

Escola Tècnica Superior d’Enginyeria
Electrònica i Informàtica La Salle

Treball Final de Màster

Màster Universitari en Enginyeria de Telecomunicació

Conceptual approach for the implementation
 of a Camera data processing algorithm

on a Xilinx FPGA in VHDL

Alumne Professor Ponent
 Ian Riera Smolinska Alejandro González

 1

ACTA DE L'EXAMEN
DEL TREBALL FI DE CARRERA

Reunit el Tribunal qualificador en el dia de la data, l'alumne

 D. Ian Pau Riera Smolinska

va exposar el seu Treball de Fi de Carrera, el qual va tractar sobre el tema següent:

Conceptual approach for the implementation
 of a Camera data processing algorithm

on a Xilinx FPGA in VHDL

Acabada l'exposició i contestades per part de l'alumne les objeccions formulades pels
Srs. membres del tribunal, aquest valorà l'esmentat Treball amb la qualificació de

Barcelona,

VOCAL DEL TRIBUNAL VOCAL DEL TRIBUNAL

PRESIDENT DEL TRIBUNAL

 2

Abstract

Automotive world is in constant technological evolution and one of the fields under

development are the camera monitoring systems for mirror replacement. A simple

substitution does not generate a real value as the processing capabilities of this systems

can provide advanced driver-assistance. Object detection can be implemented in order to

enhance the information provided by the system as well as provide passive security

measures for the vehicles. However, the vehicles are already overloaded with electronic

components and fitting the processing system for this kind of problem might be difficult.

Therefore, an approach to connect the vehicle with a cluster of processor units on the cloud

would allow powerful analytic resources without adding more electronics equipment nor

increasing the power consumption to the car.

CPU’s and GPU’s have been tested both for hosting image processing algorithm. A

potential tool to replace those platforms are FPGA, as they offer parallel computing that

could accelerate the image processing and allow real-time application. However, FPGA

present a low portability either from one platform to the other or between different boards.

In terms of object detection algorithms, convolutional neural networks are the state-of-the-

art technology. However, as mentioned before, FPGA portability among boards is a weak

point and, for a hardware field that is constantly evolving and improving presenting better

and more powerful boards, having to redesign every time the algorithm is not optimal and

might be the reason why there is still not a neural network framework for this kind of boards.

The lack of an optimal framework design and the high resources required for implementing

neural networks, especially in real-time applications, makes the implementation of those

on FPGA a complicated task.

.

 3

Resum

El món de l'automocó està en constant evolució tecnològica i un dels camps en

desenvolupament són els sistemes de monitorització de càmeres per al reemplaçament

de miralls retrovisors. Una mera substitució no genera un valor real, ja que les capacitats

de processament d'aquests sistemes poden proporcionar assistència avançada per a la

conducció. Es pot implementar la detecció d'objectes ja sigui per millorar la informació

proporcionada pel sistema com per proporcionar mesures de seguretat passives per als

vehicles. Tanmateix, els vehicles ja estan sobrecarregats amb components electrònics i la

instal·lació del sistema de processament per a aquest tipus de problema pot ser difícil. Per

tant, un enfocament per connectar el vehicle amb un clúster d'unitats de processadors al

núvol permetria disposar recursos analítics potents sense afegir més equips electrònics ni

augmentar el consum d'energia en el vehicle.

Les CPU i les GPU han estat utilitzades per a la execució d'algorismes de processament

d'imatges. Una eina potencial per reemplaçar aquestes plataformes són les FPGA, ja que

ofereixen execució en paral·lel que permetria accelerar el processament d'imatges i

permetria l'aplicació en temps real. No obstant això, les FPGA presenten una baixa

portabilitat des d'una plataforma a l'altra o entre diferents plaques.

Pel que fa als algorismes de detecció d'objectes, les xarxes neuronales convolucionals són

la tecnologia més avançada. Tanmateix, com s’ha esmentat abans, la portabilitat de les

FPGA és un punt feble i, per a un camp de maquinari que evoluciona constantment i que

presenta cada cop plaques millors i més potents, haver de redissenyar cada vegada que

l'algoritme no és òptim i podria ser la raó per la qual encara no existeix un framework de

disseny per a xarxes neuronals per a aquest tipus de dispositius. La manca d'un marc de

disseny òptim i els alts recursos necessaris per implementar xarxes neuronals,

especialment en aplicacions en temps real, fa que la implementació d'aquestes en FPGA

sigui una tasca complicada.

 4

Resumen

El mundo automotriz está en constante evolución tecnológica y uno de los campos en

desarrollo son los sistemas de monitoreo de cámaras para el reemplazo de los espejos

retrovisores. Una simple sustitución no genera un valor real, ya que las capacidades de

procesamiento de este sistema pueden proporcionar asistencia avanzada a la conducción.

La detección de objetos se puede implementar o bien para mejorar la información

proporcionada por el sistema, o bien para proporcionar medidas de seguridad pasiva para

los vehículos. Sin embargo, los vehículos ya están sobrecargados con componentes

electrónicos y el ajuste del sistema de procesamiento para este tipo de problema podría

ser difícil. Por lo tanto, conectar el vehículo con un cluster de procesadores en la nube

permitiría disponer de recursos analíticos potentes sin agregar más equipos electrónicos

ni aumentar el consumo de energía en el vehículo.

Las CPU y las GPU han sido utilizadas como plataforma para ejecutar algoritmos de

procesamiento de imágenes. Una herramienta potencial para reemplazar esas

plataformas son las FPGA, ya que ofrecen computación en paralelo que podría acelerar el

procesamiento de la imagen y permitir aplicaciones en tiempo real. Sin embargo, las FPGA

presentan una portabilidad baja ya sea de una plataforma a otra o entre diferentes placas.

En términos de algoritmos de detección de objetos, las redes neuronales convolucionales

son la tecnología más avanzada. Sin embargo, como se mencionó anteriormente, la

portabilidad entre placas FPGA es un punto débil y, para un campo de hardware que está

en constante evolución y mejora presentando placas mejores y más potentes, tener que

rediseñar cada vez el algoritmo no es óptimo y podría ser la razón por la que todavía no

existe un framework orientado a redes neuronales para este tipo de placas. La falta de un

marco diseño óptimo y los grandes recursos necesarios para implementar redes

neuronales, especialmente en aplicaciones en tiempo real, hace que la implementación de

estos en FPGA sea una tarea complicada.

 5

Acknowledgements

The initial concept of the project was provided by the supervisor Dr. Prof. Anestis Terzis,

on the framework of the research taken out in the Institute of communication technology at

the Hochschule Ulm to replace vehicle mirror systems with a camera monitoring system

connected to a FPGA cluster in the cloud.

Previous to this project, a CMS with real-time display with a FPGA board was carried out.

The previous board had been replaced for a new one. The current project has been

supported by the doctorand Steffen Jannick Maier, whom provided knowledge and

documentation through all the thesis duration.

The supervisor from the home university, LaSalle – URL, has been Alejandro González

Alzate, who provided support during the competition of this project.

 6

Table of contents

Abstract .. 2

Resum .. 3

Resumen .. 4

Acknowledgements .. 5

Table of contents .. 6

List of Figures ... 8

List of Tables: ... 10

1. Introduction .. 11

1.1. Project overview and goals ... 11

1.2. Requirements ... 12

1.3. Structure of the work .. 13

2. Research framework:... 14

2.1. Camera Monitoring Systems .. 14

2.1.1. Advantages and disadvantages of the CMS .. 14

2.1.2. Base architecture of the CMS .. 17

2.2. CMS standards and regulations .. 18

2.3. FPGA research framework in HS Ulm .. 24

2.4. Starting point for the project .. 25

2.5. Upgraded hardware .. 27

3. Object detection algorithm: .. 29

3.1. Algorithm functionality .. 29

3.2. Day algorithm ... 30

3.2.1. State of the art ... 30

3.2.1.1. Haar .. 30

3.2.1.2. HoG .. 34

3.2.1.3. CNN .. 36

3.2.2. Scientific discussion .. 48

3.3. Low light algorithm .. 50

3.3.1. Differences towards day-light situation .. 50

3.3.2. State of the art ... 51

3.3.3. Algorithm design .. 52

3.3.4. Testing and results .. 56

3.3.5. Conversion to VHDL .. 67

 7

4. Overall concept.. 69

5. Budget ... 79

5.1. Components cost.. 79

5.2. Software cost .. 79

5.3. Manpower cost ... 80

5.4. Total cost .. 80

6. Further development ... 81

7. Conclusions: .. 82

Bibliography: ... 83

Glossary ... 86

 8

List of Figures

Figure 1: CMS replacement for a Class III mirror. ... 14

Figure 2: CMS architecture block diagram. ... 17

Figure 3: Standards and regulations affecting the CMS. ... 19

Figure 4: Class I indirect FOV. .. 20

Figure 5: Class III indirect FOV. .. 21

Figure 6: Class IV indirect FOV. ... 21

Figure 7: Hybrid image processing system ... 24

Figure 8: Hardware setup of the mirror replacement system ... 25

Figure 9: Image obtained with the setup and an overlay example. 26

Figure 10: Set up with the new board ZCU106. .. 28

Figure 11: Example of the expected image result ... 29

Figure 12: Haar-features for eyes. .. 30

Figure 13: Integral image calculation. ... 30

Figure 14: Decision cascade. .. 31

Figure 15: Huang and Vahid performance results. .. 32

Figure 16: Histogram distribution of the gradient values. .. 34

Figure 17: H3 classification border that determine the SVM Source: (30) 35

Figure 18: Convolutional layer of a CNN. .. 36

Figure 19: Example of average pooling layer. ... 37

Figure 20: R-CNN stages. .. 38

Figure 21: Comparison of the different R-CNN test-time speed. 39

Figure 22: YOLO methodology. .. 39

Figure 23: Iteration Time (s) for different number of CPU vs a single FPGA.. 41

Figure 24: Bouganis team comparison on existing FPGA. .. 43

Figure 25: Speedup in comparison with a CPU ... 45

Figure 26: Speedup in comparison with GPU .. 45

Figure 27: CNN design framework. ... 46

Figure 28: Zynq-XC7Z020 and Virtex7 are the 2 options that offers the program.. 46

Figure 29: Sample of low-light situation.. .. 50

Figure 30: a) Image obtained with a daylight camera in night conditions. 51

Figure 31: Binarized sample night image. ... 52

Figure 32: Eroded sample night image. T ... 53

file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855731
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855733
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855734
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855735
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855736
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855738
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855739
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855740
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855742
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855743
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855745
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855746
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855747
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855748
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855749
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855750
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855751
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855752
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855754
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855755
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855756
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855757
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855758
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855759
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855760
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855762

 9

Figure 33: Sample night image after dilation. .. 53

Figure 34: Final image with the overlaid detected point-lights. .. 54

Figure 35: Sample processed image after applying the region of interest restriction. 54

Figure 36: Bounding box around the vehicle, using the lights as reference. 55

Figure 37: Scenario 1. .. 56

Figure 38: Scenario 2 ... 58

Figure 39: Scenario 3 ... 59

Figure 40: Scenario 4 ... 60

Figure 41: Scenario 5 ... 61

Figure 42: Scenario 6. .. 62

Figure 43: Scenario 7 ... 63

Figure 44: Scenario 8 ... 64

Figure 45: Scenario 9 ... 65

Figure 46: Matlab screenshot. ... 67

Figure 47: Folder distribution of the Matlab project. .. 67

Figure 48: Different light condition scenarios. ... 69

Figure 49: Dual vs single camera systems. 70

Figure 50: View from a vehicle circulating in the middle of a 3-lane highway 72

Figure 51: Point of view from of a vehicle driving through a double direction street 73

Figure 52: Down sampling of the object detection. .. 74

Figure 53: Region of interest for the sample input image .. 75

Figure 54: Sample input image ... 75

Figure 55: Grayscale ROI of the input image .. 76

Figure 56: Overlapped image ... 76

Figure 57: Sample of the final image to be displayed .. 77

file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855763
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855764
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855765
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855766
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855767
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855768
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855769
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855770
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855771
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855772
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855773
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855774
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855775
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855777
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855779
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855780
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855781
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855782
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855783
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855784
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855785
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855786
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc6855787

 10

List of Tables:

Table 1: United Nations Regulation affecting CMS. .. 20

Table 2: Features comparison of ZC702 and ZCU106 boards. 27

Table 3: Results for a 320x240 input images. ... 33

Table 4: Results for a 640x480 pixel images. ... 33

Table 5: YOLO vs R-CNN performance. .. 40

Table 6: CNN performance on 4 different platforms. ... 42

Table 7: FPGA devices tested. ... 43

Table 8: Benchmark DNN dataset, functionality and weights size. 44

Table 9: CPU and GPUs used for the comparison. ... 44

Table 10: Resources utilization results. .. 44

Table 11: Comparison of resources .. 49

Table 12: Figure 37 detection results. ... 57

Table 13: Figure 38 detection results. ... 58

Table 14: Figure 39 detection results. ... 59

Table 15: Figure 40 detection results. ... 61

Table 16: Figure 41 detection results. ... 62

Table 17: Figure 42 detection results. ... 63

Table 18: Figure 43 detection results. ... 64

Table 19: Figure 44 detection results. ... 65

Table 20: Figure 45 detection results.. .. 66

Table 21: Set-up components cost ... 79

Table 22: Software cost .. 79

Table 23: Manpower costs .. 80

Table 24: Total cost of the project ... 80

file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105797
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105798
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105799
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105800
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105801
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105802
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105803
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105804
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105806
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105807
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105808
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105809
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105810
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105811
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105812
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105813
file:///D:/Ian/UNI/TFM/0000_TESIS/TFM_Riera_Smolinska_Ian.docx%23_Toc7105814

 11

1. Introduction

1.1. Project overview and goals

The project is carried out in the Institute of communication technology at the Hochschule

Ulm, basing on a proposed project by Dr. Prof Anestis Terzis.

