookup	tables	(LUTs)	[ii].	The	LUTs	are	stored	in	the	
ROM	 memory	 of	 the	 microcontroller.	 Many	 “fast	 software”	 implementations	 of	 ciphers	 use	
larger	LUTs	because	they	then	achieve	a	higher	throughput,	 leading	to	a	typically	unacceptable	
increase	in	code	size	for	the	majority	of	embedded	applications.	

But	 the	 fact	 that	 these	designs	were	 full	of	 limitation	 is	not	all	bad	news.	For	battery-powered	
devices,	 low	 computational	 complexity	 can	 be	 of	 great	 value,	 as	 processing	 time	 correlates	
directly	with	power	consumption,	a	key	aspect	in	those	device	designs.	

Figure	14:	Lightweight	Cryptography	ciphers	comparison	[ii]	

IoT	Cryptography	Schemes	Comparison	

 48

As	it	was	said	before,	we	will	focus	on	the	CLEFIA	block	cipher	and	the	MICKEYv2	stream	cipher.	
In	those	simulations	we	can	check	CLEFIA’s	performance:	

Table	5:	CLEFIA	Data	[ii]	

	 Key	bits	 Block	bits	 Cycles	per	
block	

Throughput	at	
100kHz	(kbps)	

Logic	
process	

Area	
(GEs)	

CLEFIA	 128	 128	 36	 355.56	 0.09μm	 4,993	

*Cycles	per	block:	Cycles	are	CPU	instruction	cycles.	Cycles	per	byte	roughly	measure	how	many	
instructions,	in	a	given	instruction	set,	are	needed	to	produce	each	byte	of	output.	So	in	the	case	
of	a	Block	Cipher,	like	CLEFIAs	case,	it	makes	sense	to	know	how	many	instructions	are	needed	to	
produce	each	block	of	output.	They're	a	reasonably	good	relative	measure	of	the	performance	of	
different	algorithms.	

*GE	 stands	 for	Gates	 Equivalents,	 a	 unit	 of	 measure,	 which	 allows	 specifying	 manufacturing-
technology-independent	complexity	of	digital	electronic	circuits.	It	basically	allows	you	to	define	
the	 complexity	 of	 the	 production	 technology,	 regardless	 of	 the	 complexity	 of	 digital	 electronic	
circuits.	

As	it	can	be	seen,	this	CLEFIA	implementation	uses	both	a	128	bit	Key	and	Block	size.	That	means	
a	performance	of	1:1	in	the	plaintext	block	encryption,	as	the	key	is	as	big	as	the	plaintext	block.	
As	 it	 can	be	also	 seen	 in	Figure	 14	 it	 is	 the	best	performance	amongst	 the	other	block	ciphers	
together	with	 the	AES,	which	 also	uses	 a	 128	bit	 Key	 and	Block	 size.	 The	 important	 difference	
here	is	the	fact	that,	in	the	CLEFIA	case,	the	cycles	per	block	is	36,	whereas	in	the	AES	algorithm	
we	 are	 talking	 about	 1,032	 cycles	 per	 block.	 That	 means	 a	 better	 performance	 of	 the	 CLEFIA	
algorithm,	 which	 needs	 significantly	 less	 instructions	 to	 produce	 each	 block	 of	 output.	 It	 also	
assumes	 a	 notable	 kbps	 throughput	 at	 100kHz.	 Finally,	 regarding	 the	 area	 (GEs),	 the	 CLEFIA	
algorithm	is	the	one	presenting	a	bigger	GEs	area	among	all	the	compared	block	Ciphers	of	this	
study.	

It	was	also	interesting	to	compare	CLEFIA	performance	with	the	other	block	cipher	proposed	and	
under	consideration	in	ISO/IEC	29192-2	

ISO/IEC	29192	defines	security,	classification	and	implementation	requirements.	80	bit	security	is	
considered	 as	 the	 minimum	 security	 strength	 for	 lightweight	 cryptography	 and	 Lightweight	
cryptography	is	classified	by	a	combination	of	the	constraints	on	chip	area,	energy	consumption,	
program	code	size,	RAM	size,	communication	bandwidth	and	execution	time.	

In	“Lightweight	Cryptography	 for	 the	 Internet	of	Things”	by	Masanobu	Katagi	and	Shiho	Moriai	
some	comparisons	are	carried	out,	being	the	Hardware	Properties	of	Lightweight	Block	Ciphers	
(directly	related	with	the	algorithm	performance)	the	most	interesting.	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 49

In	the	following	figure,	the	gate	efficiency	comparison	between	the	two	algorithms	is	performed.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	15:	Gate	efficiency	comparison	[xix]	

Efficiency	is	defined	as	the	ratio	of	Throughput	(speed)	to	gate	size	(area).	In	this	figure,	a	higher	
slope	 (in	 this	 case	 remarked	 with	 yellow	 area)	 indicates	 higher	 efficiency.	 The	 higher	 the	
efficiency	 is,	 the	 lower	 the	 energy	 consumption.	 This	 figure	 compares	 the	 CLEFIA	 block	 Cipher	
with	 three	 other	 conventional	 block	 ciphers	 like:	 AES	 (FIPS197	 –	 USA’s	 Federal	 Information	
Processing	 Standard),	 Camellia	 (RFC3713	 – Sony’s	 description	 of	 the	 Camellia	 Encryption	
Algorithm),	and	SEED	(RFC4269	- The	SEED	Encryption	Algorithm	-	IETF	Tools).	These	ciphers	are	
also	 used	 in	 TLS/IPsec.	 As	 it	 can	 be	 easily	 see	 CLEFIA	 has	 an	 advantage	 in	 gate	 efficiency	 over	
these	ciphers,	which	is	a	key	aspect	when	working	on	the	IoT	world.	

If	we	decide	to	directly	compare	CLEFIA	with	the	other	algorithm	under	consideration	in	ISO/IEC	
29192-2,	PRESENT,	the	result	shown	in	the	next	figure	illustrates	a	comparison	between	the	gate	
efficiency	of	these	two	ciphers	on	an	application-specific	 integrated	circuit	(ASIC),	an	integrated	
circuit	customized	for	a	particular	use,	rather	than	intended	for	general-purpose	use.	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 50

	

	

	

	

	

	

	

	

	

Figure	16:	Hardware	performance:	CLEFIA	vs	PRESENT	[xix]	

*Area	 (GE):	As	 told	 in	Table	5,	 it	 is	 a	metric	 for	 cost	and	power	 consumption	when	 the	chip	 is	
clocked	at	a	low	frequency	of	a	few	hundred	kHz,	allowing	the	definition	of	the	the	complexity	of	
the	production	technology.	

*Other	Area	definition:	Amount	of	silicon	used	for	the	core	design	(excluding	power	rings	and	I/O	
cells).	This	result	is	typically	expressed	in	μm2	for	a	specified	process.	However,	the	more	usable	
process	independent	method	of	expressing	the	area	is	to	calculate	the	Gate	Equivalence	(GE)	of	
the	total	area	by	dividing	by	the	lowest	power	two-input	NAND	gate’s	area	

*Frequency:	Is	the	clock	rate	selected	by	the	designer	and	applied	as	a	constraint	to	the	design	
tools.	 Those	 tools	will	make	 decisions	 to	meet	 this	 requirement.	Meaning	 that	 the	 higher	 the	
constraint	is,	the	more	area	will	be	consumed.	

* The	product	of	Area	[GE]	and	Cycle	is	a	metric	for	energy	consumption.	

This	 figure	 is	 showing	how	both	 ciphers	 can	be	 implemented	depending	on	 the	objective.	 This	
case	 shows	 both	 an	 Area	 Optimization	 implementation	 and	 an	 Efficiency	 Optimization	
implementation.	

As	shown	in	this	figure,	PRESENT	uses	64	bit	blocks	while	CLEFIA	and	AES	are	using	128	bit	blocks.	
Typically,	a	64	bit	block	cipher	can	be	implemented	with	smaller	gate	counts,	which	is	an	obvious	
deduction	as	it	uses	less	bits,	this	implementation	takes	certain	security	limitations	but	this	thesis	
takes	the	assumption	that	the	minimum	security	needs	are	accomplished	in	those	studies.	

Apart	from	that,	it	can	also	be	seen	how	CLEFIA	implementations	uses	significantly	less	cycles	to	
produce	 each	 block	 of	 output	 which	 indicates	 a	 higher	 overall	 efficiency	 over	 PRESENT.	 The	
transistor	 technology	 [μm]	 is	 similar	 in	 both	 cases	 whereas	 the	 throughput	 of	 CLEFIA	 is	 also	
significantly	 higher	 in	 the	 case	 of	 the	 CLEFIA	 block	 cipher,	 talking	 about	 difference	 orders	
between	 3k6	 and	 8k,	 which	 indicates	 a	 better	 CLEFIA	 overall	 behaviour	 regarding	 global	
efficiency.	

Finally	in	the	energy	consumption	chapter	both	ciphers	have	a	similar	energy	consumption	ratio	
in	 the	 Area	 Optimization	 implementation,	 being	 CLEFIA	 the	 one	 who	 consumes	 less	 energy.	
When	the	studied	 implementation	 is	 the	Efficiency	Optimization,	PRESENT	has	a	notably	better	
numbers	regarding	energy	consumption,	as	it	clearly	consumes	less	energy	than	CLEFIA	cipher.	

	

IoT	Cryptography	Schemes	Comparison	

 51

3.2.2. MICKEY	

So,	at	this	point,	a	question	is	raised.	Why	should	we	consider	Stream	ciphers	if	we	are	obtaining	
good	performance	level	with	Block	cipher	algorithms?	Also,	security	is	known	to	be	stronger	for	
Block	Cipher	cases.	The	importance	here	is	the	cipher	computational	cost,	as	a	Stream	cipher	can	
be	adapted	to	more	memory	constrained	devices	than	a	Block	Cipher.	That	is	why;	even	though	
these	ciphers	are	not	used	in	other	devices,	it	makes	total	sense	to	study	them	in	this	context.	

Most	 of	 the	 stream	 ciphers	 are	 based	 on	 LFSR	 (Linear	 Feedback	 Shift	 Registers),	 which	 allow	
them	to	generate	sequences	with	statistic	properties	similar	 to	a	random	source,	plus	they	are	
extremely	simple	devices.	

	

	

Figure	17:	Stream	Cipher	scheme	[xv]	

	

The	upper	 figure	 shows	us	 a	 simplified	 schema	of	how	a	 Stream	Cipher	operates.	As	 it	 can	be	
seen,	the	cipher	 itself	 is	no	more	than	a	pseudo-random	sequences	generator.	As	 it	was	stated	
earlier	 in	 this	 chapter,	 those	 sequences	 are	 the	 ones	 that	 shall	 fulfill	 Coulombs	 randomness	
postulates	(which	will	not	be	studied	or	mathematically	proven	in	this	thesis):	

	 ·	Equidistributed	sequence	

	 ·	Burst	test	

	 ·	Normalized	autocorrelation	

	

As	stated	in:	“A	Survey	of	Lightweight	Cryptography	Implementations”	by	Thomas	Eisenbarth	(···)	
[ii],	stream	ciphers	had	received	little	attention	from	the	scientific	community,	but	this	started	to	

IoT	Cryptography	Schemes	Comparison	

 52

change	 with	 the	 increasing	 interest	 in	 stream	 ciphers	 in	 projects	 such	 as	 eStream,	 within	 the	
European	Network	of	Excellence	in	Cryptography,	which	aimed	to	foster	knowledge	about	stream	
ciphers.	 One	 of	 the	 studied	 stream	 ciphers	 was	MICKEY	 2.0	 submitted	 by	 Steve	 Babbage	 and	
Matthew	 Dodd.	 From	 the	 eStream	 European	 project	 we	 can	 access	 the	 data	 form	
implementation	studies	of	MICKEY	v2.	One	of	those	studies	is	“On	the	Hardware	Implementation	
of	 the	MICKEY-128	Stream	Cipher”	by	Paris	Kitsos.	 It	 is	 stated	how	MICKEY	v2.0	has	 two	major	
advantages	 versus	 other	 stream	 Ciphers;	 The	 low	 hardware	 complexity,	which	 results	 in	 small	
area	and	the	high	level	of	security.	

As	 the	 other	 studies	 presented	 before,	 an	 FPGA	 device	 with	 low	 resources	 was	 used	 for	 the	
performance	 demonstration.	 The	 performance	 comparisons	 between	 the	MICKEY	 v2	 proposed	
system	and	previous	published	architectures	of	Stream	Cipher	will	be	shown	in	the	next	figure	18.	
As	good	comparison	colleagues	other	well-known	algorithms	were	chosen,	such	as	A5/1	cipher	
(used	 in	 GSM	 mobile	 phones),	 W7	 stream	 cipher	 (a	 cipher	 optimized	 for	 efficient	 hardware	
implementation	at	very	high	data	rates),	or	the	E0	algorithm	that	Bluetooth	system	uses.	

	

	

	

	

	

	

	

	

	

Figure	18:	Stream	Cipher	HW	performance	comparison	[xx]	

As	it	can	be	seen	in	the	above	table,	the	proposed	MICKEY	cipher	implementation	(denoted	with	
Proposed)	while	 has	 a	way	 better	 performance	 than	 other	 AES	 algorithm	 stream	 ciphers,	 also	
requires	more	hardware	resources	than	those	mentioned	AES	implementations.	As	it	is	also	table	
illustrated,	 the	 proposed	 cipher	 implementation	 achieves	 a	 competitive	 clock	 frequency	 while	
showing	 an	 overall	 nice	 Mbps	 throughput	 performance	 if	 compared	 with	 the	 others	 Stream	
ciphers.	 Once	 again,	 the	 key	 factor	 of	 this	 design	 is	 the	 low	 level	 of	 FPGA	 utilization	 that	 it	
achieves,	while	 it	 still	 competes	with	other	ciphers	 that	don’t	have	this	 low	FPGA	usage.	Going	
through	complimentary	hardware	efficiency	and	using	this	synthesis	results	it	is	proven	that	this	
design	is	more	than	suitable	for	area	restricted	hardware	implementations.	

It	is	also	important	to	highlight	the	fact	that	the	author	believes	that	MICKEY-128	cipher	can	still	
be	 implemented	 in	 a	more	 compact	manner,	 for	 example,	 using	only	one	 register.	 That	would	
make	 this	 cipher	 still	 more	 suitable	 for	 IoT	 devices	 as	 compactness	 goes	 in	 favour	 of	 the	
technology	application	in	IoT	networks.	This	research	(which	is	not	on	the	scope	of	this	work)	is	
believed	to	be	a	good	task	for	other	developers	to	implement.	

Continuing	 the	 research	on	 the	MICKEY	 v2	 stream	cipher,	 following	 the	eStream	project	work,	
various	eStream	candidates	were	evaluated	at	a	hardware	level	using	ALTERA	FPGAs	(Intel	FPGAs	

IoT	Cryptography	Schemes	Comparison	

 53

that	 offer	 a	 wide	 variety	 of	 configurable	 embedded,	 SRAM	 etc.).	 In	 “Hardware	 evaluation	 of	
eSTREAM	Candidates”	by	Marcin	Rogawski	[xv],	the	comparison	between	different	algorithms	is	
performed	 under	 the	 following	 6	 assumptions:	 Only	 standard	 logic	 cells	 were	 used	 (1),	
standardized	interface	(2),	the	algorithms	were	implemented	without	any	authentication	method	
add-on	(3),	the	code	was	written	in	VHDL	language	(4),	Quartus	II	6.0	and	Cyclone	family	(5)	and	
Cyclone_power_est_2-12	was	used	for	power	consumption’s	estimation	(6).	

During	the	tests	 that	were	run	 in	 this	project,	 the	 following	was	observed	from	MICKEY;	 It	was	
defined	 as	 a	 compact	 algorithm,	 very	 simple	 to	 implement	 whose	 reference	 C-code	 and	
documentation	 very	 easy	 to	 follow	 [attached	 in	 the	 annex	 section].	 The	weakest	 point	 of	 this	
design	was	defined	as	its	difficulty	to	be	implemented	with	parallel	realization,	which	was	on	of	
the	designs	proposed	by	the	investigators.	

