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Abstract 

Automotive world is in constant technological evolution and one of the fields under 

development are the camera monitoring systems for mirror replacement. A simple 

substitution does not generate a real value as the processing capabilities of this systems 

can provide advanced driver-assistance. Object detection can be implemented in order to 

enhance the information provided by the system as well as provide passive security 

measures for the vehicles. However, the vehicles are already overloaded with electronic 

components and fitting the processing system for this kind of problem might be difficult. 

Therefore, an approach to connect the vehicle with a cluster of processor units on the cloud 

would allow powerful analytic resources without adding more electronics equipment nor 

increasing the power consumption to the car.    

CPU’s and GPU’s have been tested both for hosting image processing algorithm. A 

potential tool to replace those platforms are FPGA, as they offer parallel computing that 

could accelerate the image processing and allow real-time application. However, FPGA 

present a low portability either from one platform to the other or between different boards.  

In terms of object detection algorithms, convolutional neural networks are the state-of-the-

art technology. However, as mentioned before, FPGA portability among boards is a weak 

point and, for a hardware field that is constantly evolving and improving presenting better 

and more powerful boards, having to redesign every time the algorithm is not optimal and 

might be the reason why there is still not a neural network framework for this kind of boards. 

The lack of an optimal framework design and the high resources required for implementing 

neural networks, especially in real-time applications, makes the implementation of those 

on FPGA a complicated task. 

.   
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Resum 

El món de l'automocó està en constant evolució tecnològica i un dels camps en 

desenvolupament són els sistemes de monitorització de càmeres per al reemplaçament 

de miralls retrovisors. Una mera substitució no genera un valor real, ja que les capacitats 

de processament d'aquests sistemes poden proporcionar assistència avançada per a la 

conducció. Es pot implementar la detecció d'objectes ja sigui per millorar la informació 

proporcionada pel sistema com per proporcionar mesures de seguretat passives per als 

vehicles. Tanmateix, els vehicles ja estan sobrecarregats amb components electrònics i la 

instal·lació del sistema de processament per a aquest tipus de problema pot ser difícil. Per 

tant, un enfocament per connectar el vehicle amb un clúster d'unitats de processadors al 

núvol permetria disposar recursos analítics potents sense afegir més equips electrònics ni 

augmentar el consum d'energia en el vehicle. 

Les CPU i les GPU han estat utilitzades per a la execució d'algorismes de processament 

d'imatges. Una eina potencial per reemplaçar aquestes plataformes són les FPGA, ja que 

ofereixen execució en paral·lel que permetria accelerar el processament d'imatges i 

permetria l'aplicació en temps real. No obstant això, les FPGA presenten una baixa 

portabilitat des d'una plataforma a l'altra o entre diferents plaques. 

Pel que fa als algorismes de detecció d'objectes, les xarxes neuronales convolucionals són 

la tecnologia més avançada. Tanmateix, com s’ha esmentat abans, la portabilitat de les 

FPGA és un punt feble i, per a un camp de maquinari que evoluciona constantment i que 

presenta cada cop plaques millors i més potents, haver de redissenyar cada vegada que 

l'algoritme no és òptim i podria ser la raó per la qual encara no existeix un framework de 

disseny per a xarxes neuronals per a aquest tipus de dispositius. La manca d'un marc de 

disseny òptim i els alts recursos necessaris per implementar xarxes neuronals, 

especialment en aplicacions en temps real, fa que la implementació d'aquestes en FPGA 

sigui una tasca complicada.  
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Resumen 

El mundo automotriz está en constante evolución tecnológica y uno de los campos en 

desarrollo son los sistemas de monitoreo de cámaras para el reemplazo de los espejos 

retrovisores. Una simple sustitución no genera un valor real, ya que las capacidades de 

procesamiento de este sistema pueden proporcionar asistencia avanzada a la conducción. 

La detección de objetos se puede implementar o bien para mejorar la información 

proporcionada por el sistema, o bien para proporcionar medidas de seguridad pasiva para 

los vehículos. Sin embargo, los vehículos ya están sobrecargados con componentes 

electrónicos y el ajuste del sistema de procesamiento para este tipo de problema podría 

ser difícil. Por lo tanto, conectar el vehículo con un cluster de procesadores en la nube 

permitiría disponer de recursos analíticos potentes sin agregar más equipos electrónicos 

ni aumentar el consumo de energía en el vehículo. 

Las CPU y las GPU han sido utilizadas como plataforma para ejecutar algoritmos de 

procesamiento de imágenes. Una herramienta potencial para reemplazar esas 

plataformas son las FPGA, ya que ofrecen computación en paralelo que podría acelerar el 

procesamiento de la imagen y permitir aplicaciones en tiempo real. Sin embargo, las FPGA 

presentan una portabilidad baja ya sea de una plataforma a otra o entre diferentes placas. 

En términos de algoritmos de detección de objetos, las redes neuronales convolucionales 

son la tecnología más avanzada. Sin embargo, como se mencionó anteriormente, la 

portabilidad entre placas FPGA es un punto débil y, para un campo de hardware que está 

en constante evolución y mejora presentando placas mejores y más potentes, tener que 

rediseñar cada vez el algoritmo no es óptimo y podría ser la razón por la que todavía no 

existe un framework orientado a redes neuronales para este tipo de placas. La falta de un 

marco diseño óptimo y los grandes recursos necesarios para implementar redes 

neuronales, especialmente en aplicaciones en tiempo real, hace que la implementación de 

estos en FPGA sea una tarea complicada. 
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1. Introduction 

1.1. Project overview and goals 

The project is carried out in the Institute of communication technology at the Hochschule 

Ulm, basing on a proposed project by Dr. Prof Anestis Terzis.  

The purpose of this project is to design and concept the methodology for implementing a 

data processing algorithm for object detection and tracking in real-time for a Camera 

Monitor Systems (CMS). This project takes part on the framework of the research taken 

out in the Institute of communication technology department to study the feasibility of using 

FPGA cloud clusters for processing CMS in order to replace vehicles mirrors.  

The idea of using FPGA is to exploit the parallel execution capabilities that this kind of 

boards provide. FPGA can be programmed multiple times by the user to test different 

designs.  

The starting point of this project is working on an existing system completed previously on 

the same research framework, that consists of an FPGA system that displays on real-time 

the video images obtained by a peripherical camera. This existing project should have been 

upgraded with existing IP blocks1 in order to include the object detection functionality. Due 

to an upgrade of the board, a compatibility problem appeared as several IP core blocks of 

the existing design and the camera device are not compatible with the new board. To 

overpass this setback, the thesis was reconducted to focusing on the conceptual design of 

an input-independent object detection algorithm, regardless on if the video images are 

provided in real-time by a camera device or if are prerecorded videos uploaded from a SD 

card. 

The project main goals are: 

1. Validate the existing base project. 

2. Concept study of the algorithm for object detection  

3. Design two different algorithms, for low-light and day-light situations 

4. Concept study of the tools for implementing the algorithms in a FPGA 

5. Determine the suitability of the system basing on the existing regulations requirements 

 

                                                
1 IP (Intelectual Property) blocks are predesigned and validated libraries of code that complete 
certain functionalities of common use in FPGA designs. 
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1.2. Requirements 

The Camera Monitoring Systems has to fulfill some timing, resolution and field of view 

regulations in order to be suitable for real vehicle mirror replacement. Those regulations 

are: 

- ISO 16505 (1): Describes the minimum technical requirements that should be fulfilled by 

a CMS to replace car mirrors in terms of safety aspects, ergonomic factors, performance 

criteria and the testing of such kind of system. 

- UN Regulation No. 46 (2): The ISO itself does not provide the legal framework for mirror 

replacing. Is the UN Regulation, applied in the European Union, Russia and Japan, the one 

that establishes the minimum requirements. 

More specific requirements for this thesis are: 

- Video object detection and tracking of automotive vehicles and pedestrians, for day and 

low light scenarios. 

- Using a single FPGA as electronic control unit for the CMS system. 
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1.3. Structure of the work 

The first chapter after this brief introduction, chapter 2, is a description of the research 

framework in which this project develops, including a brief introduction to the existing 

regulations and existing projects.  

The document continues in chapter 3, which presents in its first part the research taken out 

on the different existing object detection algorithms and the suitability of those for covering 

the daylight scenario. A description of the different object detection algorithms used 

nowadays in image processing, a brief look into existing FPGA implementations and 

existing tools, and a discussion about its performance are presented. From the extracted 

conclusions, the best algorithm is selected and adapted to our problem scenario.  

The second part of the chapter 3, focuses on the low-light algorithm design and testing. A 

demo algorithm programmed in MATLAB is presented with an example of the performance 

obtained.  

Chapter 4 focuses on the overall task that should be completed to successfully implement 

a CMS with object detection. Includes the scenarios to take into account, the way the 

information should be presented. 

Chapter 5 proposes the following steps required to continue not just from the thesis, also 

for the overall project. 

Finally, chapter 7 summarizes the extracted conclusions during the competition of this 

thesis. 
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2. Research framework: 

2.1. Camera Monitoring Systems 

Camera Monitor Systems are a set of cameras and displays used for automotive mirror 

replacement, as seen in Figure 2. A camera captures the indirect field of view (FOV), 

forwards the signal to an electronic control unit (ECU) for image processing and the 

information is displayed in a screen for the driver. Those systems should provide a clear 

view of the back or lateral parts of the car, just as mirrors do, providing the driver with 

information on the indirect FOV. (3) 

2.1.1. Advantages and disadvantages of the CMS 

The main advantages of using those kinds of systems are: 

• Improvement on aerodynamics, which leads to a reduction on fuel consumption of 

approximately 2%. This amount could be especially significant for mass cargo 

transportation, with an economical benefit for the companies due to a reduction of 

the petrol needed and environmentally, as heavy-duty vehicles are responsible for 

the 27% of the vehicle emissions in the European Union 2 . The improved 

aerodynamics would also reduce the noise pollution generated by the mirrors, 

especially in vans. 

 

• Improvement on the indirect vision of the driver. Unlike the conventional mirrors, 

blind spots are covered by CMS.  

 

                                                
2 Statistics from the European Environment Agency (2018) 
https://www.eea.europa.eu/themes/transport/heavy-duty-vehicles 

Figure 1: CMS replacement for a Class III mirror. Left image shows a conventional mirror placement in 
a car. In the right image the mirrors are replaced by cameras and displays, in the same position as the 
mirrors. Source: [3, p.5] 
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• Adaptability to different light situations. Firstly, using CMS the driver would avoid 

glare at direct sunlight. Moreover, adding image processing between the camera 

and the display, heavy rain or low light scenarios could be treated in order to give 

a cleaner image to the driver. Finally, new ADAS (advanced driver-assistance 

systems) could be designed and added to the vehicle. 

 

• Information enhancement. Through image processing algorithms, information as 

the distance or type of object that is approaching could be added to the display and 

warn the driver in danger situations. 