The purpose of this project is to design and concept the methodology for implementing a

data processing algorithm for object detection and tracking in real-time for a Camera

Monitor Systems (CMS). This project takes part on the framework of the research taken

out in the Institute of communication technology department to study the feasibility of using

FPGA cloud clusters for processing CMS in order to replace vehicles mirrors.

The idea of using FPGA is to exploit the parallel execution capabilities that this kind of

boards provide. FPGA can be programmed multiple times by the user to test different

designs.

The starting point of this project is working on an existing system completed previously on

the same research framework, that consists of an FPGA system that displays on real-time

the video images obtained by a peripherical camera. This existing project should have been

upgraded with existing IP blocks1 in order to include the object detection functionality. Due

to an upgrade of the board, a compatibility problem appeared as several IP core blocks of

the existing design and the camera device are not compatible with the new board. To

overpass this setback, the thesis was reconducted to focusing on the conceptual design of

an input-independent object detection algorithm, regardless on if the video images are

provided in real-time by a camera device or if are prerecorded videos uploaded from a SD

card.

The project main goals are:

1. Validate the existing base project.

2. Concept study of the algorithm for object detection

3. Design two different algorithms, for low-light and day-light situations

4. Concept study of the tools for implementing the algorithms in a FPGA

5. Determine the suitability of the system basing on the existing regulations requirements

1 IP (Intelectual Property) blocks are predesigned and validated libraries of code that complete
certain functionalities of common use in FPGA designs.

 12

1.2. Requirements

The Camera Monitoring Systems has to fulfill some timing, resolution and field of view

regulations in order to be suitable for real vehicle mirror replacement. Those regulations

are:

- ISO 16505 (1): Describes the minimum technical requirements that should be fulfilled by

a CMS to replace car mirrors in terms of safety aspects, ergonomic factors, performance

criteria and the testing of such kind of system.

- UN Regulation No. 46 (2): The ISO itself does not provide the legal framework for mirror

replacing. Is the UN Regulation, applied in the European Union, Russia and Japan, the one

that establishes the minimum requirements.

More specific requirements for this thesis are:

- Video object detection and tracking of automotive vehicles and pedestrians, for day and

low light scenarios.

- Using a single FPGA as electronic control unit for the CMS system.

 13

1.3. Structure of the work

The first chapter after this brief introduction, chapter 2, is a description of the research

framework in which this project develops, including a brief introduction to the existing

regulations and existing projects.

The document continues in chapter 3, which presents in its first part the research taken out

on the different existing object detection algorithms and the suitability of those for covering

the daylight scenario. A description of the different object detection algorithms used

nowadays in image processing, a brief look into existing FPGA implementations and

existing tools, and a discussion about its performance are presented. From the extracted

conclusions, the best algorithm is selected and adapted to our problem scenario.

The second part of the chapter 3, focuses on the low-light algorithm design and testing. A

demo algorithm programmed in MATLAB is presented with an example of the performance

obtained.

Chapter 4 focuses on the overall task that should be completed to successfully implement

a CMS with object detection. Includes the scenarios to take into account, the way the

information should be presented.

Chapter 5 proposes the following steps required to continue not just from the thesis, also

for the overall project.

Finally, chapter 7 summarizes the extracted conclusions during the competition of this

thesis.

 14

2. Research framework:

2.1. Camera Monitoring Systems

Camera Monitor Systems are a set of cameras and displays used for automotive mirror

replacement, as seen in Figure 2. A camera captures the indirect field of view (FOV),

forwards the signal to an electronic control unit (ECU) for image processing and the

information is displayed in a screen for the driver. Those systems should provide a clear

view of the back or lateral parts of the car, just as mirrors do, providing the driver with

information on the indirect FOV. (3)

2.1.1. Advantages and disadvantages of the CMS

The main advantages of using those kinds of systems are:

• Improvement on aerodynamics, which leads to a reduction on fuel consumption of

approximately 2%. This amount could be especially significant for mass cargo

transportation, with an economical benefit for the companies due to a reduction of

the petrol needed and environmentally, as heavy-duty vehicles are responsible for

the 27% of the vehicle emissions in the European Union 2 . The improved

aerodynamics would also reduce the noise pollution generated by the mirrors,

especially in vans.

• Improvement on the indirect vision of the driver. Unlike the conventional mirrors,

blind spots are covered by CMS.

2 Statistics from the European Environment Agency (2018)
https://www.eea.europa.eu/themes/transport/heavy-duty-vehicles

Figure 1: CMS replacement for a Class III mirror. Left image shows a conventional mirror placement in
a car. In the right image the mirrors are replaced by cameras and displays, in the same position as the
mirrors. Source: [3, p.5]

 15

• Adaptability to different light situations. Firstly, using CMS the driver would avoid

glare at direct sunlight. Moreover, adding image processing between the camera

and the display, heavy rain or low light scenarios could be treated in order to give

a cleaner image to the driver. Finally, new ADAS (advanced driver-assistance

systems) could be designed and added to the vehicle.

• Information enhancement. Through image processing algorithms, information as

the distance or type of object that is approaching could be added to the display and

warn the driver in danger situations.

On the other hand, CMS have the following potential challenges:

• Display location. The space inside the vehicle might be an issue in nowadays cars

to properly fit the new system. Usually drivers can move the head to get a better

look at the mirrors and increase the FOV; on a display this is not possible, so to

increase the FOV it would be needed to install bigger displays which is a space

problem.

• Human visual system. Another limitation of the displays is that they show a 2D

image, and stereoscopic depth will get lost. Therefore, a distance labelling system

is needed to notify the driver. Another human eye limitation is the change of focus

towards the front drive view and conventional mirrors (far range view), towards

watching a display (close range view). Elder people or those with vision problems,

might have problems to change the focus.

• Economic investment. CMS are way more expensive than simple mirrors, due to all

the electronic components inside. But the positive feeling of security and progress

could be seen for the costumer as a good reason to spend a bit more, especially in

the luxurious segment of vehicles.

 16

• Relocating the components inside the mirrors. Nowadays car mirrors house several

components such as antennas or cameras. Therefore, those components should

be relocated somewhere else in the car, what would might be not as optimum as

actual designs.

• Re-education of the drivers. One of the mains challenges would be re-educating

the driver to watch the display, because even if they would expect the displays to

be somewhere close to where the mirrors were, this might not be the best location.

• CMS components lifespan. CMOS image sensors used have a lifespan around 5

years, while the automotive vehicles have a lifespan of 18 years. Consequently, this

kind of system would require a periodic replacement. This would affect also in terms

of design, as the components should be easily accessible and replaceable.

The subject that can unbalance the pro vs con of the CMS is power consumption. All the

components in a CMS are active components which require power, way different than the

passive mirror. Therefore, if the power consumption is too high, the power needed for

loading the batteries would neglect the saving in terms of aerodynamics. That would make

a requirement to use components and algorithms for the CMS that consume the least

power possible.

 17

2.1.2. Base architecture of the CMS

The main set of a CMS is a camera, an ECU and a display.

Figure 2: CMS architecture block diagram. Left image shows a simple CMS, where the image obtained is sent

only to the display to be showed. In the right image, a more complex signal processing is completed and the

information is not just sent to the displays but also to the ADAS components. Source: [3, p.24]

In a simple CMS (see Figure 2 left), the image is sent to the display after the proper video

processing to correct the imperfections of the camera recording and proper adapting the

image for displaying. Some of the light artifacts that are created in the image lens and

should be processed and corrected are:

• Flares generated due to spurious reflections within the lens system, scattering or

diffraction. Not avoidable. Especially critical in low-light scenarios.

• Ghosts. That kind of artifacts are well localized within the image with characteristic

shapes and can easily lead to misinterpretations of the scene.

• Veiling glare. The rays of a luminous object are not properly bended and steered

and a ‘fog’ or ‘haze’ spreads around the image.

• Directed flares. It often appears like a six-point stars around the light points (sun,

street lights…).

• Aperture ghosts. Defocused replicas of the aperture appear on a straight line in the

image plane.

 18

• Ghost images: An upside-down and same size as the original image reflection

appears and pollutes the image, inducing the appearance of those ghosts.

However, the most effective way to reduce those flares is using high quality lens, lens

hoods and applying a sufficient amount of tilt to the cover glass.

In more advanced systems (Figure 2 right), the information obtained can be sent to other

systems in the car for driving assistance. Warnings, object detection, overlaying images,

cooperation between cameras and radar sensors, are examples of the possibilities that an

advanced CMS could provide. However, the amount of information that is shown over the

direct picture on the display is limited by the standards.

2.2. CMS standards and regulations

A vehicle has to comply with vehicle regulations and requirements, from technical to tax

ratings. In the same way, the installation of CMS systems needs to meet some standard

and regulation requirements in order to replace mirrors in series vehicle production.

Standard ISO 16505:2015 (1) and UN Regulation No.46 (2) are the ones that cover CMS

field.

In order to better understand this requirement, a brief definition of what a Standard and a

Regulation are:

• Standard: “A standard is a document that provides requirements, specifications,

guidelines or characteristics that can be used consistently to ensure that materials,

products, processes and services are fit for their purpose”.3 In this case, it is an

ISO standard, an international standardization settled by the International

Organization for Standardization. The ISO standards are reviewed every 5 years

to reflect the state-of-the-art development. Standards are not directly legally binding,

but are used in court to determine current technological state of the art. If the

manufacturer does not follow them, they will have to prepare a justification. When

a standard is part of a regulation, then becomes mandatory.

3 Source: [3, p.55]

 19

• Regulation: Are the ones to bind the legal framework. In the automotive industry,

there are over 100 regulations regarding different subjects like exhaust emissions,

safety, etc. Those regulations are not always international, so it need to be

regularized for every market. For CMS, the UN Regulation No. 46 was updated. A

need to update the regulation was already stated back in 2009, but there was no

technical background to base on. For that reason, Germany triggered the ISO

16505, and the UN R.46 was parallelly advancing until complete amended entering

into force in August 2016.

The ISO 16505:2015 standard as well as UN R.46 form the basis for the CMS requirements.

However, both contain cross references to additional standards and regulations that must

be as well followed. From electromagnetic requirements to environmental influences, CMS

have to take into consideration a wide field of requirements.