After	running	the	different	ciphers	implementation	the	observed	results	where	the	following:		

	

	

	

	

	

	

	

Figure	19:	Compactness	summary	[xv]	

The	figure	19	shows	us	that	the	MICKEY	algorithm	is	on	the	top	3	in	terms	of	compactness.	What	
does	it	mean?	It	is	basically	proving	us	that	this	stream	cipher	 is	easily	 implementable	 in	small	
devices,	as	less	than	1000	LEs	(*)	(537	LE,	indeed)	are	only	needed.	We	can	also	see	how	is	the	
only	128	bit	key	algorithm	ranked	among	the	most	compact	(as	it	is	based	on	Shift	Registers).	

	

	

	

	

	

	

	

Figure	20:	Throughput	summary	[xv]	

	

	

	

(*)	LE:	Area	comparison	measuring	unit	(taking	Altera	LE	microcontroller	as	reference)		

IoT	Cryptography	Schemes	Comparison	

 54

	

	

	

	

	

	

	

	

	

Figure	21:	Power	consumption	summary	[xv]	

	

These	two	upper	figures	(20	and	21)	stress	the	idea	that	MICKEY	v2	is	a	suitable	candidate	for	IoT	
networks,	 but	 this	 fact	 has	 its	 own	 costs.	 As	 figure	 21	 shows,	 the	 power	 consumption	 of	 the	
device	running	the	cipher	algorithm	is	top	2	in	terms	of	lower	energy	consumption,	probably	one	
of	the	top	performance	features	desired	on	the	Internet	of	Things	world.	This	fact,	though,	has	
one	major	setback,	which	is	the	lower	throughput	ratio,	being	the	worst	of	these	tests	staying	at	
220Mb/s.	Deriving	from	this	outcome,	a	question	will	be	discussed	in	the	Results	and	Conclusions	
sections,	is	this	Throughput	enough	for	or	not	for	IoT	environments?	Is	throughput,	in	fact,	a	key	
feature	in	an	IoT	network?	Apart	from	that,	the	fact	that	it	has	the	worst	throughput	ratio	cannot	
be	eluded.	

One	final	eStream	report	was	taken	into	account	 in	our	stream	cipher	study,	“Hardware	results	
for	 selected	 stream	 cipher	 candidates”	 by	 T.	 Good	 and	 M.	 Benaissa	 aims	 the	 following	 idea:	
Performance	results	are	vital	points	to	focussing	the	security	analysis	efforts	on	the	low	resource	
cipher	candidates,	that	is	done	in	order	to	provide	an	independent	set	of	HW	testing	results	for	
the	algorithm	candidates	to	expand	the	understanding	of	the	various	performance	merits	is	also	
a	key	aspect	to	take	into	account.	

It	 is	 also	 important	 to	 remember	 that	 this	 study	was	 carried	out	 under	 the	 following	premise;	
Firstly,	only	candidates	which	are	“free-	for-all”	were	considered	and	secondly,	only	those	ciphers	
that	were	seen	from	a	low	resource	hardware	perspective	(candidates	that	were	in	the	eStream	
project	phase	2).	Also,	as	the	authors	had	no	affiliation	with	any	of	the	“ciphers	developer	teams”,	
the	review	was	carried	out	independently	of	the	eStream	project.	

It	is	really	interesting	to	see	how	this	study	cuts	various	candidates	under	cryptanalysis	standards	
first	(obviously	due	to	security	concerns)	and	under	area	standards	secondly,	following	on	of	the	
eStream	project	premises	(which	we	didn’t	mention	before),	“candidates	should	be	smaller	than	
the	 AES”.	 That	 is	 a	 specification	 for	 the	 encryption	 of	 electronic	 data	 established	 by	 the	 U.S.	
National	 Institute	 of	 Standards	 and	 Technology	 (NIST),	 which	 is	 actually	 a	 block	 Cipher.	 This	
premise	 makes	 totally	 sense,	 as	 we	 are	 studying	 stream	 ciphers,	 precisely,	 because	 they	 are	
generally	a	lesser-cost	implementation	of	ciphers,	what	we	pursue	in	IoT	networks.	

	

	

IoT	Cryptography	Schemes	Comparison	

 55

This	 study	 also	 addressed	 two	 new	 ideas,	 which	 will	 also	 be	 brought	 up	 on	 the	 Conlusions	
chapter:	The	first	one	is	the	fact	that	the	comparison	of	designs	is	performed	without	taking	into	
account	Message	Authentication	Code	(MAC)	support	(this	 is	also	something	out	of	the	cope	of	
our	thesis).	Secondly,	performance	 in	terms	of	throughput	only,	will	not	address	 latency	 issues,	
something	that	may	be	critical	in	some	IoT	applications.	

RFID	applications	and	IoT	applications	place	limits	on	power,	area	and	latency	directly.	Excesses	
in	any	of	these	aspects	would	make	a	candidate	unsuitable	for	the	application.	RFID	tags	have	to	
be	fundamentally	low	cost,	implying	low	area.	The	exact	same	concept	is	applied	to	IoT	devices.	
That	 raises	 the	 following	conclusion:	A	 good	metric	 for	 performance	would	 be	 power-latency	
product	versus	area.	

The	following	test	results	are	presented:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	22:	Metrics	for	an	output	rate	of	10	Mbps	(estimated	typical	wireless	LAN)	[xvi]	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 56

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	23:	Metrics	operating	at	100kHz	clock	(low-end	RFID/WSN	applications)	[xvi]	

Those	 two	 figures,	 22	 and	 23,	 present	 the	 two	most	 interesting	 runs,	which	 show	 the	metrics	
under	two	IoT	scenarios.	Those	scenarios	are	output	rate	of	10	Mbps	(estimated	typical	wireless	
LAN)	and	operating	at	100kHz	clock	(low-end	RFID/WSN	applications).	

Focusing	on	the	MICKEY	cipher,	 in	 the	10Mbps	output	rate	case	we	can	see	the	 following.	This	
algorithm	 shows	 a	 decent	 Throughput/area	 metric,	 standing	 at	 0.383	 kpbs/μm2,	 proving	 the	
compactness	 of	 this	 cipher,	 taking	 into	 account	 that	 it	 does	 not	 present	 a	 good	 throughput	
metric.	But	what	really	surprises	from	those	results	is	the	power-area-time	metric,	resulting	into	
a	higher	value	than	the	one	expected	taking	 into	account	the	other	studies,	where	the	MICKEY	
algorithm	stranded	as	a	low	consumption	algorithm.	

Regarding	 the	 low-end	 RFID/WSN	 applications	 we	 see	 how,	 once	 more,	 the	 throughout	 rate	
results	in	its	worst	metric	as	it	only	reaches	a	total	of	100kbps.	

Nevertheless,	as	an	128	bit	key	stream	cipher,	according	to	their	key	size	and	the	most	relevant	
hardware	performance	metrics	for	the	application	area	in	a	suggested	priority	order	for	further	
cryptanalysis	 effort,	 it	 can	 be	 stated	 that	 the	 MICKEY	 v2	 algorithm	 is	 suitable	 for	 WSN	
applications	although	the	best	performance	128	key	size	stream	cipher	in	this	study	is	clearly	the	
Grain128.	

IoT	Cryptography	Schemes	Comparison	

 57

3.3. Hash	function	
After	 checking	 stream	 cipher	 algorithms	 performance	 we	 will	 now	 focus	 on	 the	 study	 of	
cryptographic	 hash	 functions,	 more	 precisely,	 into	 the	 Secure	 Hash	 Algorithm	 3,	 SHA-3.	 As	
explained	 in	 chapter	 2,	 State	 of	 the	 art	 of	 the	 technology	 used	 or	 applied	 in	 this	 thesis,	 after	
several	cryptographic	hash	algorithms	were	successfully	attacked	around	the	years	2004-05	the	
NIST	decided	to	held	workshops	in	order	to	develop	a	new	algorithm	for	standardization	through	
a	 public	 competition.	 That	 new	 hash	 algorithm	 would	 be	 referred	 to	 as	 SHA-3.	 The	 winning	
algorithm	 was	 KECCAK,	 an	 algorithm	 that	 can	 also	 be	 used	 for	 authentication,	 authenticated	
encryption	and	pseudo-random	number	generation.	With	that	being	said,	we	should	now	focus	
on	the	properties	that	make	it	suitable	for	IoT	networks.	

The	most	 famous	 public	 key	 cryptography	 algorithm	 is	 probably	 RSA	 (Rivest,	 Shamir,	 Adenan),	
which	 is	 based	 on	 the	 difficulty	 of	 both	 factoring	 large	 integers	 and	working	with	 the	 discrete	
logarithm.	In	this	algorithm,	both	the	public	and	the	private	key	of	a	user	(device)	came	from	a	
large	number	obtained	when	multiplying	two	prime	numbers	(p,	q)	(not	close	prime	numbers).	It	
is	 proven	 [attached	 in	 the	 annex	 section]	 that	 this	 algorithm	 can	 provide	 confidentiality	 or	
authenticity.	This	algorithm,	though,	had	a	security	scratch	that	would	make	an	attacker	able	to	
supplant	 the	 sender’s	 identity.	That	was	because	 the	attacker	 could	 find	 the	message	by	using	
the	sender’s	signature.	One	of	the	solutions	to	this	problem	was	the	Hash	function.	

The	basic	prerequisites	for	the	hash	function	are	the	following:	

·	Input	data	could	be	any	length	

·	Output	data	has	a	fixed	length	

·	H(x)	is	easy	to	calculate	for	any	given	x	value	

·	H(x)	 is	unidirectional,	that	means	that	given	any	H(x)	 it	 is	computationally	impossible	
to	obtain	x.		

*Where	H(x)	is	the	hash	function.	

As	we	will	see,	Hash	functions	actually	send	digitally	signed	messages.	Is	this	applicable	to	the	IoT	
world?	 If	 the	answer	 is	 yes,	 is	 it	 viable	with	potential	 scenarios	of	hundreds	of	devices	 sending	
digitally	signed	information	to	each	other?	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 58

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	24:	Hash	function	signing	/	verification	process	

	

Once	the	hash	function	context	is	set,	let’s	continue	with	SHA-3	and	KECCAK.	As	said	in	chapter	2,	
this	 algorithm	 uses	 a	 concept	 known	 as	 the	 sponge	 construction.	 It	 can	 also	 be	 seen	 as	 a	
generalization	 of	 both	 hash	 functions,	 which	 have	 a	 fixed	 output	 length	 and	 stream	 ciphers,	
which	 have	 a	 fixed	 input	 length.	 It	 operates	 on	 a	 finite	 state	 by	 iteratively	 applying	 the	 inner	
permutation	to	it,	interleaved	with	the	entry	of	input	or	the	retrieval	of	output.	

Some	resumes	state	that	SHA-3	is	not	suitable	for	IoT	networks,	in	“Lightweight	Cryptography	for	
the	 Internet	 of	 Things”	 by	 Katagi	 [xix].	 it	 is	 said	 that	 SHA-3	 did	 not	 accomplish	 the	 necessary	
Lightweight	 cryptography	 properties,	 while	 some	 other	 papers	 actually	 implement	 SHA-3	
libraries	and	test	its	potential	usability	for	IoT	networks.	

On	 the	 study	 “Efficient	 and	 Concurrent	 Reliable	 Realization	 of	 the	 Secure	 Cryptographic	 SHA-3	
Algorithm”	by	Siavash	Bayat-Sarmadi	[viii]	a	synthesis	for	SHA-3	algorithm	is	presented.	An	ASIC	
was	 chosen	 based	 on	 the	 resources	 available	 to	 the	 researchers	 in	 terms	 of	 library	 and	 tools.	
Another	interesting	point	was	that	the	presented	schemes	were	not	dependent	on	the	hardware	
platform.	Also,	it	is	important	to	note	that	similar	overheads	are	expected	if	FPGAs	are	used	for	
the	implementations	of	the	schemas	run	in	those	simulations.	In	this	paper,	the	highlight	is	both	
the	 synthesis	 of	 the	original	 KECCAK	algorithm	and	 its	 error	detection	approach.	Also,	 another	
approach	 called	 the	RERO-based	 approach	 is	 presented	 and	 compared;	 this	 one	 is	 suitable	 for	
resource-constrained	applications	 like	 IoT	devices.	The	experiments	use	 two	restrictions:	 In	 the	
first	one,	a	period	constraint	was	 imposed	to	achieve	the	working	 frequency	of	more	than	650	
MHz	 for	 the	 original	 implementation	 of	 KECCAK,	 allowing	 higher	 performance	 of	 the	 original	
structure	but	also	costing	a	higher	total	area.	 In	the	second	set	of	simulations	a	restriction	was	
applied	 by	 loosening	 the	 period	 constraint,	which	 resulted	 in	 lower	working	 frequency	 for	 the	
original	architecture,	but	also	a	lower	area.	Also,	a	variant	of	KECCAK,	which	operates	one	round	
in	each	cycle,	was	considered	to	derive	the	hashed	output.	

IoT	Cryptography	Schemes	Comparison	

 59

The	results	of	this	study	are	presented	in	the	following	figure:	

Figure	25:	SHA-3	Performance	results	under	authors	ASIC	Syntheses	[viii]	

As	seen	in	the	upper	figure;	the	area	overhead	and	throughput	degradation	for	the	RERO-based	
scheme	 for	 KECCAK	 is	 4.4%	 and	 11.8%	 in	 comparison	 with	 the	 original	 KECCAK	 scheme,	
respectively.	On	the	other	hand,	 in	the	case	where	these	are	loosened,	the	overheads	are	7.6%	
and	5.9%,	respectively.	

In	our	thesis,	this	particular	KECCAK	implementation	(RERO-based)	is	not	important.	The	key	idea	
behind	all	of	this	is	that	different	implementations	of	the	SHA-3	algorithm	can	be	developed	and	
compared	 to	 the	 original	 implementation.	 This	 one	 in	 particular,	 achieves	 worst	 performance	
results	than	the	original	architecture,	while	it	follows	a	different	error	detection	implementation.	
It	 is	 proven	 that	 KECCAK	 is	 simple	 enough	 to	 be	 studied	 and	 present	 different	 HW	
implementations	of	it,	which	is	also	something	desirable	in	the	IoT	world.	Apart	from	that,	as	it	is	
proven	by	these	same	results,	this	technology,	although	being	one	order	of	magnitude	superior	
in	terms	of	area	and	kGE	could	still	be	applied	to	small	devices.	At	the	same	time	the	throughput	
is	way	higher	 than	all	 the	Stream	ciphers	or	Block	ciphers	 that	we	have	seen,	directly	 implying	
that	this	is	an	algorithm	to	consider	and	take	into	account	for	some	IoT	applications	needing	high	
throughput	levels.	

These	results	also	show	how	Public	Key	Cryptography	concerns	are	real.	The	application	of	these	
kinds	of	algorithms	is	more	expensive	in	terms	of	hardware	than	Symmetric	Key	algorithms	that	
are	lighter	and,	therefore,	better	suited	for	IoT	networks.	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 60

3.3.1. SHA-3	Algorithm,	Hash	implementation	simulation	

As	 Hash	 functions	 are	 a	 more	 complex	 algorithm,	 it	 was	 interesting	 to	 implement/test	 its	
functionality	via	simulations	in	order	to	better	understand	how	they	actually	work.	Not	only	that,	
as	a	well-defined	algorithm	like	SHA-3	was	being	studied,	we	wanted	to	assay	its	implementation	
via	a	stable	environment	like	MATLAB.	

To	do	so,	firstly	Dr.	Markku-Juhani	O.	Saarinen	function	package	[annex]	was	taken	as	a	basis,	as	
it	builds	an	implementation	intended	for	studying	the	algorithm,	(not	for	a	productive	use).	The	
code	is	designed	to	run	on	64-bit	little-endian	platforms	with	gcc.	The	main.c	module	contains	
self-tests	for	all	the	hash	sizes	that	are	being	supported.	Basically	it	helps	to	simulate	a	whole	run	
while	having	an	outlook	for	the	step	by	step.	The	function	package	is	called	tiny_sha3.	