On the other hand, CMS have the following potential challenges: 

• Display location. The space inside the vehicle might be an issue in nowadays cars 

to properly fit the new system. Usually drivers can move the head to get a better 

look at the mirrors and increase the FOV; on a display this is not possible, so to 

increase the FOV it would be needed to install bigger displays which is a space 

problem.  

 

• Human visual system. Another limitation of the displays is that they show a 2D 

image, and stereoscopic depth will get lost. Therefore, a distance labelling system 

is needed to notify the driver. Another human eye limitation is the change of focus 

towards the front drive view and conventional mirrors (far range view), towards 

watching a display (close range view). Elder people or those with vision problems, 

might have problems to change the focus. 

 

• Economic investment. CMS are way more expensive than simple mirrors, due to all 

the electronic components inside. But the positive feeling of security and progress 

could be seen for the costumer as a good reason to spend a bit more, especially in 

the luxurious segment of vehicles. 
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• Relocating the components inside the mirrors. Nowadays car mirrors house several 

components such as antennas or cameras. Therefore, those components should 

be relocated somewhere else in the car, what would might be not as optimum as 

actual designs. 

 

• Re-education of the drivers. One of the mains challenges would be re-educating 

the driver to watch the display, because even if they would expect the displays to 

be somewhere close to where the mirrors were, this might not be the best location.  

 

• CMS components lifespan. CMOS image sensors used have a lifespan around 5 

years, while the automotive vehicles have a lifespan of 18 years. Consequently, this 

kind of system would require a periodic replacement. This would affect also in terms 

of design, as the components should be easily accessible and replaceable. 

 

The subject that can unbalance the pro vs con of the CMS is power consumption. All the 

components in a CMS are active components which require power, way different than the 

passive mirror. Therefore, if the power consumption is too high, the power needed for 

loading the batteries would neglect the saving in terms of aerodynamics. That would make 

a requirement to use components and algorithms for the CMS that consume the least 

power possible. 
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2.1.2. Base architecture of the CMS 

The main set of a CMS is a camera, an ECU and a display.  

Figure 2: CMS architecture block diagram. Left image shows a simple CMS, where the image obtained is sent 

only to the display to be showed. In the right image, a more complex signal processing is completed and the 

information is not just sent to the displays but also to the ADAS components. Source: [3, p.24] 

In a simple CMS (see Figure 2 left), the image is sent to the display after the proper video 

processing to correct the imperfections of the camera recording and proper adapting the 

image for displaying. Some of the light artifacts that are created in the image lens and 

should be processed and corrected are: 

• Flares generated due to spurious reflections within the lens system, scattering or 

diffraction. Not avoidable. Especially critical in low-light scenarios. 

 

• Ghosts. That kind of artifacts are well localized within the image with characteristic 

shapes and can easily lead to misinterpretations of the scene. 

 

• Veiling glare. The rays of a luminous object are not properly bended and steered 

and a ‘fog’ or ‘haze’ spreads around the image. 

 

• Directed flares. It often appears like a six-point stars around the light points (sun, 

street lights…). 

 

• Aperture ghosts. Defocused replicas of the aperture appear on a straight line in the 

image plane.  
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• Ghost images: An upside-down and same size as the original image reflection 

appears and pollutes the image, inducing the appearance of those ghosts. 

 

However, the most effective way to reduce those flares is using high quality lens, lens 

hoods and applying a sufficient amount of tilt to the cover glass. 

In more advanced systems (Figure 2 right), the information obtained can be sent to other 

systems in the car for driving assistance. Warnings, object detection, overlaying images, 

cooperation between cameras and radar sensors, are examples of the possibilities that an 

advanced CMS could provide. However, the amount of information that is shown over the 

direct picture on the display is limited by the standards.  

 

2.2. CMS standards and regulations 

A vehicle has to comply with vehicle regulations and requirements, from technical to tax 

ratings. In the same way, the installation of CMS systems needs to meet some standard 

and regulation requirements in order to replace mirrors in series vehicle production. 

Standard ISO 16505:2015 (1) and UN Regulation No.46 (2) are the ones that cover CMS 

field. 

In order to better understand this requirement, a brief definition of what a Standard and a 

Regulation are: 

• Standard: “A standard is a document that provides requirements, specifications, 

guidelines or characteristics that can be used consistently to ensure that materials, 

products, processes and services are fit for their purpose”.3  In this case, it is an 

ISO standard, an international standardization settled by the International 

Organization for Standardization.  The ISO standards are reviewed every 5 years 

to reflect the state-of-the-art development. Standards are not directly legally binding, 

but are used in court to determine current technological state of the art. If the 

manufacturer does not follow them, they will have to prepare a justification. When 

a standard is part of a regulation, then becomes mandatory. 

 

 

                                                
3 Source: [3, p.55] 
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• Regulation: Are the ones to bind the legal framework. In the automotive industry, 

there are over 100 regulations regarding different subjects like exhaust emissions, 

safety, etc. Those regulations are not always international, so it need to be 

regularized for every market. For CMS, the UN Regulation No. 46 was updated. A 

need to update the regulation was already stated back in 2009, but there was no 

technical background to base on. For that reason, Germany triggered the ISO 

16505, and the UN R.46 was parallelly advancing until complete amended entering 

into force in August 2016. 

 

The ISO 16505:2015 standard as well as UN R.46 form the basis for the CMS requirements. 

However, both contain cross references to additional standards and regulations that must 

be as well followed. From electromagnetic requirements to environmental influences, CMS 

have to take into consideration a wide field of requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Standards and regulations affecting the CMS. Source: [3] 
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Table 1: United Nations Regulation affecting CMS. Source: [3] 

United Nations Regulation CMS relevance 
Uniform provisions concerning the approval of vehicles with regard to 

No. 10: “Electromagnetic compatibility” EMC compatibility of the complete CMS 

No. 21: “Interior fittings” CMS components behavior in case of 

impact with occupants or pedestrians 

No. 48: “Installation of lighting and light-

signaling devices” 

Position of the direction indicators (e.g., 

currently part of the mirror housing) 

No. 95: “Protection of the occupants in the 

event of a lateral collision” 

Relevant for the characteristics of the in-

vehicle CMS components, e.g., displays 

No. 125: “Forward field of vision of the 

motor vehicle driver” 

Position of the CMS components within 

driver’s forward field of view 
 

The UN R. 46 establishes the requirement not just for CMS but also for conventional mirrors. 

One aspect that share in common both indirect vision devices, are the range of FOV that 

should be covered. These requirements need to be taken into account for establishing the 

region of interest (ROI) that will be displayed on the driver’s screen. This project focus on 

the standard car mirrors, specifically in the class I mirror. Figures 5 and 6 show the FOV 

that those mirrors or CMS should cover. 

 

Figure 4: Class I indirect FOV. Those mirrors should cover an area of 20 meters width 
up to 60 meters straight away behind the driver’s ocular points. Source: [1] 
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The ISO and the regulation cover several requirements related to camera and display 

devices. As this project does not include designing and installing on a vehicle the physical 

devices, an example of these requirements is presented without specific details. Relevant 

requirements for this project are highlighted: 

• Mechanical: In terms of passive safety in a crash scenario, the camera devices 

mounted should deflect in case of impact with an object, may break but without 

leaving sharp edges and camera lens should not break. 

 

• Monitor Arrangement: The position of the display monitor respect the driver’s ocular 

reference point of view is determined by a set of required angles to be met. Left side 

field of vision should be displayed left of the ocular reference point and vice versa. 

 

• Monitor Isotropy: The monitor shall conform to optical requirements over a relevant 

range of viewing directions. 

 

• Luminance, contrast, gray scale and color rendering. Night conditions require a 

specific luminance contrast. 

 

• Artifacts. Smear, blooming and flickering are bounded.  

Figure 5: Class III indirect FOV. Those mirrors should cover the side indirect fov up 
to Source: [1] 

Figure 6: Class IV indirect FOV. Source: [1] 
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• Sharpness and Depth of Field: The CMS shall enable the driver to observe the object 

space and perceive the content shown within the range of interest with enough 

resolution to discern the details. Geometric distortion is bounded. 

 

• Magnification Factor: The minimum and the average magnification factors of the 

CMS, in both horizontal and vertical directions are established. 

 

• MTF (Resolution): Defines the minimum distinguishable details observable in an 

image as is represented by the MTF10. For reasons of simplicity the requirement is 

defined assuming an aspect ratio of 1:1: 

 

• Magnification Aspect Ratio: In the required field of view, the difference between the 

average magnification factor for horizontal and vertical direction of a CMS shall 

satisfy the established requirements. 

 

• System availability. The set-up time from cold start, fast reconnection and turn-off 

times are also established. As the system is critical for driving, a warning system in 

case of malfunction should notify the driver. FOV should we always displayed on 

screen while ignition is on.  

 

• Point Light Sources: Two light source with an intensity of 1750 cd and a distance 

of 1.3 m should be distinguishable as two different light sources at a distance of 250 

m. This requirement is relevant for the low-light situation algorithm, which relies in 

point light sources detection. 

 

• Frame rate: The minimum frame rate of the system shall be at least 30 Hz. At low 

light conditions or while maneuvering at low speed, the minimum frame rate of the 

system shall be at least 15 Hz. The conventional mirrors are a real-time tool, therefore 

CMS should behave as close as possible to real-time. 

 

• Image Formation Time: Maximum 55 ms at 22ºC±5ºC. 

 

• System Latency: The latency shall be lower than 200 ms 22 °C ± 5 °C. 

The time requirements are the most relevant ones for this project, especially the frame rate. 

The execution times of the introduced image processing algorithms must be low enough to 

keep the frame rate inbounds of the specified limits, to keep it a real-time application. 
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• Overlays: Only temporary, transparent and related to rearward driving-related 

information overlays are allowed. The maximum area a single overlay can cover is 

2,5 % of the FOV, 15 % the complete obstructions in Class I and 10 % in the others. 

These obstructions include bodywork, heating elements, etc. This requirement is 

critical in the object detection scenario, as the amount of information highlighted and 

overlaid on the image should be restricted. 

 

The ISO 16505:2015 also proposes testing methods for the CMS, in order to test the 

resolution, rendering and sharpness requirements. Test charts, like the chessboard used 

for contrast, are placed in front of the camera device.   
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2.3. FPGA research framework in HS Ulm 

The research carried out at HS Ulm focus on using FPGA as the ECU for the CMS. Aside 

from the first logical step which is using one single FPGA, the long-term goal is to concept 

a CMS on which most of the image processing would run on the cloud, being the central 

processors a cluster of FPGAs (Figure 7). The vehicle would send the information to the 

cloud, where the algorithms would run and return the processed information for the ADAS 

and virtual reality displaying. With a powerful enough computational power, AI could be run 

to predict vehicle behaviors and trajectories from the images obtained. 