Figure 3: Standards and regulations affecting the CMS. Source: [3]

 20

Table 1: United Nations Regulation affecting CMS. Source: [3]

United Nations Regulation CMS relevance
Uniform provisions concerning the approval of vehicles with regard to

No. 10: “Electromagnetic compatibility” EMC compatibility of the complete CMS

No. 21: “Interior fittings” CMS components behavior in case of

impact with occupants or pedestrians

No. 48: “Installation of lighting and light-

signaling devices”

Position of the direction indicators (e.g.,

currently part of the mirror housing)

No. 95: “Protection of the occupants in the

event of a lateral collision”

Relevant for the characteristics of the in-

vehicle CMS components, e.g., displays

No. 125: “Forward field of vision of the

motor vehicle driver”

Position of the CMS components within

driver’s forward field of view

The UN R. 46 establishes the requirement not just for CMS but also for conventional mirrors.

One aspect that share in common both indirect vision devices, are the range of FOV that

should be covered. These requirements need to be taken into account for establishing the

region of interest (ROI) that will be displayed on the driver’s screen. This project focus on

the standard car mirrors, specifically in the class I mirror. Figures 5 and 6 show the FOV

that those mirrors or CMS should cover.

Figure 4: Class I indirect FOV. Those mirrors should cover an area of 20 meters width
up to 60 meters straight away behind the driver’s ocular points. Source: [1]

 21

The ISO and the regulation cover several requirements related to camera and display

devices. As this project does not include designing and installing on a vehicle the physical

devices, an example of these requirements is presented without specific details. Relevant

requirements for this project are highlighted:

• Mechanical: In terms of passive safety in a crash scenario, the camera devices

mounted should deflect in case of impact with an object, may break but without

leaving sharp edges and camera lens should not break.

• Monitor Arrangement: The position of the display monitor respect the driver’s ocular

reference point of view is determined by a set of required angles to be met. Left side

field of vision should be displayed left of the ocular reference point and vice versa.

• Monitor Isotropy: The monitor shall conform to optical requirements over a relevant

range of viewing directions.

• Luminance, contrast, gray scale and color rendering. Night conditions require a

specific luminance contrast.

• Artifacts. Smear, blooming and flickering are bounded.

Figure 5: Class III indirect FOV. Those mirrors should cover the side indirect fov up
to Source: [1]

Figure 6: Class IV indirect FOV. Source: [1]

 22

• Sharpness and Depth of Field: The CMS shall enable the driver to observe the object

space and perceive the content shown within the range of interest with enough

resolution to discern the details. Geometric distortion is bounded.

• Magnification Factor: The minimum and the average magnification factors of the

CMS, in both horizontal and vertical directions are established.

• MTF (Resolution): Defines the minimum distinguishable details observable in an

image as is represented by the MTF10. For reasons of simplicity the requirement is

defined assuming an aspect ratio of 1:1:

• Magnification Aspect Ratio: In the required field of view, the difference between the

average magnification factor for horizontal and vertical direction of a CMS shall

satisfy the established requirements.

• System availability. The set-up time from cold start, fast reconnection and turn-off

times are also established. As the system is critical for driving, a warning system in

case of malfunction should notify the driver. FOV should we always displayed on

screen while ignition is on.

• Point Light Sources: Two light source with an intensity of 1750 cd and a distance

of 1.3 m should be distinguishable as two different light sources at a distance of 250

m. This requirement is relevant for the low-light situation algorithm, which relies in

point light sources detection.

• Frame rate: The minimum frame rate of the system shall be at least 30 Hz. At low

light conditions or while maneuvering at low speed, the minimum frame rate of the

system shall be at least 15 Hz. The conventional mirrors are a real-time tool, therefore

CMS should behave as close as possible to real-time.

• Image Formation Time: Maximum 55 ms at 22ºC±5ºC.

• System Latency: The latency shall be lower than 200 ms 22 °C ± 5 °C.

The time requirements are the most relevant ones for this project, especially the frame rate.

The execution times of the introduced image processing algorithms must be low enough to

keep the frame rate inbounds of the specified limits, to keep it a real-time application.

 23

• Overlays: Only temporary, transparent and related to rearward driving-related

information overlays are allowed. The maximum area a single overlay can cover is

2,5 % of the FOV, 15 % the complete obstructions in Class I and 10 % in the others.

These obstructions include bodywork, heating elements, etc. This requirement is

critical in the object detection scenario, as the amount of information highlighted and

overlaid on the image should be restricted.

The ISO 16505:2015 also proposes testing methods for the CMS, in order to test the

resolution, rendering and sharpness requirements. Test charts, like the chessboard used

for contrast, are placed in front of the camera device.

 24

2.3. FPGA research framework in HS Ulm

The research carried out at HS Ulm focus on using FPGA as the ECU for the CMS. Aside

from the first logical step which is using one single FPGA, the long-term goal is to concept

a CMS on which most of the image processing would run on the cloud, being the central

processors a cluster of FPGAs (Figure 7). The vehicle would send the information to the

cloud, where the algorithms would run and return the processed information for the ADAS

and virtual reality displaying. With a powerful enough computational power, AI could be run

to predict vehicle behaviors and trajectories from the images obtained.

Figure 7: Hybrid image processing system proposed by Dr. Prof. A.Terzis. (4) The car would mount the camera
devices and displays, but the processing will be carried out at the cloud. The information is sent via Wireless
interface from the car to the FPGA cluster.

Some of the benefits that this hybrid system would provide are:

• Minimization of the power consumption in the car.

• Increased computational power.

• Expandable and upgradable functionality.

• Redundant system. New bottleneck would be the communications, but the irruption

of the 5G communications and the IoT may provide the right infraestructure.

 25

2.4. Starting point for the project

In the framework of the research taken out at HS Ulm, a first prototype CMS using a FPGA

board had been implemented. This system is a generation 1 CMS, which means that its

functionality was just to display a real-time image obtained through the camera. The

following step, the goal of this thesis, was adding object detection algorithms to enhance

the information showed on the display.

The system shown in Figure 8 used a ON Semiconductor VITA-200 Image Sensor with a

1920x1080 resolution and up to 92 fps. The camera connects with an Avnet FMC-Module

that has HDMI input and output, LCED-interface for camera connection and FMC-Interface

for ZYNQ-Board (FPGA) connection. As a display, a standard 24-inch PC Monitor with

HDMI-Interface connection is used. The main component of the CMS acting as an ECU, is

a ZYNQ-7000 SoC Evaluation Board (ZC702).

The code for this CMS system includes preprocessing of the image such as RGB to YCbCr

transformation, Chroma resampling from 4:4:4 to 4:4:2 to reduce saturation and cutting out

the ROI, reducing the size of the image to 1024x768 pixels. With this compression an image

4 times smaller is obtained, what fastens the data processing.

Figure 8: Hardware setup of the mirror replacement system [HSU]

 26

An overlay is also included to frame objects of interest as shown in Figure 9.

The system provided a 30-fps rate, which fulfills the regulations requirements and can be

considered real-time. In terms of energy, the power consumption is around 2 W, and in

terms of board usage, only a 7% of the Flip-Flops, a 12% of the LUTS, 1% of Memories

and 5% of the DSPs are used. Therefore, most of the board resources stay available for

additional image processing algorithms.

Figure 9: Image obtained with the setup and an overlay example. [HSU]

 27

2.5. Upgraded hardware

The thesis starting point was using the existing design and, by IP-Cores, add the object

detection algorithm. However, the FPGA board used as ECU was upgraded to a Xilinx

Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit, which implied transferring the old set up

and code to the new board.

First, a slight comparison of the boards to understand the reason of the upgrade. The

complete board information and schematics can be found in Xilinx webpages for the boards

ZC702 (5) and ZCU106 (6).

Table 2: Features comparison of ZC702 and ZCU106 boards.

 ZC702 ZCU106

System logic cells (k) 85 504

Memory (Mb) 4,9 38

DSP Slices 220 1,728

Maximum I/O Pins 200 464

As can be observed in the Table 2, the resources that the new board can offer is about 8

times those the ZC702 have. In terms of I/O pins, it doubles the number. Moreover, the

ZCU106 board comes with a PCIe interface.

In terms of Design Tools, both boards use the Vivado Design Suite tool, but the ZCU106

comes also with Xilinx SDK and PetaLinux tools. This last one allows deploying a Linux

operating system on the Xilinx platform.

 28

Despite being a more powerful board and with much more resources, the replacement of

the board caused a compatibility problem as several IP core blocks of the existing design

and the camera device are not compatible with the new board. To overpass this setback,

the thesis was reconducted to focusing on the conceptual design of an input-independent

object detection algorithm, regardless on if the video images are provided in real-time by a

camera device or if are prerecorded videos uploaded from a SD card.

Figure 10: Set up with the new board ZCU106. The
connections are the same as with the previous board.

 29

3. Object detection algorithm:

3.1. Algorithm functionality

The algorithm should detect and track vehicles such as cars, trucks, motorbikes and buses,

as well as pedestrians and bicycles. In first instance, those objects should be highlighted

in order to notify the driver. An increased functionality could be a visual color notification to

inform about the distance in which those objects and therefore the potential thread that

represent.

Figure 11: Example of the expected image result

Two different algorithms, one for daylight scenario and one for a low-light scenario are

approached, as it is not possible to use only one for both scenarios with a single camera.

With a second night-vision camera might be possible to use a single algorithm, but it is not

the approach of this research as one of the considered options is to use the parking

assistance camera that many cars already incorporate as input device.

Establishing a control algorithm that decides when to use the daylight approach or the low-

light one is not part of this thesis. A luminous threshold would have to be determinate as

well as the minimum times to consider that has been a change of light environment more

than a punctual fluctuation of light.

 30

3.2. Day algorithm

3.2.1. State of the art

From the different algorithms that exist for object detection, in this thesis has been taken

into account the Haar, HoG and CNN tools as options to implement the design.

3.2.1.1. Haar
In 2001 the first object detection framework to provide real-time competitive detection rates

was created by Paul Viola and Michael Jones, known as Viola-Jones object detection

framework. (7) The algorithm presented a high detection rate in real-time for the face

detection problem.

The algorithm is based on Haar-like features and integral images. Haar-like features equals

to the pixel sum in the white rectangles minus the pixel sum of the black rectangle patrons.

The feature value is determined by comparing the feature sum to the feature threshold.

The feature set and threshold of an object are generated by training a large number of

images with the AdaBoost algorithm, which determine the typical features of a specific

object. For each object, a big number of features are calculated. A frontal face contains up

to 2135 Haar-features, like the ones showed in Figure 12 for the eyes. The algorithm

divides the image in smaller sub-windows and calculates the Haar-features on each one of

them.

To efficiently calculate the pixel sum of an arbitrary rectangle, the algorithm uses an integral

image as an auxiliary data structure. In an integral image, each point stores the pixel sum

of a rectangle, starting from the top left corner to this point. With the integral image,

calculating the sum of an arbitrary rectangle can be done in constant time, e.g.,

Sum(R1)=P4−P2−P3+P1, as shown in Figure 13.

Figure 12: Haar-features for eyes.
Source:[9] Figure 13: Integral image calculation.

Source:[9]

 31

In order to reduce the computation due to the huge number of features, a decision cascade

is implemented, as seen in Figure 14.

Figure 14: Decision cascade. T = True F = False. Source:[9]

The Haar features are divided into several stages. For example, the frontal face has 22

stages and each stage has from 3 to 200 Haar features. The algorithm calculates the

feature value for each feature within one stage and then sums the values to get the stage

sum. If the stage sum passes the stage threshold, the algorithm continues to the next stage.

Otherwise, the algorithm terminates and rejects the current examine window. If an examine

window passes all stages, the algorithm accepts the current window meaning that the

object is found.

Finally, the AdaBoost classifier extracts the most relevant features and reduces the

computation time.

In terms of FPGA implementations, exist several papers focused on face detection, which

might be useful for the pedestrian detection but not for the vehicle detection part. However,

the results that provide give an orientation of the potential on using the Haar features for

our problem.

Irgens, Bader, Lé, Saxena and Ababei (8) present an implementation that achieves a frame

rate of 4,4 fps for detecting up to 10 faces at once, with input images of 320x240. The

implementation was completed in a low budget board, which encourages to believe that a

more powerful board could provide better results and allow a bigger number of detections.