As	 commented	 above,	 this	 package	 was	 taken	 as	 a	 basis	 to	 study	 the	 KECCAK	 algorithm	
functioning	at	a	high	 level	 (it	 is	not	 intended	to	prove	the	sponge	construction	functioning	 in	a	
mathematical	 point	 of	 view).	 After	 this	 revision,	 a	 “step-back”	 was	 performed	when	 testing	 a	
general	Hash	function	MATLAB	implementation.	This	specific	order	was	followed,	because	it	was	
thought	to	be	more	interesting	to	test	a	specific	hashing	function	once	having	firstly	obtained	the	
overall	SHA-3	coded	algorithm	idea	rather	than	implementing	the	sponge	construction	to	prove	
that	KECCAK	algorithm	works	 (something	 that	has	 already	been	proven),	which	was	never	 this	
thesis	objective.	A	general	hashing	function	is	easier	to	understand	and	test	so	it	was	thought	to	
be	a	more	efficient	way	to	learn	and	get	introduced	into	this	technology.	

So	let’s	take	a	look	at	the	important	phases	of	the	hashing	process	implementation:	

	

Figure	26:	Hashing	phase	1	-	DataHash	function	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 61

	

Figure	27:	Hashing	phase	2	-	DataHash	function	

	

The	hashing	phase	showed	in	the	above	two	figures	firstly	check	the	input	data	type	(isFile	or	
isBin)	which	 is	previously	defined	before	the	hashing	phase	starts.	After	that	the	 java	engine	
used	 to	 perform	 the	 hashing	 is	 updated:	 Engine.update(Data) and	 the	 Hash	 is	
automatically	calculated	using	typecast	 function.	 If	 the	 input	data	 type	 is	contents	an	array,	
the	same	Engine	structure	is	updated	by	using	function	CoreHash(Data, Engine).	

In	 the	 following	 image	we	 can	 see	 the	 above-mentioned	 initialization	 of	 the	 Engine	 structure,	
performed	before	the	hashing:	

	

Figure	28:	Engine	structure	initialization	

	

Once	again,	it	is	not	this	thesis	objective	to	understand/demonstrate	the	usage	of	this	method,	in	
this	 case	 the	 Engine	 java	 method.	 It	 is	 just	 shown	 that	 this	 particular	 Hash	 function	
implementation	takes	advantage	of	it	in	order	to	perform	the	programming.	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 62

After	that,	the	Hash	is	adapted	to	the	specific	output	format	that	we	have	selected.		

	

Figure	29:	Hash	output	format	

So	at	this	exact	point	we	have	the	Hash	message	created.	This	hash	is	then	encrypted	using	the	
sender’s	private	key,	creating	the	data	signature.	The	message	(data)	would	then	be	sent	along	
with	its	own	signature.	So	at	the	receiver’s	end	all	it	has	to	do	is	Hash	the	received	data	with	the	
same	Hashing	 function	 and	decrypt	 the	 sender’s	 signature	using	 the	 sender’s	 public	 key.	Once	
this	 process	 is	 finished	 all	 the	 receiver	 has	 to	 do	 is	 comparing	 the	 two	 results,	 if	 the	 hashed	
message	equals	 the	decrypted	signature	 that	means	 that	 the	message	has	been	correctly	 sent.	
No	3rd	party	intromissions	or	identity	supplant	have	occurred.	

As	you	may	be	thinking,	this	moves	away	from	the	project	focus	that	we	have	been	seeing	until	
now,	which	is	basically	comparing	cryptographic	tools	solely	from	a	performance	point	of	view.	
This	 incise	 was	 produced	 in	 order	 to	 better	 understand	 this	 technology	 development.	 From	 a	
personal	point	of	view,	 I	 felt	 that	 this	Hash	 function	concept	was	great	and	 imaginative	 idea	 in	
order	to	avoid	 identity	supplant,	as	an	extra	addition	to	actual	cryptography.	What’s	more,	this	
application	can	perfectly	be	applied	to	the	IoT	networks.	In	some	specific	applications	we	may	be	
interested	 to	 know	 certain	 information	 about	 devices,	 at	 the	 same	 time	 it	 may	 be	 crucial	 to	
determine	whether	this	is	information	is	100%	veracious	or	not,	in	these	application	the	fact	that	
the	information	is	encrypted	or	not,	would	go	to	a	second	term	of	importance.	

	

	

	

	

	

	

	

Figure	30:	Perfect	Hash	function	example	

As	shown	 in	the	upper	figure	the	 ideally	desired	Hash	function	behaviour	would	be	the	perfect	
hash	function.	In	this	case,	the	hashed	data	would	never	collide,	as	the	target	set	region	is	larger	
that	the	Hashing	function	domain.	This	is	perfectly	seen	in	the	upper	figure.	

IoT	Cryptography	Schemes	Comparison	

 63

	

	

	

	

	

	

	

Figure	31:	Mathematical	display	of	a	Hashing	function	f

So,	to	remember,	the	KECCAK	algorithm	makes	use	of	the	sponge	construction,	a	generalization	
of	both	hash	functions,	which	have	a	fixed	output	length,	as	we	have	just	seen	in	this	simulation	
chapter	3.3.1,	and	stream	ciphers,	which	have	a	fixed	 input	 length	as	we	have	also	seen	 in	the	
previous	chapters.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 64

3.4. Elliptic	Curve	Cryptography	-	studies	and	IoT	applications	
	

As	 we	 commented	 during	 section	 3,	 Public	 Key	 cryptography	 concerns	 are	 real;	 the	
implementation	of	these	algorithms	may	be	too	much	expensive	for	the	typically	tiny	IoT	devices.	
Why	is	that	there	are	still	studies	involving	the	usage	of	Public	Key	Cryptography?	The	answer	is	
Elliptic	 Curve	 Cryptography,	 a	 method	 developed	 in	 the	 mid	 1980s	 with	 some	 interesting	
properties	that	make	it	suitable	for	IoT	networks.	

From	 now	 on,	 several	 studies	 have	 also	 been	 carried	 out,	 indeed	 there	 are	 actual	
implementations	of	ECC	algorithms	in	specific	sensor	platforms	(for	example	MICAz	Mote).	In	this	
section	we	will	explore	different	implementations	and	we	will	see	its	performance	results	so	we	
can	compare	the	behaviour	of	this	technique	with	all	the	other	studied	protocols.	

As	 assessed	 in	 “Efficient	 Implementation	 of	 Eliptic	 Curve	 Cryptography	 in	Wireless	 Sensors”	by	
Diego	 F.	 Aranha	 [x],	 Wireless	 sensor	 network	 features	 motivate	 the	 search	 for	 increasingly	
efficient	 algorithms	 and	 implementations	 of	 ECC	 for	 its	 devices.	 This	 work	 in	 particular	 shows	
that	 a	 specific	 implementation	 of	 Elliptic	 Curves	 Cryptography,	 called	 binary	 fields,	 offers	
significant	 computational	 advantages	 over	 prime	 curves	 when	 implemented	 in	 these	Wireless	
Sensor	Networks.	The	focus	of	this	study	lies	on	the	performance	side	of	this	algorithm,	assuming	
that	 the	 original	 simple	 one-pass	 Elliptic	 Curve	 Diffie-Hellman	 protocol	 is	 employed	 for	 key	
agreement.	 Under	 this	 premise,	 different	 ECC	 implementations	 are	 compared	 in	 terms	 of	
performance	by	the	cost	of	multiplying	integers	by	a	random	elliptic	curve	point.	Also,	it	is	shown	
how	the	ECC	 techniques	have	 improved	 through	 the	years,	obtaining	better	 results	 in	 terms	of	
execution	 time	 for	 scalar	multiplications	 of	 a	 random	point	 of	 the	 elliptic	 Curve,	 the	 following	
figure	shows	these	results	on	a	MICAz	Mote	device:	

	

	

	

	

	

	

	

	

	

Figure	32:	Timings	for	scalar	multiplication	(normalized	for	a	clock	frequency	of	7.37MHz)	[x]	

The	 upper	 figure	 is	 basically	 indicating	 us	 the	 improvement	 in	 terms	 of	 efficiency	 of	 ECC	 in	
Wireless	Sensor	Networks.	

The	implementation	developed	by	the	authors	of	this	study	uses	mixed	additions	from	different	
modular	operation	algorithms	 (multiplications,	 reductions,	 inversions,	etc.),	 in	 fact,	 the	authors	
select	fast	algorithms	for	Elliptic	Curve	arithmetic	in	three	situations:	multiplying	a	random	point	
P	by	a	scalar	k	 (1),	multiplying	the	generator	G	by	a	scalar	k	 (2)	and	simultaneously	multiplying	

IoT	Cryptography	Schemes	Comparison	

 65

two	points	P	 and	Q	 by	 scalars	k	 and	 l	 to	obtain	kP +lQ (3)	 (Basic	mathematical	details	of	 the	
Elliptic	Curves	are	found	in	chapter	2.6).	

	

Figure	33:	Implementation	results,	comparison	with	two	other	implementations	[x]	

As	 presented	 in	 the	 upper	 figure,	 both	 the	 C	 language	 proposed	 implementation	 and	 the	
Assembled	 implementation	 perform	 better	 than	 the	 two	 most	 efficient	 ECC	 implementations	
shown	in	figure	32,	TinyECCK	and	Kargl	et	al.	Those	results	are	the	arithmetic	mean	of	the	timings	
measured	 on	 50	 consecutive	 executions	 of	 the	 algorithms.	 The	 executions	 consist	 of	 various	
operations,	 just	 as	 shown	 on	 the	 figure.	 Also,	 the	 results	 are	 shown	 whether	 in	 cycles	 (c)	 or	
seconds	(s).	

*In	this	case	(MICAz	Mote	sensor	node	equipped	with	an	ATmega128	8-bit	processor	clocked	at	
7.3728MHz), arithmetic	instructions	with	register	operands	cost	1	cycle	and	memory	instructions	
or	memory	addressing	cost	2	processing	cycles.	

But	 these	 improvements	 also	 carry	 other	 implications.	 For	 example,	 the	 implemented	
optimizations	allow	performance	gains	but	advocate	a	collateral	effect	on	memory	consumption.	
As	we	will	see	in	the	following	figure,	memory	requirements	for	code	size	and	RAM	memory	for	
the	different	implementations	are	increased.	This	is	something	we	will	also	see	in	the	conclusions	
section,	 as	we	must	 find	 a	 threshold	 defining	what	 shall	 be	 considered	 as	 a	 limitation	 in	 each	
design	parameter.	

	

Figure	34:	ROM	and	RAM	memory	consumption	of	different	implementations	[x]	

	

Last	 but	 not	 least,	 the	 author’s	 implementation	 was	 tested	 with	 some	 executions	 of	
cryptographic	protocols	for	key	agreement	and	digital	signatures.	And	the	resulting	performance	
was	 compared	 with	 two	 other	 protocols	 that	 are	 also	 being	 used	 in	 current	 Wireless	 Sensor	
Networks.	Indeed,	the	two	tested	protocols	are	the	following:	Key	agreement,	which	is	employed	
in	 sensor	 networks	 for	 establishing	 symmetric	 keys	 that	 can	 be	 used	 for	 encryption	 or	
authentication	and	Digital	 signatures,	employed	 for	communication	between	the	sensor	nodes	
and	the	base	stations	where	data	must	be	made	available	to	multiple	applications	and	users.	For	

IoT	Cryptography	Schemes	Comparison	

 66

the	 first	 case,	 Key	 agreement,	 the	 Elliptic	 Curve	 Diffie	 &	 Hellman	 (ECDH)	 protocol	 was	
implemented,	while	 for	 the	 second	 case,	 Digital	 signatures,	 the	 Elliptic	 Curve	 Digital	 Signature	
Algorithm	(ECDSA)	was	used.	 In	both	cases,	 the	public	keys	are	supposed	 to	be	already	 loaded	
into	the	nodes,	so	the	network	initialization	time	is	not	taken	into	account.	

	

	

	

	

	

Figure	35:	Performance	for	the	Key	agreement	case	[x]	

	

	

	

	

Figure	36:	Performance	for	the	Data	signature	case	[x]	

The	 NIST-WXYZ	 are	 different	 Elliptic	 Curves	 definitions	 published	 by	 NIST	 (with	 XYZ	 bits	 of	
security	 level).	These	curves	are	used	to	perform	the	test	under	various	conditions	and	no	only	
one	Elliptic	Curve.	

*Time	(S+V):	Signature	+	Verification	time	

*ROM	and	RAM:	Consumption	values	given	in	KB	

These	figures	tell	us	how,	for	example,	a	digital	signature	can	be	computed	and	verified	in	0.99	
seconds	at	the	163-bit	security	level	(NIST-K163,	Data	signature	case,	Assembly	implementation)	
and	 in	 2.17	 seconds	 at	 the	 233-bit	 security	 level	 (NIST-K233,	 Data	 signature	 case,	 Assembly	
implementation).	

But	still,	how	do	we	know	if	these	performance	results	are	good	enough	for	the	IoT	world?	How	
can	we	compare	it	to	the	Ciphers	performances?	

The	work	performed	by	David	Malan	on	“Crypto	for	Tiny	Objects”	 [vi]	help	us	to	discern	 it.	This	
work	was	the	first	known	implementation	of	elliptic	curve	cryptography	for	sensor	networks.	 In	
fact,	 as	we	have	 just	 seen	 in	 the	previous	pages,	 the	 study	 “Efficient	 Implementation	of	 Eliptic	
Curve	Cryptography	in	Wireless	Sensors”	by	Diego	F.	Aranha	implements	a	most	efficient	solution	
than	Malan’s	work	in	the	Binary	field	(figure	32).	But,	as	just	said,	from	Malan’s	specific	study,	we	
are	interested	on	the	comparison	of	ECC	performance	with	the	performance	parameters	seen	in	
previous	sections.	

Malan’s	work	 is	performed	with	MICA2	mote,	 an	8-bit,	 7.3828-MHz	ATmega	128L	processor,	4	
kilobytes	(KB)	of	SRAM,	128	KB	of	program	space,	512	KB	of	EEPROM.	

	

	

IoT	Cryptography	Schemes	Comparison	

 67

We	will	look	at	the	results	of	an	analysis	of	the	MICA2’s	maximal	throughput,	(without	and	with	
TinySec	(*)	enabled,	something	that	 is	not	 important	 in	our	case	as	we	are	purely	 interested	 in	
the	 throughput	 levels).	 To	 add	 up,	 TinyOS	 (*)	 is	 an	 embedded,	 component-based	 Operating	
Systems	 and	 platform	 for	 low-power	 wireless	 devices,	 such	 as	 those	 used	 in	Wireless	 Sensor	
Networks	(WSNs).	It	began	as	collaboration	between	the	University	of	California,	Berkeley,	Intel	
Research,	and	Crossbow	Technology,	it	was	released	as	free	and	open-source	software.

	

	

	

	

Figure	37:	Latency	(μs)	of	the	encryption	process	[vi]	

We	can	see	how	in	the	upper	figure,	the	mean	latency	times	of	the	encryption	process	are	similar	
to	those	presented	in	Figure	23,	proving	that,	for	this	implementation,	latency	equals	in	order	to	
those	presented	algorithms.	

	

	

	

	

	

	

	

	

	

	

	

Figure	38:	Throughput	information	[vi]	

Finally,	as	shown	in	figure	38,	the	throughput	of	sending	packets	of	29	bytes	(1Kbits)	on	various	
scenarios	 achieves	 a	 level	 of	 10.67	 packets	 per	 second,	 which	 equals	 a	 total	 of	 30.9Mbps.	 10	
times	faster	than	the	fastest	design	(which	was	actually	not	suitable	for	IoT	cryptography)	but,	for	
example,	300	times	faster	than	the	MICKEY	v2	algorithm	that	we	saw	in	section	3.2.	

	

	

	

*TinySec	:	Is	a	layer	security	architecture	which	was	implemented	in	TinyOS	

*TinyOs:	 is	 an	 embedded,	 component-based	 operating	 system	 and	 platform	 for	 low-power	
wireless	devices.	

 69

4. IoT	cryptographic	algorithms	simulation	

As	 the	 final	 chapter	 of	 this	 study,	 after	 all	 the	 investigation	 about	 the	 various	 cryptographic	
algorithms	 had	 been	 carried	 out,	 it	 was	 intended	 to	 implement	 and	 test	 its	 functionality	 in	 a	
hardware	device.	Also	 the	objective	was	 to	perform	various	 transmissions	of	encrypted	data	 in	
order	to	validate	its	performance.	