 
Figure 7: Hybrid image processing system proposed by Dr. Prof. A.Terzis. (4) The car would mount the camera 
devices and displays, but the processing will be carried out at the cloud. The information is sent via Wireless 
interface from the car to the FPGA cluster. 

Some of the benefits that this hybrid system would provide are: 

• Minimization of the power consumption in the car. 

  

• Increased computational power. 

 

• Expandable and upgradable functionality. 

 

• Redundant system. New bottleneck would be the communications, but the irruption 

of the 5G communications and the IoT may provide the right infraestructure. 
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2.4. Starting point for the project 

In the framework of the research taken out at HS Ulm, a first prototype CMS using a FPGA 

board had been implemented. This system is a generation 1 CMS, which means that its 

functionality was just to display a real-time image obtained through the camera. The 

following step, the goal of this thesis, was adding object detection algorithms to enhance 

the information showed on the display.  

The system shown in Figure 8 used a ON Semiconductor VITA-200 Image Sensor with a 

1920x1080 resolution and up to 92 fps. The camera connects with an Avnet FMC-Module 

that has HDMI input and output, LCED-interface for camera connection and FMC-Interface 

for ZYNQ-Board (FPGA) connection. As a display, a standard 24-inch PC Monitor with 

HDMI-Interface connection is used. The main component of the CMS acting as an ECU, is 

a ZYNQ-7000 SoC Evaluation Board (ZC702). 

  

  

  

 

 

 

 

 

 

 

 

 

The code for this CMS system includes preprocessing of the image such as RGB to YCbCr 

transformation, Chroma resampling from 4:4:4 to 4:4:2 to reduce saturation and cutting out 

the ROI, reducing the size of the image to 1024x768 pixels. With this compression an image 

4 times smaller is obtained, what fastens the data processing.  

 

 

Figure 8: Hardware setup of the mirror replacement system [HSU] 
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An overlay is also included to frame objects of interest as shown in Figure 9.  

 

 

 

 

 

 

 

 

 

The system provided a 30-fps rate, which fulfills the regulations requirements and can be 

considered real-time. In terms of energy, the power consumption is around 2 W, and in 

terms of board usage, only a 7% of the Flip-Flops, a 12% of the LUTS, 1% of Memories 

and 5% of the DSPs are used. Therefore, most of the board resources stay available for 

additional image processing algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Image obtained with the setup and an overlay example. [HSU] 
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2.5. Upgraded hardware 

The thesis starting point was using the existing design and, by IP-Cores, add the object 

detection algorithm. However, the FPGA board used as ECU was upgraded to a Xilinx 

Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit, which implied transferring the old set up 

and code to the new board.  

First, a slight comparison of the boards to understand the reason of the upgrade. The 

complete board information and schematics can be found in Xilinx webpages for the boards 

ZC702 (5) and ZCU106 (6).  

 

Table 2: Features comparison of ZC702 and ZCU106 boards. 

 ZC702 ZCU106 

System logic cells (k) 85 504 

Memory (Mb) 4,9 38  

DSP Slices 220 1,728 

Maximum I/O Pins 200 464 

 

As can be observed in the Table 2, the resources that the new board can offer is about 8 

times those the ZC702 have. In terms of I/O pins, it doubles the number. Moreover, the 

ZCU106 board comes with a PCIe interface.  

In terms of Design Tools, both boards use the Vivado Design Suite tool, but the ZCU106 

comes also with Xilinx SDK and PetaLinux tools. This last one allows deploying a Linux 

operating system on the Xilinx platform. 
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Despite being a more powerful board and with much more resources, the replacement of 

the board caused a compatibility problem as several IP core blocks of the existing design 

and the camera device are not compatible with the new board. To overpass this setback, 

the thesis was reconducted to focusing on the conceptual design of an input-independent 

object detection algorithm, regardless on if the video images are provided in real-time by a 

camera device or if are prerecorded videos uploaded from a SD card.  

 

 

 

 

 

 

Figure 10: Set up with the new board ZCU106. The 
connections are the same as with the previous board. 
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3. Object detection algorithm:  

3.1. Algorithm functionality 

The algorithm should detect and track vehicles such as cars, trucks, motorbikes and buses, 

as well as pedestrians and bicycles. In first instance, those objects should be highlighted 

in order to notify the driver. An increased functionality could be a visual color notification to 

inform about the distance in which those objects and therefore the potential thread that 

represent.  

 

Figure 11: Example of the expected image result 

Two different algorithms, one for daylight scenario and one for a low-light scenario are 

approached, as it is not possible to use only one for both scenarios with a single camera. 

With a second night-vision camera might be possible to use a single algorithm, but it is not 

the approach of this research as one of the considered options is to use the parking 

assistance camera that many cars already incorporate as input device. 

Establishing a control algorithm that decides when to use the daylight approach or the low-

light one is not part of this thesis. A luminous threshold would have to be determinate as 

well as the minimum times to consider that has been a change of light environment more 

than a punctual fluctuation of light. 
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3.2. Day algorithm 

3.2.1. State of the art 

From the different algorithms that exist for object detection, in this thesis has been taken 

into account the Haar, HoG and CNN tools as options to implement the design. 

3.2.1.1. Haar 
In 2001 the first object detection framework to provide real-time competitive detection rates 

was created by Paul Viola and Michael Jones, known as Viola-Jones object detection 

framework. (7) The algorithm presented a high detection rate in real-time for the face 

detection problem.  

The algorithm is based on Haar-like features and integral images. Haar-like features equals 

to the pixel sum in the white rectangles minus the pixel sum of the black rectangle patrons. 

The feature value is determined by comparing the feature sum to the feature threshold. 

The feature set and threshold of an object are generated by training a large number of 

images with the AdaBoost algorithm, which determine the typical features of a specific 

object. For each object, a big number of features are calculated. A frontal face contains up 

to 2135 Haar-features, like the ones showed in Figure 12 for the eyes. The algorithm 

divides the image in smaller sub-windows and calculates the Haar-features on each one of 

them.  

 

To efficiently calculate the pixel sum of an arbitrary rectangle, the algorithm uses an integral 

image as an auxiliary data structure. In an integral image, each point stores the pixel sum 

of a rectangle, starting from the top left corner to this point. With the integral image, 

calculating the sum of an arbitrary rectangle can be done in constant time, e.g., 

Sum(R1)=P4−P2−P3+P1, as shown in Figure 13. 

Figure 12: Haar-features for eyes. 
Source:[9] Figure 13: Integral image calculation. 

Source:[9] 
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In order to reduce the computation due to the huge number of features, a decision cascade 

is implemented, as seen in Figure 14.  

 

Figure 14: Decision cascade. T = True F = False.  Source:[9] 

 

The Haar features are divided into several stages. For example, the frontal face has 22 

stages and each stage has from 3 to 200 Haar features. The algorithm calculates the 

feature value for each feature within one stage and then sums the values to get the stage 

sum. If the stage sum passes the stage threshold, the algorithm continues to the next stage. 

Otherwise, the algorithm terminates and rejects the current examine window. If an examine 

window passes all stages, the algorithm accepts the current window meaning that the 

object is found. 

Finally, the AdaBoost classifier extracts the most relevant features and reduces the 

computation time. 

In terms of FPGA implementations, exist several papers focused on face detection, which 

might be useful for the pedestrian detection but not for the vehicle detection part. However, 

the results that provide give an orientation of the potential on using the Haar features for 

our problem. 

Irgens, Bader, Lé, Saxena and Ababei (8) present an implementation that achieves a frame 

rate of 4,4 fps for detecting up to 10 faces at once, with input images of 320x240. The 

implementation was completed in a low budget board, which encourages to believe that a 

more powerful board could provide better results and allow a bigger number of detections.  
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Chen Huang and Frank Vahid (9) present an implementation also for eye, face and multiple 

face (complex face = 12 faces) detection and test different number of classifiers. Each 

classifier has different amount of Haar features.  

 

As seen in Figure 15 the desktop version gets a performance close to the one that can be 

obtained with a 1/12 classifier in a FPGA. Being able to run up to 16 classifiers in parallel 

on FPGA, the increasement on performance by using a FPGA is huge. Among their 

conclusions, they state that an IP (soft core for object detection utilizing a static or possibly 

parameterized VHDL or Verilog description would not cover the tremendous difference 

among generated designs like the one described in their paper. As such, custom 

generators, including custom design space exploration, may become increasingly 

necessary for complex applications to be useful across a range of FPGA devices. 

Cho, Mirzaei, Oberg and Kastner (10) test two different implementations of the Viola-Jones 

algorithm, with input images of 320x240 and 640x480 pixels.  

 

 

 

 

 

 

 

Figure 15: Huang and Vahid performance results. Comparison of 
a single face, single eye and 12 faces detection Source [9] 
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From the previous papers it can be extracted that Viola-Jones implementations in FPGA 

exist but are mainly oriented to face detection. Therefore, to apply Viola-Jones to our 

problem, the Haar features for all the objects should be computed and that would increment 

considerably the computation required and therefore will make the frame rate even lower 

than the ones obtained for face detection. Moreover, the resolutions used in the presented 

papers were way smaller than the ones that a CMS would provide. Therefore, downscaling 

the image would be required as well. However, in all cases exists an improvement in terms 

of performance and low power consumption. 

 

 

 

 

 

Table 3: Results for a 320x240 input images. Source: [10] 

Table 4: Results for a 640x480 pixel images. Source: [10] 
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3.2.1.2. HoG 
The HoG or histogram of oriented gradients, bases as its names says in gradients. 

Gradients are vectors that point the direction of pixel intensity variation. Direction and 

magnitude are calculated, using the equations (1) and (2). Usually the object edges present 

a larger magnitude. 

 

 

 

 

The values of the pixels are grouped in 8x8 cells. The values of the 64 values of the pixel 

cell are distributed in a 9-bin histogram, ranging between 0 and 180 degrees, as seen in 

Figure 16.  

 

 

 

 

 

  

Figure 16: Histogram distribution of the gradient values. If a value stands 
in the middle of 2 bins, for example 10, it distributes equivalently its value 
between the 2 neighbour bins, in this case 0 and 20. Source: (37) 

(1) 

(2) 
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The histogram values are then classified with a support vector machine (SVM). 

 

 

 

 

 

 

 

 

Being the original algorithm with the maximum-margin hyperplane as decision border 

(Figure 17), non-linear classifiers can be applied, minimizing the error. 

A good application for the HoG is pedestrian algorithm, what would cover the respective 

part of our project, remaining the vehicle part to be solved. 

Lee, Son, Choi and Min (11) present and implementation that can detect pedestrians and 

vehicles at 33 fps on 640x480 pixel resolution images. However, no detection rate nor 

specification of the number of objects that the system can detect is mentioned. 

Hahnle, Saxen, Hisung, Brunsmann and Doll (12) present a multiscale pedestrian detector 

to detect up to 18 different pedestrian sizes with a frame rate of 64 fps on images with 

1920x1080 resolution.  