 32

Chen Huang and Frank Vahid (9) present an implementation also for eye, face and multiple

face (complex face = 12 faces) detection and test different number of classifiers. Each

classifier has different amount of Haar features.

As seen in Figure 15 the desktop version gets a performance close to the one that can be

obtained with a 1/12 classifier in a FPGA. Being able to run up to 16 classifiers in parallel

on FPGA, the increasement on performance by using a FPGA is huge. Among their

conclusions, they state that an IP (soft core for object detection utilizing a static or possibly

parameterized VHDL or Verilog description would not cover the tremendous difference

among generated designs like the one described in their paper. As such, custom

generators, including custom design space exploration, may become increasingly

necessary for complex applications to be useful across a range of FPGA devices.

Cho, Mirzaei, Oberg and Kastner (10) test two different implementations of the Viola-Jones

algorithm, with input images of 320x240 and 640x480 pixels.

Figure 15: Huang and Vahid performance results. Comparison of
a single face, single eye and 12 faces detection Source [9]

 33

From the previous papers it can be extracted that Viola-Jones implementations in FPGA

exist but are mainly oriented to face detection. Therefore, to apply Viola-Jones to our

problem, the Haar features for all the objects should be computed and that would increment

considerably the computation required and therefore will make the frame rate even lower

than the ones obtained for face detection. Moreover, the resolutions used in the presented

papers were way smaller than the ones that a CMS would provide. Therefore, downscaling

the image would be required as well. However, in all cases exists an improvement in terms

of performance and low power consumption.

Table 3: Results for a 320x240 input images. Source: [10]

Table 4: Results for a 640x480 pixel images. Source: [10]

 34

3.2.1.2. HoG
The HoG or histogram of oriented gradients, bases as its names says in gradients.

Gradients are vectors that point the direction of pixel intensity variation. Direction and

magnitude are calculated, using the equations (1) and (2). Usually the object edges present

a larger magnitude.

The values of the pixels are grouped in 8x8 cells. The values of the 64 values of the pixel

cell are distributed in a 9-bin histogram, ranging between 0 and 180 degrees, as seen in

Figure 16.

Figure 16: Histogram distribution of the gradient values. If a value stands
in the middle of 2 bins, for example 10, it distributes equivalently its value
between the 2 neighbour bins, in this case 0 and 20. Source: (37)

(1)

(2)

 35

The histogram values are then classified with a support vector machine (SVM).

Being the original algorithm with the maximum-margin hyperplane as decision border

(Figure 17), non-linear classifiers can be applied, minimizing the error.

A good application for the HoG is pedestrian algorithm, what would cover the respective

part of our project, remaining the vehicle part to be solved.

Lee, Son, Choi and Min (11) present and implementation that can detect pedestrians and

vehicles at 33 fps on 640x480 pixel resolution images. However, no detection rate nor

specification of the number of objects that the system can detect is mentioned.

Hahnle, Saxen, Hisung, Brunsmann and Doll (12) present a multiscale pedestrian detector

to detect up to 18 different pedestrian sizes with a frame rate of 64 fps on images with

1920x1080 resolution.

Globally, high resolution and frame rate implementations can be achieved on a FPGA, but

mainly focused on the pedestrian detection problem. The detection of different classes of

objects has not been tested and therefore would be needed to adapt and test the algorithm

to check its feasibility, and a decrease in efficiency.

Figure 17: H3 classification border that determine the SVM
Source: (30)

 36

3.2.1.3. CNN
The cutting edge of object detection are the convolutional neural networks. CNN try to

mimic the human neuronal connections done to recognize and classify images. Image

classification is the task of taking an input image and outputting a class (a cat, dog, etc.) or

a probability of classes that best describes the image.

When we see an image, we are able to immediately characterize the scene and give each

object a label. The input for computers, is an array of pixel values, usually in terms of width

x height x dimension (3 if it’s an RGB image, 1 if it is grayscale). Each of these numbers is

given a value from 0 to 255 which describes the pixel intensity at that point. The idea is that

from this array of numbers it will output the probability of the image being a certain class

(.80 for cat, .15 for dog, .05 for bird, etc.), and label it as the more probable.

The human neuronal cells responsible for image recognition get triggered by specific kind

of features, for example with some cells get triggered by vertical edges and others by

horizontal edges. The same way, the computer is able perform image classification by

looking for low level features such as edges and curves, through different layers. Series of

convolutional, nonlinear, pooling (down sampling), and fully connected layers, provide the

output.

The first layer in a CNN is always a Convolutional Layer. A filter, also known as kernel,

formed by weights and with a considerably smaller size than the input image but respecting

the dimension, is sliding and convoluting with the input image.

As the filter is sliding, or convolving, around the input image, it is multiplying the values in

the filter with the original pixel values of the image. These multiplications are all summed

up into a single number output. The resulting matrix is called activation map or feature map.

Figure 18: Convolutional layer of a CNN. The kernel
is convoluted over the input image. Source: (37)

 37

Several convolutional layers can be used in the CNN, together with ReLU (Rectified Linear

Units), pool and dropout layers. After each conv layer, it is convention to apply a nonlinear

or activation layer. The purpose of this layer is to introduce nonlinearity to a system that

has just been computing linear operations during the convolutional layers. The ReLU layer

applies the function f(x) = max(0, x) to all of the values in the input, changing all the negative

values to 0.

Pooling layers take a filter (normally of size 2x2) and a stride of the same length, and then

applies it to the input values and outputs the maximum number in every subregion that the

filter convolves around. This case is known as the max-pooling, but also average pooling

(Figure 19) and L2-norm pooling can be used. The intuitive reasoning behind this layer is

that once we know that a specific feature is in the original input image, its exact location is

not as important as its relative location to the other features.

Dropout layers have a very specific function in neural networks. One problem can appear

when after training, the weights of the network are so tuned to the training examples they

are given that the network doesn’t perform well when given new examples. This layer drops

out a random set of activations in that layer by setting them to zero. This layer is only used

during training, and not during test time.

The final layer of the CNN is the fully connected layer. This layer takes the input from the

previous layer and outputs an N dimensional vector where N is the number of classes that

the program has to choose from, and each number represents the probability of a certain

class. To calculate the probability, it looks at the output of the previous layer and determines

which features most correlate to a particular class. For example, if the program is predicting

that some image is a bird, it will have high values in the activation maps that represent high

level features like wings or a beak.

Figure 19: Example of average pooling layer. Down sampling
by averaging the values of a 3x3 cell. Source: (37)

 38

The most important part of the CNN is the training. Before the CNN starts, the weights are

randomized. The filters don’t know how to look for edges and curves. The way the computer

is able to adjust its filter weights is through a training process called backpropagation.

During the training, labelled images are introduced into the system. As the CNN knows that

the result should be probability of 1, it takes the calculated value with the existing weights

and calculates the mean square error between the expected value and the obtained one.

By optimization, the CNN calculates the optimal weights with a set of training images.

Once the CNN is trained with the training dataset, the test image dataset is used to check

the right behavior of the network.

CNN are mainly focused on single object image classification, but this project focuses on

multiple object detection. This problem, which object detection researchers met before, is

solved by using region-based CNN, R-CNN. The original image is divided in possible

regions of interest, and the CNN runs over those regions, as seen in Figure 20.

R-CNN however calculates usually up to 2000 regions of interest (13), which requires a lot

of time and therefore is not suitable for real-time execution.

In order to overcome those limitations, Fast R-CNN and Faster R-CNN where created.

Instead of getting the ROIs of the original image, this one is the input to the convolutional

layer and the ROI are decided from the resulting feature map. As the Fast R-CNN uses

selective search to get the ROI, the Faster R-CNN uses a parallel network to obtain them,

and therefore the system is getting trained constantly.

The increasement in terms of speed in the Fast and Faster R-CNN is considerable, as can

be seen in Figure 22, which makes R-CNN suitable for real-time situations.

Figure 20: R-CNN stages. Division by the R-CNN into Regions of Interest. Source: (13)

 39

Most of the detection systems apply the model to an image at multiple locations and scales

in order to detect different object sizes. That usually implies dividing the original image into

smaller ones and running the neural network over them. High scoring regions of the image

are considered detections. An alternative approach is taken by the You Only Look Once

algorithm, YOLO (14). A single neural network is applied to the full image. This network

divides the image into regions and predicts bounding boxes and probabilities for each

region. These bounding boxes are weighted by the predicted probabilities to obtain the final

detections, as seen in

Figure 21: Comparison of the different R-CNN test-time speed. Fast R-CNN reduces by 21 the test-
time, and the Faster R-CNN up to 240 times respect the original network design. Source: (13)

Figure 22: YOLO methodology. Bounding boxes and probabilities are calculated separately and then merged
to propose the final detection bounding box. Source: (14)

 40

YOLO presents a higher frame rate than R-CNN, but it presents problems on detecting

small objects within the image, by constraints of the algorithm architecture.

Every CNN can be defined with different number and distribution of layers, different weights

and object classes to be detected. Many CNN exist, but most of them cover many more

object classes than the ones we need for our project, which translates into a missusage of

resources. Therefore, the best way to get the ideal CNN is to create and adapt a new one

for our specific problem, with our own dataset. Designing and training your own CNN from

scratch can take weeks. That is the reason why in the context of machine learning, it is

common to use the concept of “transfer learning”, which is using the information obtained

by solving a similar problem and apply it to the new problem, in this case the process of

taking a pre-trained model and “fine-tuning” the model with your own dataset. Keeping the

already calculated weights, the last layer is changed for the custom classifier and the

network is trained normally.

In terms of resources, CNN require a lot of them and running one on an average computer

in real-time is not possible even with GPU and CUDA parallel computing. Therefore,

software desings require expensive equipment and a big power consumption. FPGA’s, with

the parallel computing, could be a good hardware solution and a potential tool for real-time

application.

Table 5: YOLO vs R-CNN performance. YOLO offers a much higher frame rate than R-
CNN, and is suitable for real-time situations. The mAP is the common metric for object
detection algorithms and represents the average precision of the system. Source: [14]

 41

Jason Chong’s presentation (15) presentation on machine learning compared the iteration

time of different number of CPUs working together in front of one single FPGA. As can be

seen in Figure

Figure 23: Iteration Time (s) for different number of CPU vs a single FPGA. The speedup by using an FPGA is
considerably remarkable.

In the same presentation, a proposal system for object detection in real-time is presented,

but using a cluster of FPGA instead a single one.

However, CNN in FPGA is still a combination under development. The interest on

combining them is real, to the point that Xilinx has spend human and economical resources

on testing them. Xilinx recently acquired DEEPHi (16), a technological company

specialized in FPGA-based deep learning real-time video recognition systems, which cover

among others pedestrian and vehicle tracking. A Xilinx development team presented as

well a YOLO implementation on FPGA (17) at the Annual Conference on Neural

Information Processing Systems (NIPS) 2017. They achieved 16 fps with a precision of

50%, using a FPGA adapted version of the Tiny YOLO, a light version of YOLO. They

provided an open source code of the implementation, but runs on a special framework for

Python that not all FPGA’s support. (18)

 42

Ford and Xilinx (19) did work as well together for 10 months on a CMS fpga system, using

in this case multiple cameras, SDSoC C++ algorithms and obtaining a frame rate of 12

frames per second.

Xilinx also presents a Machine Learning demo using YOLO algorithm on SDSoC 2018.3

for the ZCU102, ZCU104, Ultra96 and DPB1303 FPGA boards.

A paper by Zhao, Niu, Wu, Luk and Liu (20) presented an FPGA implementation of the

YOLO algorithm, comparing it with other 3 platforms and obtaining the results observable

in the Table 6.

Their implementation offered a frame rate of barely 1 frame per second, which wouldn’t

really suitable for our problem. Moreover, even if FPGA performs better than a CPU, GPU

with CUDA it is way faster.

Another group that is researching on neural network deployment over FPGA, is the

Christos Bouganis team at the London College. As seen in Figure 24, a comparison of the

different neural networks implementations existing nowadays classifying them with 5

characteristics.

Table 6: CNN performance on 4 different platforms. It compares the results obtained with a FPGA
vs those obtained with a CPU/GPU.