The	 selected	 devices	 were	 the	 Zolertia	 Z1	 mote	 and	 the	 Sky	 mote.	 The	 idea	 is	 to	 perform	 a	
comparison	 between	 two	 different	 Hardware	 pieces	 in	 order	 to	 see	 their	 performance	
differences.	 The	 Z1	 is	 a	 general-purpose	 development	 platform	 for	 wireless	 sensor	 networks	
(WSN)	 designed	 for	 researchers	 and	 developers.	 It	 is	 equipped	 with	 a	 second	 generation	
MSP430F2617	 low	power	microcontroller,	which	 features	a	powerful	16-bit	RISC	CPU	@16MHz	
clock	speed,	built-in	clock	factory	calibration,	8KB	RAM	and	a	92KB	Flash	memory.	Also	includes	
the	well	known	CC2420	transceiver,	IEEE	802.15.4	compliant,	which	operates	at	2’4GHz	with	an	
effective	data	 rate	of	 250Kbps.	 Z1	hardware	 selection	 guarantees	 the	maximum	efficiency	 and	
robustness	with	low	energy	cost.	The	Sky	mote	offers	inter	operability	with	many	different	IEEE	
802.15.4	 devices,	 as	 well	 as	 an	 ultra	 low	 current	 consumption,	 which	 fulfils	 the	 IoT	 study	
prerequisites.	 It	has	an	effective	data	 rate	of	250Kbps	CPU	@2.4GHz	clock	speed,	built-in	clock	
factory	calibration,	10KB	RAM	and	a	48KB	Flash	memory	

It	was	 decided	 to	work	with	 a	 network	 simulator	 tool.	 The	 objective	was	 to	 perform	 as	much	
simulations	as	possible	with	different	scenarios,	so	we	would	have	a	strong	comparison	basis	in	
order	to	work.	Different	data	message	will	be	encrypted	using	the	AES	standard,	the	information	
will	be	sent	to	the	other	motes	according	to	each	scenario.	While	the	process	is	running,	various	
data	 values	 will	 be	 obtained,	 that	 way	 we	 will	 have	 enough	 information	 to	 carry	 on	 the	
mentioned	 comparison.	 Remembering	 that	 this	 comparison	 is	 performed	 under	 the	 thesis	
objectives,	which	are	computational	cost,	data	transmission	rate	and	battery	cost.	

As	said,	 the	objective	was	to	emulate	the	behaviour	of	 the	motes	 in	a	WSN	environment,	also,	
testing	the	code	was	important	before	working	with	the	emulator	mote	devices.	

Both	 the	 Zolertia	 Z1	 and	 the	 Sky	 motes	 support	 various	 Operating	 Systems.	 The	 list	 is	 the	
following	[xxxiii]:	

• Contiki	OS	
• RIOT	OS	
• OpenWSN	
• TinyOS	
• MansOS	

Among	 all	 of	 them,	 the	 Contiki	 OS	 is	 the	 one	with	more	 focus	 on	 Cryptography	 so	 it	was	 the	
logical	choice	for	us	[xxxiv].	Contiki	was	developed	by	the	Swedish	Institute	of	computer	science.	
It	 is	 defined	 as	 a	 lightweight,	 open	 source,	 highly	 portable	 and	multitasking	 operating	 system	
used	 for	embedded	systems	that	are	highly	memory	efficient.	The	memory	usage	 for	Contiki	 is	
about	2kb	of	RAM	and	40Kb	of	ROM	[xxxiv],	which	perfectly	suits	IoT	devices	specifications.	

More	precisely,	 the	Contiki	OS	network	simulator,	named	Cooja,	will	be	used.	This	 fact	has	 the	
following	advantage:	It	is	ready	not	only	to	emulate	the	Z1	motes	and	Sky	motes	behaviour	but	
also	various	other	motes	in	case	future	comparisons	would	be	intended	to	carry.	

IoT	Cryptography	Schemes	Comparison	

 70

4.1. Simulation	premises	-	AES	Standard	
Before	the	start	of	the	simulations	we	should	set	the	following	premise.	 In	order	 to	work	with	
different	 devices,	 we	 must	 select	 an	 encryption	 standard	 that	 is	 successfully	 emulated	 in	
various	platforms/motes	(in	this	particular	study	it	will	be	the	Z1	and	Sky	motes).	Between	all	the	
available	standards	the	AES	(Advanced	Encryption	System)	was	chosen.	

The	fact	that	we	have	worked	with	CLEFIA	and	MICKEY	in	the	previous	chapter	doesn’t	imply	that	
we	 can’t	 select	 this	 standard	 (AES)	 for	 the	 simulation	 chapter.	We	must	 remember	 that	 those	
standards	were	 chosen	 in	 order	 to	 learn	 and	 study	 both	 the	 functioning	 and	 the	 features	 of	
block	 ciphers	 and	 stream	 ciphers,	 so	we	 could	 set	 a	 background	work	 that	 helped	us	 to	 know	
whether	stream	ciphers	(with	its	own	peculiarities)	or	block	ciphers	(also	with	its	own	features)	
fit	the	IoT	world	with	more	or	less	efficiency.		

Also,	 it	 is	 important	 to	 note	 that,	 as	 mentioned	 in	 chapter	 2,	 after	 the	 Advanced	 Encryption	
Standard	 was	 selected,	 many	 block	 ciphers	 with	 lightweight	 properties	 have	 been	 proposed.	
Among	them,	CLEFIA	and	PRESENT	were	well	 studied.	We	ended	up	choosing	the	CLEFIA	block	
cipher	to	conduct	the	study,	but	both	of	them	are	generated	from	the	AES	standard.	This	is	also	
important,	 as	 the	 following	 simulations	 could	 serve	 as	 basis	 for	 future	 work	 (using	 Contiki	
emulator)	thanks	to	the	fact	of	using	AES.	

We	should	also	remember	that	after	all	the	gathered	and	analysed	information,	this	simulation	
chapter	will	 help	 us	 discern,	 under	 the	 same	 scenario	 and	 algorithm	usage,	which	 case	 suits	
best	 the	 IoT	 world	 (in	 terms	 of	 computational	 cost,	 data	 transmission	 rate	 and	 power	
consumption)	 in	a	well-defined	closed	 framework.	That	 is	why,	 in	 the	various	simulation	cases,	
the	mote	placement	will	be	 the	same	 independently	of	 the	mote	type	and	the	usage	or	not	of	
encryption.	

Finally,	 remembering	 that	 for	AES	 standard,	both	high	 speed	and	 low	RAM	requirements	were	
criteria	 of	 the	 AS	 selection	 process.	 As	 the	 chosen	 algorithm,	 AES	 performed	 well	 on	 a	 wide	
variety	of	hardware,	from	8-bit	smart	cards	to	high-performance	computers	[xix].	More	standard	
information	(related	to	simulation	purposes)	will	be	displayed	in	the	following	sub-chapters.	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 71

4.2. Simulation	1	–	Sky	mote	–	Sink-Sender	-	WSN	without	cryptographic	
algorithms	

The	first	step	was	to	design	and	implement	a	base	environment.	This	environment	will	be	used	as	
the	starting	point	to	the	rest	of	the	simulations.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	39:	First	IoT	WSN		

This	first	scenario	is	designed	with	1	node	(mote)	acting	as	a	server	and	10	nodes	(motes)	doing	
the	 functionality	 of	 senders.	 The	 server	 module	 used	 in	 this	 simulation	 is	 an	 UDP	 sink.	 The	
Contiki’s	function	representing	this	mote	is	called	udp-sink.c.	On	the	other	hand,	the	sender	
motes	 used	 in	 this	 simulation	 are	 udp	 clients,	 represented	 by	 the	 udp-sender.c	 function.	
Those	client	motes	send	UDP	packets	to	the	server,	so	connection	can	be	stablished.		

	

	

	

	

	

Figure	40:	Client	initialization	

As	it	can	be	seen	in	the	upper	figure,	each	client	process	is	initialized	using	this	structure.	An	ID	
and	MAC	 address	 is	 assigned	 to	 the	 sender	mote,	 after	 that	 the	 channel	 parameters	 are	 also	
generated	and,	 finally,	 an	 IP	address	 (this	 is	 an	example	using	 IPv6	address)	 is	 assigned	 to	 this	
mote.	Once	this	device	has	correctly	started	it	creates	a	connection	with	the	server	mote	using	
the	ports	shown	in	the	figure.	

	

IoT	Cryptography	Schemes	Comparison	

 72

	

	

	

	

	

	

	

	

	

	

	

	

Figure	41:	WSN	packets	transmission	

While	 the	 packet	 transmission	 is	 going	 on,	 the	 sensor	 data	 collector	 tool	 is	 used	 to	 store	 the	
results.	In	this	case,	the	following	sensor	map	is	generated:	

	

	

	

	

	

	

	

	

	

	

Figure	42:	Sensor	map	of	the	first	simulation	

It	 is	 interesting	 to	 see	how	 the	mote	with	 ID	number	 3	 is	 not	 represented	 in	 this	map.	 This	 is	
because	of	the	power	limitation	of	the	motes.	As	we	will	see	in	the	following	figure,	this	mote	is	
too	far	away	from	the	other	senders,	so	the	packets	get	lost	and	never	reach	the	other	motes.	As	
it	cannot	reach	the	server,	this	mote	 is	never	 initialized	thus	the	server	doesn’t	see	 it	and	does	
integrate	 the	wireless	 network.	 It	 can	 also	 be	 seen	 how	 this	 representation	 shows	 that	motes	
number	4,	5	and	11	need	to	perform	one	hoop	through	motes	6	and	9	 in	order	 to	 transmit	 its	
information	to	the	server.	This	fact	is	perfectly	indicated	by	the	ETX	value	of	32	in	all	three	cases.	
The	Expected	Transmission	Count	is	a	measure	of	the	quality	of	a	path	between	two	nodes	in	a	
wireless	packet	data	network.	

IoT	Cryptography	Schemes	Comparison	

 73

	

	

	

	

	

	

	

	

Figure	43:	Mote	3	network	isolation	

The	simulator	also	gathers	multiple	sensor	information,	such	as:	

	

	

	

	

	

Figure	44:	Node	Info	table	(I)	

	

	

	

	

	

	

Figure	45:	Node	Info	table	(II)	

We	will	recover	this	table	when	comparing	the	diverse	simulations	to	be	performed	using	Cooja.	
Among	others,	 it	 can	be	 seen	how	 the	 average	power	 consumed	by	 the	motes	 is	 1’138mW	 (a	
sum	 of	 CPU	 power,	 LPM	 Power,	 Listen	 Power	 and	 Transmit	 Power),	 the	 average	 Inter-packet	
Time	is	48	seconds	and	the	average	Transmit	Duty	Cycle,	the	fraction	of	one	period	in	which	a	the	
system	is	active,	is	0’241.	It	also	shows	information	about	the	average	Beacon	interval,	one	of	the	
management	 frames	 in	IEEE	 802.11	based	 WLANs.	 It	 contains	 all	 the	 information	 about	 the	
network.	Beacon	frames	are	transmitted	periodically,	they	serve	to	announce	the	presence	of	a	
wireless	LAN	and	to	synchronise	the	members	of	the	service	set.

Power	distribution	on	each	mote	as	well	as	Radio	Duty	Cycle	figures	are	shown	next:	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 74

	

Figure	46:	Power	distribution	per	mote	

	

Figure	47:	Radio	Duty	Cycle	per	mote	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 75

4.3. Simulation	2	–	Z1	mote	–	Sink-Sender	-	WSN	without	cryptographic	
algorithms	

In	this	scenario	we	will	repeat	the	first	simulation,	performed	with	the	Sky	mote,	but	now	using	
the	 Z1	mote.	 This	 fact	 helps	 us	 to	 expand	 the	 sample	 analysis,	 as	we	 have	 the	 same	 scenario	
simulated	two	times	using	different	hardware	equipment.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	48:	Z1	IoT	WSN	

This	second	scenario	is	designed	using	the	same	exact	format	as	scenario	presented	in	section	4.2.	
One	 node	 (mote)	 will	 act	 as	 a	 sink	 server	 and	 10	 nodes	 (motes)	 will	 perform	 the	 sender	
functionality.	

	

	

	

	

	

Figure	49:	Z1	client	initialization	

As	it	can	be	seen	by	comparing	figure	39	and	48,	in	both	cases	one	mote	has	been	placed	in	an	
“isolated”	area	in	order	to	prove	the	correct	initialization	of	the	environment.	If	everything	goes	
right,	mote	number	3	shall	never	appear	in	the	sensor	map.	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 76

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	50:	Z1	motes	packet	transmission	

While	the	packet	transmission	is	going	on,	the	sensor	map	is	collected	like	the	previous	case:	

	

	

	

	

	

	

	

	

Figure	51:	Z1	Sensor	map	

So,	as	expected,	mote	3	does	not	appear	in	the	sensor	map,	as	its	transmission	power	is	not	big	
enough	 to	 communicate	with	 the	 sink	mote	 (number	1).	Also,	 it	 is	 not	 close	enough	 to	 get	 its	
synchronization	performed	hoping	to	another	mote	like	happens	with	mote	number	2.	

As	 just	 commented,	 it	 can	 also	 be	 seen	 how	 this	 representation	 shows	 that	mote	 number	 11	
needs	 to	perform	one	hoop	 through	mote	6	 in	order	 to	 transmit	 its	 information	 to	 the	 server.	
This	fact	is	perfectly	indicated	by	the	ETX	value	of	32	for	this	case.	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 77

Just	like	in	the	previous	case,	multiple	sensor	information	is	gathered	during	the	simulation	time,	
such	as	the	following:	

	

	

	

	

	

Figure	52:	Node	Info	table	(I)	

	

Figure	53:	Node	Info	table	(II)	

As	commented	in	the	previous	chapter,	this	table	will	be	recovered	when	comparing	the	diverse	
simulations	 performed	 using	 Cooja.	 Among	 others,	 it	 can	 be	 seen	 how	 the	 average	 power	
consumed	 by	 the	 Z1	motes	 is	 0’606mW	 (a	 sum	 of	 CPU	 power,	 LPM	 Power,	 Listen	 Power	 and	
Transmit	Power),	which	is	significantly	lower	than	the	power	consumed	by	the	Sky	motes.	In	this	
case	the	average	Inter-packet	time	is	47	seconds,	1	second	lower	than	the	previous	simulation,	
and	the	average	Transmit	Duty	Cycle,	the	fraction	of	one	period	in	which	a	the	system	is	active,	is	
0’213	which	is	also	lower	than	the	Sky	motes	case.	It	also	shows	information	about	the	average	
Beacon	interval

Power	distribution	on	each	mote	as	well	as	Radio	Duty	Cycle	figures	are	shown	in	the	next	page.	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 78

	

	

	

	

	

	

	

	

	

	

	

Figure	54:	Power	consumption	per	mote	–	Z1	

Figure	55:	Radio	duty	cycle	per	mote	–	Z1	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 79

4.4. Enabling	encryption	
Contiki	 has	 LLSEC	 (link-layer	 security)	 layer,	 which	 is	 a	 hardware	 independent	 layer.	 It	 uses	 a	
generic	AES	driver	API	instead	of	directly	accessing	the	hardware.	There	are	multiple	AES	drivers	
implemented	 in	 Contiki	 -	 a	 software-only	 version	 and	 a	 couple	 of	 hardware	 accelerated	 ones,	
including	 for	 CC2420	 (the	 radio	 chip	 on	 Tmote	 Sky,	 designed	 for	 low	 power	 and	 low	 voltage	
wireless	applications).	