Globally, high resolution and frame rate implementations can be achieved on a FPGA, but 

mainly focused on the pedestrian detection problem. The detection of different classes of 

objects has not been tested and therefore would be needed to adapt and test the algorithm 

to check its feasibility, and a decrease in efficiency. 

 

 

 

 

Figure 17: H3 classification border that determine the SVM 
Source: (30) 
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3.2.1.3. CNN 
The cutting edge of object detection are the convolutional neural networks. CNN try to 

mimic the human neuronal connections done to recognize and classify images. Image 

classification is the task of taking an input image and outputting a class (a cat, dog, etc.) or 

a probability of classes that best describes the image.  

When we see an image, we are able to immediately characterize the scene and give each 

object a label. The input for computers, is an array of pixel values, usually in terms of width 

x height x dimension (3 if it’s an RGB image, 1 if it is grayscale). Each of these numbers is 

given a value from 0 to 255 which describes the pixel intensity at that point. The idea is that 

from this array of numbers it will output the probability of the image being a certain class 

(.80 for cat, .15 for dog, .05 for bird, etc.), and label it as the more probable. 

The human neuronal cells responsible for image recognition get triggered by specific kind 

of features, for example with some cells get triggered by vertical edges and others by 

horizontal edges. The same way, the computer is able perform image classification by 

looking for low level features such as edges and curves, through different layers. Series of 

convolutional, nonlinear, pooling (down sampling), and fully connected layers, provide the 

output. 

The first layer in a CNN is always a Convolutional Layer. A filter, also known as kernel, 

formed by weights and with a considerably smaller size than the input image but respecting 

the dimension, is sliding and convoluting with the input image. 

As the filter is sliding, or convolving, around the input image, it is multiplying the values in 

the filter with the original pixel values of the image. These multiplications are all summed 

up into a single number output. The resulting matrix is called activation map or feature map.  

 

Figure 18: Convolutional layer of a CNN. The kernel 
is convoluted over the input image. Source: (37)   
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Several convolutional layers can be used in the CNN, together with ReLU (Rectified Linear 

Units), pool and dropout layers. After each conv layer, it is convention to apply a nonlinear 

or activation layer. The purpose of this layer is to introduce nonlinearity to a system that 

has just been computing linear operations during the convolutional layers. The ReLU layer 

applies the function f(x) = max(0, x) to all of the values in the input, changing all the negative 

values to 0.  

Pooling layers take a filter (normally of size 2x2) and a stride of the same length, and then 

applies it to the input values and outputs the maximum number in every subregion that the 

filter convolves around. This case is known as the max-pooling, but also average pooling 

(Figure 19) and L2-norm pooling can be used. The intuitive reasoning behind this layer is 

that once we know that a specific feature is in the original input image, its exact location is 

not as important as its relative location to the other features.  

Dropout layers have a very specific function in neural networks. One problem can appear 

when after training, the weights of the network are so tuned to the training examples they 

are given that the network doesn’t perform well when given new examples. This layer drops 

out a random set of activations in that layer by setting them to zero. This layer is only used 

during training, and not during test time. 

The final layer of the CNN is the fully connected layer. This layer takes the input from the 

previous layer and outputs an N dimensional vector where N is the number of classes that 

the program has to choose from, and each number represents the probability of a certain 

class. To calculate the probability, it looks at the output of the previous layer and determines 

which features most correlate to a particular class. For example, if the program is predicting 

that some image is a bird, it will have high values in the activation maps that represent high 

level features like wings or a beak.  

 

Figure 19: Example of average pooling layer. Down sampling 
by averaging the values of a 3x3 cell. Source: (37) 
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The most important part of the CNN is the training. Before the CNN starts, the weights are 

randomized. The filters don’t know how to look for edges and curves. The way the computer 

is able to adjust its filter weights is through a training process called backpropagation. 

During the training, labelled images are introduced into the system. As the CNN knows that 

the result should be probability of 1, it takes the calculated value with the existing weights 

and calculates the mean square error between the expected value and the obtained one. 

By optimization, the CNN calculates the optimal weights with a set of training images. 

Once the CNN is trained with the training dataset, the test image dataset is used to check 

the right behavior of the network. 

CNN are mainly focused on single object image classification, but this project focuses on 

multiple object detection. This problem, which object detection researchers met before, is 

solved by using region-based CNN, R-CNN. The original image is divided in possible 

regions of interest, and the CNN runs over those regions, as seen in Figure 20. 

 

R-CNN however calculates usually up to 2000 regions of interest (13), which requires a lot 

of time and therefore is not suitable for real-time execution. 

In order to overcome those limitations, Fast R-CNN and Faster R-CNN where created. 

Instead of getting the ROIs of the original image, this one is the input to the convolutional 

layer and the ROI are decided from the resulting feature map. As the Fast R-CNN uses 

selective search to get the ROI, the Faster R-CNN uses a parallel network to obtain them, 

and therefore the system is getting trained constantly.  

The increasement in terms of speed in the Fast and Faster R-CNN is considerable, as can 

be seen in Figure 22, which makes R-CNN suitable for real-time situations.  

Figure 20: R-CNN stages. Division by the R-CNN into Regions of Interest. Source: (13) 
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Most of the detection systems apply the model to an image at multiple locations and scales 

in order to detect different object sizes. That usually implies dividing the original image into 

smaller ones and running the neural network over them. High scoring regions of the image 

are considered detections. An alternative approach is taken by the You Only Look Once 

algorithm, YOLO (14). A single neural network is applied to the full image. This network 

divides the image into regions and predicts bounding boxes and probabilities for each 

region. These bounding boxes are weighted by the predicted probabilities to obtain the final 

detections, as seen in  

 

Figure 21: Comparison of the different R-CNN test-time speed. Fast R-CNN reduces by 21 the test-
time, and the Faster R-CNN up to 240 times respect the original network design. Source: (13) 

Figure 22: YOLO methodology. Bounding boxes and probabilities are calculated separately and then merged 
to propose the final detection bounding box. Source: (14) 
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YOLO presents a higher frame rate than R-CNN, but it presents problems on detecting 

small objects within the image, by constraints of the algorithm architecture.  

Every CNN can be defined with different number and distribution of layers, different weights 

and object classes to be detected. Many CNN exist, but most of them cover many more 

object classes than the ones we need for our project, which translates into a missusage of 

resources. Therefore, the best way to get the ideal CNN is to create and adapt a new one 

for our specific problem, with our own dataset. Designing and training your own CNN from 

scratch can take weeks. That is the reason why in the context of machine learning, it is 

common to use the concept of “transfer learning”, which is using the information obtained 

by solving a similar problem and apply it to the new problem, in this case the process of 

taking a pre-trained model and “fine-tuning” the model with your own dataset. Keeping the 

already calculated weights, the last layer is changed for the custom classifier and the 

network is trained normally. 

In terms of resources, CNN require a lot of them and running one on an average computer 

in real-time is not possible even with GPU and CUDA parallel computing. Therefore, 

software desings require expensive equipment and a big power consumption. FPGA’s, with 

the parallel computing, could be a good hardware solution and a potential tool for real-time 

application. 

 

Table 5: YOLO vs R-CNN performance. YOLO offers a much higher frame rate than R-
CNN, and is suitable for real-time situations. The mAP is  the common metric for object 
detection algorithms and represents the average precision of the system. Source: [14] 
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Jason Chong’s presentation (15) presentation on machine learning compared the iteration 

time of different number of CPUs working together in front of one single FPGA. As can be 

seen in Figure  

 

Figure 23: Iteration Time (s) for different number of CPU vs a single FPGA. The speedup by using an FPGA is 
considerably remarkable. 

In the same presentation, a proposal system for object detection in real-time is presented, 

but using a cluster of FPGA instead a single one. 

However, CNN in FPGA is still a combination under development. The interest on 

combining them is real, to the point that Xilinx has spend human and economical resources 

on testing them. Xilinx recently acquired DEEPHi (16), a technological company 

specialized in FPGA-based deep learning real-time video recognition systems, which cover 

among others pedestrian and vehicle tracking. A Xilinx development team presented as 

well a YOLO implementation on FPGA (17) at the Annual Conference on Neural 

Information Processing Systems (NIPS) 2017. They achieved 16 fps with a precision of 

50%, using a FPGA adapted version of the Tiny YOLO, a light version of YOLO. They 

provided an open source code of the implementation, but runs on a special framework for 

Python that not all FPGA’s support. (18) 
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Ford and Xilinx (19) did work as well together for 10 months on a CMS fpga system, using 

in this case multiple cameras, SDSoC C++ algorithms and obtaining a frame rate of 12 

frames per second. 

Xilinx also presents a Machine Learning demo using YOLO algorithm on SDSoC 2018.3 

for the ZCU102, ZCU104, Ultra96 and DPB1303 FPGA boards.  

A paper by Zhao, Niu, Wu, Luk and Liu (20) presented an FPGA implementation of the 

YOLO algorithm, comparing it with other 3 platforms and obtaining the results observable 

in the Table 6. 

 

Their implementation offered a frame rate of barely 1 frame per second, which wouldn’t 

really suitable for our problem. Moreover, even if FPGA performs better than a CPU, GPU 

with CUDA it is way faster. 

Another group that is researching on neural network deployment over FPGA, is the 

Christos Bouganis team at the London College. As seen in Figure 24, a comparison of the 

different neural networks implementations existing nowadays classifying them with 5 

characteristics. 

 

Table 6: CNN performance on 4 different platforms. It compares the results obtained with a FPGA 
vs those obtained with a CPU/GPU. 
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In the previous comparison, the implementation that presented a theoretical major 

portability is the DnnWeaver (21). In this paper a a framework that automatically generates 

a synthesizable accelerator for a given FPGA-DNN pair from a Caffe (22) deep learning 

framework. In order to test their system, a benchmark testing on the three different FPGA 

boards shown in  Table 7 was completed. 

 

 

Figure 24: Bouganis team comparison on existing FPGA neural networks implementations. Of the five 
characteristics that are presented, the most weakened and at the same time more critical from a personal 
point of view is the FPGA portability. Most of the existing implementations are locked to the used FPGA 
model and not portable to the chosen board.  (30) 

Table 7: FPGA devices tested. Source: (21) 
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The DNN used and its functionality are the ones seen in Table 8, and the CPU and GPU 

used for comparison the ones seen in Table 9. 

 

 

The first evaluation taken out is in terms of resource usage, as seen in Table 10. 

 

 

 

Table 8: Benchmark DNN dataset, functionality and weights size. (21) 

Table 10: Resources utilization results. (21) 

Table 9: CPU and GPUs used for the comparison. 
(21) 
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In terms of speed-up comparing to a CPU, the results are the ones presented in Figure 25.  

 

 

On the other hand, comparing with a GPU (NVIDIA GTX650Ti), the following results seen 

in Figure 26 are obtained. 

