

Escola Tècnica Superior d’Enginyeria
Electrònica i Informàtica La Salle

Treball Final de Màster

Màster Universitari en Enginyeria de Telecomunicació

AssIstent DE tasques Domèstiques (AIDED)

Selene Caro Via Raquel Ros Espinoza

ACTA DE L'EXAMEN
DEL TREBALL FI DE CARRERA

Reunit el Tribunal qualificador en el dia de la data, l'alumne

 D. Selene Caro Via

va exposar el seu Treball de Fi de Carrera, el qual va tractar sobre el tema següent:

AssIstent DE tasques Domèstiques (AIDED)

Acabada l'exposició i contestades per part de l'alumne les objeccions formulades pels
Srs. membres del tribunal, aquest valorà l'esmentat Treball amb la qualificació de

Barcelona,

VOCAL DEL TRIBUNAL VOCAL DEL TRIBUNAL

 PRESIDENT DEL TRIBUNAL

Abstract

Instrumental Activities of Daily Living (IADLs) are those activities related
to allowing an individual to live independently in a community, and involve tasks
like cooking, cleaning, transporting, doing laundry, and managing finances. In
United States a 31.7% of the citizens have limitations in IADLs, affecting more
to elders.

For this reason, in this project, we present our first steps towards a col-
laborative robot that supports Instrumental Activities of Daily Living. More
precisely, we propose a collaborative table-setting scenario where a human and
a robot work together to coordinate their actions to fulfil the task while con-
sidering their “abilities”. Thus, given a set of objects on the table and after a
user command, the robot sets the table in a different configurations, e.g. table
for one, or table for two, either on its own, or requesting support to the user at
specific points.

To this end, a system development and integration has been carried out. The
main modules are: a Task Planner, in charge of planing the sequence of actions
to achieve the task goal; a Motion Planner, to plan the object manipulation
trajectories without colliding with the environment; a Verbal Communication,
to interact with the user through voice; and a Vision module, to detect and
localize objects in the environment.

Besides successfully fulfilling the task at hand in “ideal” scenarios, the sys-
tem also adapts to unexpected situations such as having more objects than
needed, missing objects, unfeasible robot movements, as well as handling vision
or manipulation inaccuracies.

The system has been mainly tested in simulation due to the COVID-19
confinement, which has proved an additional challenge to the project.

Keywords— Assistive robotics, Human-Robot Interaction, table setting, ROS
integration, planning, vision, verbal communication

i

AIDED

Resumen

Instrumental Activities of Daily Living (IADLs) (o actividades instrumentales
de la vida diaria) son aquellas actividades relacionadas con permitir que una
persona viva de forma independiente en una comunidad e involucran tareas
como cocinar, limpiar, mobilizarse, lavar la ropa y administrar las finanzas.
En Estados Unidos un 31,7 % de los ciudadanos tiene limitaciones en IADLs,
afectando más a la gente mayor.

Por ello, en este proyecto presentamos los primeros pasos hacia el desarrollo
de un robot colaborativo que soporte las actividades instrumentales de la vida
diaria. Más concretamente, proponemos un escenario colaborativo de “poner la
mesa” donde un humano y un robot trabajan juntos coordinando sus acciones
para cumplir con la tarea considerando las “habilidades” de cada uno. Aśı pues,
el escenario consiste en dada una mesa con diversos de objetos, el usuario indica
al robot qué configuración de la mesa desea, como por ejemplo, mesa para uno,
y el robot planifica y ejecuta las acciones necesarias para llegar al objectivo, ya
sea individualmente o con ayuda del usuario.

Para ello se ha llevado a cabo el desarrollo e integración del sistema, donde
los módulos principales son: un Planificador de Tareas, encargado de planificar
la secuencia de acciones para lograr el objetivo de la tarea; un textit Planificador
de Movimientos, para planificar las trayectorias de manipulación de objetos sin
colisionar con el entorno; un módulo de Comunicación Verbal, para interactuar
con el usuario a través de la voz; y un módulo de Visión, para detectar y localizar
objetos en el entorno.

Además de cumplir con éxito la tarea en cuestión en escenarios “ideales”,
el sistema también es capaz de adaptarse a situaciones inesperadas como ser:
tener más objetos de los necesarios, que falten objetos necesarios, gestionar
movimientos del robot inviables, aśı como manejar imprecisiones de visión o
manipulación.

El sistema se ha probado principalmente en simulación debido al confina-
miento en respuesta al COVID-19 que nos ha impedido acceder al robot f́ısico,
generando un desaf́ıo adicional para el desarrollo proyecto.

Palabras clave— Robótica de Asistencia, interacción persona-robot, configura-
ción de la mesa, integración con ROS, planificación, visión, comunicación verbal

ii

Resum

Instrumental Activities of Daily Living (IADLs) (activitats instrumentals de
la vida diaria) són aquelles activitats relacionades amb permetre a una persona
viure independentment en una comunitat i que impliquen tasques com cuinar,
netejar, movilitzar-se, rentar la roba i gestionar les finances. Als Estats Units,
un 31,7% dels ciutadans tenen limitacions a IADLs, afectant més a la gent gran.

Per aquest motiu, en aquest projecte, presentem els nostres primers passos
en el desenvolupament d’un robot col·laboratiu que doni suport a les activitats
instrumentals de la vida quotidiana. Més exactament, proposem un escenari
col·laboratiu que permeti parar taules on una persona i un robot treballen junts
coordinant les seves accions per assolir la tasca tenint en compte les “capacitats”
de cadascú. Aix́ı doncs, l’escenari consisteix en que donat un conjunt d’objectes
a la taula, l’usuari indica al robot una configuració per parar la taula, com
ara taula per a un o taula per a dos, i aquest planifica i executa les acciones
necessàries per assolir la tasca, ja sigui individualment o amb l’ajuda de l’usuari.

Amb aquesta finalitat, s’ha dut a terme un desenvolupament i integració del
sistema, on els mòduls principals són: un Planificador de Tasques, encarregat de
planificar la seqüència d’accions per assolir l’objectiu de la tasca; un Planificador
de Moviments, per planificar les trajectòries de manipulació d’objectes sense
col.lisionar amb l’entorn; un mòdul de Comunicació Verbal, per interactuar
amb l’usuari a través de la veu; i un mòdul de Visió, per detectar i localitzar
objectes de l’entorn.

A més de complir amb èxit la tasca en escenaris “ideals”, el sistema també
s’adapta a situacions inesperades com ara: tenir més objectes dels necessaris,
que faltin d’objectes necessaris, gestionar moviments inviables pel robot, aix́ı
com manegar inexactituds per part dels mòduls de visió o manipulació.

El sistema s’ha provat principalment en simulació a causa del confinament en
resposta a la COVID-19 on l’accés al robot f́ısic ha sigut impossible, implicant
un repte addicional pel desenvolupament del projecte.

Paraules clau— Robòtica Assistencial, interacció persona-robot, configuració de
la taula, integració de ROS, planificació, visió, comunicació verbal

iii

AIDED

iv

Contents

1 Introduction . 1
1.1 Human-Robot Interaction (HRI) 4
1.2 Objectives . 9
1.3 Contributions . 9

2 State-of-the-art . 11
3 Design and technical implementation 19

3.1 Supervisor . 21
3.2 Task Planning . 22

3.2.1 STRIPS . 30
3.2.2 PDDL4J . 31
3.2.3 ROSPlan . 37

3.3 Motion Planning . 42
3.3.1 UR remote control 43
3.3.2 MoveIt (ROS) 45

3.4 Verbal Communication . 47
3.4.1 Siri . 47
3.4.2 Google Home . 47
3.4.3 Alexa . 48

3.5 Vision system . 53
3.6 World Manager . 57
3.7 Communication . 58

3.7.1 Topics . 59
3.7.2 Services . 60

4 Use Case evaluation . 61
4.1 Initial proof of concept evaluation 61
4.2 Verbal Communication . 62

4.2.1 Intents evaluation 62
4.2.2 Speech recognition 67

4.3 Communication with Vision module 68
4.3.1 Knowing the state of the world 68
4.3.2 Reliability on the Vision module 71
4.3.3 Vision integration evaluation 76

4.4 Scenarios . 81
4.4.1 There are more objects than needed 81
4.4.2 Some objects are missing 85
4.4.3 The robot cannot move an object 87
4.4.4 The object does not reach its final position . . . 91

4.5 Setting the table - a full task 93

v

AIDED

5 Time costs . 99
6 Conclusion and future lines . 101
7 References . 103
8 Appendix . 107

8.1 PDDL files used for test 107
8.1.1 domain.pddl . 107
8.1.2 table for one problem.pddl 107
8.1.3 romantic dinner problem.pddl 108

8.2 Communication . 109
8.2.1 std msgs/String 109
8.2.2 url project/speech to brain msg 109
8.2.3 url project/grasp description 109
8.2.4 url project/objects description 111
8.2.5 url project/place location description 114
8.2.6 url project/vision description 115
8.2.7 Data . 115
8.2.8 Plan . 117

vi

List of Figures

1 Percentages of persons having IADLs. 1
2 Elder laying the table with our system. 2
3 FANUC M-2000iA/2300. 2
4 Robot’s classification example. 3
5 The Uncanny Valley. 5
6 Our robot taxonomy. 8
7 SmartHeat. 11
8 CARU cares. 12
9 FEARLESS project. 12
10 HOPE private website, Alarm Types interface. 13
11 CO-TRAIN application, My exercises interface. 14
12 Tests for ChefMyself. 15
13 SOCRATES project. 16
14 Planning with Uncertain Specifications (PUnS). 17
15 System overview sketch. 19
16 ROS system from a high-level view. 20
17 Example of a linear planner application. 25
18 Joan and Maria want to go to the moon. 26
19 Example of Sussman anomaly in a linear planner. 27
20 Example of a non-linear planner application. 28
21 Sequence of actions in a non-linear planner. 29
22 move operation in domain file representation. 32
23 move2 operation in domain file representation. 32
24 stack operation in domain file representation. 32
25 unstack operation in domain file representation. 32
26 Solutions of the Hanoi Tower changing the number of tables. . . 33
27 Table for one. (a) Initial state. (b) Final state. 34
28 Table for two. (a) Initial state. (b) Final state. 35
29 ROSPlan demo system. 37
30 ROSPlan: Knowledge Base. 38
31 ROSPlan: Problem Interface. 38
32 ROSPlan: Planner Interface. 39
33 ROSPlan: Parsing Interface. 40
34 ROSPlan: Plan Dispatch. 40
35 Arm Robots. (a) UR3 arm. (b) PANDA Robotic Arm. 43
36 Examples of possible collisions and solutions. 44
37 Example of collision between the UR3 arm and some bottles. . . 45
38 High-level system architecture of move group. 45

vii

AIDED

39 Example of ngrok window. 49
40 Transformations applied to the dataset images. 55
41 Setups of the camera used. 55
42 Images captured by the camera when placed in front of the table. 56
43 Image taken from the top view of the table. 57
44 Topics and Services to communicate the different Nodes. 58
45 First evaluation with a basic system. 62
46 Results of different users saying the same sentence 10 times. . . . 68
47 Diagram block to get environment information. 69
48 Real environment and robot’s thoughts. 69
49 Scenario to test the Alexa skill feedback. 70
50 Alexa response for the AskHowManyObjects intent. 70
51 Alexa response for the AskWhichObjectsAre intent. 70
52 Alexa response for the AskDoYouSeeObject intent. 71
53 Diagram block to evaluate Vision reliability. 71
54 Frame 1 to evaluate the reliability of the Vision module. 72
55 Frame 2 to evaluate the reliability of the Vision module. 73
56 Frame 3 to evaluate the reliability of the Vision module. 74
57 Frame 4 to evaluate the reliability of the Vision module. 75
58 Dimensions of the set up of the table for one scenario. 76
59 Dimensions of the set up of the scenario. 77
60 Initial and final conditions to evaluate the system with Vision. . 77
61 Initial conditions to evaluate the complete system with Vision. . 78
62 Moving the fork on the pink zone. 78
63 Mobile phone on top of the fork. 79
64 Spoon on the green zone. 79
65 Moving the cell phone on the blue zone. 80
66 Initial position of the objects with more objects than needed. . . 81
67 Diagram flow when there are extra objects in the scenario. 83
68 Performance of the robot when the user takes out the candle. . . 84
69 Scenario when the user removes the cell phone from the table. . . 85
70 Diagram flow when there are missing objects in the scenario. . . 86
71 Robot planned trajectory. 87
72 Arm with a copy of the cell phone in its end effector. 88
73 Robot planning and moving. 88
74 Arm avoiding a wall. 89
75 Diagram flow when the robot cannot move an object. 90
76 Objects and zones specifications. 91
77 Formulas applied to know if the object is inside the zone limits. . 91
78 Robot beliefs when moving an object. 92
79 Initial and final state of the world to test the full system. 93
80 Initial state of the system to test the full system. 94
81 The cell phone is removed from the scenario. 94
82 Glass on the blue zone. 96
83 Knife on the orange zone. 96
84 Robot’s beliefs and the real state of the world. 97
85 After another performance of the robot, the fork is on the pink

zone, and the program is finished. 97
86 Time costs. 99
87 Gripper. 102

viii

List of Tables

1 Solution comparison of the Hanoi Tower in different algorithms. . 30
2 Comparison between scenarios with PDDL4J. 36
3 Implementations of the Planner Interface node. 39
4 Number of images used as dataset for every class. 53
4 Number of images used as dataset for every class. 54
5 Users’ information. 63
6 Results of different users repeating out loud the same sentence