The	“problem”	with	Cooja	is	that	the	HW	acceleration	feature	of	CC2420	is	not	implemented	in	
the	MSPsim	emulator	that	Cooja	uses	(The	MSPsim	is	a	Java-based	instruction	level	emulator	of	
the	MSP430	series	microprocessor	and	emulation	of	some	sensor	networking	platforms).	That	is	
why	Hardware	acceleration	is	not	going	to	work	in	Cooja	as	opposed	to	real	Tmote	Sky	nodes	(for	
example);	the	software-based	AES	driver	in	configuration	must	be	explicitly	selected	[xxxvi]	using	
this	code	line:	

#define AES_128_CONF aes_128_driver

As	indicated	in	the	github	repository	[xxxvii]:	

noncoresec	 is	 a	 noncompromise-resilient	 802.15.4	 security	 implementation,	 which	 uses	 a	
network-wide	key.	Adding	these	lines	to	the	project_conf.h	file	enables	the	noncoresec	
security	implementation:	

#undef LLSEC802154_CONF_ENABLED

#define LLSEC802154_CONF_ENABLED 1

#undef NETSTACK_CONF_FRAMER

#define NETSTACK_CONF_FRAMER noncoresec_framer

#undef NETSTACK_CONF_LLSEC

#define NETSTACK_CONF_LLSEC noncoresec_driver

#undef NONCORESEC_CONF_SEC_LVL

#define NONCORESEC_CONF_SEC_LVL 1

NONCORESEC_CONF_SEC_LVL	defines	the	length	of	MICs	and	whether	encryption	is	enabled	
or	not.	This	parameter	corresponds	 to	 the	 IEEE	802.15.4	 framer	 security	 levels,	with	numerical	
values	from	0x0	to	0x07.	

The	possible	parameter	values	are	the	following:	

0x00	No	security	Data	is	not	encrypted.	Data	authenticity	is	not	validated.	

0x01	AES-CBC-MAC-32	MIC-32	Data	is	not	encrypted.	Data	authenticity	is	validated.	

0x02	AES-CBC-MAC-64	MIC-64	Data	is	not	encrypted.	Data	authenticity	is	validated.	

0x03	AES-CBC-MAC-128	MIC-128	Data	is	not	encrypted.	Data	authenticity	is	validated.	

0x04	AES-CTR	ENC	Data	is	encrypted.	Data	authenticity	is	not	validated.	

0x05	AES-CCM-32	AES-CCM-32	Data	is	encrypted.	Data	authenticity	is	validated.	

0x06	AES-CCM-64	AES-CCM-64	Data	is	encrypted.	Data	authenticity	is	validated.	

0x07	AES-CCM-128	AES-CCM-128	Data	is	encrypted.	Data	authenticity	is	validated.	

IoT	Cryptography	Schemes	Comparison	

 80

So	in	our	case	we	will	be	interested	in	the	following	values:	

#define NONCORESEC_CONF_SEC_LVL 0x4	

#define NONCORESEC_CONF_SEC_LVL 0x5	

#define NONCORESEC_CONF_SEC_LVL 0x6	

#define NONCORESEC_CONF_SEC_LVL 0x7	

It	 is	 also	 important	 to	 notice	 that	 there	 is	 no	 support	 for	 hardware-accelerated	 asymmetric	
encryption	 on	 sensor	 nodes.	 Also,	 there	 are	 no	 software-based	 implementations	 for	 that	 in	
mainline	 Contiki;	 there	 is	 no	 support	 (yet)	 for	 end-to-end	 security	 in	 general	 in	 this	 OS,	 as	
opposed	to	link-layer	security.	

This	shows	us	how	AES	can	be	emulated	with	and	without	data	encryption	with	various	modes	of	
operation	for	cryptographic	block	ciphers.	It	is	an	authenticated	encryption	algorithm	designed	to	
provide	both	authentication	and	confidentiality.	CCM	mode	is	only	defined	for	block	ciphers	with	
a	block	length	of	128	bits	that	will	be	then,	the	key	size	used	in	those	simulations.	

But	before	enabling	encryption	between	the	nodes,	a	broadcast	messaging	scenario	will	be	first	
simulated,	as	it	is	more	similar	to	a	random	IoT	application	in	which	the	different	nodes	may	be	
sending	information	to	each	other	during	the	application	work	time.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 81

4.5. Simulations	3/4	–	Sky	mote,	Z1	mote	–	Broadcast	WSN	simulation	no	
encryption	

In	this	simulation	we	set	an	UDP-RPL	broadcast	example	using	the	same	network	structure:	

	

	

	

	

	

	

	

	

	

	

	

Figure	56:	Broadcast	WSN	

In	 this	 scenario	we	use	 the	 function	broadcast-example.c,	which	emulates	 the	Sky	mote	
behaviour,	broadcasting	packets	to	the	other	motes.	

	

Figure	57:	Broadcast	WSN	simulation	packet	sending	

IoT	Cryptography	Schemes	Comparison	

 82

	

Figure	58:	Mote	output	broadcast	data	

As	it	can	be	seen	in	the	upper	figure	the	Sky	motes	are	sending	and	receiving	data	alternatively	as	
part	 of	 the	 broadcast	 process.	 Let’s	 see	 the	 power	 consumption	of	 these	 activities	 in	 order	 to	
compare	 it	 when	 encryption	 is	 enabled.	 In	 order	 to	 do	 so,	 we	 have	 to	 modify	 the	 function	
broadcast-example.c	by	adding	the	powertrace	functionality.	

To	 include	 the	 functionality	 of	 PowerTrace	 in	 the	 code,	 a	 new	 function	 called	 broadcast-
example-2.c	 is	created	by	simply	add	the	following	line	after	PROCESS_BEGIN();	for	the	
code.	

powertrace_start(CLOCK_SECOND * 2);

The	header	file	must	be	included:	

#include "powertrace.h"

After	that,	in	the	file	called	"Makefile"	in	the	working	folder,	we	have	to	add	the	following	line:	

APPS+=powertrace

After	running	the	simulation,	the	following	data	on	the	mote	output	window	is	generated:	

Figure	59:	Mote	output	broadcast	power	trace	data		

	

	

	

IoT	Cryptography	Schemes	Comparison	

 83

The	displayed	parameters	are	the	following:	

Table	6:	PowerTrace	Output	Parameters	

	

The	 powerTrace	 consumption	 of	 this	 scenario	 is	 saved	 into	 a	 file	 called:	loglistener.txt	
and	 it	will	be	compared	 to	 the	 same	execution	enabling	cryptography	on	 the	motes.	Before	 re	
executing	the	same	scenario	enabling	cryptography	between	nodes	another	run	is	set	to	run	with	
Z1	motes.	The	scenario	is	set	again	as	an	UDP-RPL	broadcast	communication	environment	using	
the	following	network	structure:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	60:	Broadcast	WSN,	Z1	mote	

	

IoT	Cryptography	Schemes	Comparison	

 84

The	 powerTrace	 consumption	 of	 this	 scenario	 is	 also	 saved	 into	 a	 file	 called:	
loglistener2.txt	and	it	will	be	compared	to	the	same	execution	enabling	cryptography	on	
the	motes.	

It	 is	 important	 to	 note	 that,	 during	 all	 simulations	 (including	 this	WSN	broadcast	 scenario)	we	
place	 the	 motes	 in	 the	 same	 physical	 distribution	maintaining	 the	 same	 distance	 magnitude	
order	than	the	first	two	cases,	also	the	mote	number	tags	remain	the	same	that	in	simulations	3	
and	4.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 85

4.6. Simulations	 5/6	 –	 Sky	mote,	 Z1	mote	 –	 Broadcast	WSN	 simulation	
encryption	

As	 explained	 in	 section	 4.5,	 the	 project_conf.h	 file	 will	 be	 modified	 to	 enable	 data	
encryption	between	nodes.	

	

	

	

	

	

	

	

	

	

	

	

Figure	61:	project_conf.h	file	location	

A	backup	of	the	file	is	generated	(as	it	is	part	of	the	O.S	system	and	it	must	be	kept	intact	in	case	
of	any	malfunctioning).	The	following	 lines	are	added	to	the	file;	 in	our	case	the	set	encryption	
level	is	the	following:	

0x04	 AES-CTR	ENC	 Data	is	encrypted.	Data	authenticity	is	not	validated.	

	

	

	

	

	

	

	

	

	

Figure	62:	project_conf.h	file	modification	

Once	encryption	is	enabled	a	new	broadcast	run	is	generated	using	the	same	base	functions	and	
firmware:	 broadcast-example-2.c	 and	 broadcast-example-2.sky.	 As	 it	 can	 be	
seen	in	this	first	run	the	used	motes	are	sky	motes,	the	message	transmission	is	performed	with	
data	 encrypted	 but	 data	 authenticity	 is	 not	 validated.	 Also	 encryption	 is	 performed	 under	 the	
AES_128	standard	driver.	

IoT	Cryptography	Schemes	Comparison	

 86

As	it	was	commented,	the	generated	scenario	is	the	same:	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	63:	Broadcast	WSN,	Sky	mote,	encryption	enabled.	

And	 once	 again,	 the	 output	 data	 is	 stored	 in	 the	 corresponding	 loglistener	 file,	 ready	 to	 be	
compared	with	the	other	simulation	runs.	

As	stated	before,	another	simulation	run	is	generated,	but	this	time	using	Z1	mote	types.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	64:	Broadcast	WSN,	Z1	mote,	encryption	enabled.	

IoT	Cryptography	Schemes	Comparison	

 87

At	this	point,	the	following	log	files	are	available	to	be	compared:	

• Broadcast	scenario,	Sky	motes.	No	encryption.	
• Broadcast	scenario,	Z1	motes.	No	encryption.	
• Broadcast	scenario.	Sky	motes.	Encryption.	
• Broadcast	scenario.	Z1	motes.	Encryption	

In	 the	Analysis	of	 the	Simulation	Results	 section	we	will	work	 through	these	 logs.	Before	 these	
comparisons,	two	extra	scenarios	will	be	simulated	using	the	software-based	AES	driver	enabling	
encryption	just	like	it	has	been	done	with	simulations	5	and	6.	

In	 this	 following	 case,	 the	 simulation	 will	 be	 performed	 using	 the	 first	 scenarios	 (showed	 in	
sections	4.2	and	4.3),	taking	advantage	of	the	Sensor	Data	Collector	tool.	This	tool	will	also	allow	
us	to	compare	the	first	two	scenarios	with	the	newly	generated	ones.	

Once	again,	 note	how	 the	 two	 scenarios	have	 the	 same	mote	placement	 it	 only	differs	on	 the	
mote	tab	number	between	simulation	5	and	6.	(Which	is	the	same	tag	number	distribution	that	
in	simulations	3	and	4)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 88

4.7. Simulation	 7	 –	 Sky	 mote	 –	 Sink-Sender	 –	 WSN	 with	 cryptography	
allowed	

For	this	case	the	same	network	distribution	(Sink-sender)	than	simulations	1	and	2	is	used:	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	65:	Sky	motes,	Sink-Sender	scenario	with	cryptography	

As	 it	 can	 be	 seen	 in	 the	 upper	 figure	 the	 Sink	 module	 is	 represented	 with	 the	 green	 circle	
whereas	the	sender	motes	are	represented	using	the	yellow	colour.	After	the	scenario	is	set,	the	
Sensor	Data	Collector	tool	is	initialized	and	the	simulation	run	starts.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	66:	Sink-Sender	simulation	going	on	

IoT	Cryptography	Schemes	Comparison	

 89

	

	

	

	

	

	

	

	

	

	

Figure	67:	Sensor	Map	

	

	

	

	

	

Figure	68:	Node	Info	table	(I)	

	

	

	

	

	

	

	

	

Figure	69:	Node	Info	table	(II)	

As	we	did	with	the	two	previous	simulations	performed	in	sections	4.2	and	4.3	this	table	is	highly	
useful	to	compare	the	performance	between	the	various	scenarios.	Again,	it	can	be	seen	how	the	
average	power	 consumed	by	 the	motes	 is	1’344mW	 (a	 sum	of	CPU	power,	 LPM	Power,	 Listen	
Power	and	Transmit	Power),	while	in	the	non-encryption	case	was	1’138mW.	The	average	Inter-
packet	 Time	 is	 28	 seconds	 and	 the	 average	 Transmit	Duty	 Cycle,	 the	 fraction	 of	 one	 period	 in	
which	 a	 the	 system	 is	 active,	 is	 0’447.	 It	 also	 shows	 information	 about	 the	 average	 Beacon	
interval,	 one	 of	 the	 management	 frames	 in	IEEE	 802.11	based	 WLANs.	 It	 contains	 all	 the	
information	 about	 the	 network.	 Beacon	 frames	 are	 transmitted	 periodically,	 they	 serve	 to	

IoT	Cryptography	Schemes	Comparison	

 90

announce	the	presence	of	a	wireless	LAN	and	to	synchronise	the	members	of	the	service	set,	in	
this	case	it	is	3min	and	14sec	while	in	the	first	Sky	motes	scenario	it	was	5	min	and	15sec.

Power	distribution	on	each	mote	as	well	as	Radio	Duty	Cycle	figures	are	shown	next:	

	

Figure	70:	Average	Power	Consumption	

	

Figure	71:	Average	Radio	Duty	Cycle	

The	upper	figure	shows	 in	a	visual	way	that	the	average	Transmit	Duty	Cycle	 is	higher	than	the	
case	 when	 no	 encryption	 is	 enabled.	 Indeed	 it	 is	 almost	 the	 double	 0’447	 vs	 0’241.	 This	 fact	
shows	 that	 due	 to	 the	message	 encryption	 the	 period	 of	 time	 in	which	 the	 system	 is	 active	 is	
higher	than	the	case	where	no	encryption	is	enabled.	In	fact	it	is	92’73%	higher.	Also,	regarding	
the	average	power	consumption	it	is	also	higher	in	the	encryption	case.	

Again,	we	will	go	through	more	details	in	the	Analysis	of	the	simulation	results	section.	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 91

4.8. Simulation	 8	 –	 Z1	 mote	 –	 Sink-Sender	 –	 WSN	 with	 cryptography	
allowed	

For	this	scenario	the	same	network	distribution	is	that	case	4.7	is	recreated	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	72:	Z1	motes,	Sink-Sender	scenario	with	cryptography	

Just	 like	we	did	 in	 the	previous	 scenario	a	 sink	mote	and	10	 sender	motes	are	placed	 into	 the	
environment.	After	that	the	Data	Sensor	Collector	Tool	is	activated	so	the	information	about	the	
motes	performance	can	be	captured.	

	

	

	

	

	

	

	

	

	

	

	

Figure	73:	Z1	motes,	sensor	map	

	

	

IoT	Cryptography	Schemes	Comparison	

 92

	

	

	

	

	

	

Figure	74:	Node	Info	table	(I)	

	

	

	

	

	

	

	

Figure	75:	Node	Info	table	(II)	

One	more	time,	following	the	schema	used	in	the	previous	section,	this	table	is	highly	useful	to	
compare	 the	 performance	 between	 these	 two	 scenarios,	 Sky	 motes	 with	 and	 without	
cryptography	and	Z1	motes	with	and	without	cryptography	enabled.	In	this	case,	 it	can	be	seen	
how	the	average	power	consumed	by	the	motes	is	0’819mW	(a	sum	of	CPU	power,	LPM	Power,	
Listen	Power	and	Transmit	Power).	This	value	is	lower	than	the	Sky	motes	case	although	it	exists	
in	the	same	magnitude	order.	When	we	compare	it	with	the	case	in	which	the	Z1	motes	were	not	
encrypting	 the	messages	 it	 can	 be	 seen	 how	 the	 average	 consumed	 power	 is	 increased	 by	 a	
67’57%,	 from	0’606mW	to	0’819mW.	 In	 this	case,	 the	average	 Inter-packet	Time	 is	22	seconds	
and	the	average	Transmit	Duty	Cycle,	the	fraction	of	one	period	in	which	a	the	system	is	active,	is	
0’480,	this	value	is	also	similar	than	the	Sky	motes	case,	where	it	was	0’447,	but	in	the	Z1	motes	
scenario	where	cryptography	was	not	enabled	this	value	was	0’213.	This	means	that	the	average	
Transmit	 Duty	 Cycle	 is	 increased	 by	 112’67%.	 As	 usual	 we	 also	 have	 information	 about	 the	
average	Beacon	interval,	 in	this	case	 it	 is	2min	and	40sec	while	 in	the	first	Z1	motes	scenario	 it	
was	5	min	and	19sec.