 43

In the previous comparison, the implementation that presented a theoretical major

portability is the DnnWeaver (21). In this paper a a framework that automatically generates

a synthesizable accelerator for a given FPGA-DNN pair from a Caffe (22) deep learning

framework. In order to test their system, a benchmark testing on the three different FPGA

boards shown in Table 7 was completed.

Figure 24: Bouganis team comparison on existing FPGA neural networks implementations. Of the five
characteristics that are presented, the most weakened and at the same time more critical from a personal
point of view is the FPGA portability. Most of the existing implementations are locked to the used FPGA
model and not portable to the chosen board. (30)

Table 7: FPGA devices tested. Source: (21)

 44

The DNN used and its functionality are the ones seen in Table 8, and the CPU and GPU

used for comparison the ones seen in Table 9.

The first evaluation taken out is in terms of resource usage, as seen in Table 10.

Table 8: Benchmark DNN dataset, functionality and weights size. (21)

Table 10: Resources utilization results. (21)

Table 9: CPU and GPUs used for the comparison.
(21)

 45

In terms of speed-up comparing to a CPU, the results are the ones presented in Figure 25.

On the other hand, comparing with a GPU (NVIDIA GTX650Ti), the following results seen

in Figure 26 are obtained.

Figure 25: Speedup in comparison with a CPU (Intel Xeon E3-1246) of the 3 FPGA boards and a
smartphone ARM A15 processor. Some of the networks perform worst on the CPU than the
FPGA. (21)

Figure 26: Speedup in comparison with GPU (Nvidia GTX 650Ti) of the 3 FPGA boards and 2 GPU's.
The GPU's generally outmark the speedup results obtained with the FPGA's.

 46

Muhammad K A Hamdan presents a vhdl auto-generation tool for CNN on FPGA (23). The

tool presents a grafic interface in java in where the user can define up to 25 layers within

the convolutional, pooling, fully-connected and LRN types, as seen in Figure 27.

However, the existing tool allows only to chose between two different board models as

seen in Figure 28.

Figure 27: CNN design framework. The values that can be chosen for each column are
within the range of the shown values in the screenshot. Therefore, the freedom of design
that this tool offers is constrained.

Figure 28: Zynq-XC7Z020 and Virtex7 are the 2 options that
offers the program. The skeleton menu shows a deactivated
option for GPUs, as well as RNN networks in the network
submenu, as options to be further developed.

 47

One programming language that is often used for CNN is Python. Therefore, having a

Python framework for FPGA sound like the right idea, and that is what Xilinx did with PYNQ

(24). For example, in the demonstration in NIPS of the tiny YOLO algorithm mentioned

before (17), they used a bineural network based on the FINN (25) framework over the

PYNQ platform.

However, there are only three officially supported boards: Pynq-Z1 from Digilent, Pynq-Z2

from TUL and ZCU104 from Xilinx. An additional community board, the Avnet Ultra96, also

supports PYNQ. Besides the officially suported boards, it is stated in the PYNQ webpage

that it can be used on other boards, as long as they met the following requirements:

• Any Zynq/Zynq Ultrascale+ device (including single-core)

• >=512 MB DRAM

• SD Card (>=8GB) or other bootable source

• Network connection (Ethernet or WiFi)

• UART

• USB

If the board fulfills these requirements, the image of PYNQ needs to be prebuilt. For that,

an external board repository is needed, with the specs file and board specific packages.

 48

3.2.2. Scientific discussion

From the state-of-the-art analysis several conclusions can be extracted. First of all, in the

Haar-HoG-CNN comparison, the last ones are the most suitable for detecting multiple class

objects. The Haar are mainly focused on face-recognition and the HoG on pedestrian

detection, while CNN can be designed to detect multiple classes of objects.

In terms of CNN, the first discussion is the usage either of sliding windows vs the single

shot algorithms, as YOLO. For an application in real-time as is the camera monitoring

systems, fast processing times are important. Sliding windows can provide a more precise

result in images with multitude of objects of different sizes, but the execution times can be

of multiple seconds. As our problem, presents a limited number of objects to be detected

in the region of interest for its characteristics, this high precision high detection range can

be sacrificed in favor of speedup. As seen in the Table 5, YOLOv2 algorithm for images of

544x544 pixels provides a frame rate of 40 frames per second and precision of 78.6, both

higher than those obtained with R-CNN (sliding windows). The second ones offer a frame

rate in optimal cases around 5 frames per second, so they should be discarded for our real-

time scenario, and therefore YOLO be the main focus.

Independently of the CNN chosen, the Hardware used and the Software approach, the

training of the neural networks to obtain the optimal weights should be always executed

beforehand in a software environment. This training can take even a week, but the classes

and input objects for the training can be personalized so it is a necessary and useful time

investment.

In terms of FPGA compatibilities and performances with CNN, the existing results are not

yet promising. The Xilinx NIPS presentation (17) provided a frame rate of 16 frames per

second but with a 50% precision. The Zhao et al. (20) got a frame rate lower than 2 frames

per second with the complete version of YOLO, which improves the precision, but this

frame rate would not cover the real-time requirement of this problem. Real-time is a critical

requirement, and high precision detection it is not by itself in order to make a CMS

functional and legal to drive around with, but the idea is to enhance the information that a

simple CMS or mirror would give and therefore high precisions of =>80% would be

recommended.

Comparing the resources available in the board used in the HS Ulm and those of the

DNNWeaver (21) and Zhao et al. (20) papers, an approximate estimation of the behavior

that this board could provide can be obtained.

 49

Table 11: Comparison of the resources the different board equipped. In blue, the ones used in DNNWeaver
paper, in green the one used in HS Ulm and in orange the one used in Zhao paper. The ZCU106 board should
provide a slightly better performance than the Altera Arria.

It can be inferred that the ZCU106 would provide a behavior slightly better than the Altera

Arria board and that the ZC706 a behavior better than the ZC702 and close to the Altera

Stratix one. In Figure 25, Altera Aria provided a speedup 10 times bigger than the ZC702

and 3 times bigger than Altera Stratix, so it could be approximated that the ZCU106 could

provide a speedup 4-5 times bigger than the ZC706. As the ZC706 offered with YOLO a

frame rate near to 2 frames per second, that means a performance around 8-10 frames

per second. Those numbers could be enough for the object detection, if the real capacities

of the board meet this approximation.

In order to find the real capacities of the board, a CNN system should be implemented on

it. The CNN vhdl automation tool (23) offered a too constrained tool, and after trying the

demo code on Vivado 2018.3, the resulting project synthesized and compiled but produced

no behavior at all. The schematic showed just a row of output buffers connected to VCC

and GND. Being either due to the under-development version of this tool or an

incompatibility with the Vivado tool, it would not seem the best option to implement the

desired CNN.

Considering that Python is the most intuitive and easy-access tool for CNN, using PYNQ

platform seems the best approach. However, the board used in HS Ulm (ZCU106) is not

one of the officially supported boards and consequently running on it the PYNQ

environment would require building an image for this board, if possible.

Even if the goal of this project is approaching the usage of FPGA boards for CNN, both

papers of DNNWeaver (21) and Zhao et al. (20) present way better results with the usage

of GPU’s, which also happen to be way cheaper than a FPGA with similar results. Still, the

FPGA outcomes GPU’s in terms of power consumption and this could be the main

advantage on it.

Xilinx Zynq ZC702 Altera Stratix Altera Arria 10 GX115 Xilinx ZCU106 Xilinx Zynq ZC706

LUTs (K) 53 172 427 504 218

Flip-Flop (K) 106 690 1708 460,8 437

BRAM (KB) 630 5035 6782 11000 19200

DSPSlices 220 1590 1518 1728 900

 50

3.3. Low light algorithm

3.3.1. Differences towards day-light situation

In low light situations, the information that presents the input image obtained through a
daylight camera is mainly light sources, either from vehicles, street lights, building windows
or even the moon, as seen in Figure 29.

Therefore, as the features that could be detected by the daylight situations are not captured
due to the lack of light, the same algorithms can’t be used. Moreover, pedestrians are not
detectable as they don’t present any source of light. However, low-light scenarios can’t be
ignored, as it is in the night time when visibility for drivers is the lowest and more risk of
suffering an accident exists.

Even if detecting which concrete vehicle is approaching would be a complicated issue, the
sole detection of an object approaching will provide an increased input of information
compared to the conventional mirrors. Moreover, the blinding caused often by the light
haze of the following vehicles would be reduced.

Another complication in the low-light scenarios compared to the daylight ones, is the
appearance of reflections on the ground and the presence of irrelevant light sources as the
streetlights or tunnel lights might be. In consequence, the implemented algorithm should
be able to discern the relevant information.

Figure 29: Sample of low-light situation. The light sources and its reflections are
the only visible thing. Besides the two frontal lights of a vehicle, three street
lights are visible. The artifacts that appear in this picture won't be present in a
CMS as the cameras and preprocessing used in those systems reduce the
presence of those.

 51

3.3.2. State of the art

Most of the existing vehicle detection systems and methods mainly focus on vehicle
detection on daytime light conditions with a daylight camera sensor as an input. However,
in low-light conditions this kind of cameras obtain pretty bad quality images, as seen in
Figure 30.

In order to work on low-light scenarios, Wang et al. (26) proposed using infrared cameras
and apply deep networks classifiers as is usually done in daylight scenarios. The results
showed an accuracy of 92% and a frame rate of 25 frames per second.

However, the scope of this project was to use a single camera for all-kind of light scenarios.
Lopez et al. (27) focus on the single camera as well, in this case to design an intelligent
light beam control. This project included detecting vehicles by detecting their light sources.
Reflections on the floor and street lights made the detection in a single frame harder, so
they added a temporal coherence analysis to detect objects in multiple frames, by
analyzing the steadyness of the detection confidence on consecutive frames. With this
technique they achieved a precission of 96 % and a frame rate of 5 fps when using only
multiple frame detection and 50 fps when using only single frame detection.

The source light detection was completed by detecting blobs (binary large objects), seen
in the image as white objects on a black background. Basing on this approach, blob
detection, a self-created algorithm is designed in the next chapter.

Figure 30: a) Image obtained with a daylight camera in night conditions. Only a light of a vehicle approaching
can be distinguished b) Image obtained with an infrared camera in night conditions. A vehicle is clearly
recognizable. Source: [26]

 52

3.3.3. Algorithm design

A demo implementation of the low-light algorithm in Matlab is presented in the following
lines. Designing it in Matlab would allow to easy test, correct and optimize the algorithm
concept and functionality, using the multiple predefined functions for image processing that
the program offers. But of course, the goal is to implement it on a FPGA. Matlab have an
add-on that theoretically generates the vhdl code from a Matlab code, and therefore it could
ease the translation from one language to another.

As the low-lights images will basically show a point light sources on a dark background,
the problem can be converted into a circular object detection problem. A similar approach
to the coin detection algorithm that is often used for starting using image analysis in Matlab
can be done.

The first step, should be downsizing the image to reduce the processing time. Next step
should be converting the input image into a binary image, just black and white, as seen in
Figure 31. First, the image is converted to grayscale and then a threshold is applied to
binarize the image.

Figure 31: Binarized sample night image. At first sight the two vehicle lights can be easily recognized. In addition,
the street lights and reflections on the ground cand still be seen and therefore further processing to eliminate
them is needed.

 53

In order to eliminate undesired small lights, erosion is applied to the image obtaining the
image shown in Figure 32.

The interest lights also had been eroded. Therefore, for better detection a dilation is applied
to recover the original size of the lights, as shown in Figure 33.

Figure 32: Eroded sample night image. The small point lights as the far street lights are
deleted.

Figure 33: Sample night image after dilation.

 54

Then the image is ready for light detection. In order to do that, the Matlab function
‘regionprops’ finds the diameter and center position of the circular shapes in the image.
The function itself returns the major and minor axis, therefore the radius needs to be
calculated from it. With the center position and the radius, the Matlab function ‘viscircles’
overlays a frame to the detected lights as seen in Figure 34.

The street lights are also detected on the image, and this is not a relevant information. As

in the daylight algorithm, a region of interest needs to be defined to dismiss irrelevant

objects that would cause false positives. Like that we detect only the objects of interest, as

seen in Figure 35.

Figure 34: Final image with the overlaid detected point-lights. As seen, a street
light is also detected, which is not a relevant information for our problem and
causes a false positive.