10 times. 67
7 Dimensions and locations of the recognized objects in frame 1. . 72
8 Dimensions and locations of the recognized objects in frame 2. . 73
9 Dimensions and locations of the recognized objects in frame 3. . 74
10 Dimensions and locations of the recognized objects in frame 4. . 75

ix

AIDED

x

Acronyms

2D two-dimensional. 7

3D three-dimensional. 7, 12, 21, 45, 48

AAL Active and Assisted Living. 11, 15

ABSTRIPS Abstraction-Based Stanford Research Institute Problem Solver.
29

AD Alzheimer Disease. 15

ADLs Activities of Daily Living. 1, 13

AIDED AssIstent DE tasques Domèstiques. 19–21, 37, 61, 76

BFS Bread-First-Search. 30

CHOMP Covariant Hamiltonian Optimization for Motion Planning. 46

CNN Convolutional Neural Network. 53

COVID-19 Corona Virus Disease 2019. i–iii, 101

DFS Depth-First-Search. 30

e.g. for example. i, 2

GUI Graphical User Interface. 45

HOPE Smart Home for Elderly People. 13

HRI Human-Robot Interaction. i, 4–8, 16, 52, 102

HSP Heuristic Search Planner. 31

i.e. that is. 42, 92

IADLs Instrumental Activities of Daily Living. i–iii, vii, 1, 2, 11, 13

IP Internet Protocol. 48, 49

xi

AIDED

MD Mild Dementia. 15

MDP Markov decision processes. 23

MIT Massachusetts Institute of Technology. 17

NAT Network Address Translation. 48

OCC Ortony, Clore and Collins’s. 7

OID Open Images Dataset. 53

OMPL Open Motion Planning Library. 46

PAD Pleasure, Arousal, and Dominance. 7

PDDL Planning Domain Definition Language. 16, 21, 30, 31, 37–40, 57, 58

PIR Passive Infrarred Sensor. 13

POMDP Partially observable Markov decision process. 23

POPF Partial Order Planning Forwards. 16, 39, 42

PUnS Planning with Uncertain Specifications. vii, 17

QR Quick Response. 17, 101

ROS Robot Operating System. i, 9, 20, 37, 40, 42, 45, 46, 58, 61, 101

RTDE Real-Time Data Exchange. 44

SBPL Search-Based Planning Library. 46

SKT Syndrom KurzTest. 15

SOCRATES Social Cognitive Robotics in The European Society. 15, 16, 101

SRDF Semantic Robot Description Format. 46

STOMP Stochastic Trajectory Optimization for Motion Planning. 46

STRIPS Stanford Research Institute Problem Solver. 23, 29, 30, 61

TFM Treball Final de Màster . 14, 53, 61, 99

TTL Time To Live. 49

TTS Text-To-Speech. 6, 52, 59

UR Universal Robots. vii, 42–46, 52, 88

URDF Unified Robot Description Format. 45

URL-MONITOR Univeritat Ramon Llull - coMprensiÓ de l’eNtorn a través
de vIsió de compuTadOR. 19, 20, 47, 61, 72, 101

YOLO You Only Look Once. 53

xii

1 Introduction
Instrumental Activities of Daily Living (IADLs)[19] are those activities related
to allowing an individual to live independently in a community. It is important
not to confuse ADLs with IADLs. ADLs are essential activities that allow
unassisted survival such as: dressing (the ability to wear clothes in an acceptable
fashion), eating (self-feeding so as to be in perfect health), ambulating (walking,
sitting and then standing up, getting in and out of vehicles), toileting (ability
to use the facilities and wipe and wash without help), and bathing to maintain
proper hygiene. On the other hand, IADLs involve tasks like cooking, cleaning,
transporting, doing laundry, and managing finances.

Early detection of an individual’s inability to perform IADLs is important
because it can indicate one or many potential issues going on, as well as a
warning for worse problems. Some causes of this inability that tend to be the
first step in the progression of IADLs loss include:

• Medication side effects, mixtures, or overuse can cause mental fog.

• Not getting enough sleep can cause or worsen the memory problems.

• Initial stages of dementia, caused by many factors, can involve memory
loss.

• Medical issues or worsening pre-existing conditions.

Usually, when the individual is unable to perform IADLs or ADLs at home,
needs to seek outside for help, such as family members, home caregiver, day
centers, or a home care.

In Figure 1 we can see the percentage of persons having limitations in IADLs.
People aged between 18 and 44 years represents a 1.7%, between 45 and 64 years
represents a 4.0%, between 64 and 74 represents a 6.6%, and those of 75 years
and over represents a 19.4% of the total people. We appreciate that a 31.7% of
the citizens in United States presents limitations in IADLs.

Figure 1: Age-adjusted percentages (with standard errors) of persons having limitation in
IADLs among persons aged 18 and over, by age: United States, 2018 [27].

1

AIDED

In this project we present our first steps towards a collaborative robot that
supports Instrumental Activities of Daily Living. More precisely, we propose a
collaborative table-setting scenario where a human and a robot work together
to coordinate their actions to fulfil the task while considering their “abilities”.
As shown in Figure 2, the scenario consists in a set of object on the table and
the user, in this case an elder, asks the robot to set the table in a different set
of configurations (e.g. table for one, table for two, and so on). The robot, then,
plans and starts moving the objects of the table to their positions. If the robot
cannot perform a given task, then it asks the user to perform it. To achieve
this goal, we integrate a Vision system to monitor the environment (state of the
world), a Task Planner, a Motion Planner, a Supervisor system, and a Verbal
Communication module based on commercial system.

Figure 2: Elder laying the table with our system.

Not all the robots are designed to do this type of collaboration and, for this
reason, we are going to talk about a possible classification of them, shown in
Figure 4. We can appreciate that there is a first differentiation between indus-
trial and assistive robots. The industrial robots are those that do not consider
working with people or having them around; they are focused on production
processes. An example could be FANUC M-2000iA/2300 [26] (see Figure 3),
which is the strongest robot in the market nowadays, with a load capacity of
2.3 t.

Figure 3: FANUC M-2000iA/2300.

2

Although these robots are not considered to work with humans around, there
is a new trend in which this kind of robots collaborate with people. They are
called “cobots”. These can be used in many sectors, such as:

• Food and agriculture.

• Metal, machining, and metallurgy.

• Automotive and subcontractors.

• Electronics and technology.

• Plastics and polymers.

• Furniture and equipment.

• Pharmaceutical and chemical.

• Scientific and research.

Examples of companies that create cobots are Universal Robots, KUKA, and
ABB.

The assistive robots, can be non social assistive or assistive social robots.
The firsts ones, are those that help humans with a task, but do not interact;
it is physical assistive technology. An example could be Roomba, or robots
developed for rehabilitation and that are not in any way socially interactive,
such as intelligent robotic wheelchairs, artificial limbs, and exoskeletons.

Finally, assistive social robots can be divided by service robots and compan-
ion robots. Service robots are used as functional devices and are not primarily
designed for affective support. Examples could be TIAGo and PR2. Companion
robots are affective. They provide pet-like companionship which is beneficial to
the health and well-being of elderly users, but they do not provide functional
assistance. They are also used with children with special needs. Examples of
this type of robots are PLEO, Aibo and PARO.

Figure 4: Robot’s classification example by [30].

3

AIDED

1.1 Human-Robot Interaction (HRI)
From the assistive social robots Human-Robot Interaction (HRI) [20] is born,
concerned with the ways in which robots interact with people in the social world.
These interactions usually include physical embodied robots; therefore, we have
to understand how to design that embodiment, both in terms of software and
hardware, as is common-place in robotics, and in terms of its effects on people
and the kinds of interactions they can have with such a robot. For this reason,
we are going to briefly describe multiple aspects to take into account in HRI:
the design of the robot, the spatial interaction, the nonverbal interaction, the
verbal interaction, and the emotion.

The design space of robots is relatively large and considers questions regard-
ing from function, level of autonomy, interaction modalities, and how all these
fit with particular users and contexts. The affordances and the design patterns
are two important concepts in the robot design. The affordances of the robot
need to be explicit, so that people can understand the robot capabilities and
limitations appropriately and adapt their interactions accordingly. The design
patterns “describe a problem which occurs over and over again in our environ-
ment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing the same
way twice”[13].

When combining these two ideas of design affordances and patterns in the
process of HRI design, HRI researchers have suggested some of the following
principles to consider when developing the appropriate robot forms, patterns,
and affordances:

• Matching the form and function of the design. This principle relates the
design of the robot with the expectations it creates to humans. To illus-
trate, if a robot has eyes, people will expect it to see. People can also be
prompted to associate specific social norms and cultural stereotypes with
robots through design.

• Underpromise and overdeliver. When people’s expectations are raised
by the robot’s appearance or by introducing the robot as intelligent or
companion-like, and these expectations are not met by its functionality,
people feel disappointed and negatively evaluate the robot. Hence, this
principle is about decreasing people’s expectations about robots.

• Interaction expands functions. This principle is related to take advantage
of the people’s blanks left open by the design. Particularly, for robots
with limited capabilities, to design them in a somewhat open-ended way,
as this will allow people to interpret the design in different ways.

• Do not mix metaphors. This principle remarks the importance of the
coordination between the robot’s capabilities, behaviors, affordances for
interaction, and so on. This is related to the Uncanny Valley (Figure 5)
because inappropriately matched abilities, behaviors, and appearance of-
ten lead to people having a negative impression of the robot and, therefore,
they do not interact with it.
Definition 1. Unncany Valley: In 1970, Japanese roboticist Masahiro
Mori wrote an article entitled “The Uncanny Valley”[34], in which he ar-
gued that as human likenesses appear more realistic there is an increasing

4

Figure 5: The Uncanny Valley.

level of comfort and familiarity up to a certain level. Yet at the point
when a human facsimile is almost fully convincing it becomes repellent.
This sudden dip in our emotional response is the Uncanny Valley. If we
have a robot that it is in this valley, we would not be able to interact with
people. Also, depending on the culture, our robot will be in one point or
another of the graph.

The spatial interaction is related to the placement and movement of robots
with respect to people. This factor also has to be considered when designing
HRI, as if robots do not respect the personal space of the user, will evoke negative
reactions or even rejection and withdrawal to the user. Robot designers can
attempt to increase acceptance of the robot by having it keep an appropriate
distance and adjusting its position to create a fitting interaction experience. To
illustrate, imagine a robot arm and a person collaborating on a shared task. The
robot must take the socially appropriate distance into account when computing
a path for its end effector to reach its given goal. This fact may make the
robot’s movement inefficient from a purely functional standpoint, but it will
lead to a more positive evaluation of the interaction by the user. Now, imagine
the robot handing an object to the user. The user prefers a robot to behave
with “legibility”, a way that allows the user to understand the robot’s goal and
intention. Having this in mind, the robot could hand over an object to a person
in many ways, but the most energy-efficient way may be incomprehensible to a
user, who may think the robot is invading its personal area. For this reason,
researchers have developed algorithms to control a robot arm to generate legible
motions while reaching a given goal. To finish with this aspect in HRI, we also
need to take into account the personal area of the user when the robot and the
user talk. If the user speaks quietly or there is a lot of noise in the room, the
robot may not understand what the user is saying. Therefore, a robot would
need to conduct a careful computation to decide what distance it should keep

5

AIDED

during an interaction with the human.
As known, humans express more feelings with the nonverbal communica-

tion rather than verbal. Through nonverbal communication, people can signal
mutual understanding, shared goals, and common ground. They can communi-
cate thoughts, emotions, and attention. And they can do so in a more subtle,
indirect manner than through verbal expression. Nonverbal cues produced by
people when interacting with a robot can indicate whether a person is enjoying
the interaction and whether the person likes the robot or not. In HRI, as in
human-human interactions, verbal and nonverbal cues might be contradictory.
To illustrate, when the robot produces gestures that do not match the rhythm
or meaning of its speech or when it does not respond appropriately to user’s
nonverbal cues the interaction can appear awkward. On the other hand, when
speaking to a robot, people would expect it to turn its head toward them and
make eye contact with them, showing that it is attending to what they say.
When the robot stares straight ahead and does not acknowledge users’ presence
or spoken requests, the interaction breaks down. Having seen these, there are
more types of nonverbal interaction, such as gaze and eye movement, gesture,
mimicry and imitation, touch, posture and movement, and interaction rhythm
and timing.