Power	distribution	on	each	mote	as	well	as	Radio	Duty	Cycle	figures	are	shown	next:	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 93

Figure	76:	Average	Power	Consumption	

	

Figure	77:	Average	Radio	Duty	Cycle	

	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 94

4.9. Analysis	of	the	Simulation	Results	
To	sum	up,	the	following	simulations	have	been	performed:	

1. Sink-sender	environment:	Sky	motes.	No	encryption.	
2. Sink-sender	environment:	Z1	motes.	No	encryption.	
3. Broadcast	scenario:	Sky	motes.	No	encryption.	
4. Broadcast	scenario:	Z1	motes.	No	encryption.	
5. Broadcast	scenario:	Sky	motes.	Encryption.	
6. Broadcast	scenario:	Z1	motes.	Encryption.	
7. Sink-sender	environment:	Sky	motes.	Encryption.	
8. Sink-sender	environment:	Z1	motes.	Encryption	

As	 commented	 in	 the	 previous	 sections	 (4.5	 –	 4.6)	 a	 log	 file	 is	 generated	 for	 the	 broadcast	
scenario	 simulations	 (3	 to	 6).	 This	 is	 useful	 in	 order	 to	 compare	 performance	 parameters	
between	these	simulation	sets	with	and	without	encryption.	We	will	 first	work	with	 these	 four	
scenarios	and	then	we	will	move	back	to	the	other	simulation	sets,	the	sink-sender	environment.	

4.9.1. Broadcast	scenario	
As	stated	before,	the	log	files	are	called	loglistener.txt	(0-3).	These	files	were	generated	
by	 the	Cooja	simulator	after	adding	 the	powertrace	 functionality	explained	 in	section	4.5.	They	
contain	the	information	listed	in	Table	6	(section	4.5).	

	

	

	

	

	

	

	

	

	

	

	

Figure	78:	loglistener.txt	file	portion	

As	 shown	 in	 the	upper	 figure,	 those	 four	 files	have	a	plain	 text	 format.	After	extracting	all	 the	
data	we	are	able	to	compare	the	following	features:	

• Accumulated	CPU	energy	consumption.	
• Accumulated	Low	Power	Mode	energy	consumption.	
• Accumulated	Transmition	energy	consumption.	
• Accumulated	Listen	energy	consumption.	
• Accumulated	idle	Transmition	energy	consumption.	
• Accumulated	idle	Listen	energy	consumption.	

IoT	Cryptography	Schemes	Comparison	

 95

From	the	four	simulations,	the	extracted	data	is	shown	next:	

a.	Sky	motes.	No	encryption:	

• Accumulated	CPU	energy	consumption:	 	 	 	 146.836mW	
• Accumulated	Low	Power	Mode	energy	consumption:	 	 	 4.242.493mW	
• Accumulated	Transmition	energy	consumption:	 	 	 24.018mW	
• Accumulated	Listen	energy	consumption:	 	 	 	 39.961mW	
• Accumulated	idle	Transmition	energy	consumption:	 	 	 0mW	
• Accumulated	idle	Listen	energy	consumption:	 	 	 	 31.621mW	

	

b.	Z1	motes.	No	encryption:	

• Accumulated	CPU	energy	consumption:	 	 	 	 100.240mW	
• Accumulated	Low	Power	Mode	energy	consumption:	 	 	 4.290.566mW	
• Accumulated	Transmition	energy	consumption:	 	 	 21.387mW	
• Accumulated	Listen	energy	consumption:	 	 	 	 20.477mW	
• Accumulated	idle	Transmition	energy	consumption:	 	 	 0mW	
• Accumulated	idle	Listen	energy	consumption:	 	 	 	 0mW	

	

c.	Sky	motes.	Encryption:	

• Accumulated	CPU	energy	consumption:	 	 	 	 148.330mW	
• Accumulated	Low	Power	Mode	energy	consumption:	 	 	 4.241.020mW	
• Accumulated	Transmition	energy	consumption:	 	 	 24.010mW	
• Accumulated	Listen	energy	consumption:	 	 	 	 40.501mW	
• Accumulated	idle	Transmition	energy	consumption:	 	 	 0mW	
• Accumulated	idle	Listen	energy	consumption:	 	 	 	 29.876mW	

	

d.	Z1	motes.	Encryption:	

• Accumulated	CPU	energy	consumption:	 	 	 	 95.208mW	
• Accumulated	Low	Power	Mode	energy	consumption:	 	 	 4.295.600mW	
• Accumulated	Transmition	energy	consumption:	 	 	 18.984mW	
• Accumulated	Listen	energy	consumption:	 	 	 	 18.818mW	
• Accumulated	idle	Transmition	energy	consumption:	 	 	 0mW	
• Accumulated	idle	Listen	energy	consumption:	 	 	 	 0mW	

	

*All	the	data	was	extracted	at	the	same	sequence	number:	66	 from	the	central	mote	in	each	of	
the	broadcast	scenarios.	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 96

From	all	these	data	we	can	see	the	following	points:	

• In	 a	 broadcast	 scenario	 with	 simple	 data	 exchange,	 like	 the	 one	 presented	 in	 these	
simulation	sets,	the	application	of	message	ciphering	(cryptography)	does	not	affect	the	
system	performance	at	all.	

	

• The	 two	mote	 types	under	 study	 (Z1	and	Sky)	behave	 in	a	 similar	way	under	 the	 same	
circumstances	 and	 a	 similar	 (almost	 equal)	 mote	 distribution.	 The	 application	 of	 the	
software-based	AES	driver	of	128	bits.	 It	has	a	fixed	block	size	of	128	bits	and	a	128	bit	
key	size.	

	

• The	performance	behaviour	proves	that	Block	Ciphers	are	applicable	in	IoT	environments	
with	 small	 and	 power	 constrained	 devices	 such	 as	 the	 Sky	 motes	 and	 the	 Zolertia	 Z1	
motes.	As	it	will	also	be	commented	on	the	next	section,	this	is	highly	dependable	on	the	
application	 needs.	 As	 more	 data	 is	 to	 be	 managed	 by	 the	 system	 and	 more	 complex	
operations	 need	 to	 be	 performed	 by	 the	 devices,	 this	 becomes	 performance	 starts	 to	
downgrade	and	 the	cryptography	application	becomes	critical.	 For	our	 simulation	case,	
motes	 exchanging	 simple	 data	 to	 the	 others,	 this	 is	 not	 a	 crucial	 aspect,	 as	 the	
performance	is	not	even	affected.	This	could	be	the	case	of	sensors	obtaining	data	form	
the	environment	and	transmitting	it	to	the	others,	generating	an	information	map.	

	

• The	energy	consumption	levels	of	both	Sky	and	Z1	motes	are	acceptable	as	part	of	Low	
Power	device	standards	in	both	cases,	No	use	of	cryptography	and	cryptography	enabled.	

	

• Let’s	remember	that	we	are	dealing	in	a	“non-authenticated	data”	set.	If	information	is	to	
be	validated,	then	this	performance	downgrades.	This	raises	an	important	and	recurrent	
topic	discussed	in	this	project;	the	demanded	security	levels	for	IoT	applications	must	be	
well	 though	due	 to	devices	performance	constraints.	Nevertheless	 these	security	 levels	
are	to	be	set	specifically	depending	on	each	application	needs	and	cannot	be	generalized	
for	every	IoT	application.	

Now,	we	can	go	back	to	the	other	four	simulation	sets;	the	sink-sender	environment.	

	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 97

4.9.2. Sink-Sender	environment	

To	analyse	these	simulations	we	take	into	account	the	following	figures:	

Data	Analysis	Figures:	

1. Sink-sender	environment:	Sky	motes.	No	encryption.	
a. Figure	44	
b. Figure	45	

2. Sink-sender	environment:	Z1	motes.	No	encryption.	
a. Figure	52	
b. Figure	53	

3. Sink-sender	environment:	Sky	motes.	Encryption.	
a. Figure	68	
b. Figure	69	

4. Sink-sender	environment:	Z1	motes.	Encryption.	
a. Figure	74	
b. Figure	75	

Power	Analysis	Figures:	

5. Sink-sender	environment:	Sky	motes.	No	encryption.	
a. Figure	46	
b. Figure	47	

6. Sink-sender	environment:	Z1	motes.	No	encryption.	
a. Figure	54	
b. Figure	55	

7. Sink-sender	environment:	Sky	motes.	Encryption.	
a. Figure	70	
b. Figure	71	

8. Sink-sender	environment:	Z1	motes.	Encryption.	
a. Figure	76	
b. Figure	77	

Sky	mote	case	

From	 all	 the	 data	 extracted	 from	 the	 simulation	 run,	 it	 can	 be	 seen	 how	 the	 average	 power	
consumed	 by	 the	 motes	 is	 1’344mW	 (a	 sum	 of	 CPU	 power,	 LPM	 Power,	 Listen	 Power	 and	
Transmit	 Power),	 while	 in	 the	 non-encryption	 case	 was	 1’138mW.	 While	 not	 a	 significant	
increase,	this	fact	proves	that	 in	an	application	like	this,	 in	which	not	only	message	exchange	is	
performed,	 but	 also	 system	 synchronization,	 the	 power	 consumption	 suffered	 by	 the	 motes	
increases	in	the	encryption	case,	due	to	the	ciphering	process	forced	by	the	AES	128	standard.		

Also,	the	Transmit	Duty	Cycle	for	the	first	case	is	0’241,	while	in	the	encryption	case	it	goes	up	to	
0’447.	The	more	operations	to	perform	(encryption)	and	data	to	transmit	the	higher	the	Transmit	
Duty	Cycle	 is	going	to	be.	This	 is	no	secret	and	totally	expected,	the	system	is	busier	under	the	
application	of	cryptography	protocols,	once	again	the	topic	is	raised:	The	expected	security	levels	
for	IoT	applications	must	be	well	though	due	to	devices	performance	constraints.	We	see	how,	in	
this	case,	the	system	is,	on	average,	two	times	busier	when	the	AES	standard	is	applied.	

IoT	Cryptography	Schemes	Comparison	

 98

Regarding	the	Beacon	interval,	while	the	non-encryption	case	showed	a	total	of	5	min	and	15sec,	
in	 the	 second	 case	 it	 goes	 down	 to	 3min	 and	 14sec.	 This	 is	 also	 interesting,	 as	 Beacons	 are	
needed	for	the	devices	or	clients	to	receive	information	about	the	particular	sink	module	(or,	for	
example,	a	router)	a	Beacon	would	include	some	main	information	such	as	SSID,	Timestamp,	and	
various	parameters.	Beacons	broadcasted	by	the	sink	mote	take	up	some	of	the	bandwidth	that	
can	be	used	for	the	actual	data	transmission.	So	by	having	higher	Beacon	interval	values,	better	
throughput	 and	 better	 speed	 will	 be	 achieved,	 leading	 up	 to	 better	 overall	 performance.	 The	
connected	devices	will	also	have	better	battery	life,	as	the	wireless	adapter	card	is	able	to	“sleep”	
in	between	the	beacon	broadcasts,	the	devices	save	energy	consumption	which	equate	to	longer	
battery	life.	Basically	what	we	see	here	is	that	in	the	encryption	case	more	beacons	are	needed	in	
order	to	correctly	synchronize	the	network	(as	the	Beacon	interval	is	lower)	thus	leading	to	more	
energy	 consumption.	 This	 is	 leading	 into	 the	 average	 power	 consumption	 figure,	 higher	 in	 the	
encryption	case.	

	

Z1	mote	case	

The	exact	same	analysis	is	applied	into	the	Z1	motes	case,	with	the	lonely	difference	appearing	in	
the	parameter	values.	

	In	 this	 case,	 the	 average	 power	 consumed	 by	 the	 motes	 is	 0’606mW	 when	 no	 encryption	 is	
applied	and	0’819mW	in	the	encryption	case,	always	lower	than	the	Sky	motes	cases	although	in	
the	same	magnitude	order.	The	average	Transmit	Duty	Cycle	when	encryption	is	enabled	is	0’480,	
also	similar	than	the	Sky	motes	case.	When	cryptography	was	not	enabled	this	value	was	0’213.		

Finally,	 in	 this	 case	 the	 Beacon	 interval	 time	 is	 2min	 and	 40sec	 while	 in	 the	 first	 Z1	 motes	
scenario	it	was	5	min	and	19sec.	Once	again,	proving	that	in	the	encryption	case	more	beacons	
are	needed	in	order	to	correctly	synchronize	the	network	(as	the	Beacon	interval	 is	 lower)	thus	
leading	to	more	energy	consumption.	

	

	

	

	

	

	

	

	

	

	

	

	

	

 99

5. Results	and	Conclusions	

This	“Results	and	Conclusions”	section	will	have	the	following	order;	first	the	results	of	the	block	
and	 stream	 ciphers	 studied	 will	 be	 presented,	 adding	 the	 conclusions	 extracted	 form	 those	
studies	and	also	answering	some	of	the	raised	question	of	those	sections.	

Then	we	will	jump	to	the	SHA-3	algorithm	and	Hash	study	section,	where	we	will	also	talk	about	
the	conclusion	observed	form	comparing	this	structure	to	the	firstly	presented	ciphers.	We	will	
also	talk	about	how	the	simulations	helped	understand	the	hashing	process.	

To	 end	 this	 chapter	we	will	 see	 the	 conclusions	 obtained	 from	 the	 study	 of	 the	 Elliptic	 Curve	
Cryptography	and	its	current	applications.	

Finally,	we	will	link	it	with	the	conclusions	obtained	from	the	Cooja	simulator	runs	detailed	in	the	
previous	 section	 4.9,	 and	 we	 will	 formulate	 a	 final	 thesis	 conclusion	 that	 will	 lead	 up	 to	 the	
“Future	development”	section.	

	

5.1. Ciphers	

Symmetric	Key	Cryptography	ensures	both	confidentiality	and	authenticity.	

Public	Key	Cryptography	generates	three	scenarios:	

	 ·	NO	confidentiality,	but	authenticity	

	 ·	Confidentiality,	but	NO	authenticity	

	 ·	Both	confidentiality	and	authenticity	

Going	back	to	the	questions	rose	in	chapter	3.1	“Is	it	really	needed	in	an	IoT	network	to	perform	
an	authentication	validation	by	3rd	parties?	Can	we	avoid	this	 fact	 in	order	to	make	our	devices	
faster,	computationally	speaking,	by	only	using	Symmetric	Key	Cryptography?”	as	already	stated	
in	 that	 section,	 cryptography	 (and	 obviously	 also	 in	 IoT)	 is	 not	 directly	 applied	 in	 the	 form	 of	
Message-encryption-decryption	in	the	lonely	form	of	a	public	or	a	private	Key,	it	is	composed	of	
more	complex	structures.	But	focusing	on	the	3rd	party	authentication	context	the	reality	here	is	
that	it	will	depend	on	the	specific	application.	IoT	could	be	to	almost	every	device	able	to	track	
some	 data,	 so	 as	we	will	 further	 see,	 the	 importance	 of	 this	 data’s	 validation	will	mark	 if	 the	
information	 needs	 to	 be	 authenticated	 or	 not.	 Probably	 if	 I’m	 scheduling	 my	 oven	 to	 start	
cooking	1h	before	 I	 get	 home	 there	 is	 no	need	 to	 authenticate	 that	 I	 am	actually	 sending	 this	
message.	On	 the	 other	 hand	 if	 I	want	 to	maintain	 a	 smoke	monitoring	 in	 some	 hotel	 rooms	 I	
would	like	to	ensure	that	the	data	received	from	the	smoke	sensors	has	not	been	manipulated	by	
a	Man	in	the	middle	attack.	

Focusing	now	on	 the	cipher	structure,	as	 it	was	also	commented	 in	section	3.2,	due	 to	current	
devices	power	and	capacity,	 the	vast	majority	of	Symmetric	Key	algorithms	are	based	on	Block	
Ciphers.	That	fact	was	the	main	reason	to	start	studying	them.	As	 it	can	be	seen	 in	the	various	
presented	 figures	 in	 chapter	3,	 the	 results	of	 the	 simulations	 show	 that	block	 cipher	algorithm	
can	perfectly	 fit	with	 IoT	devices.	All	 that	we	 shall	 take	 into	 account	 is	 the	 specific	 hardware	
device	 limitations.	 As	 it	 was	 shown	 in	 the	 study	 carried	 by	 Thomas	 Eisenbarth,	 the	 CLEFIA	
algorithm	perfectly	suits	Lightweight	Cryptography	 limitations.	 Indeed	CLEFIA	presents	 the	best	

IoT	Cryptography	Schemes	Comparison	

 100

Throughput	 vs	 Gate	 Equivalent	 ratio	 amongst	 all	 the	 ciphers	 presented	 in	 “Lightweight	
Cryptography	for	the	Internet	of	Things”	by	Masanobu	Katagi	and	Shiho	Moriai.	So	basically,	if	the	
Block	 Ciphers	 performance	 results	are	good	enough	 to	be	held	 in	 IoT	devices	“Why	 should	we	
consider	Stream	ciphers?	Also,	security	is	known	to	be	stronger	for	Block	Cipher	cases	why	would	
we	possibly	want	 to	 take	a	 step-back?”	 This	question,	 raised	during	 chapter	3.2,	 illustrates	 the	
thoughts	of	many	researchers	as	Stream	Ciphers	had	received	little	attention,	but	the	answer	is	
that	 Stream	Ciphers	 can	be	better	 suited	 for	 the	most	 simple	 IoT	devices,	why	 should	 they	be	
taken	apart?		