Figure 35: Sample processed image after applying the region of interest
restriction.

 55

As point lights are detected, final step would be detecting the vehicle itself. The biggest

problem for this situation are the motorcicles, as it would be hard to determine if it is one of

those vehicles or a single light of a car is being detected. A car can be determined by

having two lights of similar radius in the same horizontal line, as seen in Figure 36.

Figure 36: Bounding box around the vehicle, using the lights as reference.

 56

3.3.4. Testing and results

Lowlight scenes were recorded, more specifically night situation, mainly in highway and a

few instants of urban environment. The recording started at dusk and lasted until dark night.

The algorithm was tested over cuts of this video, first only using the point light detection

and afterwards adding the vehicle detection estimation. A set of 10 samples of different

situations of these videos are shown in the following pictures, some of which present some

flaws of the algorithm to be corrected.

Figure 37: In this scenario the level is high enough probably for using the daylight algorithm,
but the cars already use lights and therefore a test of the low-light one can be applied. a) urban
scene. b) point light detection. The right light of the neighbour car is not detected. Due to be
the farther one and in a position of overtaking the reference car, the intensity of this light is
low. c) the vehicle detection logically only detects one couple of lights, therefore one car.

 57

In the first scenario shown in Figure 37, which is in the boundaries of daylight scenarios, 3

lights out of 4 are detected and in consequence only bounded 1 car out of 2. In terms of

approaching danger information, the system correctly enhances that there is a car behind

and an undefined light source close next and behind the reference car. Fine tuning the

binarization threshold or the erosion/dilation parameters, could improve the detection of the

missing light. When being overtaken, the farther light disappears from the point of reference

field of view. Therefore, a better way to keep the detected object overlaid even when the

angle for the FOV darkens one of the point lights, would be adding object tracking as in the

previous instants the complete car would be appearing in the image. To do that, memory

should be added storing the previous bounding boxes and source point lights position and

sizes, movement prediction through motion vectors could be applied to predict next position

of the bounding boxes, error correction of the prediction and the actual detection should be

applied and extra logic to enable bounding boxes where single light points are detected

should be added. But in terms of this thesis, the goal was to approach the ways to

implement those algorithms first, a complete optimal design of this single low-light algorithm

would require more time resources and escapes the boundaries of this thesis.

Although the object detection is not compulsory for CMS and is just an upgrade in terms of

information providing, the accuracy should be of at least 70 % in a conformist approach. If

the system also connects and affects ADAS, which could mean directly interact with brakes

and direction, this accuracy should be close to 100 %. Therefore, the values obtained in

Table 12 would not be enough for ADAS system, and would be poor for information

enhancement system, despite that highlighted the closest dangers.

In image Detected Missed Accuracy

Point lights 4 3 1 75%

Vehicles 2 1 1 50%

Table 12: Figure 37 detection results.

 58

Figure 38: This scenario is also in the impasse between daylight and low-light
situations. a) Highway dusk scenario b) Bad detection precision in this case. The
farther behind car lights are not detected and being a highway, they should. c) The
closest danger, which is the truck, is detected. Farther vehicles are not.

In image Detected Missed Accuracy

Point lights 8 3 5 38%

Vehicles 4 1 3 25%

Table 13: Figure 38 detection results.

 59

The results obtained in the highway dusk situation are really bad. Even if the biggest danger

is detected, as is the truck closely behind, the farther cars that might be approaching at

high speed as is a highway are not even detected.

Figure 39: a) Highway night situation with a close car overtaking and a far car behind. b)
The farther car lights are detected as one. c) The close car overtaking is rightly bounded,
not the far one.

In image Detected Missed Accuracy

Point lights 4 3 1 75%

Vehicles 2 1 1 50%

Table 14: Figure 39 detection results.

 60

In Figure 39 scenario, the most dangerous object which is the overtaking car is detected,

but the farther vehicle is wrongly detected as a single light instead of two of them. Even if

the fact that a car that far is detected, not like in the dusk situation, the single like light

detected is bigger than those of the close car and it could wrongly trick the driver or ADAS

system to think that the car behind is closer than it happens to be. New logic to distinguish

this situation should be added to the code or either it should be considered the car is far

enough not to be a danger and therefore do not enhance it, to avoid misinterpretations.

Figure 40: a) Highway close cars behind scenario. b) The farther car behind,
which is not a potential danger yet as there is a second car between the
reference car and this car, is detected as a single light. c) The close cars are
correctly detected.

 61

As in the previous scenario, the far car lights are detected as a single one, which what

could lead to misinterpretation. The potential dangers, which are the cars closely behind,

both of them are correctly detected and therefore the system works properly.

In image Detected Missed Accuracy

Point lights 6 5 1 83%

Vehicles 3 2 1 67%

Table 15: Figure 40 detection results.

Figure 41: a) Interurban road with traffic lights and house windows lights. b) A
house's window is mistaken by a vehicle light c) The closely behind are correctly
detected.

 62

In this case the vehicles are correctly detected, but a false positive occurs as the system

detects a house window as a vehicle light.

Figure 42: a) Slight turn close cars situation b) Some cars include extra lights for
when taking a turn. Those extra lights and the reflection that generate as are closer
to the ground are also detected by the system. c) The system detects correctly the
cars behind but includes extra bounds to the vehicles due to the car.

In image Detected Missed Accuracy

Point lights 4 5 -1 125%

Vehicles 2 2 0 100%

Table 16: Figure 41 detection results. Presence of a false positive

 63

In this scenario, two false positives are generated due to the ground reflections of the light’s

sources. A second bound is added to a single vehicle due to the extra turning lights. With

the fog lamps could happen as well, therefore an extra logic for these situations should be

added to the code to keep it just a single bounding box. The dangers are correctly detected.

In image Detected Missed Accuracy

Point lights 8 10 -2 125%

Vehicles 2 2 0 100%

Table 17: Figure 42 detection results. 2 false positives.

Figure 43: a) Bus behind in interurban road. b) Correct detection
of the lights c) Correct detection of the vehicle

 64

In this scenario the vehicle is correctly detected.

In image Detected Missed Accuracy

Point lights 2 2 0 100%

Vehicles 1 1 0 100%

Table 18: Figure 43 detection results.

Figure 44: a) Bus and car in parallel b) Correct detection of the lights
c) Correct bounding of the vehicles.

 65

In this scenario the vehicles are correctly detected.

In image Detected Missed Accuracy

Point lights 4 4 0 100%

Vehicles 2 2 0 100%

Table 19: Figure 44 detection results.

Figure 45: a) Multiple vehicle urban scenario. A car is partially blocked and only one lights
seen. b) Reflections on the ground are detected c) The partially blocked car light and one
of the bus lights are mistakenly bounded as a single vehicle, while the bus is not

 66

In this scenario again reflections are detected on the ground. Some extra processing

should be done to avoid them. Even though, as the reflections are close to the lights the

effect is a bigger bounding box which translates in the perception that the potential danger

is closer than it really is, which is better than not detecting at all. The lights of two close

vehicles, the car and the bus, are detected together as a single vehicle. With object tracking,

this situation could be avoided, as is seen in Figures 43 and 44 the bus has been detected

previously.

One situation that was not tested, as there were no motorbikes at all circulating around, is

the detection of those. The single point lights would be detected, as happened with partially

blocked cars, but hardly would be a way to decide if it is a bike or the only visible light of

another vehicle. However, detecting the source lights and overlaying them to the image is

already and enhancement of the potential objects approaching, and indistinctly of it is a

motorbike a car or a truck, in neither case the driver would want to crash into them.

From the results obtained the following issues need to be corrected or added:

• Reflection detection: Preprocessing to reduce the effect of reflections, if

possible, should be applied.

• Object tracking: Movement estimation to track the objects should be added.

• Multiple light treatment: As some vehicles have extra lights for turning or fog

situations, the treatment of those as part of the same vehicle should be

implemented.

• Distance estimation: From the radius and bounding boxes size, an estimation

of the distance could be calculated.

As well other low-lights situations like tunnels should be tested, to detect additional flaws

of the algorithm. For a first simple code approach to the low-light algorithm, the behavior of

it provides a relevant information addition to the CMS. Next step before upgrading it, should

be testing the conversion to VHDL and its implementation on FPGA.

In image Detected Missed Accuracy

Point lights 6 9 -3 150%

Vehicles 3 1 2 33%

Table 20: Figure 45 detection results. 3 false positive.

 67

3.3.5. Conversion to VHDL

Matlab presents an add-on oriented to converting matlab code to vhdl.

Figure 46: Matlab screenshot. In Apps/Code Generation, th HDL coder can be found.

The coder requires a function to be converted and a testbench. This project had four

different functions as seen in Figure 47.

The most important function is ‘analyze_frames’ which is the one returning the centers and

dimensions of the circles and bounding boxes detected. This function calls ‘detect_lights’

and ‘detect_vehicles’ functions. The ‘visualization’ function is just for displaying on matlab

and therefore it has not to be converted to vhdl.

So, the input to the converter is the ‘analyze_frames’ function and the ‘main’ function as

the testbench. However, the coder has some restrictions in terms of code and function that

can be used as input.

Figure 47: Folder distribution of the Matlab project.
Separation in Classes, Data and Functions.

 68

At first instance, the project was using classes and the coder does not support this kind of

structures. In consequence, all the settings constants had to be hardcoded to the main

function. Once this problem was solved, the use of tables was flagged out as incompatible.

The ‘regionprops’ function that detected the light objects can present either the results in a

table or a structure, so the second format was used to overcome this problem.

When all the code compatibilities were solved, an unbeatable problem appeared. The

Matlab coder for hdl requires the target board model to keep on with the conversion. The

Matlab version used dated from 2016, while the board targeted dates from 2018, and

therefore doesn’t appear in the board catalog that Matlab had. A 2018 version of Matlab

was installed, but it did not come with the hdl coder add-on, and therefore the conversion

couldn’t be completed.

 69

4. Overall concept

In order to provide a complete CMS with object and tracking detection, the methodology
needed for the CMS object detection design is presented. This thesis presents a proposal
in terms of minimum value needed to cover the proposed problem, basing on the fact that
the processor resources are limited. However, more ideal solutions are mentioned.

The first thing to take into consideration is the multiple scenarios in which a vehicle can
circulate. In terms of light, we can meet with the situations represented in Figure 48.

Figure 48: Different light condition scenarios. a) Sunrise b) Daylight c) Sunset d) Cloudy e) Heavy precipitation
(rain either snow) f) foggy g) night time h) tunnels.

Sunrise and sunset can be a problem when the sun is behind the car, but with the right
lens and image processing for diminishing the glare it is possible to obtain a cleaner image
and indirect vision than with conventional mirrors, as in those situations many times the
sun reflection can be blinding.

Low light situations as night time or tunnels should be treated differently than daylight
situations, by means of a different camera device or algorithm approach as visibility is
considerably reduced.

The more challenging scenarios are those of heavy rain and fog, as the visibility is
extremely reduced to the point of barely being able to see the vehicles farther than a couple
of meters of the own vehicle. In this case, a safer solution would be using radar or laser
scanning instead of camera systems, but is more expensive solution and out of the scope
of this thesis.

In this project, the clear daylight and low light scenarios are considered, ignoring the other
scenarios. For a complete designing of a CMS system all the scenarios should be
considered and tested.

 70

The way to approach the multiples scenario problem is to use multiple tools in our system,

either in terms of hardware devices or software algorithms, as shown in Figure 49.

For this thesis the second scenario has been considered, using two separate algorithms

for day and low-light situations. Using a single camera would be economically cheaper and

easier in terms of installation. Moreover, already existing parking camera that many cars

include could be used as well for this purpose.

The complete design of the luminous threshold is not part of this thesis, but the following

considerations should to be taken into account while designing it:

• Duration of the light change: Light fluctuations might happen due to shadows while

crossing under a bridge, driving through a forest or high buildings in a city center.

The system should not jump between algorithms unless the light change is long

enough to consider a change of scenario.

• Hysteresis cycle: As many other sensor-based systems, like air conditioning, an

hysteresis cycle needs to be applied so the system does not constantly jump

between algorithm when the luminosity is close to the threshold value.