The verbal interaction is a common mode of communication designed into
robots. Producing robot speech is much simpler than understanding human
speech, however. To illustrate, the speakers on which the models have been
insufficiently trained, such as young speakers or elderly speakers, still provide a
challenge. In addition, the local dialects of languages or nonnative speakers will
often result severely reduced recognition performance. To add more complic-
ity, the acoustic environment, such as noisy, reverberating, or crowded spaces,
also is a determining factor. Nowadays, there are numerous speech-recognition
engines available. The more common is to use a remote service that allow devel-
opers to send a recorded speech fragment over the internet, and the transcribed
speech is returned soon after. It allows the robot to have a relatively low-cost
computational core.

On the other hand, developers also need to transform Text-To-Speech (TTS).
In HRI is important to consider which voice fits the robot and its application.
For example, a small robot requires a voice that matches its appearance, rather
than a commanding baritone. In other cases, though, a natural-sounding TTS
engine might sit uneasily on an artificial agent. A curious fact is that the type
of voice also affects the social perception of social robots. For instance, robots
with a male voice are anthropomorphized and evaluated more favorably by men
than by women, and vice versa.

Finally, another important aspect in HRI are the emotions. They can moti-
vate and modulate behavior and are a necessary component of human cognition
and behavior. Emotions are usually seen as being caused by an identifiable
source, such as an event or seeing emotions in other people. They are often
externalized and directed at a specific object or person. The successful commu-
nication of emotions promotes survival, enhances social bonds, and minimizes
the chances of social rejection and interpersonal physical aggression. A robot
that is not programmed to share, understand, or express emotions will thus run
into problems when people interpret its behavior as disinterested, cold, or plain
rude. There are various emotion models, such as:

6

• Ortony, Clore and Collins’s (OCC) model. It specifies 22 emotions cate-
gories based on balanced reactions to situations. It also offers a structure
for the variables, such as the likelihood of an event or the familiarity of
an object, which determines the intensity of the emotion types. It con-
tains a sufficient level of complexity and detail to cover most situations an
emotional robot might have to deal with.

• Russel’s two-dimensional (2D) space of arousal and valence captures a
wide range of emotions on a 2D plane and is one of the simplest emotion
models that still has sufficient expressive power for HRI. Although, places
“angry” and “afraid” side by side, whereas most people would argue that
these are vastly different emotions.

• The framework by Mehrabian and Russel (1974) adds a third axis. This
framework captures emotions in a three-dimensional (3D), continuous
space, with the dimensions consisting of Pleasure, Arousal, and Domi-
nance (PAD). This space model has been used on many social robots to
model the user’s and the robot’s emotional state.

We must say that the addition of more information, such as the context of
the interaction, animated rather than still expressions of emotion, and body
language, allows to increase the recognition rate, both by people and by algo-
rithms.

When we talk about HRI, we also must consider which role will have the
user, which can be:

• Teammate: The human and the robot have a common goal and must solve
it together. They can give commands to each other, interaction such as
gestures and voice can be helpful. The human needs to understand the
limitations of the robot. A company that creates robots to work in these
conditions with humans is Boston Dynamics.

• Bystander: There is no direct interaction between this user and the robot.
Although, the robot must co-exist in environment with the user. An
example robot could be Roomba.

• Interacting user: This user interacts with the robot to get information,
for instance. An example robot could be Pepper.

It is not the same to have two users working together than having a user
working with a robot. This is because the cognition between one and another
is different. The robot may not understand some verbal or gesture expressions.
So, given one human and one robot working together, HRI awareness is the
understanding that the human has of the location, activities, status, and sur-
roundings of the robot; whereas the knowledge that the robot has of the human
are the human’s commands necessary to direct its activities and the constraints
under which it must operate.

Having said all this, now we are going to talk about the taxonomy [49] of
our robot (see Figure 6). The communication channel to interact the human
to the robot are acoustically, so the user can talk to the robot, and visually, as
the user can move objects and the robot knows that. On the other hand, the
robot communicates to human through voice, as it indicates what it is going to
do and, visually, as it moves the objects and the user can see it.

7

AIDED

Figure 6: Our robot taxonomy [28].

The main task of the robot is the manipulation of the different objects to
put them in their place, but also give feedback to the user.

The robot will always do its best to achieve the end goal, for this reason, it
is reliable.

When talking about proximity, the robot can be defined by different proxim-
ity behaviors: avoiding, passing, following, approaching, touching, and/or none.
In our case, the robot will not consider the user movements, so it is passing.
Furthermore, in an ideal scenario (meaning there are all the needed objects, and
the robot can reach them all and put them in their correct positions) the robot
does not need the human at all, for this reason it can also be none.

The temporal proximity categorizes an HRI system based on whether human
and robot share the same space (collocated, non-collocated), and whether they
act at the same time or not (synchronous, asynchronous). In our case, the robot
and the human are one in front of the other, so it is collocated. On the other
hand, they can work synchronous, but to avoid the robot injuring the user, we
have raised it as the robot works and if it needs the human help, it stops moving.

The robot morphology variable describes the robot appearance type, which
could be anthropomorphic, zoomorphic, and functional. In our case it is an arm
robot, so it is functional.

The main idea is that the robot plans the actions to do in order to achieve
the goal and starts setting the table, if there is any problem, such as there are
more objects, some objects are missing or the robot cannot do a movement, it
will ask for help to the human. For this reason, it is collaborative, and the team
composition ratio human-robot is higher for the robot.

Finally, the degree of autonomy of the robot is high, as the robot can see
where all the objects are, the user gives a task and it creates the plan to achieve
the goal, and deals with multiple problems that may arise.

8

1.2 Objectives
The main goal of the project is to develop a robotic assistant to assist a user
performing a routine task in natural and efficient way. For this purpose, a
robotic arm with vision, planning and verbal communication abilities is used.
The chosen activity is to “set the table”. In the proposed scenario different
elements are distributed around the table. Through a simple voice command
from the user, the robot must first plan the actions needed to achieve the goal,
execute them while interacting with the user when necessary, and solve any
unexpected event that might impact on the original plan. To do this, it needs
to know what the user’s preferences are, distinguish which objects are in the
environment and know which ones should be manipulated.

The main objectives of this project are:

• To integrate cutting-edge technologies: vision, voice, planning and robot
control.

• To customize and adapt the execution of the task: depending on the
scenario and on the events that take place during the execution, the robot
acts in one way or another.

• To provide a smooth interaction between the robot and the user that
allows the task to be performed collaboratively.

1.3 Contributions
The contributions of this project are:

• Development of a first prototype of a collaborative robot to support in-
strumental daily life tasks.

• Study of multiple task planning approaches.

• Implementation of a basic way to communicate with the robot.

• Integration of different modules in the same system through ROS. For this,
multiple messages, and services to send petitions between the different
nodes have been created.

• Modularity of the system. Each module can be changed in an easy way,
even the arm robot.

• Integration of an Echo device and development of an Alexa skill that can
communicate with our system and with which the user can send com-
mands.

• Robust system, that can adapt itself depending on the situation and what
the user wants. It can adapt itself if:

– in the scenario there are more objects than needed,
– there are missing objects,
– the object is not in its final position although having moved it,
– the robot cannot move an object because the operation is out of its

accessible area,
– the scenario completely changes.

9

AIDED

10

2 State-of-the-art
In this Section we will explain related work and evaluate them. First, we are
going to talk about related systems dedicated to IADLs. More specifically, we
will have a look at some projects of the Active and Assisted Living (AAL)
program [1], which is a funding program that aims at creating better quality
of life for older people and to strengthen industrial opportunities in the field of
healthy ageing technology and innovation. Many of these projects are focused
on the development of smart home technologies such as:

• SmartHeat [11] is a project which allows every single radiator to be con-
trolled in a smart, easy, and safe way (see Figure 7). It is equipped with
a set of technologies to understand the environment and the user needs
and to wirelessly communicate with radiators or with smartphones and
tablets. They did a first pilot study in Austria and Switzerland in 2017.
They started with five households in Switzerland and three households
in Austria, although, there were two households in Switzerland that were
dropped on the installation day due to unexpected incompatibilities, and
the three households in Austria dropped as a result of system instabil-
ity. They also appreciate that the installation was complex and rather
time-consuming. Although these drawbacks, the users expressed a strong
interest of trying again with the optimized system.

Figure 7: SmartHeat.

• CARU cares [2] is a digital flatmate, based on a voice assistant, that helps
people in need of care to lead more independent, autonomous lives (see
Figure 8). The main idea is that it allows communication between the
nursing home, the care givers, the relatives, and so on. This project is
in its beginnings, so they have not done yet a test. Although, they have
done workshops and interviews with affected care and nursing staff, which
make them add, in April 2020, new features:

– CARU can establish a connection to the hotline of the care facility
by voice command. If the center is outside service hours, CARU will
automatically record the voice message and transmit it as soon as

11

AIDED

the center is open again. It can also happen vice versa; the service
center can send a voice message to CARU at any time.

– They add an arrival time notification based on the current personnel
planning data and the current movement data of the nursing staff.

– It will also give assistance to the nursing staff, being able to “read
out” task lists and leave a voice memo to the next caregiver.

Figure 8: CARU cares.

• FEARLESS [5] is a project created by cogvisAI in 2007 and designed to
detect a wide range of risks with a single sensor unit, enhancing mobility
and enabling elderly to take active part in the self-serve society by reducing
their fears. They have a 3D smart-sensor, shown in Figure 9, that allows:

– fall prevention,
– fall detection,
– absence detection,
– aggression detection,
– suicide prevention,
– lighting control.

(a) (b)

Figure 9: FEARLESS project. (a) cogvisAI 3D Smart-Sensor. (b) Depth image produced by
a cogvisAI sensor.

12

• The HOPE project [7] is based on a smart home that enables the elderly
people with Alzheimer’s disease to use innovative technology for a more
independent life, easy access to information, monitor their health, and
serve as a source of inspiration for users as well as for people working with
assistive devices. The idea is to set different sensors in the house of the
elder and have control and feedback through a website, that the relatives
and the doctors have access to it. In Figure 10 we can see that they
have access to the alarms that will be created when a sensor overcome the
threshold value.

Figure 10: HOPE private website, Alarm Types interface.

They did tests in Italy, Spain, and Greece in 2011, and used:

– Temperature sensors.
– PIR sensors to detect people movements,
– Intrusion detectors to verify that the door is closed correctly.
– Energy monitor and remote switch for wall plug.
– Gas detectors.
– Fall and pulse detector.

Thanks to it, they appreciate an improvement of a 3.5% on the ADLs and
of a 2.8% on the IADLs, among other parameters, that also improve. The
elders, relatives and doctors were really satisfied with the system.

There are other projects focused on doing exercises, such as CO-TRAIN
[4]. Its main objective is to develop, test and validate a training and coaching
system that addresses the specific deficiencies of older adults with dementia
and frailty. The physiotherapist creates a training program with exercises that

13

AIDED

the user can visualize on their phones (see Figure 11) and do later at home.
The physiotherapist can monitor the user and adjust the exercises depending
on the user’s feedback. Tests are being done with 60 participants from Austria,
Switzerland, and the Netherlands (20 per country), aged between 65-90 years
old, with a diagnosis of frailty and mild to moderate cognitive impairment.

Figure 11: CO-TRAIN application, My exercises interface.

A somehow similar project, compared with the one presented in this TFM,
is ChefMySelf [3]. It helps elder users with motor or cognitive impairments to
prepare meals. ChefMySelf gives, through a tablet screen, step-by-step instruc-
tions for each recipe. The tablet also connects to a food processor to set it up
and have the meal prepared. Throughout the project numerous usability tests
were conducted in order to design the smoothest possible interaction with the
system (see Figure 12). In April 2015 [37], they did a final test with 10 older
adults from Italy and from the Netherlands. They used the complete ChefMy-
self system within the comfort of their own homes. These trials happened in
two different rounds in both countries and they included end-users who mirror
the characteristics of the target groups that were defined within the course of
the project. In this first round there were women and men participants and
people with varying cooking experience. They wanted to know the impact of
the solution in different user profiles. The second round started later, again
with 10 participants across Italy and the Netherlands.