 

 

 

 

 

 

Figure 25: Speedup in comparison with a CPU (Intel Xeon E3-1246) of the 3 FPGA boards and a 
smartphone ARM A15 processor. Some of the networks perform worst on the CPU than the 
FPGA. (21) 

Figure 26: Speedup in comparison with GPU (Nvidia GTX 650Ti) of the 3 FPGA boards and 2 GPU's. 
The GPU's generally outmark the speedup results obtained with the FPGA's. 
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Muhammad K A Hamdan presents a vhdl auto-generation tool for CNN on FPGA (23). The 

tool presents a grafic interface in java in where the user can define up to 25 layers within 

the convolutional, pooling, fully-connected and LRN types, as seen in Figure 27. 

 

However, the existing tool allows only to chose between two different board models as 

seen in Figure 28. 

 

 

 

 

Figure 27: CNN design framework. The values that can be chosen for each column are 
within the range of the shown values in the screenshot. Therefore, the freedom of design 
that this tool offers is constrained. 

Figure 28: Zynq-XC7Z020 and Virtex7 are the 2 options that 
offers the program. The skeleton menu shows a deactivated 
option for GPUs, as well as RNN networks in the network 
submenu, as options to be further developed. 
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One programming language that is often used for CNN is Python. Therefore, having a 

Python framework for FPGA sound like the right idea, and that is what Xilinx did with PYNQ 

(24).  For example, in the demonstration in NIPS of the tiny YOLO algorithm mentioned 

before (17), they used a bineural network based on the FINN (25) framework over the 

PYNQ platform. 

However, there are only three officially supported boards: Pynq-Z1 from Digilent, Pynq-Z2 

from TUL and ZCU104 from Xilinx. An additional community board, the Avnet Ultra96, also 

supports PYNQ. Besides the officially suported boards, it is stated in the PYNQ webpage 

that it can be used on other boards, as long as they met the following requirements: 

• Any Zynq/Zynq Ultrascale+ device (including single-core) 

• >=512 MB DRAM 

• SD Card (>=8GB) or other bootable source 

• Network connection (Ethernet or WiFi) 

• UART 

• USB 

If the board fulfills these requirements, the image of PYNQ needs to be prebuilt. For that, 

an external board repository is needed, with the specs file and board specific packages. 
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3.2.2. Scientific discussion 

From the state-of-the-art analysis several conclusions can be extracted. First of all, in the 

Haar-HoG-CNN comparison, the last ones are the most suitable for detecting multiple class 

objects. The Haar are mainly focused on face-recognition and the HoG on pedestrian 

detection, while CNN can be designed to detect multiple classes of objects. 

In terms of CNN, the first discussion is the usage either of sliding windows vs the single 

shot algorithms, as YOLO. For an application in real-time as is the camera monitoring 

systems, fast processing times are important. Sliding windows can provide a more precise 

result in images with multitude of objects of different sizes, but the execution times can be 

of multiple seconds. As our problem, presents a limited number of objects to be detected 

in the region of interest for its characteristics, this high precision high detection range can 

be sacrificed in favor of speedup. As seen in the Table 5, YOLOv2 algorithm for images of 

544x544 pixels provides a frame rate of 40 frames per second and precision of 78.6, both 

higher than those obtained with R-CNN (sliding windows). The second ones offer a frame 

rate in optimal cases around 5 frames per second, so they should be discarded for our real-

time scenario, and therefore YOLO be the main focus.  

Independently of the CNN chosen, the Hardware used and the Software approach, the 

training of the neural networks to obtain the optimal weights should be always executed 

beforehand in a software environment. This training can take even a week, but the classes 

and input objects for the training can be personalized so it is a necessary and useful time 

investment.  

In terms of FPGA compatibilities and performances with CNN, the existing results are not 

yet promising. The Xilinx NIPS presentation (17) provided a frame rate of 16 frames per 

second but with a 50% precision. The Zhao et al. (20) got a frame rate lower than 2 frames 

per second with the complete version of YOLO, which improves the precision, but this 

frame rate would not cover the real-time requirement of this problem. Real-time is a critical 

requirement, and high precision detection it is not by itself in order to make a CMS 

functional and legal to drive around with, but the idea is to enhance the information that a 

simple CMS or mirror would give and therefore high precisions of =>80% would be 

recommended. 

Comparing the resources available in the board used in the HS Ulm and those of the 

DNNWeaver (21) and Zhao et al. (20) papers, an approximate estimation of the behavior 

that this board could provide can be obtained. 
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Table 11: Comparison of the resources the different board equipped. In blue, the ones used in DNNWeaver 
paper, in green the one used in HS Ulm and in orange the one used in Zhao paper. The ZCU106 board should 
provide a slightly better performance than the Altera Arria. 

 

It can be inferred that the ZCU106 would provide a behavior slightly better than the Altera 

Arria board and that the ZC706 a behavior better than the ZC702 and close to the Altera 

Stratix one. In Figure 25, Altera Aria provided a speedup 10 times bigger than the ZC702 

and 3 times bigger than Altera Stratix, so it could be approximated that the ZCU106 could 

provide a speedup 4-5 times bigger than the ZC706. As the ZC706 offered with YOLO a 

frame rate near to 2 frames per second, that means a performance around 8-10 frames 

per second. Those numbers could be enough for the object detection, if the real capacities 

of the board meet this approximation.  

In order to find the real capacities of the board, a CNN system should be implemented on 

it. The CNN vhdl automation tool (23) offered a too constrained tool, and after trying the 

demo code on Vivado 2018.3, the resulting project synthesized and compiled but produced 

no behavior at all. The schematic showed just a row of output buffers connected to VCC 

and GND. Being either due to the under-development version of this tool or an 

incompatibility with the Vivado tool, it would not seem the best option to implement the 

desired CNN.  

Considering that Python is the most intuitive and easy-access tool for CNN, using PYNQ 

platform seems the best approach. However, the board used in HS Ulm (ZCU106) is not 

one of the officially supported boards and consequently running on it the PYNQ 

environment would require building an image for this board, if possible.  

Even if the goal of this project is approaching the usage of FPGA boards for CNN, both 

papers of DNNWeaver (21) and Zhao et al. (20) present way better results with the usage 

of GPU’s, which also happen to be way cheaper than a FPGA with similar results. Still, the 

FPGA outcomes GPU’s in terms of power consumption and this could be the main 

advantage on it. 

  

Xilinx Zynq ZC702 Altera Stratix Altera Arria 10 GX115 Xilinx ZCU106 Xilinx Zynq ZC706

LUTs (K) 53 172 427 504 218

Flip-Flop (K) 106 690 1708 460,8 437

BRAM (KB) 630 5035 6782 11000 19200

DSPSlices 220 1590 1518 1728 900
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3.3. Low light algorithm 

3.3.1. Differences towards day-light situation 

In low light situations, the information that presents the input image obtained through a 
daylight camera is mainly light sources, either from vehicles, street lights, building windows 
or even the moon, as seen in Figure 29. 

 

Therefore, as the features that could be detected by the daylight situations are not captured 
due to the lack of light, the same algorithms can’t be used. Moreover, pedestrians are not 
detectable as they don’t present any source of light. However, low-light scenarios can’t be 
ignored, as it is in the night time when visibility for drivers is the lowest and more risk of 
suffering an accident exists.   

Even if detecting which concrete vehicle is approaching would be a complicated issue, the 
sole detection of an object approaching will provide an increased input of information 
compared to the conventional mirrors. Moreover, the blinding caused often by the light 
haze of the following vehicles would be reduced. 

Another complication in the low-light scenarios compared to the daylight ones, is the 
appearance of reflections on the ground and the presence of irrelevant light sources as the 
streetlights or tunnel lights might be. In consequence, the implemented algorithm should 
be able to discern the relevant information. 

 

 

 

 

Figure 29: Sample of low-light situation. The light sources and its reflections are 
the only visible thing. Besides the two frontal lights of a vehicle, three street 
lights are visible. The artifacts that appear in this picture won't be present in a 
CMS as the cameras and preprocessing used in those systems reduce the 
presence of those.  
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3.3.2. State of the art 

Most of the existing vehicle detection systems and methods mainly focus on vehicle 
detection on daytime light conditions with a daylight camera sensor as an input. However, 
in low-light conditions this kind of cameras obtain pretty bad quality images, as seen in 
Figure 30. 

In order to work on low-light scenarios, Wang et al. (26) proposed using infrared cameras 
and apply deep networks classifiers as is usually done in daylight scenarios. The results 
showed an accuracy of 92% and a frame rate of 25 frames per second.  

However, the scope of this project was to use a single camera for all-kind of light scenarios. 
Lopez et al. (27) focus on the single camera as well, in this case to design an intelligent 
light beam control. This project included detecting vehicles by detecting their light sources. 
Reflections on the floor and street lights made the detection in a single frame harder, so 
they added a temporal coherence analysis to detect objects in multiple frames, by 
analyzing the steadyness of the detection confidence on consecutive frames. With this 
technique they achieved a precission of 96 % and a frame rate of 5 fps when using only 
multiple frame detection and 50 fps when using only single frame detection. 

The source light detection was completed by detecting blobs (binary large objects), seen 
in the image as white objects on a black background. Basing on this approach, blob 
detection, a self-created algorithm is designed in the next chapter. 

 

 

 

 

 

 

 

 

Figure 30: a) Image obtained with a daylight camera in night conditions. Only a light of a vehicle approaching 
can be distinguished b) Image obtained with an infrared camera in night conditions. A vehicle is clearly 
recognizable. Source: [26] 
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3.3.3. Algorithm design 

A demo implementation of the low-light algorithm in Matlab is presented in the following 
lines. Designing it in Matlab would allow to easy test, correct and optimize the algorithm 
concept and functionality, using the multiple predefined functions for image processing that 
the program offers. But of course, the goal is to implement it on a FPGA. Matlab have an 
add-on that theoretically generates the vhdl code from a Matlab code, and therefore it could 
ease the translation from one language to another. 

As the low-lights images will basically show a point light sources on a dark background, 
the problem can be converted into a circular object detection problem. A similar approach 
to the coin detection algorithm that is often used for starting using image analysis in Matlab 
can be done. 

The first step, should be downsizing the image to reduce the processing time. Next step 
should be converting the input image into a binary image, just black and white, as seen in 
Figure 31. First, the image is converted to grayscale and then a threshold is applied to 
binarize the image. 

 

 

 
Figure 31: Binarized sample night image. At first sight the two vehicle lights can be easily recognized. In addition, 
the street lights and reflections on the ground cand still be seen and therefore further processing to eliminate 
them is needed. 
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In order to eliminate undesired small lights, erosion is applied to the image obtaining the 
image shown in Figure 32. 

 

 

The interest lights also had been eroded. Therefore, for better detection a dilation is applied 
to recover the original size of the lights, as shown in Figure 33. 

 

Figure 32: Eroded sample night image. The small point lights as the far street lights are 
deleted. 