Figure 49: Dual vs single camera systems. The top schematic shows a proposal of a CMS system using a low-light
vision and a daylight camera, using on both cameras the same algorithm, the daylight one. In order to choose
which input to process, a luminous threshold could be used. If processing resources are not a limitation, both
images could be processed and the best predictions used or combined. The bottom schematic shows a single
camera input proposal, in which a luminous threshold determines which algorithm to use, if the daylight or low-light
situation. If processing resources are not a limitation, as many algorithms as required for the different scenarios
could be used.

 71

The next step, as an object detection and tracking algorithm, is to define the objects that

we want to detect. The basic objects to be detected are:

• Pedestrians

• Bicycles

• Cars

• Buses

• Trucks

• Motorcycles

In this thesis framework, where a single camera is used, for low-light situations it wouldn’t

be possible to detect pedestrians. For the other objects, it would be easy to detect their

lights but harder to classify them into the different vehicle types.

The objects that we want to detect can be found in different environments. The speeds and

risk situations that can be reached and found in a highway or inside a city differ

considerably.

In interurban roads mainly motorized vehicles like cars and trucks can be found in this

environment, by means of being mainly transportation paths. This includes highways in

which pedestrians and cyclist are not allowed and shouldn’t be the main objects to be

detected, while high speeds are reached and therefore a higher frame rate and being able

to detect smaller objects (vehicles approaching from far) is more critical than the amount

and variety of objects to be detected.

As represented in the Figure 50, the most dangerous situations to check with the rear-view

elements on a highway are the change of lanes and safety distance with the car straight

behind, although that depends more on that car that in the will of the on-board driver.

 72

Considering the safety distance that two vehicles should keep, which is a thumb-like rule

of 2 seconds, the approximately distance between 2 consecutives cars can be calculated.

For a speed of 120 km/h, which is 33 m/s, would suppose a distance of 60 meters. Covering

that distance on the indirect field of view, the regulation requirements are met. Therefore,

detecting the immediate behind vehicle, considering a vehicle might be almost at the same

level side-by-side and the vehicles behind them, would be enough to offer a safe vision to

the driver. In other words, 5 vehicles to be detected on this sort of roads would be an

acceptable measure.

On the other hand, the velocities in the highway are high, therefore the frame rate of the

detection algorithm should be high enough to detect the approaching vehicle. In the

extreme case of a German autobahns, where the biggest relative speed differences might

happen, a vehicle could be approaching 90 km/h faster than the preceding car. That is 25

m/s. It would sound a reasonable measure, per every frame actualization would imply not

more than 2 meters advance by the previous car, that is 15 fps in a highway scenario.

Figure 50: Considering the view from a vehicle circulating in the middle of a 3-lane highway, the
dangerous areas for the driver are the adjacent lanes, in case the driver wants to change the lane,
and the immediate posterior car in case a sudden breaking is needed.

 73

Urban areas present an opposite situation, a lot of objects to detect from different classes

as seen in Figure 51, at low speed. Pedestrians and bicycles are critical in this scenario,

due to the danger that supposes for those to collide with a motorized vehicle.

In this environment, the 5 objects established in the interurban case would not be enough.

As in terms of vehicles, 5 would be enough, the system should be able to detect multiple

pedestrians and bicycles. By thumb-rule, considering an average car is 2 meters width and

leaving 2 meters more by side, and that an average person occupies a width of 0.5 meters,

in an extreme case where several people stand shoulder by shoulder behind a car, that

would add to 12 pedestrians to detect. Therefore, a CMS in urban environments should

detect at least 12 objects to assure a minimum safety functionality.

In terms of speed, vehicles are allowed to circulate maximum at 50 km/h, which is 14 m/s.

Therefore, the 15 fps proposed for the interurban is more than enough for this scenario.

Summarizing, the proposed system should be able to detect at least 12 objects in the

daylight scenario, and 5 in the low-light scenario as pedestrians are not detectable. A frame

rate of 15 frames per second would be suitable for high speed situations.

Figure 51:Considering the point of view from of a vehicle driving through a double direction
street, the most dangerous situations are streets intersections in which the driver wants to make
a turn, sudden breaking caused by traffic lights and pedestrians crossing and parking. For this
last scenario the vehicles riding on the opposite direction should be also detected.

 74

Considering that a CMS by regulation should provide a 30 fps frame rate, the processing

load can be lighten by applying the object detection algorithm in one of every two frames

or less. As the action does not change as fast, the bounding boxes calculated in the

previous frame can be kept in the actual one to create a sensation of continuity, as seen in

figure

As mentioned before, the 15 fps is based on high velocity roads in the extreme case of

Germany, as the rest of countries would not meet with such extreme relative velocities

between vehicles as speed limits exist. In a more advanced system, a scene recognition

could be applied, for example, every 1 second in order to determine in which environment

the vehicle is driving along and adapt the frame rate to it.

In this project the detection is done frame-by-frame, but tracking algorithms can be added

to predict the trajectory of the objects and therefore reduce the image processing. Instead

of running the object detection that often, optical flow can be calculated to predict

movement of the objects and determine the growth and position of the bounding boxes.

However, as the background is not static applying optical flow prediction is more

complicated.

Figure 52: Down sampling of the object detection. In this example, one of every two frames is processed.
In this case, the blue images are processed and the red ones bypassed. The bounding boxes calculated
for every blue frame, are applied also to the following red one.

 75

Basing on the research done of the state-of-the-art technologies in object detection and

tracking, the most promising algorithm to use, for the daylight scenario, would be the

Convolutional Neural Networks. On a first instance, for a single FPGA, running a CNN for

object detection would be already an achievement. In a FPGA cloud scenario, where the

resources would be considerably increased, a second neural network to predict the

movement and therefore add object tracking could be applied. With the combination of both

networks, a complete object detection and tracking system would be provided.

Besides the training of the network itself, the format in which the input information is

presented is important. By reducing the irrelevant information, the processing time is

reduced.

1. In the case that the camera covers a wider area than the field of view

required, a region of interest should be selected. In the Figure 54, building

and trees are observable. These elements are not relevant for our detection

object, as the potential dangers are at ground level. Therefore, a region

interest on the horizontal level of the car is selected and cropped, as seen

in Figure 53.

Figure 54: Sample input image

Figure 53: Region of interest for the sample input image

 76

2. While the recorded image should have a high resolution for the direct display,

for the processing it can be reduced into a smaller one. For example, if the

input has a resolution of 1920×1080 pixels and the region of interested is

reduced to 1920x540 pixels, it can be rescaled to 960x270 pixels.

3. It is common for CNN to convert the image to grayscale before running the

object detection. As in this case the color of the objects is not a relevant

information, the image is converted to grayscale as seen in Figure 55.

4. As the best kind of algorithms for real-time detection are the single shot

algorithms like YOLO, the entire image is inputted at once without sliding

windows. The same applies for the low-light algorithm. The algorithm returns

the bounding boxes position and sizes on the treated image, as seen in

Figure 56.

Figure 55: Grayscale ROI of the input image

Figure 56: The algorithm returns the position and sizes of the bounding boxes (bottom).
For better understanding, graphically would be seen as in the top image when
overlapping with the treated image.

 77

5. As the image has been scaled prior to the algorithm processing, the

bounding boxes position and sizes are relative to the downscaled region of

interest of the image, and therefore an upscaling and an offset relative to

the original image should be applied before adding to the bypassed image.

The final result would be such as seen in Figure 57, with the bounding boxes

overlaid to the original image.

In all the approaches to implement the CNN in the FPGA, the weights that define its

behavior need to be calculated previously. Therefore, the first step should be designing

and training the CNN on software. Python offers a lot of libraries and functions to work with

Caffe and Tensorflow, two of the main open-source machine learning frameworks, as well

as Keras, a neural network library written in Python. Moreover, several tutorials on how to

design your own CNN with the desired classes to detect and using an own dataset, exist

on the Internet.

The first step to design our CNN is to define our own dataset. There are several APIs like

the ones from Google and Bing, that allow to easily search and download a big number of

images. Those images should be classified on two separate folders, one for training and

one for testing and validating.

Once designed the CNN, either from scratch or by “transfer learning”, which is preferred,

the network should be trained with the training images. Afterwards, the test images are

used to confirm that the network functions correctly. Once validated, the weights can be

saved for later upload to the FPGA implementation.

Figure 57: Sample of the final image to be displayed

 78

As said, the most accessible language to run a CNN is Python, therefore the easiest way

to have it running on the FPGA would be using this language on the board. To do that,

PYNQ should be installed to the board. The target board ZCU106 is not officially supported,

but the documentation of PYNQ have a section for using it on unsupported boards.

Therefore, the first step should be trying to build an image for our target board. Once the

system is running, the next step is adapting the previously designed and trained network

to this platform. This process corresponds to the daylight algorithm.

For the night algorithm, the first step should be optimizing the proposed code by correcting

the mentioned flaws and adding an approximation of the objects distance. Then, using the

right Matlab version with the vhdl coder add-on, the code should be converted to vhdl

adapting the original to the coder constraints. Another option could be hand translate the

Matlab to Vhdl, if the time and skills necessary for it are available.

Besides running both algorithms on the same board, which might not be possible as the

resources are limited even for just the neural network, the connection to the camera,

preprocessing of the images, the formatting for displaying and the reproduction of those

should be also implemented on the FPGA, what would mean more resources consumption.

Therefore, running both algorithms plus the basic CMS functionality in a single FPGA, with

a real-time performance and high precision is quite an optimistic goal. However, for the

final goal of connecting to a remote FPGA cluster, those requirements could be met.

Once the system is implemented, a complete testing of the different scenario situations

mentioned before should be executed. The object detection is not a compulsory

requirement for CMS, but if implemented, some minimum detection ratios should be meet

to make the system worth deployed. For just an informative functionality, a precision of at

least of 70%, being not ambitious, should be met. For an ADAS interference functionality,

the precision should be around 95%, even higher if it involves breaks or direction control.

As mentioned, it should have a real-time behavior meeting the regulation requirements of

30 frames per second on daylight scenarios and 15 frames per second on low-light

situations.

Covering all the aspects mentioned in here, would provide a complete CMS system with

object detection.

 79

5. Budget

5.1. Components cost
Considering the setup provided by the HS Ulm, the cost of the components needed to

deploy an experimental Camera Monitoring System is the one shown in the Table 21.

Table 21: Set-up components cost

CMS Cost

Zynq UltraScale+ MPSoC ZCU106 (6) 1.791,86 €

Camera (28) 196,51 €

Display (29) 19,99 €

SD Card (8Gb) (30) 6,16 €

HDMI cable (31) 2,14 €

 2.016,66 €

The FPGA board includes the power supply, ethernet and USB cables.

5.2. Software cost
In order to program a Xilinx FPGA board, the proprietary software Vivado is needed.

However, when buying a board, a license restricted to that board is provided for free. On

the other hand, for the low-light scenario, a Matlab demonstration has been provided and

therefore the program is needed. There is a discount license for students, which reduced

the software cost to the following prices shown in Table 22.

Table 22: Software cost

Program License Cost

Xilinx Vivado (6) Restricted to the board Free

Matlab (32) Student 35,00 €

 35,00 €

 80

5.3. Manpower cost
In order to calculate the manpower cost, will be used as orientation the fact that this project

computes as 12 ECTS and 1 ECTS equals to 30 hours. The price of a junior engineer will

be calculated as 12 € per hour. Additionally, the tutors offered counselling during the project

development. Considering that they offered a 1 hour of counselling out of 10 hours of

project and that a senior engineer cost per hour is 18 €, the total manpower cost is the one

shown in the Table 23.

Table 23: Manpower costs

 Total hours Cost

Junior engineer (12 €/h) 360 h 4.320,00 €

Senior engineer (15 €/h) 36 h 540,00 €

 4.860,00 €

5.4. Total cost
The total cost of the project, including hardware, software and manpower for a prototype
CMS based on a FPGA, would add up to the value of Table 24.

Table 24: Total cost of the project

CMS 2.016,66 €

Software 35,00 €

Manpower cost 4.860,00 €

Total 6.911,66 €

An optimized design and the creation of this system for serial vehicle production would
reduce the prize and make it suitable as an ADAS for commercial vehicles. In the actuality,
the change of lane assistant, collision detection or dynamic cruise control are extras sold
around the 2000 € to the costumers. Therefore, a CMS could be also introduced as an
extra with a realistic price, specially in the luxury car sector.