During the trial period, participants had the opportunity to accept or edit
weekly meal plan recommendations, use the automatic shopping list generator
to help when going out for groceries shopping, or learning more about healthy
eating choices. One major feature was the automatic setting of speed, temper-
ature and time on the kitchen robot, rendering the human-machine interaction
much simpler, as the user just had to follow the steps in the recipe and hit “go”.
After an effortless preparation of a healthy and tasty recipe, users could then
share it on a social network purposefully designed to bring older adults together

14

around the issues of healthy eating and, thus, prevent isolation.
After completion of the tests [31], the conclusion was that the system could

still be improved in some aspects. These mainly concerned of the food processor
itself, the recipes and increasing the possibility of getting truly personalized diet
advice through the system. This concerned, for example, easier cleaning of the
jug and even more adaptation of the recipes per country.

Figure 12: Tests for ChefMyself.

We appreciate that the mentioned AAL projects do not integrate robots
to help people so they cannot directly provide support in tasks where moving
objects is required. Hence, our project helps in an unaddressed sector: elder
people with motion limitations doing basic tasks, such as setting the table.

Having seen that AAL projects do not use robots directly, we want to also
mention projects that are dedicated to table-settings. To start with, we want to
talk about SOCRATES [12]. It is created to develop the field of social robotics
with an application focus on robotics in eldercare. More specifically, their goal is
to provide personalized one-on-one cognitive training for Mild Dementia (MD)
and Alzheimer Disease (AD) people. They propose a brain-training sessions of
sorting tokens, an exercise inspired by the Syndrom KurzTest (SKT) neuropsy-
chological test. Their system has two interaction loops [14]. First, the caregiver
interacts with the robot to set up the initial desired behavior of the robot (for
example, more helpful or more challenging). In the second loop, the robot in-
teracts with the patient while s/he is playing a sorting tokens exercise. In [16]
they focus in this second loop. The authors propose an adaptive module, that
selects the best suitable action of engagement to support the patient at each
step of the exercise. It has four levels of engagement:

1. Encouraging the user using verbal interactions.

2. Using verbal communication and gestures the robot shows an area of the
board where the solution can be found.

3. Using verbal communication and gestures the robot shows the location of
the token to move, hence the solution.

15

AIDED

4. Picking up the correct token and offering it to the user so s/he only has
to place it in its correct position.

Also, this loop has a safety module that monitors the user’s safety and adapts
the robot behavior accordingly. Dangerous behaviors of the user can be detected
at two different times:

1. Before starting the engagement action, the Cognitive System tries to per-
suade the user, or alternatively, change the safety of its own actions.

2. While the robot action is being executed, it detects any safety concern.
The robot warns the use about his/her behavior, moves to a safer position,
changes its velocity and acceleration of the trajectory to be safer in case
of collision, or stops.

In [15] they evaluate the adaptability of their system with real users (see Figure
13). To do so, they use their Cognitive System that relies on extended planning
with adaptive capabilities and embed it in a TIAGo robot. They validate that
the robot could improve user performance, the interaction modalities can make
a difference in improving user’s performance, people with no HRI and engineer-
ing backgrounds can have almost the same performance as people with those
backgrounds, younger participants can perform faster moves but with worse
results than older participants.

Figure 13: Example of participant interacting with TIAGo in the SOCRATES project.

If we compare their system with ours, they also use PDDL to model the
problem and ROSPlan with POPF planner to plan the actions of the robot. A
main difference between their project and ours is that they detect user’s hands
and track them when the robot is moving, so they can move the robot in a safe
way. Furthermore, another difference is that the user is the one that moves the
different objects, and the robot only helps by verbally communicating or using
gestures; for instance, by indicating an area or the piece directly which the user
must move to achieve the goal. In our case, the robot does the task and the
user helps in case the robot asks for it. Finally, their objective is to provide

16

cognitive training, whereas in our case we want to help users doing a specific
task which is laying the table.

To finish this section, we want to talk about a MIT project [32][40] presented
in March 2020 while we were also working on our project. They have designed
a system that lets the robots learn complicated tasks such as setting the table,
under certain conditions, called Planning with Uncertain Specifications (PUnS).
In their work, they used eight objects (a mug, a glass, a spoon, a fork, a knife,
a dinner plate, a small plate, and a bowl) that could be placed on a table in
various configurations. The robot arm first observed a human demonstration
of setting the table with those objects. Later, the robot weights many possible
placement orderings, even when the items were removed, stacked, or hidden (see
Figure 14). The robot made no mistakes over several real-world experiments,
and only a handful of mistakes over tens of thousands of simulated tests runs.

Figure 14: Planning with Uncertain Specifications (PUnS).

The main difference between their work and ours is that we do not include
a learning process to teach the robot the final table configuration, but instead,
use pre-fixed configurations that the robot shall reach. Another difference is
that they user QR codes to recognize the objects, whereas we have a Vision
module that recognizes them.

17

AIDED

18

3 Design and technical implementation

This Section describes the design and technical implementation of AIDED, part
of a bigger project named URL-MONITOR. As already described, the main
goal of AIDED is to provide support during a collaborative task. Our project
consists of a table setting scenario, where a robot has to set the table (being a
dinner for one or for two) using the objects that are on it. As we can imagine, all
the available objects will be related to the table setting, although the scenario
may not be perfect: there can be objects that are not part of the setting (a
mobile phone, for instance) or even missing. In the first situation, the robot
will move them to a place of the table where they do not disturb and will ask
the user to remove them. In the second situation, the robot can work with only
the available objects or wait for the user to bring the missing ones.

Figure 15: System overview sketch.

A description of the AIDED system can be observed in Figure 15. The

19

AIDED

system consists of 6 modules, each one with a certain purpose. The Vision1

module identifies objects and their coordinates in the environment. The Verbal
Communication module receives the petitions from the user and gives feedback
back again regarding the state of the system or indicating actions that the user
should perform. The World Manager manages the state of the world to provide
information to the rest of the modules as required. The Task Planner module
computes the steps or actions the robot and the user should perform to achieve
the goal. The Motion Planner module controls the robot, making sure it does
not collision with the known environment. Finally, as we can see, there is a
central module, called Supervisor, which supervises and communicates all the
modules in the system.

The AIDED system is built using the Robot Operating System (ROS) [9]
framework. It is an open source set of software libraries and tools to build robot
applications: from drivers to state-of-the-art algorithms, and with powerful de-
veloper tools. In Figure 16, we can see a high-level view of the ROS framework.
The Master allows the nodes (ROS pieces of software) to find and talk to each
other. Thanks to this, we can communicate two nodes whether they are on the
same machine, or not.

Figure 16: ROS system from a high-level view.

Topics are used to communicate the nodes with each other. For instance,
in Figure 16, Node 1 publishes a message on one topic and Node 2 subscribes
to the same topic to receive the message form Node 1. When a Node receives
petitions that need to be answered, instead of using topics, we use services.
Then the information sent is defined by a pair of messages: one for the request
and one for the reply. We can see a service example between Node 2 and Node
3 in Figure 16.

Also, as we mainly work with a simulated environment, we use Gazebo and
rviz, which work with ROS. Gazebo [6] offers the ability to simulate popula-

1The Vision system, developed in the URL-MONITOR project, has been integrated in
the AIDED system to provide the visual input of the state of the world. Although, we are
going to briefly describe the module and see how interacts with the rest of modules.

20

tions of robots accurately and efficiently in complex indoor and outdoor envi-
ronments. It is a robust physics engine, high-quality graphics, and convenient
programmatic and graphical interfaces. rviz [10], on the other hand, is a 3D
visualization tool for ROS that gives us access to the internal state of the system.

In the following sections we describe the different modules used in the
AIDED system.

3.1 Supervisor
The Supervisor node is in charge of making the rest of the modules work to-
gether. We can see it as the brain of the system, as it knows what each node
should do and at which moment in order to achieve the goal. For this reason,
all the modules communicate with it.

To differentiate petitions, the Supervisor has different controllers (see Figure
15). We next describe each one of them:

• controller vision: It makes the petition to the World Manager to store the
objects identified and their locations. It also modifies the PDDL problem
file to give a representation of the actual world.

• controller planner : It requests the execution of the plan to the Task Plan-
ner, reads the plan, and changes its format to process it better.

• controller motion: It translates the objects received by Vision to objects
that the Motion Planner understands. It also translates the actions given
by the Task Planner to coordinates of the arm, requesting the information
to the World Manager. Finally, it makes petitions to the Motion Planner
node to move the arm to execute the plan.

• controller verbal communication: It manages the Verbal Communication
module petitions. To illustrate, if the user asks to set the table, it indicates
so to the Supervisor module and it starts to do it.

To see it more clearly what the Supervisor module does we are going to
describe all the actions and processing it must do to perform the task of setting
the table.

To start with, we must talk about the Vision module. It is constantly
sending messages to the Supervisor module. This one proceeds and sends these
messages in the correct format to the Motion Planner and the World Manager
modules, to plan the robot’s movements according to the environment and to
answer petitions, respectively. Now, the system and the robot know the state
of the world, so they are ready to start setting the table.

The Verbal Communication node receives the user’s petitions and sends it
to the Supervisor. If the petition is to set the table, the Supervisor looks if
all the necessary objects are on the table. If not, it informs the user, through
the Verbal Communication, about the unnecessary or missing objects. If all the
objects are present, the module sends to the Task Planner a petition to know
the steps the robot must do to achieve the goal and, hence, the Task Planner
replies indicating the sequence of actions to achieve the goal.

Once the Supervisor has the actions, it goes one by one, asking the neces-
sary information to the World Manager, to know the coordinates of the object

21

AIDED

to move and where it must be placed. Once it has the information, it asks the
Motion Planner module to execute the action. The Vision module does not
perform any tracking task on the identified objects, thus the Supervisor does
not listen to Vision’s messages, as the Vision and the Motion Planner modules
perceptions of the world may not match. As soon as the Motion Planner in-
dicates that the action is finished, the Supervisor module verifies the objects’
positions, listening again to the Vision module. If the current state of the world
does not match with the planned one, the Supervisor module requests the Task
Planner to replan. On the contrary, if the objects are placed at the correct
position the Supervisor proceeds with the next move. This cycle is repeated for
all the actions, until the plan is either successfully executed or aborted.

3.2 Task Planning
Automatic planning [51] is a branch of artificial intelligence that consists of
performing strategies or sequences of actions, often executed by agents. Unlike
classical classification and control problems, solutions in automatic planning
are complex and must be discovered and optimized in a space of more than one
dimension.

Thus, a planner typically considers three entries:

• A description of the initial state of the world.

• A description of the goal to be achieved.

• A set of possible actions that can be performed. These actions detail some
prerequisites for the action to be performed and some post-conditions,
which indicate the effect that said action produces.

On the other hand, there are different types of planners. Before that, though,
we need to keep in mind that each planner has some characteristics that make it
better for some tasks than others. For this reason, we must ask ourselves what
the problem we want to address is and, to do so, we must know the properties
problems have:

• Deterministic or non-deterministic actions. It is understood as a deter-
ministic that action in which only a possible future can be developed.
Therefore, a non-deterministic action can develop more than one future.

• Discrete or continuous state variables. A discrete variable does not support
any value. Instead, a continuous variable, does.

• Total or partial observability. The first one has a complete view of the
world, while the second one only a portion.

• Number of initial, finite, or many arbitrarily states.

• Duration of the actions. The actions have a duration or not.

• Concurrency of actions. Several actions can be performed at once or just
one at a time.

• Reaching the final goal or getting as close as possible.

22

• Number of agents available. Agents are cooperative or selfish. Agents
make their plans separately or plans are built centrally for all agents.

From here, we have different planning models:

• Classic planning. It is determined by:

– Unique and known initial state.
– Deterministic actions.
– Actions do not have a duration.
– Only one action can be performed at a time.
– There is only one agent.

Given these characteristics, observability is irrelevant, as the state of the
world can be accurately predicted after any action.

• Discrete-time Markov decision processes (MDP). Its characteristics are:

– Actions without duration.
– Non-deterministic actions with probabilities.
– Total observability.
– Maximizing a reward function.
– A single agent.

• Partially observable Markov decision process (POMDP). The total obser-
vation of MDP is changed to the partial observation. Thus, a probability
distribution must be maintained over the set of possible states, based on
the set of observations and their probabilities.

• Multi-agent planning. Related to game theory. This type of planning
involves coordinating the resources and actions of multiple agents.