Figure 33: Sample night image after dilation. 
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Then the image is ready for light detection. In order to do that, the Matlab function 
‘regionprops’ finds the diameter and center position of the circular shapes in the image. 
The function itself returns the major and minor axis, therefore the radius needs to be 
calculated from it. With the center position and the radius, the Matlab function ‘viscircles’ 
overlays a frame to the detected lights as seen in Figure 34. 

 

The street lights are also detected on the image, and this is not a relevant information. As 

in the daylight algorithm, a region of interest needs to be defined to dismiss irrelevant 

objects that would cause false positives. Like that we detect only the objects of interest, as 

seen in Figure 35. 

Figure 34: Final image with the overlaid detected point-lights. As seen, a street 
light is also detected, which is not a relevant information for our problem and 
causes a false positive. 

Figure 35: Sample processed image after applying the region of interest 
restriction. 



 55 

As point lights are detected, final step would be detecting the vehicle itself. The biggest 

problem for this situation are the motorcicles, as it would be hard to determine if it is one of 

those vehicles or a single light of a car is being detected. A car can be determined by 

having two lights of similar radius in the same horizontal line, as seen in Figure 36.  

 

 

 

 

Figure 36: Bounding box around the vehicle, using the lights as reference. 
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3.3.4. Testing and results 

Lowlight scenes were recorded, more specifically night situation, mainly in highway and a 

few instants of urban environment. The recording started at dusk and lasted until dark night. 

The algorithm was tested over cuts of this video, first only using the point light detection 

and afterwards adding the vehicle detection estimation. A set of 10 samples of different 

situations of these videos are shown in the following pictures, some of which present some 

flaws of the algorithm to be corrected.  

Figure 37: In this scenario the level is high enough probably for using the daylight algorithm, 
but the cars already use lights and therefore a test of the low-light one can be applied. a) urban 
scene. b) point light detection. The right light of the neighbour car is not detected. Due to be 
the farther one and in a position of overtaking the reference car, the intensity of this light is 
low. c) the vehicle detection logically only detects one couple of lights, therefore one car. 
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In the first scenario shown in Figure 37, which is in the boundaries of daylight scenarios, 3 

lights out of 4 are detected and in consequence only bounded 1 car out of 2. In terms of 

approaching danger information, the system correctly enhances that there is a car behind 

and an undefined light source close next and behind the reference car.  Fine tuning the 

binarization threshold or the erosion/dilation parameters, could improve the detection of the 

missing light. When being overtaken, the farther light disappears from the point of reference 

field of view. Therefore, a better way to keep the detected object overlaid even when the 

angle for the FOV darkens one of the point lights, would be adding object tracking as in the 

previous instants the complete car would be appearing in the image. To do that, memory 

should be added storing the previous bounding boxes and source point lights position and 

sizes, movement prediction through motion vectors could be applied to predict next position 

of the bounding boxes, error correction of the prediction and the actual detection should be 

applied and extra logic to enable bounding boxes where single light points are detected 

should be added. But in terms of this thesis, the goal was to approach the ways to 

implement those algorithms first, a complete optimal design of this single low-light algorithm 

would require more time resources and escapes the boundaries of this thesis. 

 

 

Although the object detection is not compulsory for CMS and is just an upgrade in terms of 

information providing, the accuracy should be of at least 70 % in a conformist approach. If 

the system also connects and affects ADAS, which could mean directly interact with brakes 

and direction, this accuracy should be close to 100 %. Therefore, the values obtained in 

Table 12 would not be enough for ADAS system, and would be poor for information 

enhancement system, despite that highlighted the closest dangers. 

 

 

In image Detected Missed Accuracy

Point lights 4 3 1 75%

Vehicles 2 1 1 50%

Table 12: Figure 37 detection results. 
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Figure 38: This scenario is also in the impasse between daylight and low-light 
situations. a) Highway dusk scenario b) Bad detection precision in this case. The 
farther behind car lights are not detected and being a highway, they should. c) The 
closest danger, which is the truck, is detected. Farther vehicles are not. 

In image Detected Missed Accuracy

Point lights 8 3 5 38%

Vehicles 4 1 3 25%

Table 13: Figure 38 detection results. 
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The results obtained in the highway dusk situation are really bad. Even if the biggest danger 

is detected, as is the truck closely behind, the farther cars that might be approaching at 

high speed as is a highway are not even detected. 

 

Figure 39: a) Highway night situation with a close car overtaking and a far car behind. b) 
The farther car lights are detected as one. c) The close car overtaking is rightly bounded, 
not the far one. 

In image Detected Missed Accuracy

Point lights 4 3 1 75%

Vehicles 2 1 1 50%

Table 14: Figure 39 detection results. 
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In Figure 39 scenario, the most dangerous object which is the overtaking car is detected, 

but the farther vehicle is wrongly detected as a single light instead of two of them. Even if 

the fact that a car that far is detected, not like in the dusk situation, the single like light 

detected is bigger than those of the close car and it could wrongly trick the driver or ADAS 

system to think that the car behind is closer than it happens to be. New logic to distinguish 

this situation should be added to the code or either it should be considered the car is far 

enough not to be a danger and therefore do not enhance it, to avoid misinterpretations. 

 

Figure 40: a) Highway close cars behind scenario. b) The farther car behind, 
which is not a potential danger yet as there is a second car between the 
reference car and this car, is detected as a single light. c) The close cars are 
correctly detected. 
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As in the previous scenario, the far car lights are detected as a single one, which what 

could lead to misinterpretation. The potential dangers, which are the cars closely behind, 

both of them are correctly detected and therefore the system works properly. 

 

In image Detected Missed Accuracy

Point lights 6 5 1 83%

Vehicles 3 2 1 67%

Table 15: Figure 40 detection results. 

Figure 41: a) Interurban road with traffic lights and house windows lights. b) A 
house's window is mistaken by a vehicle light c) The closely behind are correctly 
detected. 
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In this case the vehicles are correctly detected, but a false positive occurs as the system 

detects a house window as a vehicle light. 

Figure 42: a) Slight turn close cars situation b) Some cars include extra lights for 
when taking a turn. Those extra lights and the reflection that generate as are closer 
to the ground are also detected by the system. c) The system detects correctly the 
cars behind but includes extra bounds to the vehicles due to the car. 

In image Detected Missed Accuracy

Point lights 4 5 -1 125%

Vehicles 2 2 0 100%

Table 16: Figure 41 detection results. Presence of a false positive 
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In this scenario, two false positives are generated due to the ground reflections of the light’s 

sources. A second bound is added to a single vehicle due to the extra turning lights. With 

the fog lamps could happen as well, therefore an extra logic for these situations should be 

added to the code to keep it just a single bounding box. The dangers are correctly detected. 

  

In image Detected Missed Accuracy

Point lights 8 10 -2 125%

Vehicles 2 2 0 100%

Table 17: Figure 42 detection results. 2 false positives. 

Figure 43: a) Bus behind in interurban road. b) Correct detection 
of the lights c) Correct detection of the vehicle 
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In this scenario the vehicle is correctly detected. 

  

In image Detected Missed Accuracy

Point lights 2 2 0 100%

Vehicles 1 1 0 100%

Table 18: Figure 43 detection results. 

Figure 44: a) Bus and car in parallel b) Correct detection of the lights 
c) Correct bounding of the vehicles. 
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In this scenario the vehicles are correctly detected. 

  

In image Detected Missed Accuracy

Point lights 4 4 0 100%

Vehicles 2 2 0 100%

Table 19: Figure 44 detection results. 

Figure 45: a) Multiple vehicle urban scenario. A car is partially blocked and only one lights 
seen. b) Reflections on the ground are detected c) The partially blocked car light and one 
of the bus lights are mistakenly bounded as a single vehicle, while the bus is not 
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In this scenario again reflections are detected on the ground. Some extra processing 

should be done to avoid them. Even though, as the reflections are close to the lights the 

effect is a bigger bounding box which translates in the perception that the potential danger 

is closer than it really is, which is better than not detecting at all. The lights of two close 

vehicles, the car and the bus, are detected together as a single vehicle. With object tracking, 

this situation could be avoided, as is seen in Figures 43 and 44 the bus has been detected 

previously. 

One situation that was not tested, as there were no motorbikes at all circulating around, is 

the detection of those. The single point lights would be detected, as happened with partially 

blocked cars, but hardly would be a way to decide if it is a bike or the only visible light of 

another vehicle. However, detecting the source lights and overlaying them to the image is 

already and enhancement of the potential objects approaching, and indistinctly of it is a 

motorbike a car or a truck, in neither case the driver would want to crash into them. 

From the results obtained the following issues need to be corrected or added: 

• Reflection detection: Preprocessing to reduce the effect of reflections, if 

possible, should be applied.  

   

• Object tracking: Movement estimation to track the objects should be added. 

 

• Multiple light treatment: As some vehicles have extra lights for turning or fog 

situations, the treatment of those as part of the same vehicle should be 

implemented.  

• Distance estimation: From the radius and bounding boxes size, an estimation 

of the distance could be calculated. 

As well other low-lights situations like tunnels should be tested, to detect additional flaws 

of the algorithm. For a first simple code approach to the low-light algorithm, the behavior of 

it provides a relevant information addition to the CMS. Next step before upgrading it, should 

be testing the conversion to VHDL and its implementation on FPGA. 

 

In image Detected Missed Accuracy

Point lights 6 9 -3 150%

Vehicles 3 1 2 33%

Table 20: Figure 45 detection results. 3 false positive. 
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3.3.5. Conversion to VHDL 

Matlab presents an add-on oriented to converting matlab code to vhdl. 

 
Figure 46: Matlab screenshot. In Apps/Code Generation, th HDL coder can be found. 

 

The coder requires a function to be converted and a testbench. This project had four 

different functions as seen in Figure 47. 

The most important function is ‘analyze_frames’ which is the one returning the centers and 

dimensions of the circles and bounding boxes detected. This function calls ‘detect_lights’ 

and ‘detect_vehicles’ functions. The ‘visualization’ function is just for displaying on matlab 

and therefore it has not to be converted to vhdl. 

So, the input to the converter is the ‘analyze_frames’ function and the ‘main’ function as 

the testbench. However, the coder has some restrictions in terms of code and function that 

can be used as input.  

Figure 47: Folder distribution of the Matlab project. 
Separation in Classes, Data and Functions. 
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At first instance, the project was using classes and the coder does not support this kind of 

structures. In consequence, all the settings constants had to be hardcoded to the main 

function. Once this problem was solved, the use of tables was flagged out as incompatible. 

The ‘regionprops’ function that detected the light objects can present either the results in a 

table or a structure, so the second format was used to overcome this problem. 

When all the code compatibilities were solved, an unbeatable problem appeared. The 

Matlab coder for hdl requires the target board model to keep on with the conversion. The 

Matlab version used dated from 2016, while the board targeted dates from 2018, and 

therefore doesn’t appear in the board catalog that Matlab had. A 2018 version of Matlab 

was installed, but it did not come with the hdl coder add-on, and therefore the conversion 

couldn’t be completed. 
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4. Overall concept 

In order to provide a complete CMS with object and tracking detection, the methodology 
needed for the CMS object detection design is presented. This thesis presents a proposal 
in terms of minimum value needed to cover the proposed problem, basing on the fact that 
the processor resources are limited. However, more ideal solutions are mentioned.  