As	 seen	 in	 that	 same	 chapter,	 the	 proposed	 MICKEY	 stream	 cipher	 implementation	 while	
requiring	more	hardware	resources	than	other	AES	algorithm	stream	ciphers,	had	a	better	than	
those	 mentioned	 AES	 implementations.	 Still	 those	 needed	 resources	 are	 smaller	 than	 the	
Hardware	resources	needed	for	a	Block	Cipher	implementation,	while	the	level	of	security	is	the	
necessary.	 That	 basically	 shows	 us	 how	 Stream	 Ciphers	 also	 fit	 with	 IoT	 devices.	 Just	 like	 the	
block	Cipher	case,	all	that	we	shall	take	into	account	is	the	specific	hardware	device	limitations.	
That	leads	us	to	the	following	trivial	but	not	less	important	conclusion:	

In	a	general	perspective,	as	far	as	the	IoT	device	hardware	limitations	permit	it,	we	would	choose	
a	 Block	 Cipher	 encryption	 algorithm	 as	 the	 first	 option.	 As	 soon	 as	 the	 hardware	 limitations	
prevent	us	 to	 implement	 a	block	 cipher	 schema,	we	 shall	 look	 for	 the	most	 suitable	 algorithm	
from	 the	 stream	 cipher	 family.	 The	 threshold	 here	 is	 the	 throughput	 limitation.	We	 could	 find	
ourselves	 in	 a	 situation	 in	which	 a	 block	 cipher	 algorithm	 exceeds	 the	 HW	 limitations	 but	 the	
most	 hardware	 suitable	 Stream	 cipher	 algorithm	 doesn’t	 fit	 the	 application	 throughput	
requirements.	If	no	algorithm	satisfying	both	cases	were	found,	the	only	way	to	solve	this	 issue	
would	be	downgrading	the	application	requirements.	

So,	 overall,	 the	 conclusion	 of	 this	 section	 would	 be	 the	 following:	 The	 expectations	 from	 an	
efficient	 cryptographic	 algorithm	 will	 differ	 depending	 on	 the	 specific	 application.	 It	 is	 very	
difficult	to	expect	that	a	single	implementation	will	satisfy	all	requirements.	It	seems	clear	that,	
as	stated	in	the	previous	paragraph,	the	most	important	aspect	for	a	hardware/software-efficient	
cryptographic	algorithm	is	flexibility.	Meaning	that	this	algorithm	could	implement	different	type	
of	 specific	 architectures	making	 it	 flexible	 enough	 to	 adapt	 to	 the	 exposed	 HW	 limitations	 or	
throughput	requirements.	

Finally,	 one	 fact	 shall	 be	 remembered.	 The	 comparison	of	designs	 is	performed	without	 taking	
into	account	Message	Authentication	Code	(MAC)	support	(which	is	something	that	we	recalled	
to	be	out	of	the	cope	of	our	thesis).	Secondly,	performance	in	terms	of	throughput	only,	will	not	
address	latency	issues,	something	that	may	be	critical	 in	some	IoT	applications	this	point	 is	 the	
most	interesting	thing	to	be	considered	in	the	future	development	chapter.	

	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 101

5.2. SHA-3	algorithm	and	Hash	study	

As	 seen	 in	 section	 3.3,	 the	 hashing	 technique	 solved	 a	 security	 scratch	 on	 Public	 Key	
Cryptography	 that	would	make	an	attacker	able	to	supplant	the	sender’s	 identity.	By	using	the	
Hash	function	a	digital	sign	is	applied	to	the	sent	message.	 Is	this	applicable	to	the	IoT	world?	If	
the	 answer	 is	 yes,	 is	 it	 viable	with	 scenarios	 of	 potential	 hundreds	 of	 devices	 sending	 digitally	
signed	information	to	each	other?	This	question	is	directly	assessed	like	the	one	regarding	the	3rd	
party	validation.	Once	again	it	will	depend	on	the	specific	application.	This	may	seem	redundant,	
but	 reinforces	 the	 idea	 that	 the	 IoT	 world	 is	 wide	 both	 in	 the	 device	 and	 the	 algorithm	
application	contexts.	If	no	specific	standard	is	to	be	set	for	all	manufacturers	(which	hasn’t	been	
the	case	and	doesn’t	seem	to	be	in	the	next	future)	it	will	be	the	specific	applications	needs	(plus	
the	HW	 limitation)	 that	will	 tell	us	whether	 if	 it	makes	 sense	 to	apply	hashing	 (in	 the	different	
algorithms	manners)	 in	an	IoT	network	or	not.	All	we	should	take	into	account	when	hashing	is	
the	 “cost”	 parameter.	 As	 this	 parameter	 grows,	 the	 amount	 of	 work	 (typically	 CPU	 time	 or	
memory)	necessary	to	compute	the	hash	increases	exponentially;	this	is	one	parameter	to	add	up	
to	the	performance	ecosystem	of	an	IoT	device.	As	long	as	the	device	can	handle	it,	there	is	no	
reason	to	think	that	it	shall	not	be	applied	if	our	application	demands	it.	

As	seen	in	the	corresponding	chapter	3.3,	the	study	“Efficient	and	Concurrent	Reliable	Realization	
of	the	Secure	Cryptographic	SHA-3	Algorithm”	by	Siavash	Bayat-Sarmadi	presented	some	actual	
SHA-3	 implementations.	 In	 this	 study	 the	 RERO-based	 approach,	 an	 algorithm	 suitable	 for	
resource-constrained	 applications	 like	 IoT	 devices,	 is	 presented	 and	 compared.	 The	 key	 idea	
behind	 the	 presented	 results	 is	 that	 various	 implementations	 of	 the	 SHA-3	 algorithm	 can	 be	
developed	 and	 compared	 to	 the	 original	 implementation.	 It	 is	 proven	 that	 KECCAK	 is	 simple	
enough	 to	 be	 studied	 and	 presented	 in	 different	 HW	 implementations.	 At	 the	 same	 time	 the	
throughput	levels	obtained	in	these	implementations	suggest	that	this	algorithm	would	be	really	
suitable	for	those	applications	that	need	higher	levels	of	speed	(maybe	addressing	latency	issues).	
Overall,	 though,	 Symmetric	 Key	 algorithms	 are	 lighter	 and,	 therefore,	 better	 suited	 for	 IoT	
networks.	

Regarding	 the	 hash	 simulations,	 we	 did	 not	 take	 into	 account	 the	 “cost”	 parameter	 as	 all	 the	
function	runs	were	performed	with	a	computer	(2,4	GHz	Intel	Core	i5	processor	with	4	GB	1067	
MHz	DDR3	RAM	memory	module),	which	obviously	have	more	performance	capabilities.	 It	was	
successfully	tested	how	the	Hash	message	is	created	(using	various	types	of	input	data).	This	hash	
is	then	encrypted	using	the	sender’s	private	key,	creating	the	data	signature.	The	message	(data)	
would	then	be	sent	along	with	its	own	signature.	So	at	the	receiver’s	end	all	it	has	to	do	is	Hash	
the	 received	 data	 with	 the	 same	 Hashing	 function	 and	 decrypt.	 We	 basically	 used	 a	 simple	
encryption	test	method	to	do	the	reversal	process	and	validate	how	the	hash	works	properly,	as	
the	hashed	decrypted	message	equals	the	digital	signature	sent	(hash).	

	

	

	

	

	

	

IoT	Cryptography	Schemes	Comparison	

 102

5.3. Elliptic	Curve	Cryptography	

To	conclude	with	 the	conclusions	chapter,	we	will	 review	the	 results	obtained	 from	the	Elliptic	
Curve	Cryptography	study.	

As	 commented	 in	 section	 3.4,	 there	 are	 actual	 implementations	 of	 ECC	 algorithms	 in	 specific	
sensor	 platforms	 (for	 example	 MICAz	 Mote),	 directly	 implying	 that	 ECC	 implementations	 are	
feasible.	 As	 we	 have	 seen	 in	 the	 various	 figures	 it	 is	 a	 proven	 fact	 that	 ECC	 has	 improved	 its	
performance	through	the	years	by	the	implementation	of	different	techniques.	The	implemented	
optimizations	 showed	 in	 that	 section,	 allow	 performance	 gains	 but	 also	 generate	 a	 collateral	
effect	 on	 memory	 consumption.	 As	 it	 was	 displayed	 in	 the	 correspondent	 figure,	 memory	
requirements	 for	 both	 the	 code	 size	 and	 RAM	 memory	 for	 the	 new	 more	 efficient	
implementations	are	increased.	It	is	a	logical	conclusion	to	remark	that	a	threshold	defining	what	
shall	 be	 considered	 as	 a	 limitation	 in	 each	 design	 parameter	 must	 be	 defined.	 This	 is	 also	
something	to	be	taken	under	consideration	in	the	in	the	future	development	chapter.		

Regarding	 the	 executions	 of	 cryptographic	 protocols	 for	 key	 agreement	 and	 digital	 signatures	
tests,	 another	 question	 was	 raised	 How	 do	 we	 know	 if	 these	 performance	 results	 are	 good	
enough	 for	 the	 IoT	 world?	 How	 can	 we	 compare	 it	 to	 the	 Ciphers	 performances?	 The	 results	
showed	in	figures	37	and	38	referring	to	Dr.	Malan’s	work	shows	us	that	in	terms	of	latency	the	
ECC	results	are	equal	 to	the	Block	Ciphers	algorithms	resented	 in	previous	sections.	As	soon	as	
we	start	improving	the	device’s	properties	this	latency	may	improve,	but	it	will	come	along	with	
more	HW	requirements	to	fulfil	these	needs.	Finally,	as	it	was	expected,	the	throughput	levels	of	
this	Cryptographic	technique	are	substantially	better	than	the	ones	seen	in	the	Ciphers	sections,	
making	 this	 applications	 more	 than	 suitable	 for	 those	 applications	 that	 need	 higher	 levels	 of	
speed,	 just	as	 said	 in	 the	previous	 section	4.3.	 It	 is	 important	 to	 recall	once	again	 that	overall,	
Symmetric	Key	algorithms	are	lighter	and,	therefore,	better	suited	for	IoT	networks,	specially	for	
those	devices	needing	the	 lightest	possible	computational	charge.	Those	would	be	the	example	
of	sensors	expected	to	have	a	usable	life	of	various	years,	etc.	

	

5.4. Overall	conclusions	

As	it	has	been	observed	during	the	whole	project,	current	cryptographic	algorithms	are	ready	and	
suitable	to	use	in	IoT	devices	in	terms	of	performance.	Each	application	and	device	will	have	its	
own	 limitations,	 so	 it	 is	 complicated	 to	 find	 a	 specific	 algorithm	 that	 will	 ensure	 correct	
performance	while	fulfilling	all	the	limitations.	That	is	the	main	reason	why	a	closed	solution	has	
not	 been	 yet	 set.	 It	 is	 very	 difficult	 to	 expect	 that	 a	 single	 implementation	 will	 satisfy	 all	
requirements;	the	ideal	algorithm	shall	be	able	to	engage	a	wide	range	of	architectures.	Also,	the	
three	 main	 performance	 characteristics	 seen	 in	 this	 project	 through	 the	 different	 chapters	
(computational	cost,	data	transmission	and	battery	cost)	are	relatively	easy	to	quantify,	while	the	
remaining	 attributes	 (Flexibility/Scalability/Pipelining	 and	 Simplicity/Completeness/Clarity)	 that	
were	not	treated	in	this	project,	are	much	more	subjective	and	will,	once	again,	depend	on	every	
application	and	device.	

Actually,	this	smoothly	corresponds	with	the	results	obtained	from	the	Cooja	simulator.	Under	
the	 same	 encryption	 standard,	 through	 various	 runs	 of	 simulations	 we	 did	 not	 see	 a	 major	
difference	when	applying	encryption	in	both	the	Z1	and	Sky	motes.	We	could	definitely	see	how	
encryption	basically	 implied	more	power	consumption	for	the	motes	but	almost	the	same	data	

IoT	Cryptography	Schemes	Comparison	

 103

transmission	 rate.	For	example,	 let’s	 remember	 that	our	 study	 framework	dealed	with	no	data	
authentication;	That	may	be	a	critical	point	for	some	IoT	applications,	while	others	can	absolutely	
pass	 on	 this	 feature.	 This	 generates	 the	 obvious	 idea	 that	 each	 application	 shall	 be	 tested	
according	to	their	specific	needs	and	that	is	the	best	way	to	discern	between	the	data	ciphering	
necessity,	power	consumption	restriction	and	information	transmission	latency.	In	other	words,	if	
I	have	developed	an	 IoT	application	 that	collects	 temperature	data	 from	each	room	 in	a	house	
and	uses	all	this	information	to	generate	a	real	time	condition	map	in	order	to	adjust	the	heating,	
it	may	 seem	 obvious	 that	 neither	 information	 transmission	 rate	 nor	 encryption	 are	 important	
features	 for	 this	application.	 It	 is	not	 critical	 if	 the	data	 from	each	sensor	 is	 transmitted	 to	 the	
heat	controller	 in	100ms	or	10s,	as	 the	house	temperature	never	changes	this	 fast,	so	that	will	
not	affect	the	application	performance.	Also,	there	is	no	need	to	encrypt	the	data	as	no	valuable	
information	 could	 be	 obtained	 from	a	 room’s	 temperature.	On	 the	 other	 hand,	 an	 application	
optimized	in	the	field	of	power	consumption	via	software	and	hardware	performance	is	key,	as	
we	would	not	be	willing	to	change	the	sensors	battery	(or	directly	the	device	itself)	each	month.	

This	 specific	 example	 could	 be	 turned	 all	 the	 way	 around.	 We	 may	 be	 willing	 to	 gather	
confidential	 data	 from	 a	 closed	 framework	 and	 store	 it,	 for	 example,	 in	 a	 central	 cloud	
infrastructure.	Under	 this	 premise,	 data	 encryption	would	 come	 to	 the	 top	 and	 both	 software	
and	hardware	shall	be	optimized	for	data	protection	while	probably	losing	battery	optimization.	

As	a	personal	point	of	view,	it	seems	that	nowadays	the	majority	of	people	does	not	yet	conceive	
the	IoT	concept.	It	still	has	not	been	implemented	in	our	daily	life,	so	that	is	why	especially	in	the	
case	of	small	devices	the	solutions	are	still	wide	open,	something	that	may	not	help	to	integrate	
different	 devices	 from	 different	 companies	 with	 different	 protocols	 in	 the	 same	 IoT	 network.	
Those	 devices	 that	 do	 not	 present	 either	 size	 restrictions	 or	 computational	 limitations	
(Autonomous	cars,	household	appliances,	public	traffic	control	devices,	etc.)	will	actually	work	as	
if	they	were	computers	and	will	easily	transition	into	the	IoT	world.	But	as	it	was	being	said,	those	
small	 devices	 (which	 were	 the	 central	 point	 of	 our	 investigation)	 will	 be	 the	 ones	 presenting	
more	problems	when	it	becomes	all	integrated.	

Finally,	 in	 a	 learning	 standpoint,	 I	 have	 to	 say	 that	 it	was	 interesting	 to	 get	 introduced	 to	 the	
cryptography	world	while	exploiting	and	investigating	its	application	in	the	IoT.	As	it	was	said	in	
the	objectives	section,	cryptography	is	a	topic	that	was	not	exploited	neither	in	the	degree	nor	in	
the	master	so	it	was	nice	to	take	advantage	of	the	master	thesis	to	explore	it	and	get	introduced	
to	it.	