Different implemented planners have been tested for this project. As we
will see, we want a basic domain to work with, so the planner could find the
solution in a fast way. For this reason, we tested different planners to see which
one was the best in the scenario, beginning with a simple one, which is STRIPS,
following with PDDL4J and finishing with ROSPlan. All these planners tested
have the following properties:

• are deterministic,

• total observability,

• the actions do not have a duration, meaning that whatever action the
planner chooses would not last more than another one. To illustrate,
stacking an object has the same duration as moving it, so the planner
does not have a preference of doing one action or another determined by
the time factor,

• only one action can be performed at a time, although we will see that one
of the planners detects if more than one action can be done at once,

23

AIDED

• the planner must reach the final goal,

• there is only one agent: the robot. The human is not considered as such
for the planner. He or she will help when robot cannot do some task
because of limitations.

We can also classify the planners depending on their level of strategy for
building a plan [29].

Definition 2. Plan: Sequence of operators that solve goal 1; the plan describes
all the moves we need to make.

Definition 3. Operator: An operator o is a tuple o = (name(o), precond(o),
effect(o)) whose elements are:

• name(o), the name of the operator,

• precond(o), the preconditions of the operator, that is a set of literals that
must be true to apply the operator o,

• effect(o)− is a set of literals that are false after the application of the
operator o,

• effect(o)+ is a set of literals that are true after the application of the
operator o.

Definition 4. Action: An action is any ground instance of an operator. If a is
an action and s is a state such that precond(a) are true in s, then a is applicable
to s and the result of applying action a to state s is the state s’:

s′ = γ(s, a) = (s− effect−(a)) ∪ effect+(a)

The planners are:

• Linear planner

– We need initial and final states.
– We need a set of operators that allow us to change the state.
– It gets the final state and splits it into different targets (it has a stack

of targets):
∗ It will take goal 1 and try to reach it.
∗ It can be the fact that when achieving one goal, others appear.
∗ It will have reached the end when the target stack is empty.

Imagine the scenario illustrated in Figure 17 (a). In this figure we can see
Joan, who wants to go to the moon with a rocket (see Figure 17 (b)). He
is currently on earth, and the operators he must apply to achieve the goal
are (see Figures 17 (c), (d), and (e)):
g e t i n t h e r o c k e t (Joan)
rocket f rom earth to moon ()
g e t o u t t h e r o c k e t (Joan)

24

(a) (b)

(c) (d)

(e)

Figure 17: Example of a linear planner application; Joan wants to go to the moon. (a) Initial
state. (b) Goal 1: Joan on the moon. (c) Joan goes into the rocket. (d) The rocket goes from
the earth to the moon. (e) Joan gets out of the rocket.

25

AIDED

However, linear planners have the following limitation. As described be-
fore, it gets the first goal and tries to reach it, therefore, it does not
consider the other goals. This is what is called the Sussman anomaly [50],
first described by Gerald Sussman. We will see the problem with the same
example as before but adding another goal; Maria also wants to go to the
moon (see Figure 18).

(a) (b)

Figure 18: Problem example: Joan and Maria want to go to the moon. (a) Initial state. (b)
Goal. Goal 1: Joan on the moon. Goal 2: Maria on the moon.

To do so, the planner will get the first goal: Joan on the moon. To achieve
it, will do the same steps as before (see Figures 19 (a), (b), and (c)):
g e t i n t h e r o c k e t (Joan)
rocket f rom earth to moon ()
g e t o u t t h e r o c k e t (Joan)

Now, the planner gets the second goal: Maria on the moon. As we can
see, there is a problem, since the rocket is not on earth; it is on the moon.
For this reason, the second goal cannot be achieved (see Figure 19 (c),
where Maria is on Earth).

26

(a) (b)

(c)

Figure 19: Example of Sussman anomaly in a linear planner; Joan and Maria want to go to
the moon. (a) Joan gets in the rocket. (b) The rocket goes from the earth to the moon. (c)
Joan gets out of the rocket, but Maria is on the earth and cannot travel to the moon because
the rocket is on the moon.

• Non-linear planner

– We need initial and final states.
– We need a set of operators that allow us to change the state. These

can interfere in a solution for an older problem.
– A plan that simultaneously works with multiples subproblems is

needed.
– The plan is partially ordered and instantiated.

Let us go back to the example seen before; Joan and Maria want to go to
the moon (see Figure 18). To achieve it, will do the following steps (see
Figures 20 (a), (b), (c), (d), and (e)):
g e t i n t h e r o c k e t (Joan)
g e t i n t h e r o c k e t (Maria)
rocket f rom earth to moon ()

27

AIDED

g e t o u t t h e r o c k e t (Joan)
g e t o u t t h e r o c k e t (Maria)

(a) (b)

(c) (d)

(e)

Figure 20: Example of a non-linear planner application; Joan and Maria want to go to the
moon. (a) Joan goes into the rocket. (b) Maria goes into the rocket. (c) The rocket goes from
the earth to the moon. (d) Joan gets out of the rocket. (e) Maria gets out of the rocket.

28

In this case, some operators can be done simultaneously, as represented in
Figure 21.

Figure 21: Sequence of actions in a non-linear planner with the example problem: Joan and
Maria want to go to the moon.

• Hierarchical planning

– We need initial and final states.
– We need a set of operators that allow us to change the state.
– It erases some details of the problem until the principal difficulties

are not solved. There are two ways to do so:
∗ Using macrooperators: From smaller operators, bigger ones are

built.
∗ Planning is done with a hierarchy of abstraction spaces. In each

of which are ignored the preconditions of a lower level of abstrac-
tion. It is what purposes ABSTRIPS. To use this idea, it uses
“first search in length”:
1. It solves the problem completely, considering only those pre-

conditions which critical value is the highest as possible.
2. It goes down level. In each of these levels uses the plans build

in the previous levels as drafts of a complete plan.

This type of planning has been used in a flexible job shop [35] and for the
sugar cane harvest in Colombia [48].

STRIPS and PDDL4J are examples of linear planners, whereas ROSPlan is
a non-linear planner. Although in our scenario we will not find the Sussman
anomaly, as the plans do not interfere between them (in the final goal, the
objects are not stack or placed in the same zone), we can use both planners.
The main aspect, as we will see, is that testing a non-linear planner can lead to
find other applications of our system. We will get more in deep in these planners
in the following sections.

29

AIDED

3.2.1 STRIPS

Stanford Research Institute Problem Solver (STRIPS) [21] is an automated
planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI Interna-
tional. In this planner, the first thing to do is describe the world, by providing
objects, actions, preconditions, and effects. Once the world is described, a prob-
lem is set. A problem consists of an initial state and a goal condition. STRIPS
can then search all possible states, starting from the initial one, executing var-
ious actions, until it reaches the goal. Nowadays, a common language for de-
scribing the domain and the problem is Planning Domain Definition Language
(PDDL).

Once STRIPS has a domain and a problem, a graph can be constructed with
all the available states and actions. It is called the planning graph. To solve it,
a variety of algorithms can be used. For STRIPS, a common method is to use
Bread-First-Search (BFS), Depth-First-Search (DFS) and A* search.

STRIPS is a linear planner, hence many problems can be solved with it, such
as stacking blocks, Rubik’s cube, cooking, and so on.

We started our evaluation with a STRIPS planner implemented in Python
[46]. It uses DFS to solve the given problem. This implementation was discarded
for our use because it is not able to solve the Hanoi tower. Therefore, we had
to look for another one.

The second STRIPS planner we putted under test was implemented in
JavaScript [22]. The user can choose to use BFS, DFS and A*. After some
tests done, the best algorithm is the A*; with it the Hanoi tower can be opti-
mally solved and in a fastest way (see Table 1).

Table 1: Solution comparison of the Hanoi Tower in different algorithms using [22].

Algorithm Number of visited nodes Steps to achieve the goal
BFS 134 7
DFS 22 15
A* 91 7

This last planner implementation was used to solve a simple implementation
of the problem that would be addressed later. Thus, the initial goal was to stack
a glass on top of a cell phone. Once everything together worked, the difficulty
we encountered in dealing with the real problem was that this planner did not
find the solution with many objects (n > 7). In our application domain the
minimum number of objects is 13. Hence, we had to discard this planner as
well.

30

3.2.2 PDDL4J

PDDL4J [36] is a library which purpose is facilitate the development of JAVA
tools for Automated Planning based on PDDL language. PDDL was developed
by Drew McDermott and the 1998 planning competition committee. It was
created to encourage the empirical comparison of planning systems and the
exchange of planning benchmarks within the community. This language has
become a standard for describing planning domains.

PDDL4J library contains:

• A PDDL 3.1 parser and all the classes needed to manipulate the problem
representation.

The problem representation describes the initial state of the world, the
objects under consideration and their properties, a goal to achieve and
actions that can be performed on these objects to achieve the goal. Ac-
tions have triggering preconditions and resulting postconditions, which are
the actions’ effects. The preconditions define under which circumstances
(states of the world) actions can be performed.

The parser can be configured to accept only specified requirements of
PDDL language.

• A set of useful pre-processing mechanisms to instantiate and simplify the
operators into actions.

To transform the operators of the PDDL language (in the domain file)
into the actions used by the planning algorithm, an instantiation process
is triggered.

• A set of already implemented classical heuristics.

• Several examples of planners using PDDL4J.

The planner used to test this library is based in A* search strategy and it is
called Heuristic Search Planner (HSP). Also, we express the planning problem
in two files:

1. the domain file describes the operators,

2. the problem file describes the initial state and the goal.

Our domain file, like the Hanoi Tower, is based in the BLOCKS world, which
is similar to a set of wooden blocks of various shapes and colors sitting on a
table. Only one block can be moved at a time, placing on a table, or putting
it on top of another block. The goal is to build one or more vertical stacks of
blocks. A domain example can be observerd in Section 8.1.1. Therefore, our
objects are named as blocks and our zones of the table are named as tables. It
has four operators:

1. move (b, t1, t2): It moves a block b, that is on table t1, to table t2 (see
Figure 22).

31

AIDED

Figure 22: move operation in domain file representation.

2. move2 (c, a, b): It moves a block c, that is on block a, on top of block b
(see Figure 23). The blocks a and b can be on a table or on another block.

Figure 23: move2 operation in domain file representation.

3. stack (a, t1, b): It stacks a block a, that is on table t1, on block b (see
Figure 24). The block b can be on a table or on another block.

Figure 24: stack operation in domain file representation.

4. unstack (a, b, t1): It unstacks a block a, that is on block b, to table t1
(see Figure 25). The block b can be on a table or on another block.

Figure 25: unstack operation in domain file representation.

32

Our problem file, also, includes these blocks and tables, that represents dif-
ferent kind of objects and zones, respectively. We have added some locations
that are transitory; only used to temporally place objects. This extra space is
to achieve the solution in less steps. To illustrate, the Hanoi Tower, with three
tables, can be solved with 7 steps, seen in Table 1. If we add another table, it
can be solved with 5 (see Figure 26). Thanks to this space, there are less stacks
which, in our scenario, will also need an unstack to achieve the goal.

(a)

(b)

Figure 26: Solutions of the Hanoi Tower changing the number of tables. (a) Solution when
there are three tables. (b) Solution when there are four tables

Also, there is a special one to place objects that do not belong to the setting,
which is named unnecessary objects zone. We have implemented two scenarios:
the table for one and the table for two.

We are now going to test the table for one (see file in Section 8.1.2), that
has 13 objects (6 objects and 7 locations or zones). The initial state is the one
shown in Figure 27 (a). As we can see, it has objects that are not needed for
the task (the cell phone) and some objects are stacked (the knife is on top of the
plate). The yellow zone is a place where no objects will be placed at the end,
it is just transitory for the objects in case it is needed a zone with no objects
to put another one. We can also see the unnecessary objects zone, explained
before.

The final state of the table is the one shown in Figure 27 (b). We can
appreciate that the yellow zone is completely empty and that the unnecessary
objects zone has the cell phone, since this object is not part of the table setting.

33

AIDED

(a) (b)

(a) (b)

Figure 27: Table for one. (a) Initial state. (b) Final state.

The files used can be found in Section 8. The computed plan is the following:

1. unstack knife1, which is on plate1, and put it on orange zone

2. move cellphone1, which is on purple zone, to unnecessary objects
zone

3. move plate1, which is on yellow zone, to purple zone

4. move spoon1, which is on blue zone, to yellow zone

5. move glass1, which is on pink zone, to blue zone

6. move fork1, which is on green zone, to pink zone

34

7. move spoon1, which is on yellow zone, to green zone

We can appreciate that the yellow zone is used once; to place the spoon to
proceed.

The time spent to find the solution is of 0.08 seconds for parsing, 0.10 seconds
for encoding and 0.13 seconds searching the solution. In conclusion, it founds
the solution in 0.31 seconds.

Another scenario used is a romantic table for two (see file in Section 8.1.3),
with 33 objects. The initial state is the one shown in Figure 28 (a). As we
can see, we added a bread plate, a teaspoon, and a candle. Also, the numbers
indicate the names of the zones and objects. For instance, since there are two
yellow zones, one is yellow1 and the other is yellow2, to differentiate them. The
same happens with the objects.