The first thing to take into consideration is the multiple scenarios in which a vehicle can 
circulate. In terms of light, we can meet with the situations represented in Figure 48. 

 
Figure 48: Different light condition scenarios. a) Sunrise b) Daylight c) Sunset d) Cloudy e) Heavy precipitation 
(rain either snow) f) foggy g) night time h) tunnels.  

Sunrise and sunset can be a problem when the sun is behind the car, but with the right 
lens and image processing for diminishing the glare it is possible to obtain a cleaner image 
and indirect vision than with conventional mirrors, as in those situations many times the 
sun reflection can be blinding.  

Low light situations as night time or tunnels should be treated differently than daylight 
situations, by means of a different camera device or algorithm approach as visibility is 
considerably reduced.  

The more challenging scenarios are those of heavy rain and fog, as the visibility is 
extremely reduced to the point of barely being able to see the vehicles farther than a couple 
of meters of the own vehicle. In this case, a safer solution would be using radar or laser 
scanning instead of camera systems, but is more expensive solution and out of the scope 
of this thesis. 

In this project, the clear daylight and low light scenarios are considered, ignoring the other 
scenarios. For a complete designing of a CMS system all the scenarios should be 
considered and tested. 
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The way to approach the multiples scenario problem is to use multiple tools in our system, 

either in terms of hardware devices or software algorithms, as shown in Figure 49. 

 

 

For this thesis the second scenario has been considered, using two separate algorithms 

for day and low-light situations. Using a single camera would be economically cheaper and 

easier in terms of installation. Moreover, already existing parking camera that many cars 

include could be used as well for this purpose. 

The complete design of the luminous threshold is not part of this thesis, but the following 

considerations should to be taken into account while designing it: 

• Duration of the light change: Light fluctuations might happen due to shadows while 

crossing under a bridge, driving through a forest or high buildings in a city center. 

The system should not jump between algorithms unless the light change is long 

enough to consider a change of scenario. 

 

• Hysteresis cycle: As many other sensor-based systems, like air conditioning, an 

hysteresis cycle needs to be applied so the system does not constantly jump 

between algorithm when the luminosity is close to the threshold value. 

Figure 49: Dual vs single camera systems. The top schematic shows a proposal of a CMS system using a low-light 
vision and a daylight camera, using on both cameras the same algorithm, the daylight one. In order to choose 
which input to process, a luminous threshold could be used. If processing resources are not a limitation, both 
images could be processed and the best predictions used or combined. The bottom schematic shows a single 
camera input proposal, in which a luminous threshold determines which algorithm to use, if the daylight or low-light 
situation. If processing resources are not a limitation, as many algorithms as required for the different scenarios 
could be used. 
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The next step, as an object detection and tracking algorithm, is to define the objects that 

we want to detect. The basic objects to be detected are: 

• Pedestrians 
 

• Bicycles 
 

• Cars 
 

• Buses 
 

• Trucks 
 

• Motorcycles 

 

In this thesis framework, where a single camera is used, for low-light situations it wouldn’t 

be possible to detect pedestrians. For the other objects, it would be easy to detect their 

lights but harder to classify them into the different vehicle types. 

The objects that we want to detect can be found in different environments. The speeds and 

risk situations that can be reached and found in a highway or inside a city differ 

considerably.  

In interurban roads mainly motorized vehicles like cars and trucks can be found in this 

environment, by means of being mainly transportation paths. This includes highways in 

which pedestrians and cyclist are not allowed and shouldn’t be the main objects to be 

detected, while high speeds are reached and therefore a higher frame rate and being able 

to detect smaller objects (vehicles approaching from far) is more critical than the amount 

and variety of objects to be detected.  

As represented in the Figure 50, the most dangerous situations to check with the rear-view 

elements on a highway are the change of lanes and safety distance with the car straight 

behind, although that depends more on that car that in the will of the on-board driver. 
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Considering the safety distance that two vehicles should keep, which is a thumb-like rule 

of 2 seconds, the approximately distance between 2 consecutives cars can be calculated. 

For a speed of 120 km/h, which is 33 m/s, would suppose a distance of 60 meters. Covering 

that distance on the indirect field of view, the regulation requirements are met. Therefore, 

detecting the immediate behind vehicle, considering a vehicle might be almost at the same 

level side-by-side and the vehicles behind them, would be enough to offer a safe vision to 

the driver. In other words, 5 vehicles to be detected on this sort of roads would be an 

acceptable measure. 

On the other hand, the velocities in the highway are high, therefore the frame rate of the 

detection algorithm should be high enough to detect the approaching vehicle. In the 

extreme case of a German autobahns, where the biggest relative speed differences might 

happen, a vehicle could be approaching 90 km/h faster than the preceding car. That is 25 

m/s. It would sound a reasonable measure, per every frame actualization would imply not 

more than 2 meters advance by the previous car, that is 15 fps in a highway scenario. 

 

 

 

 

Figure 50: Considering the view from a vehicle circulating in the middle of a 3-lane highway, the 
dangerous areas for the driver are the adjacent lanes, in case the driver wants to change the lane, 
and the immediate posterior car in case a sudden breaking is needed. 
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Urban areas present an opposite situation, a lot of objects to detect from different classes 

as seen in Figure 51, at low speed. Pedestrians and bicycles are critical in this scenario, 

due to the danger that supposes for those to collide with a motorized vehicle. 

In this environment, the 5 objects established in the interurban case would not be enough. 

As in terms of vehicles, 5 would be enough, the system should be able to detect multiple 

pedestrians and bicycles. By thumb-rule, considering an average car is 2 meters width and 

leaving 2 meters more by side, and that an average person occupies a width of 0.5 meters, 

in an extreme case where several people stand shoulder by shoulder behind a car, that 

would add to 12 pedestrians to detect. Therefore, a CMS in urban environments should 

detect at least 12 objects to assure a minimum safety functionality. 

In terms of speed, vehicles are allowed to circulate maximum at 50 km/h, which is 14 m/s. 

Therefore, the 15 fps proposed for the interurban is more than enough for this scenario.  

Summarizing, the proposed system should be able to detect at least 12 objects in the 

daylight scenario, and 5 in the low-light scenario as pedestrians are not detectable. A frame 

rate of 15 frames per second would be suitable for high speed situations. 

 

Figure 51:Considering the point of view from of a vehicle driving through a double direction 
street, the most dangerous situations are streets intersections in which the driver wants to make 
a turn, sudden breaking caused by traffic lights and pedestrians crossing and parking. For this 
last scenario the vehicles riding on the opposite direction should be also detected. 
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Considering that a CMS by regulation should provide a 30 fps frame rate, the processing 

load can be lighten by applying the object detection algorithm in one of every two frames 

or less.  As the action does not change as fast, the bounding boxes calculated in the 

previous frame can be kept in the actual one to create a sensation of continuity, as seen in 

figure  

 

 

 

As mentioned before, the 15 fps is based on high velocity roads in the extreme case of 

Germany, as the rest of countries would not meet with such extreme relative velocities 

between vehicles as speed limits exist. In a more advanced system, a scene recognition 

could be applied, for example, every 1 second in order to determine in which environment 

the vehicle is driving along and adapt the frame rate to it.  

In this project the detection is done frame-by-frame, but tracking algorithms can be added 

to predict the trajectory of the objects and therefore reduce the image processing. Instead 

of running the object detection that often, optical flow can be calculated to predict 

movement of the objects and determine the growth and position of the bounding boxes. 

However, as the background is not static applying optical flow prediction is more 

complicated.  

 

 

 

Figure 52: Down sampling of the object detection. In this example, one of every two frames is processed. 
In this case, the blue images are processed and the red ones bypassed. The bounding boxes calculated 
for every blue frame, are applied also to the following red one. 
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Basing on the research done of the state-of-the-art technologies in object detection and 

tracking, the most promising algorithm to use, for the daylight scenario, would be the 

Convolutional Neural Networks. On a first instance, for a single FPGA, running a CNN for 

object detection would be already an achievement. In a FPGA cloud scenario, where the 

resources would be considerably increased, a second neural network to predict the 

movement and therefore add object tracking could be applied. With the combination of both 

networks, a complete object detection and tracking system would be provided. 

Besides the training of the network itself, the format in which the input information is 

presented is important. By reducing the irrelevant information, the processing time is 

reduced. 

1. In the case that the camera covers a wider area than the field of view 

required, a region of interest should be selected. In the Figure 54, building 

and trees are observable. These elements are not relevant for our detection 

object, as the potential dangers are at ground level. Therefore, a region 

interest on the horizontal level of the car is selected and cropped, as seen 

in Figure 53. 

 

Figure 54: Sample input image 

Figure 53: Region of interest for the sample input image 
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2. While the recorded image should have a high resolution for the direct display, 

for the processing it can be reduced into a smaller one. For example, if the 

input has a resolution of 1920×1080 pixels and the region of interested is 

reduced to 1920x540 pixels, it can be rescaled to 960x270 pixels. 

3. It is common for CNN to convert the image to grayscale before running the 

object detection. As in this case the color of the objects is not a relevant 

information, the image is converted to grayscale as seen in Figure 55. 

 

4. As the best kind of algorithms for real-time detection are the single shot 

algorithms like YOLO, the entire image is inputted at once without sliding 

windows. The same applies for the low-light algorithm. The algorithm returns 

the bounding boxes position and sizes on the treated image, as seen in 

Figure 56. 

 

 

 

 

Figure 55: Grayscale ROI of the input image 

Figure 56: The algorithm returns the position and sizes of the bounding boxes (bottom). 
For better understanding, graphically would be seen as in the top image when 
overlapping with the treated image. 
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5. As the image has been scaled prior to the algorithm processing, the 

bounding boxes position and sizes are relative to the downscaled region of 

interest of the image, and therefore an upscaling and an offset relative to 

the original image should be applied before adding to the bypassed image. 

The final result would be such as seen in Figure 57, with the bounding boxes 

overlaid to the original image. 

 

In all the approaches to implement the CNN in the FPGA, the weights that define its 

behavior need to be calculated previously. Therefore, the first step should be designing 

and training the CNN on software. Python offers a lot of libraries and functions to work with 

Caffe and Tensorflow, two of the main open-source machine learning frameworks, as well 

as Keras, a neural network library written in Python. Moreover, several tutorials on how to 

design your own CNN with the desired classes to detect and using an own dataset, exist 

on the Internet.  

The first step to design our CNN is to define our own dataset. There are several APIs like 

the ones from Google and Bing, that allow to easily search and download a big number of 

images. Those images should be classified on two separate folders, one for training and 

one for testing and validating. 