	

 105

6. Future development

After	performing	this	thesis	the	three	following	points	were	thought	to	be	interesting	to	develop	
(following	this	line	of	work):	

1. The	 comparison	 of	 designs	 was	 performed	 without	 taking	 into	 account	 Message	
Authentication	Code	(MAC)	support	(which	is	something	that	we	recalled	to	be	out	of	
the	scope	of	our	thesis).	Also,	performance	is	expressed	in	terms	of	throughput	only.	
That	 does	 not	 address	 latency	 issues,	 something	 that	 may	 be	 critical	 in	 some	 IoT	
applications.	 The	 study	of	 the	 latency	affectation	 related	with	 the	 throughput	 level	
for	some	application	should	be	really	interesting	as	it	is	something	that	would	badly	
downgrade	the	user’s	experience.	
	

2. A	 threshold	 defining	 what	 shall	 be	 considered	 as	 a	 limitation	 in	 each	 design	
parameter	 must	 be	 defined.	 That	 is	 something	 that	 I	 have	 not	 seen	 done.	 A	 full	
research	(or	group	of	researches)	exposing	each	possible	limitation	design	points	and	
defining	 what	 is	 an	 acceptable	 threshold	 for	 each	 one	 would	 also	 be	 interesting,	
specially	 from	 an	 academic	 point	 of	 view.	 That	 would	 help	 to	 define	 a	 close	
framework	 of	 what	 an	 IoT	 application	 device	 should	 expect	 under	 a	 closed	 set	 of	
conditions.	With	that	being	said,	 it	 is	also	important	to	recall	how	difficult	this	is,	as	
that	ultimately	depends	on	each	application	expected	features.	
	

3. Finally,	once	the	documentation	part	of	the	project	has	been	carried.	A	project	could	
be	started	directly	on	the	emulation	chapter.	Following	the	same	idea	of	an	enclosed	
framework,	it	could	study	variations	related	to	data	validation,	data	encryption	using	
different	key	sizes	 in	 the	same	exact	scenario,	data	 throughput	 limitation,	etc.	That	
would	be	like	a	simulation	for	a	specific	application	needs.	The	enclosed	framework	
could	 be	 something	 like:	 “We	 want	 an	 application	 that	 ensures	 X	 level	 of	 data	
protection	(that	could	be	protection	against	a	concrete	attac)	while	providing	a	Y	life	
cycle:	Which	is	the	best	combination	(HW	+	ciphering	schema)	for	this	application?	”	

	

 107

7. Bibliography	

i. Lee,	J.	Y.,	Lin,	W.	C.,	&	Huang,	Y.	H.	(2014,	May).	A	 lightweight	authentication	protocol	for	 internet	of	things.	 In	

Next-Generation	Electronics	(ISNE),	2014	International	Symposium	on	(pp.	1-2).	IEEE.	

ii. A	Eisenbarth,	T.,	&	Kumar,	S.	(2007).	A	survey	of	lightweight-cryptography	implementations.	IEEE	Design	&	Test	of	

Computers,	24(6).	

He,	 D.,	 &	 Zeadally,	 S.	 (2015).	 An	 analysis	 of	 rfid	 authentication	 schemes	 for	 internet	 of	 things	 in	 healthcare	

environment	using	elliptic	curve	cryptography.	IEEE	internet	of	things	journal,	2(1),	72-83.	.	

iii. Hatzivasilis,	G.,	Theodoridis,	A.,	Gasparis,	E.,	&	Manifavas,	C.	(2014).	An	Ultra-lightweight	Cryptographic	Library	for	

Embedded	Systems	.	

iv. Kumar,	U.,	Borgohain,	T.,	&	Sanyal,	S.	(2015).	Comparative	Analysis	of	Cryptography	Library	in	IoT.	

v. Malan,	D.	(2004).	Crypto	for	tiny	objects.	Technical	Reprot	TR-04-04,	Harvard	University.	

vi. Faquih,	A.,	Kadam,	P.,	&	Saquib,	Z.	(2015,	September).	Cryptographic	techniques	for	wireless	sensor	networks:	A	

survey.	In	Bombay	Section	Symposium	(IBSS),	2015	IEEE	(pp.	1-6).	IEEE.	

vii. Bayat-Sarmadi,	 S.,	 Mozaffari-Kermani,	 M.,	 &	 Reyhani-Masoleh,	 A.	 (2014).	 Efficient	 and	 concurrent	 reliable	

realization	 of	 the	 secure	 cryptographic	 SHA-3	 algorithm.	 IEEE	 Transactions	 on	 Computer-Aided	 Design	 of	

Integrated	Circuits	and	Systems,	33(7),	1105-1109.	

viii. Shokrollahi,	J.	Rheinischen	Friedrich-Wilhelms-Universitat	Bonn	(2006).	

ix. Aranha,	D.	F.,	Dahab,	R.,	López,	J.,	&	Oliveira,	L.	B.	(2010).	Efficient	implementation	of	elliptic	curve	cryptography	

in	wireless	sensors.	Adv.	in	Math.	of	Comm.,	4(2),	169-187.	

x. Liu,	 Liu,	 Z.,	Großschädl,	 J.,	Hu,	 Z.,	 Järvinen,	 K.,	Wang,	H.,	&	Verbauwhede,	 I.	 (2017).	 Elliptic	 curve	 cryptography	

with	 efficiently	 computable	 endomorphisms	 and	 its	 hardware	 implementations	 for	 the	 internet	 of	 things.	 IEEE	

Transactions	on	Computers,	66(5),	773-785.	

xi. Koblitz,	N.	(1987).	Elliptic	curve	cryptosystems.	Mathematics	of	computation,	48(177),	203-209..	

xii. Kermani,	 M.	 M.,	 Zhang,	 M.,	 Raghunathan,	 A.,	 &	 Jha,	 N.	 K.	 (2013,	 January).	 Emerging	 frontiers	 in	 embedded	

security.	 In	 VLSI	 Design	 and	 2013	 12th	 International	 Conference	 on	 Embedded	 Systems	 (VLSID),	 2013	 26th	

International	Conference	on	(pp.	203-208).	IEEE.	

xiii. Baldwin,	 B.,	 Byrne,	 A.,	 Lu,	 L.,	 Hamilton,	 M.,	 Hanley,	 N.,	 O'Neill,	 M.,	 &	 Marnane,	 W.	 P.	 (2010,	 August).	 FPGA	

implementations	of	 the	 round	two	SHA-3	candidates.	 In	Field	Programmable	Logic	and	Applications	 (FPL),	2010	

International	Conference	on	(pp.	400-407).	IEEE.	

xiv. Rogawski,	M.	(2007).	Hardware	evaluation	of	eSTREAM	candidates.	

xv. Good,	 T.,	 &	 Benaissa,	 M.	 (2007).	 Hardware	 results	 for	 selected	 stream	 cipher	 candidates.	 State	 of	 the	 Art	 of	

Stream	Ciphers,	7,	191-204.	

xvi. Malan,	D.	J.,	Welsh,	M.,	&	Smith,	M.	D.	(2008).	Implementing	public-key	infrastructure	for	sensor	networks.	ACM	

Transactions	on	Sensor	Networks	(TOSN),	4(4),	22.	

IoT	Cryptography	Schemes	Comparison	

 108

xvii. 						Zhang,	 Z.	 K.,	 Cho,	M.	 C.	 Y.,	Wang,	 C.	W.,	 Hsu,	 C.	W.,	 Chen,	 C.	 K.,	 &	 Shieh,	 S.	 (2014,	 November).	 IoT	 security:	

ongoing	 challenges	 and	 research	 opportunities.	 In	 Service-Oriented	 Computing	 and	 Applications	 (SOCA),	 2014	

IEEE	7th	International	Conference	on	(pp.	230-234).	IEEE.	.	

xviii. Katagi,	M.,	&	Moriai,	S.	(2008).	Lightweight	cryptography	for	the	internet	of	things.	Sony	Corporation,	7-10.	

xix. Kitsos,	 P.	 (2005).	 On	 the	 Hardware	 Implementation	 of	 the	MICKEY-128	 Stream	 Cipher.	 IACR	 Cryptology	 ePrint	

Archive,	2005,	301.	

xx. Babar,	S.,	Stango,	A.,	Prasad,	N.,	Sen,	J.,	&	Prasad,	R.	(2011,	February).	Proposed	embedded	security	framework	

for	internet	of	things	(iot).	In	Wireless	Communication,	Vehicular	Technology,	Information	Theory	and	Aerospace	

&	Electronic	Systems	Technology	(Wireless	VITAE),	2011	2nd	International	Conference	on	(pp.	1-5).	IEEE.	

xxi. Rao,	 M.,	 Newe,	 T.,	 &	 Grout,	 I.	 (2014,	 September).	 Secure	 hash	 algorithm-3	 (SHA-3)	 implementation	 on	 Xilinx	

FPGAs,	suitable	for	IoT	applications.	In	8th	International	Conference	on	Sensing	Technology	(ICST	2014),	Liverpool	

John	Moores	University,	Liverpool,	United	Kingdom,	2nd-4th	September.	

xxii. Roman,	R.,	Najera,	P.,	&	Lopez,	J.	(2011).	Securing	the	internet	of	things.	Computer,	44(9),	51-58.	

xxiii. Zhang,	T.,	Zheng,	Y.,	Zheng,	R.,	&	Antunes,	H.	(2016).	Securing	the	Internet	of	Things-	Need	for	a	New	Paradigm	

and	Fog	Computing,	Corporate	Strategic	Innovation	Group,	Cisco	Systems,	Inc.,	San	Jose,	CA,	USA.	

xxiv. Shirai,	 T.,	 Shibutani,	 K.,	 Akishita,	 T.,	 Moriai,	 S.,	 &	 Iwata,	 T.	 (2007,	 March).	 The	 128-bit	 blockcipher	 CLEFIA.	 In	

International	Workshop	on	Fast	Software	Encryption	(pp.	181-195).	Springer,	Berlin,	Heidelberg.	

xxv. Mahalle,	 P.	 N.,	 Prasad,	 N.	 R.,	 &	 Prasad,	 R.	 (2014,	 May).	 Threshold	 cryptography-based	 group	 authentication	

(TCGA)	 scheme	 for	 the	 internet	of	 things	 (IoT).	 In	Wireless	Communications,	Vehicular	Technology,	 Information	

Theory	and	Aerospace	&	Electronic	Systems	(VITAE),	2014	4th	International	Conference	on	(pp.	1-5).	IEEE.	

xxvi. Alcaraz,	C.,	Najera,	P.,	Lopez,	J.,	&	Roman,	R.	(2010).	Wireless	sensor	networks	and	the	internet	of	things:	Do	we	

need	a	complete	integration?.	In	1st	International	Workshop	on	the	Security	of	the	Internet	of	Things	(SecIoT’10).	

xxvii. Team	Keccak.	(n.d.).	Retrieved	from	https://keccak.team/keccak.html	-	Technical	details	table,	KECCAK	webpage.	

xxviii. Bertoni,	G.,	Daemen,	J.,	Peeters,	M.,	&	Van	Assche,	G.	(2007,	May).	Sponge	functions.	In	ECRYPT	hash	workshop	

(Vol.	2007,	No.	9).		–	Chapter	2.2:	The	sponge	construction.	

xxix. Biham,	Eli	and	Shamir,	Adi	(1991).	"Differential	Cryptanalysis	of	DES-like	Cryptosystems".	Journal	of	Cryptology.	4	

(1):	3–72.	Retrieved	from	https://en.wikipedia.org/wiki/Data_Encryption_Standard	-	The	Feistel	(F)	Function	

xxx. 	Sony	 Global	 -	 CLEFIA	 -	 About	 CLEFIA	 -	 Key	 Schedule	 /	 Components-	 DoubleSwap	 Function.	 Retrieved	 from	

https://www.sony.net/Products/cryptography/clefia/about/element.html.	

xxxi. Apostolos,	 P.	 (2009).	 Cryptography	 and	 Security	 in	 Wireless	 Sensor	 Networks.	 FRONTS	 2nd	 Winterschool	

Braunschweig,	Germany.	–	Chapter	1:	Elliptic	Curve	Cryptography	(1/2)	

xxxii. The	Z1	mote	·	Zolertia/Resources	Wiki	–	GitHub.	Retrieved	from	https://github.com/Zolertia/Resources/wiki/The-

Z1-mote		

xxxiii. Contiki:	The	Open	Source	Operating	System	for	the	Internet	of	Things.	Retrieved	from	http://www.contiki-os.org	

xxxiv. IoT	operating	systems	–	Devopedia.	Retrieved	from	https://devopedia.org/iot-operating-systems	

xxxv. Simulation	 -	 How	 to	 enable	 message	 encryption	 in	 Contiki	 /	 Cooja.	 Retrieved	 from	

https://stackoverflow.com/questions/37382634/how-to-enable-message-encryption-in-contiki-cooja-simulator	

xxxvi. Github	 contiki-os/contiki/core	 NONCORESEC	 repository.	 Retrieved	 from	 https://github.com/contiki-

os/contiki/tree/master/core/net/llsec/noncoresec		

IoT	Cryptography	Schemes	Comparison	

 109

xxxvii. The	 Official	 Contiki	 OS	 Blog:	 A	 big	 step	 for	 Contiki:	 built-in	 encryption.	 Retrieved	 from	 http://contiki-

os.blogspot.com.es/2014/10/a-big-step-for-contiki-built-in.html	

xxxviii. Stevens,	M.,	Bursztein,	E.,	Karpman,	P.,	Albertini,	A.,	&	Markov,	Y.	(2017,	August).	The	first	collision	for	full	SHA-1.	

In	Annual	International	Cryptology	Conference	(pp.	570-596).	Springer,	Cham.		

xxxix. 	Symmetric	 Key	 Cryptography	 in	 Use,	 Alice	 and	 Bob	 -	 Image.	 Retrieved	 from:	

http://securitycerts.org/review/symmetric-key-in-use.htm		

xl. Main	 Differences	 Between	 Symmetric	 and	 Public	 Key	 Cryptography	 –	 Image.	 Retrieved	 from	

http://www.jayitsecurity.com/2013/01/main-differences-between-symmetric-and.html		

xli. Fredman,	 Michael	 L.;	 Komlós,	 János	 (1984),	 "On	 the	 size	 of	 separating	 systems	 and	 families	 of	 perfect	 hash	

functions",	 SIAM	 Journal	 on	 Algebraic	 and	 Discrete	 Methods,	 5	 (1):	 61–68.	 Retrieved	 from	

https://en.wikipedia.org/wiki/Perfect_hash_function		

xlii. Team	Keccak.	(n.d.).	Retrieved	from	https://keccak.team/keccak.html	-	Technical	details	table,	KECCACK	website	

	

 111

8. Economical study

Taking	figure	1	as	a	basis,	adding	the	time	deviations,	the	economical	study	 is	presented	 in	the	
following	image:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 113

9. Appendices

In	this	section	the	simulation	runs	code	and	output	is	attached.	

9.1. Log	listener	files	
The	four	log	listener	files	will	be	attached	as	PDFs	files	 independently	from	this	Memory	paper.	
The	files	are	named	the	following:	

1. Loglistener.pdf	
2. loglistener2.pdf	
3. loglistener3.pdf	
4. loglistener4.pdf	

	

9.2. CSC	files	
The	CSC	format	is	the	one	used	by	Cooja	simulator.	This	format	can	be	converted	into	a	plain	text	
file	 and	 then	 into	 a	 PDF.	 Following	 the	 same	 idea	 than	with	 the	 Log	 listener	 files	 they	will	 be	
attached	 as	 PDFs	 files	 independently	 from	 this	 Memory	 paper.	 The	 CSC	 files	 are	 named	 the	
following:	

1. simulation-1-sink-sender.pdf	
2. simulation-2-sink-sender.pdf	
3. simulation-3-udp-rpl-broadcast-example.pdf	
4. simulation-4-udp-rpl-broadcast-example-PowerTrace.pdf	
5. simulation-5-udp-rpl-broadcast-z1-example-PowerTrace.pdf	
6. simulation-6-udp-rpl-broadcast-sky-example-crypto.pdf	
7. simulation-7-udp-rpl-broadcast-z1-example-crypto.pdf	
8. simulation-8-sink-sender-sky-crypto.pdf	
9. simulation-9-sink-sender-z1-crypto.pdf	

	