(a) (b)

Figure 28: Table for two. (a) Initial state. (b) Final state.

The goal to achieve is the one shown in Figure 28 (b). As we can appreciate,
all the objects numbered with a one, are on the right coinciding with the zones
number, whereas the objects with the two are on the left, coinciding again with
the zones number. The yellow2 zone is for transitory objects.

The solution given is the following, where with 19 movements the goal is
achieved:

1. move cellphone1, which is on green1 zone, to unnecessary objects
zone

2. stack plate2, which is on red1 zone, to cellphone1

3. move breadplate1, which is on yellow1 zone, to red1 zone

4. move candle1, which is on blue2 zone, to yellow1 zone

5. move knife1, which is on pink2 zone, to orange1 zone

6. unstack fork2, which is on plate1, and put it on pink2 zone

35

AIDED

7. move glass2, which is on orange2 zone, to blue2 zone

8. move knife2, which is on red2 zone, to orange2 zone

9. move breadplate2, which is on yellow2 zone, to red2 zone

10. stack plate1, which is on purple2 zone, to knive1

11. unstack plate2, which is on cellphone1, and put it on purple2 zone

12. move spoon1, which is on black2 zone, to green1 zone

13. move minispoon2, which is on pink1 zone, to black2 zone

14. move fork1, which is on green2 zone, to pink1 zone

15. move spoon2, which is on purple1 zone, to green2 zone

16. stack minispoon1, which is on blue1 zone, to breadplate1

17. move glass1, which is on black1 zone, to blue1 zone

18. unstack plate1, which is on knive1, and put it on purple1 zone

19. unstack minispoon1, which is on breadplate1, and put it on black1
zone

In this case, we can appreciate that the yellow2 zone is not used for transitory
objects. It stacks some objects otherwise, such as the second action; stacks the
plate2 on cellphone1.

The time spent to find the solution is of 0.08 seconds for parsing, 0.68 seconds
for encoding and 26.18 seconds searching the solution. In conclusion, it founds
the solution in 26.94 seconds. We can see that it took more time to find the
solution compared to the scenario of the table for one. We must appreciate that
in this scenario there are 20 more objects, which means that the decision tree
is bigger. We can see a comparison of the results in Table 2.

Table 2: Comparison between scenarios with PDDL4J.

Scenario
Number

of elements
(u)

Parsing
(s)

Encoding
(s)

Searching
the solution

(s)

Total
time
(s)

Table for one 13 0.08 0.10 0.13 0.31
Table for two 33 0.08 0.68 26.18 26.94

36

3.2.3 ROSPlan

Although we have had good results with PDDL4J, we also want to put under
test ROSPlan, as it is a very used planner in ROS. As said, PDDL4J is a linear
planner, which can have some problems when trying to achieve some goals;
therefore, we want to compare with ROSPlan, as it is a non-linear planner.
Furthermore, the AIDED system is implemented in ROS, thus using ROSPlan
is straightforward allowing the use of other planners in the future if needed.

ROSPlan [23] provides tools for AI Planning in a ROS system. It has nodes
which encapsulate planning, problem generation, and plan execution (see Figure
29).

Figure 29: ROSPlan demo system.

• The Knowledge Base stores a PDDL model (see Figure 30). It loads a
PDDL domain and, an optional problem file. It stores the state as a
PDDL instance and updates it with ROS messages. Furthermore, it can
be queried for information on the PDDL domain model, and problem
instance.

37

AIDED

Figure 30: ROSPlan: Knowledge Base.

• The Problem Interface (see Figure 31) generates an instance of the prob-
lem. It obtains the details from the domain and the current state through
doing petitions to Knowledge Base node and publishes an instance of the
PDDL problem as a String (to either publish it through a topic or writing
it to a file).

Figure 31: ROSPlan: Problem Interface.

• The Planner Interface (see Figure 32) calls a planner providing a domain
file and an instance of the problem and publishes the plan (either through
a topic or writing it on a file).

38

Figure 32: ROSPlan: Planner Interface.

In addition, there are implementations of the Planner Interface node used
with the different planners summarized in Table 3. In our case we are using
the popf planner interface, as it is a temporal planner: during search,
when applying an action to a state, it seeks to introduce only the ordering
constraints needed to resolve threats, rather than insisting the new action
occurs after all of those already in the plan. Thanks to this, we can know
if to actions can be done at the same time. It also uses PDDL to define
the domain and the problem.

Table 3: Implementations of the Planner Interface node.

Node Type Compatible Planners Website

popf planner interface POPF nms.kcl.ac.uk/plan
ning/software/popf

OPTIC nms.kcl.ac.uk/plan
ning/software/optic

ff planner interface
FF,
Metric-FF,
Contingent-FF

fai.cs.uni-saarland
.de/hoffmann/ff

lpg planner interface LPG lpg.unibs.it/lpg

tfd planner interface TFD
gki.informatik.
uni-freiburg.de
/tools/tfd

smt planner interface SMTPlan
kcl-planning.
github.io/
SMTPlan

39

AIDED

• The Parsing Interface (see Figure 33) converts a PDDL plan into ROS
messages, ready to be executed.

Figure 33: ROSPlan: Parsing Interface.

• The Plan Dispatch (see Figure 34) encapsulates plan execution. It in-
cludes plan execution, and the process of connecting single actions to the
processes which are responsible for their execution.

Figure 34: ROSPlan: Plan Dispatch.

In this project we have used the Knowledge Base, the Problem Interface, and
the Planner Interface, which output is the sequence of actions that the agents
(robot and human) will have to perform. Every time the user asks to set the
table, we launch a file, that executes these three nodes, to obtain the solution.

To compare the solution given with the PDDL4J (see Section 3.2.2), we used
the same scenarios shown in Figure 27, for the table for one and Figure 28, for
the table for two. We used the popf planner interface in both situations.

In the table for one scenario, we get the following result, where the solution
is found in 9 steps:

1. stack spoon1, which is on blue zone, with cellphone1

2. unstack knife1, which is on plate1, and put it on orange zone

3. stack fork1, which is on green zone, with knife1

40

4. move glass1, which is on pink zone, to blue zone

5. unstack spoon1, which is on cellphone1, and put it on green zone

6. unstack fork1, which is on knife1, and put it on pink zone

7. stack plate1, which is on yellow zone, and put it on fork1

8. move cellphone1, which is on purple zone, to unnecessary objects
zone

9. unstack plate1, which is on fork1, and put it on purple zone

Whereas in the table for two, we get the solution with 25 steps:

1. move cellphone1, which is on green1 zone, to unnecessary objects
zone

2. move knife1, which is on pink2 zone, to orange1 zone

3. stack glass1, which is on black1 zone, to minispoon2

4. stack candle1, which is on blue2 zone, to breadplate1

5. stack minispoon1, which is on blue1 zone, to cellphone1

6. unstack fork2, which is on plate1, and put it on pink2 zone

7. move glass2, which is on orange2 zone, to blue2 zone

8. move2 candle1, which is on breadplate1, to breadplate2

9. unstack glass1, which is on minispoon2, and put it on blue1 zone

10. move spoon1, which is on black2 zone, to green1 zone

11. move knife2, which is on red2 zone, to orange2 zone

12. stack breadplate1, which is on yellow1 zone, to minispoon1

13. move plate1, which is on purple2 zone, to black1 zone

14. stack spoon2, which is on purple1 zone, to glass1

15. move minispoon2, which is on pink1 zone, to black2 zone

16. unstack candle1, which is on breadplate2, and put it on yellow1
zone

17. stack fork1, which is on green2 zone, to knife2

18. move breadplate2, which is on yellow2 zone, to red2 zone

19. move2 breadplate1, which is on minispoon1, to candle1

20. unstack spoon2, which is on glass1, and put it on green2 zone

21. unstack fork1, which is on knife1, and put it on pink1 zone

41

AIDED

22. move plate1, which is on black1 zone, to purple1 zone

23. move plate2, which is on red1 zone, to purple2 zone

24. unstack minispoon1, which is on cellphone1, and put it on black1
zone

25. unstack breadplate1, which is on candle1, and put it on red1 zone

If we compare these solutions with the ones given by PDDL4J, in Section
3.2.2, we can see that in the table for one scenario PDDL4J finds the solution
with 7 movements, and ROSPlan with 9, i.e. ROSPlan requires two additional
actions to achieve the goal.

On the other hand, comparing the solutions of the table for two scenario,
PDDL4J finds the solution with 19 steps, whereas ROSPlan with 25. Again,
ROSPlan needs more moves, 6 to be concrete.

Appreciate that PDDL4J uses more the move operator, whereas ROSPlan
uses stack. When using stack, the planner will need to do also an unstack, as we
do not have stacked objects in the end goal. Hence, ROSPlan has more moves as
needs two actions (stack and unstack) to achieve the end position of one object.

Despite of ROSPlan being less effective finding the solution than PDDL4J,
we choose ROSPlan because it indicates the time at which each action is taken
and, thanks to it, we can know if various actions can be done at the same time.
This fact will be useful when more than one agent collaborates in the same
scenario, being robots or users. Furthermore, it is easy to change the planner
used (as said, we are currently using POPF) and it uses ROS, the framework we
are already using. These are advantages if we want to use our system in other
domains in the future, different from the setting the table one used in this work.

3.3 Motion Planning
The Motion Planner module is in charge of controlling the robotic arm used in
this project.

We have used two robots at different stages of the project, each with two
different controllers, as we describe later. The first robot is a UR3 (Figure
35 (a)) is the smallest Universal Robots’ arm [38]. It can lift up to 3Kg, and
weights 11Kg. This robot arm is the one used for the first tests done. We use
it physically and in simulation.

The second robot used is the PANDA Robotic Arm (Figure 35 (b)), a col-
laborative robot arm developed by FRANKA EMIKA [25]. It can also lift up
to 3Kg, and weights 18Kg. This robot arm is used in later tests of the project.
We use it in simulation.

42

(a) (b)

Figure 35: Arm Robots. (a) UR3 arm. (b) PANDA Robotic Arm.

3.3.1 UR remote control

To control the UR3 robot, we used the UR remote control [42], provided by
Universal Robots. 1the communication with the UR3 arm is done via socket,
as it has multiple open ports to send commands. In a first place, there is the
29999 which enables to control the interface [43]. We use it, mainly, to control
the execution of pre-existing programs, such as loading a program, playing it,
pausing it, and stopping it. Secondly, we use the port 30002 [44], which is
dedicated to send URScript commands. With this port we send functions to
the robot and it executes them. We created the following functions:

• movej pose: We ask the UR3 to move to a target pose, with a given joint
acceleration of leading axis, joint speed of leading axis, time, and blend
radius. A pose consists of a x, y, z position and rx, ry, rz rotation.

• movej rad: We ask the UR3 to move giving the same parameters as in
the movej pose command, but changing the target pose with the radians
angle of each joint.

• freedrive mode: We indicate the UR3 that we want to move it manually.

• end freedrive mode: We indicate the UR3 that we have finished moving
it manually.

• open gripper: It opens the gripper attached to UR3.

• close gripper: It closes the gripper attached to UR3.

• send program from doc: Given a URScript in a file, this function sends it
to the UR3.

43

AIDED

Finally, we use the Real-Time Data Exchange (RTDE) protocol [45] to know
internal information of the UR3 arm. To get this information, we have enabled
one port, the 30100, which does not have any specific purpose. We basically use
it to know if the robot is moving, to send to it the next pose.

The disadvantage of using this type of control with the robot arm is that
when we specify a final position to the robot, it moves using the shortest path
and avoiding internal collisions with its own body, but without taking into
account potential collisions in the world, such as objects in the environment.
That means that it can accidentally move other objects that are within its
path. In Figure 36 we illustrate two possible scenarios where the robot has
initial and final poses, and an object is between them. There are two possible
solutions for this problem; the first one is the one illustrated in Figure 36 (a),
where the arm passes above the object. The second solution is illustrated in
Figure 36 (b), where the arm passes next to the object.

(a)

(b)

Figure 36: Examples of possible collisions and solutions. (a) Changing the z coordinate. (b)
Changing the x coordinate.

Whatever the option we choose, we must appreciate that the we need to

44

know the exact position of the entire robot and the objects to make sure not
only that the end effector does not touch the middle objects, but also the rest
of the arm (see Figure 37). We thus need of a motion planner tool to plan the
robot’s movements taking into account not only internal collisions of the robot,
but also with the environment.

Figure 37: Example of collision between the UR3 arm and some bottles.