Once designed the CNN, either from scratch or by “transfer learning”, which is preferred, 

the network should be trained with the training images. Afterwards, the test images are 

used to confirm that the network functions correctly. Once validated, the weights can be 

saved for later upload to the FPGA implementation. 

Figure 57: Sample of the final image to be displayed 



 78 

As said, the most accessible language to run a CNN is Python, therefore the easiest way 

to have it running on the FPGA would be using this language on the board. To do that, 

PYNQ should be installed to the board. The target board ZCU106 is not officially supported, 

but the documentation of PYNQ have a section for using it on unsupported boards. 

Therefore, the first step should be trying to build an image for our target board. Once the 

system is running, the next step is adapting the previously designed and trained network 

to this platform. This process corresponds to the daylight algorithm.  

For the night algorithm, the first step should be optimizing the proposed code by correcting 

the mentioned flaws and adding an approximation of the objects distance. Then, using the 

right Matlab version with the vhdl coder add-on, the code should be converted to vhdl 

adapting the original to the coder constraints. Another option could be hand translate the 

Matlab to Vhdl, if the time and skills necessary for it are available. 

Besides running both algorithms on the same board, which might not be possible as the 

resources are limited even for just the neural network, the connection to the camera, 

preprocessing of the images, the formatting for displaying and the reproduction of those 

should be also implemented on the FPGA, what would mean more resources consumption. 

Therefore, running both algorithms plus the basic CMS functionality in a single FPGA, with 

a real-time performance and high precision is quite an optimistic goal. However, for the 

final goal of connecting to a remote FPGA cluster, those requirements could be met. 

Once the system is implemented, a complete testing of the different scenario situations 

mentioned before should be executed. The object detection is not a compulsory 

requirement for CMS, but if implemented, some minimum detection ratios should be meet 

to make the system worth deployed. For just an informative functionality, a precision of at 

least of 70%, being not ambitious, should be met. For an ADAS interference functionality, 

the precision should be around 95%, even higher if it involves breaks or direction control. 

As mentioned, it should have a real-time behavior meeting the regulation requirements of 

30 frames per second on daylight scenarios and 15 frames per second on low-light 

situations.  

Covering all the aspects mentioned in here, would provide a complete CMS system with 

object detection. 
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5. Budget 

5.1. Components cost 
Considering the setup provided by the HS Ulm, the cost of the components needed to 

deploy an experimental Camera Monitoring System is the one shown in the Table 21. 

 
Table 21: Set-up components cost 

CMS Cost 

Zynq UltraScale+ MPSoC ZCU106 (6)   1.791,86 €  

Camera (28)       196,51 €  

Display (29)         19,99 €  

SD Card (8Gb) (30)           6,16 €  

HDMI cable (31)           2,14 €  

   2.016,66 €  

 

The FPGA board includes the power supply, ethernet and USB cables.  

5.2. Software cost 
In order to program a Xilinx FPGA board, the proprietary software Vivado is needed. 

However, when buying a board, a license restricted to that board is provided for free. On 

the other hand, for the low-light scenario, a Matlab demonstration has been provided and 

therefore the program is needed. There is a discount license for students, which reduced 

the software cost to the following prices shown in Table 22. 

 
Table 22: Software cost 

Program License Cost 

Xilinx Vivado (6) Restricted to the board Free 

Matlab (32) Student         35,00 €  

          35,00 €  
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5.3. Manpower cost 
In order to calculate the manpower cost, will be used as orientation the fact that this project 

computes as 12 ECTS and 1 ECTS equals to 30 hours. The price of a junior engineer will 

be calculated as 12 € per hour. Additionally, the tutors offered counselling during the project 

development. Considering that they offered a 1 hour of counselling out of 10 hours of 

project and that a senior engineer cost per hour is 18 €, the total manpower cost is the one 

shown in the Table 23. 

 

Table 23: Manpower costs 

 Total hours  Cost 

Junior engineer (12 €/h) 360 h   4.320,00 €  

Senior engineer (15 €/h) 36 h       540,00 €  

    4.860,00 €  

 

5.4. Total cost 
The total cost of the project, including hardware, software and manpower for a prototype 
CMS based on a FPGA, would add up to the value of Table 24. 

 
Table 24: Total cost of the project 

CMS   2.016,66 €  

Software         35,00 €  

Manpower cost   4.860,00 €  

Total    6.911,66 €  

 

An optimized design and the creation of this system for serial vehicle production would 
reduce the prize and make it suitable as an ADAS for commercial vehicles. In the actuality, 
the change of lane assistant, collision detection or dynamic cruise control are extras sold 
around the 2000 € to the costumers. Therefore, a CMS could be also introduced as an 
extra with a realistic price, specially in the luxury car sector. 
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6. Further development 

The next step following this thesis should be implementing the overall concept approach, 

coding both the neural network for daylight situation and the low-light point detection 

algorithm and implement them on the FPGA. Afterwards, the behavior of the system should 

be tested in terms of latency, power consumption and resource usage, to determine if the 

system meets the real-time requirements in a realistic power and resource budget. 

An alternative way to approach the system would be to study how the camera and 

corresponding object detection algorithms could interact with other sensors in vehicles, as 

could be radars, lidars, proximity detection or line detector, in order to enrich the information 

obtained. 

Once the object detection algorithm is running on real-time, the system should be locally 

installed in different vehicles for real scenario testing. The different tests would provide 

useful data to improve the system and show its flaws, as well as an empiric demonstration 

of the advantages towards regular mirrors. 

In terms of the complete ongoing research, both the communication between the camera 

on the car and the cloud in one direction and back from the cluster to the screen device 

installed on the vehicle, should be designed and implemented. Once the video stream on 

real-time is properly uploaded to the cloud and back, the object detection should be added 

to the cloud FPGA cluster and the complete system tested in the different scenarios.  

The on-cloud application would require also to study and design the required network 

devices that should be installed both in vehicles and roads to be able to have constant 

communication between the car system and the servers running the algorithm, as it is not 

a feature that the vehicle can leave aside. Network security, interferences, handovers and 

channel capacities would have to be sized as well for the telecommunication network, 

focusing on the upcoming 5G technology. 
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7. Conclusions:  

In this thesis, a deep research on object detection algorithms to be applied in the camera 

monitoring systems has been performed. The different state of the art algorithms has been 

approached and several implementations compared to define the best one to cover the 

required problem.  

Convolutional neural networks are the most suitable option for object detection, and the 

steps to design and implement this technology has been described. Some tools and 

implementations of CNN on FPGA have been presented. In general terms, CNN require a 

lot of processing resources. The results shown in the literature trade precision for frame 

rates close to real-time application, using board-constraint implementations. 

 In terms of FPGA resources, it is difficult to obtain both the speed required by the 

regulations and the precisions needed to add a real value in terms of information 

enhancement and definitely not enough for active ADAS.  

An optimal algorithm code should be easily portable from one FPGA board to another, 

however this has been proven a flaw for this kind of platforms so far. As new improved 

FPGA hardware appear in the market, it is required to rewrite the code every time to adapt 

it to the new board, which is an undesired limitation.  

Another counterpoint for using FPGA boards, is the fact that GPU’s offer more economical 

and resourceful boards that provide better results that do allow real-time application without 

trading off precision. On the other hand, FPGA boards outstand GPU in terms of power 

consumption. An interoperable approach mixing both platforms could be an option to 

consider for future upgrading and should be taken into account while programming the 

inputs and outputs of the different blocks. For example, the output from the board that 

obtains the images in the vehicle should be reusable by any kind of board on the data 

processing end. 

In general terms, using a FPGA board as a single ECU for a camera monitoring system 

with object detection on the nowadays boards and with the existing framework for CNN 

deployment, might not be the best option but is still a feasible one. To do so, it will require 

high programming skills and time investment for the optimal code development and 

implementation.  
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Glossary 

Word: English. Castellano. Català 
CMS: Camera Monitoring System. Sistema de monitoreado por cámara. Sistema de 
monitorització amb càmera. 
ECU: Electronic Control Unit. Centralita electrónica. Centraleta electrónica. 
CMOS: Complementary metal–oxide–semiconductor. Semiconductor complementario de óxido 
metálico. Metall Òxid Semiconductor Complementari. 
FOV: Field of Vision. Campo de visión. Camp de visió. 
ROI: Region of Interest. Región de interés. Regió d’interès. 
ADAS: Advanced driver-assistance systems. Sistemas avanzados de asistencia a la conducción. 
Sistemes avançats d’assistència a la conducció. 
FPGA: Field-Programmable Gate Array. Matriz de puertas programables. Matriu de portes 
programables. 
GPU: Graphics Processing Unit. Unidad de procesamiento gráfico. Unitat de Procés Gràfic 
CPU: Central Processing Unit. Unidad central de procesamiento. Unitat central de processament. 
YOLO: You Only Look Once. Una sola observación. Una sola observación. 
CNN: Convolutional Neural Network. Redes neuronales convolucionales. Xarxes neuronals 
convoluncionals. 
ISO: International Organization for Standardization. Organización Internacional de Normalización. 
Organització Internacional per a l'Estandardització. 
IP: Intellectual Property. Propiedad intellectual. Propietat intellectual. 
UN: United Nations. Naciones Unidas. Nacions Unides. 
MTF: Modulation Transfer Function. Función de Transferencia de Modulación. Funció de 
Transferència de Modulació 
HS: Hochschule. Escuela superior. Escola superior. 
IoT: Internet of Things. Internet de las cosas. Internet de les coses. 
HDMI: High-Definition Multimedia Interface. Interfície multimedia de alta definición. Interficie 
multimedia d’alta definición. 
RGB: Red Green Blue scale. Escala rojo-verde-azul. Escala vermell-verd-blau 
YCbCr: Luma blue Chrominance red Chrominance space. Espacio de lumináncia, cromatura roja 
y cromatura azul. Espai de luminancia, crominancia vermella i crominancia blava.  
DSP: Digital Signal Processor. Procesador de señales digitales. Processador de senyals digitals. 
SD: Secure Digital. Seguridad digital. Seguretat digital. 
HoG: Histogram of Gradients. Histograma de gradientes. Histograma de gradients. 
SVM: Support Vector Machine. Máquinas de soporte vectorial. Màquina de vectors de suport. 
CUDA: Compute Unified Device Architecture 
USB: Universal Serial Bus. Bus en serie universal. Bus en sèrie universal. 
UART: Universal Asynchronous Receiver-Transmitter. Transmisor-Receptor asíncrono universal. 
Transmissor-Receptor asíncron universal. 
BLOB: Binary Large Objects. Objetos binarios grandes. Objectes binaris grans. 
VHDL: VHSIC Hardware Description Language. Lenguaje de descripción hardware VHSIC. 
Llenguatge de descripción hardware VHSIC 
VHSIC: Very High Speed Integrated Circuit. Circuito integrado de muy alta velocidad. Circuit 
integrat de molt alta velocitat. 
 
 

 