 81

6. Further development

The next step following this thesis should be implementing the overall concept approach,

coding both the neural network for daylight situation and the low-light point detection

algorithm and implement them on the FPGA. Afterwards, the behavior of the system should

be tested in terms of latency, power consumption and resource usage, to determine if the

system meets the real-time requirements in a realistic power and resource budget.

An alternative way to approach the system would be to study how the camera and

corresponding object detection algorithms could interact with other sensors in vehicles, as

could be radars, lidars, proximity detection or line detector, in order to enrich the information

obtained.

Once the object detection algorithm is running on real-time, the system should be locally

installed in different vehicles for real scenario testing. The different tests would provide

useful data to improve the system and show its flaws, as well as an empiric demonstration

of the advantages towards regular mirrors.

In terms of the complete ongoing research, both the communication between the camera

on the car and the cloud in one direction and back from the cluster to the screen device

installed on the vehicle, should be designed and implemented. Once the video stream on

real-time is properly uploaded to the cloud and back, the object detection should be added

to the cloud FPGA cluster and the complete system tested in the different scenarios.

The on-cloud application would require also to study and design the required network

devices that should be installed both in vehicles and roads to be able to have constant

communication between the car system and the servers running the algorithm, as it is not

a feature that the vehicle can leave aside. Network security, interferences, handovers and

channel capacities would have to be sized as well for the telecommunication network,

focusing on the upcoming 5G technology.

 82

7. Conclusions:

In this thesis, a deep research on object detection algorithms to be applied in the camera

monitoring systems has been performed. The different state of the art algorithms has been

approached and several implementations compared to define the best one to cover the

required problem.

Convolutional neural networks are the most suitable option for object detection, and the

steps to design and implement this technology has been described. Some tools and

implementations of CNN on FPGA have been presented. In general terms, CNN require a

lot of processing resources. The results shown in the literature trade precision for frame

rates close to real-time application, using board-constraint implementations.

 In terms of FPGA resources, it is difficult to obtain both the speed required by the

regulations and the precisions needed to add a real value in terms of information

enhancement and definitely not enough for active ADAS.

An optimal algorithm code should be easily portable from one FPGA board to another,

however this has been proven a flaw for this kind of platforms so far. As new improved

FPGA hardware appear in the market, it is required to rewrite the code every time to adapt

it to the new board, which is an undesired limitation.

Another counterpoint for using FPGA boards, is the fact that GPU’s offer more economical

and resourceful boards that provide better results that do allow real-time application without

trading off precision. On the other hand, FPGA boards outstand GPU in terms of power

consumption. An interoperable approach mixing both platforms could be an option to

consider for future upgrading and should be taken into account while programming the

inputs and outputs of the different blocks. For example, the output from the board that

obtains the images in the vehicle should be reusable by any kind of board on the data

processing end.

In general terms, using a FPGA board as a single ECU for a camera monitoring system

with object detection on the nowadays boards and with the existing framework for CNN

deployment, might not be the best option but is still a feasible one. To do so, it will require

high programming skills and time investment for the optimal code development and

implementation.

 83

Bibliography:

1. Standardization, International Organization for. ISO 16505:2015 Road vehicles. 2015.
2. 6, UN Regulation No. 46 Revision. Uniform provisions concerning the approval of
devices for indirect vision and of motor vehicles with regard to the installation of these
devices,. 1 July 2016.

3. Terzis, Anestis. Handbook of Camera Monitor Systems - The Automotive Mirror-
Replacement Technology based on ISO 16505. s.l. : Springer International Publishing,
March 2016.

4. —. „Digital Mirrors – International Regulation and System Design based on hybrid Image
Processing“. Brussels : In Proceedings of the 5th AutoSense Conference, Sept. 2018.

5. Xilinx zc702 board. [Online] https://www.xilinx.com/products/boards-and-kits/ek-z7-
zc702-g.html#hardware.

6. Xilinx ZCU106. [Online] https://www.xilinx.com/content/xilinx/en/products/boards-and-
kits/zcu106.html#hardware.

7. Jones, Paul Viola and Michael. Robust Real-time Object Detection. Vancouver, Canada :
s.n., 2001.

8. Irgens, Bader, Lé, Saxena and Ababei. An efficicient and cost effective FPGA based
implementation of the Viola-Jones face detection algorithm. Marquette : s.n., 2016.

9. Vahid, Chen Huang and Frank. Scalable object detection accelerators on FPGAs using
custom design space exploration. 2011.

10. Cho, Mirzaei, Oberg and Kastner. PGA-Based Face Detection System Using Haar
Classifiers. University of California : s.n., 2009.

11. Lee, Son, Choi and Min. HOG Feature Extractor Circuit for Real-time Human and
Vehicle Detection. Korea Electronics Technology Institute : s.n., 2012.

12. Hahnle, Saxen, Hisung, Brunsmann and Doll. FPGA-based Real-Time Pedestrian
Detection on High-Resolution Images. University of Applied Sciences
Aschaffenburg,Germany : s.n., 2013.

13. R-CNN, fast R-CNN, faster R-CNN and YOLO object detection algorithms. [Online]
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-
algorithms-36d53571365e.

14. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. 2016.

15. Chong, Jason. Machine Learning on FPGAs . UCLA : s.n., 2015.

16. DEEPHi. [Online] http://www.deephi.com/.

17. Forum xilinx. [Online] https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/Tincy-
YOLO-a-real-time-low-latency-low-power-object-detection/ba-p/815840.

18. [Online] https://github.com/Xilinx/ml-suite/tree/master/apps/yolo.

19. Nagasamy, Vijay. Accelerating ADAS Computer Vision Application Development at
Ford using SDSoC. October 2, 2018.

 84

20. Ruizhe Zhao, Xinyu Niu, Yajie Wu, Wayne Luk and Qiang Liu. Optimizing CNN-based
Object Detection Algorithms on Embedded FPGA Platforms. Imperial College London : s.n.,
2017.

21. H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, H.
Esmaeilzadeh. From High-Level Deep Neural Models to FPGAs. s.l. : 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

22. Caffe deep learning. [Online] http://caffe.berkeleyvision.org/.

23. Hamdan, Muhammad K A. VHDL auto-generation tool for optimized hardware
acceleration of convolutional neural networks on FPGA. Iowa State University : s.n., 2018.

24. Xilinx. PYNQ. [En línea] http://www.pynq.io/.

25. Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre and Kees Vissers. FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference. Xilinx Research Labs, Norwegian University of Science and
Technology, University of Sydney : s.n., 2016.

26. Yingfeng Cai, Xiaoqiang Sun, Hai Wang, Long Chen and Haobin Jia. Night-Time
Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning. s.l. : Jiangsu
University, China, 2016.

27. Antonio Lopez, Jorg Hilgenstock, Andreas Busse, Ramon Baldrich, Felipe Lumbreras,
and Joan Serrat. Nighttime Vehicle Detection for Intelligent Headlight Control. Barcelona :
s.n.

28. Image sensor supplier. [Online] https://www.mouser.es/ProductDetail/ON-
Semiconductor/NOIV1SN2000A-QDC?qs=BJFa2WV4K9lDnvJ9SN4huA==.

29. Screen monitor supplier. [Online] https://tienda-first.com/monitores-con-taras/21729-
tft-19-fujitsu-b19-3p-grado-b-ver-fotos-tft-19-con-altavoces-5-4-resolucion-1280x1024-
dot-pitch-0-294-mm-respuesta-5-ms-
contrast.html?utm_campaign=GShopping&utm_medium=&gclid=CjwKCAjwtYXmBRAOEi
wAYsyl3EYAE.

30. SD Card supplier. [Online] https://es.rs-
online.com/web/p/products/6957334/?grossPrice=Y&cm_mmc=ES-PLA-DS3A-_-google-
_-PLA_ES_ES_CatchAll-_-Ad+Group+Catch+All-_-
PRODUCT_GROUP&matchtype=&pla-
293946777986&gclid=CjwKCAjwtYXmBRAOEiwAYsyl3IIpWH13XRjZgmFXqwY0u1-
4n1hchJsAifSJ22cUi60iWA30W.

31. Informatics components supplier. [Online] https://www.pccomponentes.com/equip-
cable-hdmi-20-3d-macho-macho-alta-calidad-18m.

32. Matlab Pricing and Licensing. [Online] https://de.mathworks.com/pricing-
licensing.html?prodcode=ML&intendeduse=student.

33. Advani, Tanabe, Irick, Sampson and Narayanan. A scalable architecture for multi-class
visual object detection. University of Auckland : s.n., 2017.

34. Joseph Redmon, Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2017.

 85

35. Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis. Toolflows for
Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions. ACM
Computing Surveys : s.n., 2018.

36. Boser, Bernhard E., Guyon, Isabelle M. y Vapnik, Vladimir N. A training algorithm for
optimal margin classifiers. COLT : s.n., 1992.

37. Object recognition for dummies. [Online] https://lilianweng.github.io/lil-
log/2017/10/29/object-recognition-for-dummies-part-1.html.

 86

Glossary

Word: English. Castellano. Català
CMS: Camera Monitoring System. Sistema de monitoreado por cámara. Sistema de
monitorització amb càmera.
ECU: Electronic Control Unit. Centralita electrónica. Centraleta electrónica.
CMOS: Complementary metal–oxide–semiconductor. Semiconductor complementario de óxido
metálico. Metall Òxid Semiconductor Complementari.
FOV: Field of Vision. Campo de visión. Camp de visió.
ROI: Region of Interest. Región de interés. Regió d’interès.
ADAS: Advanced driver-assistance systems. Sistemas avanzados de asistencia a la conducción.
Sistemes avançats d’assistència a la conducció.
FPGA: Field-Programmable Gate Array. Matriz de puertas programables. Matriu de portes
programables.
GPU: Graphics Processing Unit. Unidad de procesamiento gráfico. Unitat de Procés Gràfic
CPU: Central Processing Unit. Unidad central de procesamiento. Unitat central de processament.
YOLO: You Only Look Once. Una sola observación. Una sola observación.
CNN: Convolutional Neural Network. Redes neuronales convolucionales. Xarxes neuronals
convoluncionals.
ISO: International Organization for Standardization. Organización Internacional de Normalización.
Organització Internacional per a l'Estandardització.
IP: Intellectual Property. Propiedad intellectual. Propietat intellectual.
UN: United Nations. Naciones Unidas. Nacions Unides.
MTF: Modulation Transfer Function. Función de Transferencia de Modulación. Funció de
Transferència de Modulació
HS: Hochschule. Escuela superior. Escola superior.
IoT: Internet of Things. Internet de las cosas. Internet de les coses.
HDMI: High-Definition Multimedia Interface. Interfície multimedia de alta definición. Interficie
multimedia d’alta definición.
RGB: Red Green Blue scale. Escala rojo-verde-azul. Escala vermell-verd-blau
YCbCr: Luma blue Chrominance red Chrominance space. Espacio de lumináncia, cromatura roja
y cromatura azul. Espai de luminancia, crominancia vermella i crominancia blava.
DSP: Digital Signal Processor. Procesador de señales digitales. Processador de senyals digitals.
SD: Secure Digital. Seguridad digital. Seguretat digital.
HoG: Histogram of Gradients. Histograma de gradientes. Histograma de gradients.
SVM: Support Vector Machine. Máquinas de soporte vectorial. Màquina de vectors de suport.
CUDA: Compute Unified Device Architecture
USB: Universal Serial Bus. Bus en serie universal. Bus en sèrie universal.
UART: Universal Asynchronous Receiver-Transmitter. Transmisor-Receptor asíncrono universal.
Transmissor-Receptor asíncron universal.
BLOB: Binary Large Objects. Objetos binarios grandes. Objectes binaris grans.
VHDL: VHSIC Hardware Description Language. Lenguaje de descripción hardware VHSIC.
Llenguatge de descripción hardware VHSIC
VHSIC: Very High Speed Integrated Circuit. Circuito integrado de muy alta velocidad. Circuit
integrat de molt alta velocitat.