3.3.2 MoveIt (ROS)

MoveIt [41] is an open source robotics manipulation platform that works with
ROS. It provides tools for motion planning, manipulation, inverse kinematics,
control, 3D perception and collision checking. Its main node is move group (see
Figure 38), that serves as an integrator. It pulls all the individual components
together to provide a set of ROS actions and services for users to use through
C++, Python, or a GUI.

Figure 38: High-level system architecture for the primary node provided by MoveIt called
move group.

move group uses the ROS param server to get the following information:

• URDF, which is an XML format to represent a robot model.

45

AIDED

• SRDF, which is a representation of semantic information about robots.

• MoveIt configuration, which is a specific configuration of MoveIt that in-
cludes joint limits, kinematics, motion planning, perception, among oth-
ers.

Finally, move group talks to the robot through ROS topics and actions. The
robot gives to this node its current state information (such as the positions of
the joints, the operation mode, and so on), point clouds and other sensor data
from the robot’s sensors. The move group also talks to the controllers on the
robot.

MoveIt integrates a Motion Planning Plugin which allows to communicate
with and use different motion planners from multiple libraries. Below is a list
of planners that have been used with MoveIt, in descending order of populari-
ty/support within MoveIt:

• Open Motion Planning Library (OMPL) is the default planner of MoveIt.
It primarily implements randomized motion planners, that are abstract.
For instance, OMPL has no concept of a robot. Instead, MoveIt configures
OMPL and provides the back-end for it to work with problems in robotics.
It is fully supported by MoveIt. For this reason, is the motion planner that
we use in our system.

• Stochastic Trajectory Optimization for Motion Planning (STOMP) can
plan smooth trajectories for a robot arm, avoiding obstacles, and opti-
mizing constraints. The algorithm does not require gradients; hence it
can optimize arbitrary terms in the cost function like motor efforts. It is
partially supported by MoveIt.

• Search-Based Planning Library (SBPL) is a generic set of motion planners
that use search-based planning that discretize the space. It is currently
being integrated in the latest MoveIt version.

• Covariant Hamiltonian Optimization for Motion Planning (CHOMP) cap-
italizes on covariant gradient and functional gradient approaches to the
optimization stage to design a motion planning algorithm based entirely
on trajectory optimization. It makes many motion planning problems
simple and trainable. It is currently being integrated in the latest MoveIt
version.

By default, MoveIt works with the PANDA Robotic Arm (see Figure 35
(b)). To use a UR3 robot arm (see Figure 35 (a)), we need an extra software
to communicate it with our system through ROS [18]. We also need to install
an URCap [17] in the robot, a piece of software to communicate the robot with
MoveIt. Thanks to MoveIt, our system can work with both robotic arms, as it
is easy to change from one to another by only changing the robot name.

Moreover, the main reason for using MoveIt is that the problems seen in
Figures 36 (a), (b) and 37 are resolved. The OMPL plans a trajectory free of
collisions. In addition, the robot does not move directly to a specified pose.
Instead, it stops near the object (in our case, the minimum distance is 9.5cm
over the object), whenever a “grasp” or “place” action takes place, making the
robot movements safer. The drawback though is that sometimes it cannot find

46

a safe motion, or it cannot reach an object and, therefore, the robot does not
move. In these situations, the robot, as described in previous sections, will ask
for the user’s help. Therefore, before starting the execution of any action, we
always evaluate if the robot can grasp or place an object.

3.4 Verbal Communication

Communication between the user and the robot takes place via verbal com-
munication. For this reason, in this Section we are going to explain different
dialogue managers but, before, we want to briefly describe what we were looking
for when choosing one.

In the first place, we are looking for an event-based manager, that could
allow us flexibility for most language-based commercial interactions. Second, we
considered the response time, as it is critical in natural interactions: a delayed
response is seen as disturbing, whereas a very quick response is often seen as
insincere. Third, we want the robot to ask for additional information. For
example, the user may ask to set the table, but the robot does not know for
how many diners, so we want it to ask for this information. Finally, we also
want to be able to generate speech fast, since the robot must give feedback of
what it is doing.

In the following sections, we will talk about (1) the different assistants that
we have considered for this project given the requisites explained above, (2)
which one has been chosen, and (3) the verbal requests that the robot under-
stands.

3.4.1 Siri

Siri, the intelligent assistant developed by Apple, was the first assistant that
came out to the market. However, it is only compatible with approximately 250
devices. This is because all devices that want to connect to Apple’s smart home
software (HomeKit) must meet the encryption requirements of Apple. However,
the issue of privacy is a positive aspect. The company does not associate the
data with a personal profile.

This voice assistant has not been selected as it is only compatible with Apple
devices.

3.4.2 Google Home

Goggle Assistant, developed by Google, was one of the first virtual assistants.
It is integrated into all mobile phones that have Android as their operating
system. In addition, it has an application available for both Android and IOS.
With this assistant, more than 10,000 devices can be controlled.

In terms of its level of comprehension, complex questions that require some
abstraction can be asked. It also identifies the different members of the family.
Despite these advantages, it was decided not to use this assistant because its
voice is too robotic. Moreover, few recognition tests were informally performed
by other members of the URL-MONITOR project, and its speech recognition
accuracy was not as high as with Alexa, which we describe next.

47

AIDED

3.4.3 Alexa

Amazon’s Alexa, launched five years ago, has over 28,000 compatible devices.
Similar to Google Home, it has an application for Android and IOS. Contrary
to the Google Home Assistant, Alexa cannot process complex utterances which
require additional abstraction capabilities. On the other hand, its voice sounds
more natural than the Google Home assistant. For this reason, Alexa has been
chosen as an assistant in this project.

Amazon has multiple devices integrated with Alexa. They also have WiFi
connectivity and Bluetooth. We are now going to talk about them, and which
one we are using in this project:

• Echo Flex. This device is a plug-in speaker. It integrates a 15mm mini
speaker, therefore the quality of the audio is poor.

• Echo Dot. It has a fabric-finished design and a 40mm speaker. It can also
integrate a clock. The quality of the audio is better than the Echo Flex.

• Echo Plus. It has high-quality surround sound (76mm neodymium woofer
and 20mm tweeter), integrated digital home controller (Zigbee) and tem-
perature sensor.

• Echo Studio. It is defined as a high-fidelity smart speaker with 3D audio
(3x50mm midrange, 25mm tweeter and 133mm woofer). It integrates
Dolby Atmos and Zigbee.

• Echo Auto. This device is designed for the car. It connects to the car
speakers through Bluetooth.

• Echo Show 5. It integrates a 5.5” screen and 1MP camera that allows
video calls. The speaker is of 4W.

• Echo Show 8. Similar to the Echo Show 5, with an 8” screen and integrates
two speakers of 10W.

• Echo Show. It has a screen of 10,1”, two speakers of 10 W and a passive
bass radiator with Dolby technology for immersive sound. The camera is
of 5MP.

In this project we have opted for the Echo Plus device, since it has a good
sound quality and can connect with Zigbee devices, which could be useful if our
system is integrated in smart homes in the future.

To interact with our system, we have developed a skill in the Alexa Develop-
ment platform. This skill is in Python and communicates with the Supervisor
via socket using ngrok [8], a tunneling tool. Alexa skills are run in the cloud and
therefore, we need to translate private IPs to public IPs and vice versa (NAT).
ngrok provides us this service. An example of a ngrok window, where we can
see the public IP and port, and the private IP and port is shown in Figure 39.
In this case:

• public IP: 0.tcp.ngrok.io

• public port: 14393

48

• private IP: localhost

• private port: 30150

We can also observe the number of petitions done, which in this case is 2 (looking
at TTL parameter).

Figure 39: Example of ngrok window.

Our Alexa skill is called “aided skill”, so the user has some sentences, with
its name, to activate it, such as:

• Open aided skill

• Start aided skill

• Aided skill

• Ask aided skill to ...

Alexa skills are based on intents. An intent represents an action that fulfills a
user’s spoken request. Intents can optionally have arguments called slots. We
have created a slot, called “objects”, that include:

• cell phone, phone, mobile phone, mobile

• scissors

• pencil

• pen

• cup

• candle

• wine

• fork

• water bottle, water

• wine glass

• spoon

49

AIDED

• knife

• pocket knife

• dining table, table

• glass

• bread plate

• plate

• coffee cup

• teaspoon

The intents created are:

• AskHowManyObjects: To request the number of objects in the scenario.
To activate this intent, the user can say:

– How many objects are on the table
– How many objects do you see
– How many objects are there

• AskWhichObjectsAre: To request which objects are in the scenario. The
system also replies indicating the number of objects of each type. The
possible questions are:

– What do you see
– Which objects can you see
– Which objects are on the table

• AskDoYouSeeObject: To ask if the robot sees a specific object. This
intent has a slot named “object”, which is of type “objects”, seen before.
To activate the intent, the user should say something similar to:

– Do you see a {object}
– Can you see the {object}
– Do you see the {object}
– Do you see {object}
– Can you see {object}
– May you tell me if you can see the {object}

• Replan: To request the system to replan. The robot will evaluate the
scenario once again and will create a new plan to achieve the goal. The
intent can be activated by saying:

– Launch rosplan
– Plan again
– Replan

50

• Wait: To ask to wait if the robot needs a specific object and it is not in
the scenario, so he or she can bring it. The user can say:

– Wait a second
– Wait for a while
– One moment
– One second
– Wait a moment
– Wait

• UserDoesIt: In some situations, the robot can ask the user if the user
wants to do a specific task. If he or she wants to do so, s/he just needs to
say:

– I can move it
– I can reach it
– I will do it

• TakeObjectOut: To request the robot to remove an object. The robot will
get it and put it or them apart, in the unnecessary objects zone. It is only
done when there are extra objects in the scenario. This intent has a slot
named “object”, which is of type “objects”, seen before. To activate the
intent, the user can say:

– Put them all apart
– Take out the objects
– Take out all the objects
– Put the objects apart
– Put the {object} apart
– Put the object apart
– Take out {object}
– Take out the object
– Take out the {object}

• SetTheTable: The user can ask to start setting the table and must indicate
for how many people. This intent has a slot named “number” which is of
type “AMAZON.NUMBER”. This slot is compulsory so if the user does
not say it, Alexa will ask for it. The user can say the following sentences:

– Lay the table
– Let’s set the table for {number}
– Let’s set the table
– We can start setting the table for {number}
– We can start setting the table
– Start setting the table
– Set the table

51

AIDED

– Set the table for {number}

• StopRobot: It stops the robot, allowing the robot to continue the task if
the ContinueRobot petition is launched. The intent is launch by saying:

– Cease moving
– Look before you leap
– Watch robot’s step
– Watch your step
– Pause the robot
– Pause your movement
– Stop UR
– Stop the robot
– Danger
– Stop the movement

• ContinueRobot: To resume the task in case it was stopped with the pre-
vious intent. The user can say:

– Get into work again
– Continue
– Continue working
– Robot continue what you were doing
– Robot go on

• UserIsDone: To indicate that the user has finished his/her task. For
instance, if s/he had to bring a missing object. To begin the intent, the
user can say:

– I have finished
– I am done
– I’m done

• AMAZON.CancelIntent: To cancel what the robot is doing.

• AMAZON.HelpIntent: To ask for help if the user does not know what the
skill covers.

• AMAZON.StopIntent: To stop the skill.

• AMAZON.NavigateHomeIntent: To exit the skill and return the user to
the home screen. It is only active on screen devices.

Although having all these intents created, Alexa is not able to start a con-
versation. It can only reply to a conversation initiated by the user. This is a
disadvantage because in some situations, we need to indicate the user what the
robot is doing, as part of an HRI design principle on feedback. For this reason,
we use the alexa-remote-control [47] module, which is the block in Figure 15
named TTS. We can thus directly connect to the Echo Plus and send a String

52

with the utterance we want the system to say. Unfortunately, the Echo Plus
will not reproduce the utterance if the skill is open. Therefore, every time the
user actives an intent, the skill is automatically closed right after. There are
only three intents that leave the skill open, as they are thought to use when
the robot is not doing a task and are only used to know the state of the world
seen by the robot’s eyes perceived by the Vision system. These intents are
AskHowManyObjects, AskWhichObjectsAre and AskDoYouSeeObject.

3.5 Vision system
This module has not been implemented in this TFM, so we are going to do an
overview in this section. For further details see [24].

The module uses You Only Look Once (YOLO) which is a Convolutional
Neural Network (CNN), a type of neural network, which are very good at de-
tecting patterns (and by extension objects and the like) in images.

The dataset used is from Open Images Dataset (OID) V4. It is provided by
Google and is the largest existing dataset with object location annotations with
approximately 9M images for 600 object classes that have been annotated with
image-level labels and object bounding boxes. In our case, we use seven classes:

• Bottle of any kind: from a liquor bottle to a ketchup one.

• Fork.

• Kitchen knife. We differentiate it from the pocket knives and the butcher
knives.

• Mobile phone.

• Plate: from empty plates to plates full of meal.

• Spoon.

• Wine glass.

Table 4 shows the number of images that have been used as dataset in
different situations. We must say that we have used all the images provided
by OID V4, since the more images we have, the better is the recognition. The
training set consists of all the images used to train the neuronal network. The
validation set is used every once in 50 iterations, in our case, to check whether
the training process is complete and to avoid overfitting. Thus, we ensure that
there are images that the network has never seen before.

Finally, once the training has finished, the test set are new images to validate
the response of the neuronal network: to illustrate, if we have an image of a
bottle, the neuronal network should identify it as so. On the other hand, we
can appreciate that there are more labels than images. This is because some
images have more than one object of the class.

Table 4: Number of images used as dataset for every class.

Class Training set Test set Validation set

Bottle 11456 images
40155 labels

533 images
979 labels

177 images
340 labels

53

AIDED

Table 4: Number of images used as dataset for every class.

Class Training set Test set Validation set

Fork 1034 images
1687 labels

103 images
143 labels

32 images
45 labels

Kitchen knife 274 images
350 labels

61 images
83 labels

21 images
28 labels

Mobile phone 4312 images
6365 labels

354 images
454 labels

98 images
137 labels

Plate 2023 images
5416 labels

153 images
214 labels

47 images
67 labels

Spoon 1044 images
1709 labels

119 images
162 labels

40 images
50 labels

Wine glass 4894 images
12934 labels

239 images
356 labels

82 images
119 labels

Although, in order to increase more the dataset, data augmentation is per-
formed.

Definition 5. Data augmentation: Process in which a dataset size is increased
by obtaining more training samples from every image applying transformations.
These transformations usually involve [33]:

• Random Image Warping Transformations: creates a randomized 2-D affine
transformation from a combination of rotation, translation, scale (resiz-
ing), reflection, and shear.

• Cropping Transformations: crops the image. It is important to select a
cropping window that includes the desired content in the image.

• Color Transformations: randomly adjusts the hue, saturation, brightness,
and contrast of a color image.

• Synthetic Noise: adds noise in the picture from a noise model, such as
Gaussian, Poisson, salt and pepper, and multiplicative noise. The strength
of the noise is also adjustable.

• Synthetic Blur: applies randomized Gaussian blur to an image. The
amount of smoothing can be specified.

In the project scope, flipping, resizing and random color transformation, as
shown in Figure 40, is applied in means to augment the dataset.

54

Figure 40: Transformations applied to the dataset images.

Once we have our neuronal network working, we need to define the area of
detection and the setup of the camera, since these are important aspects when
recognizing the objects and localizing them.

(a) (b)

Figure 41: Setups of the camera used. (a) The camera is higher and next to the table. (b)
The camera is above the table.

In a first instance, the setup was the one shown in Figure 41 (a). As we
can see, the camera is next to the table, a little bit higher. The problems we
encountered in this setup were:

1. It was hard to detect the objects that were far from the camera (see Figure
42 (a)).

2. The objects are in perspective.

3. Due to the previous problem, achieving an accurate positioning of the
objects was harder.

To solve points 2 and 3 we opted to: (1) change the area of detection to
only recognize the objects on the table, (2) use the corners of the table as
a reference point, and (3) distorted the image according to it. Knowing the

55

AIDED

real dimensions of the table and the pixels it occupies on the image we can do
a simple operation to find the positions of the objects and their dimensions.
However, another inconvenience then arises:

4. The objects are distorted (see Figure 42 (b)).

(a) (b)

Figure 42: (a) Image captured by the camera when placed in front of the table with the
corresponding perspective view. (b) Distorted objects after applying the transformations to
remove perspective.

Because of these drawbacks, we opted for the setup shown in Figure 41 (b).
The area of detection is the limited zone created by the four red points shown
in Figure 43. With this top view, we can see that the objects are not distorted,
and the localization is simpler. Although, it presents a problem, which is that
some objects, such as a bottle, are not recognized, because the neuronal network
used to recognize objects is mainly trained on images from the side view. This
is not the case for other objects, such as spoon, knife, and so on, as they are
trained with pictures seen from the plan view.

56

Figure 43: Image taken from the top view of the table.

3.6 World Manager
This module is in charge of processing the state of the world send by the Su-
pervisor, which in turn, receives it from the Vision module (see Figure 15). To
do so, it receives a list of the objects that the Vision module recognizes, along
with the following additional information:

• id: it is the id of the object. It is a number.

• name: it is the name of the object. It is formed by the type and a number.
For instance, plate1.

• type: it is the type of the object. In the example above, it would be plate.

• pddl type: it is the PDDL type, which can be a block or a table. In the
previous example, it would be a block.

• color : is the color of the object. This information is not currently used in
this project.

• location: it is the position of the item with respect to the robot. It contains
x, y and z values.

• dimension: it is the dimension of the item. It contains x, y and z values

• is on: it indicates if the item is on top of another one. This field is empty
if the item is a zone.

• is bellow: it indicates if the item is under another object.

On the other hand, this module receives petitions from other modules and,
therefore, has to send the information required. The petitions that it can receive
are the following:

• get the vision objects,

57

AIDED

• get object with a specific name,

• get number of objects,

• get number of objects, but without tables (for PDDL type),

• get instances of, given a type,

• get location of an object given an id,

• get location of an object given a name,

• get the name of the object given the position of the list,

• get type of the object given the position of the list,

• get the PDDL type given the position of the list,

• get the table names for the PDDL file,

• get the block names for the PDDL file,

• get if the object is under another one given the position of the list,

• get if the object is on another one given the position of the list.

3.7 Communication
To communicate the different nodes of the project, different ROS topics and
services have been created (as described in Figure 44. We will next go through
them.

Figure 44: Topics and Services to communicate the different Nodes.

58

3.7.1 Topics

Many different topics were created in order to communicate the different nodes.
We next describe their purposes, the information they send, and which node is
the publisher and which ones are subscribed to it.

• url project brain to speech:

– Message type: std msgs/String (see Section 8.2.1)
– Publisher: Supervisor
– Subscriber: Verbal Communication
– Function: This topic sends Strings to the Verbal Communication to

give feedback to the user. Hence, is the channel the Supervisor uses
to convert Text-To-Speech.

• url project speech to brain:

– Message type: url project/speech to brain msg (see Section 8.2.2)
– Publisher: Verbal Communication
– Subscriber: Supervisor
– Function: Sends the petitions received from the user to the Supervisor

to process them and act according to the user’s needs.

• url project grasp:

– Message type: url project/grasp description (see Section 8.2.3)
– Publisher: Supervisor
– Subscriber: Motion Planner
– Function: Sends the required information to grasp the object.

• url project objects description:

– Message type: url project/objects description (see Section 8.2.4)
– Publisher: Supervisor
– Subscriber: Motion Planner
– Function: Sends the information about the objects.

• url project place location:

– Message type: url project/place location description (see Section 8.2.5)
– Publisher: Supervisor
– Subscriber: Motion Planner
– Function: Sends the required information to place an object on a

surface.

• url project vision:

– Message type: url project/vision description (see Section 8.2.6)
– Publisher: Vision
– Subscriber: Supervisor
– Function: The Vision node sends the objects information through

this topic to the Supervisor.

59

AIDED

3.7.2 Services

There are two services in the system:

• Data

– Messages send are shown in Section 8.2.7.
– Node that offers the service: World Manager
– Nodes that make petitions: Supervisor and Verbal Communication
– Function: Gives the information of the world state required.

• Plan

– Messages send are shown in Section 8.2.8.
– Node that offers the service: Motion Planner
– Node that make petitions: Supervisor
– Function: It evaluates if the specified movement can be performed.

It returns a Boolean indicating if it is feasible or not.

60

4 Use Case evaluation

In this Section we are going to describe the different tests done to our system.
We will start with a first proof of concept of a simplified version of the system.
Next, we evaluate the skill we have developed. We continue evaluating the
integration with the Vision system. Thirdly, we analyze different situations the
system faces and how it responds showcasing the different features designed.
Finally, we show a full scenario setting.

4.1 Initial proof of concept evaluation

As a first step, done to test the viability of the URL-MONITOR project, we
designed a simple scenario where the goal was to detect two objects on the
table, a cup and a cell phone, and to ask the robot to move the cup on top of
the phone. The aim was thus to test the integration of the three main modules
of the system: Vision, Motion Planner, and Task Planner. This first system,
which is far from resembling the one presented in this project in terms of design
and complexity, had the following characteristics:

• It was not running with ROS, but used a simple Python controller and
all the communications between the different modules were done through
sockets.

• As already mentioned before, the system used STRIPS [22] to plan the
actions the robot has to do.

• It also had some basic Alexa intents to indicate the robot that it had to
start doing the specified task.

• Regarding to the movements of the robot, all the communication was done
through the ports specified in Section 3.3.1, where the problems described
there were not significant, as only two objects were on the table.

• The Vision module’s setup was the one shown in Figure 41 (a) and it
was able to detect the objects and compute their coordinates to grasp and
place the cup properly. It also had the height of the cup hard-coded, as the
module could not detect it from the perspective from where the camera
was placed.

The sequence of actions is shown in Figure 45, where we can see that this
first implementation was functional. Encouraged by the success of this initial
prototype, we continued developing the AIDED system described in this TFM.

61

AIDED

(a) (b) (c)

(d) (e) (f)

Figure 45: First evaluation with a basic system. (a) Initial state. The cup and the cell phone
are on the table. (b) The robot goes closer to the cup. (c) The robot grasps the cup. (d)
The robot moves the cup. (e) The robot places the cup on top of the mobile phone. (f) Final
state. The cup is on the cell phone.

We next describe the evaluations done of the different modules, as well as a
final performance evaluation of the whole system.

4.2 Verbal Communication
In this Section we want to test if the Alexa skill can recognize verbal petitions
from users. Therefore, we want to know if the intents created fulfill their function
or, otherwise, some basic sentences have to be added. Furthermore, we want to
evaluate the usability aspect of Alexa’s skill activation process.

4.2.1 Intents evaluation

In this Section we evaluate the different intents created. To do so, 10 users (see
Table 5), from different backgrounds have been picked. There are six users from
Spain and four from California. They also have ages from 13 to 48 years old.

62

Table 5: Users’ information.

User Important
information User Important

information

1
Gender: F
Age:18
From: Spain

6
Gender: F
Age: 23
From: Spain

2
Gender: M
Age: 48
From: Spain

7
Gender: F
Age: 45
From: California

3
Gender: F
Age: 23
From: Spain

8
Gender: F
Age: 17
From: California

4
Gender: F
Age: 23
From: Spain

9
Gender: F
Age: 13
From: California

5
Gender: F
Age: 23
From: Spain

10
Gender: M
Age: 45
From: California

We described a situation to them, and they came up with sentences that
would say to the robot. In the following list, we indicate the intent of the Alexa
skill, the situation described, and the commands that the skill did not recognize
that the users came up:

• AskHowManyObjects: You want to know the quantity of objects on the
table.

– Count the number of objects on the table, please

• AskWhichObjectsAre: You want to know what is on the table.

– What is there
– Can you see anything
– Can you tell me everything you see on the table
– Can you explain to me what you see on the table
– Describe everything on the table

• AskDoYouSeeObject: You want to know if the robot sees an object in
concrete (glass, fork, for instance).

– Is the glass on the table
– Is the glass there
– Is there any fork on the table
– I cannot find my glass. do you see it
– Is the fork visible

• Replan: Some objects are missing to complete the task and you want the
robot to work without them.

63

AIDED

– Reschedule
– Do it anyway
– Do it again without the objects
– Work with that
– Work with them
– Set the table anyway
– Lay the table anyway
– Just ignore the objects that are missing
– Set the table without these objects, please
– Proceed setting the table regardless
– Complete the task
– Do not mind what is missing
– Finish the task without those objects
– Proceed to set the table with only the objects available

• Wait: Some objects are missing to complete the task and you will bring
them to the robot.

– Do not worry I will bring them
– Stop. Here you have the objects. You can continue
– Please, wait. I will bring them to you.
– Let me find them. One second.
– Wait, I will bring the missing objects
– I will provide the rest of the objects necessary

• UserDoesIt: The robot asks for help to move an object, as it cannot do
it. You want to help it, what would you say to it, to indicate so?

– I do
– Do not worry, I will help you
– Stop, let me help you
– I am going to help you
– May I help you
– I will move the object
– Okay, I will pass to you
– Wait a minute I am my way to help
– I am coming

• TakeObjectOut: There are more objects than needed on the table. The
robot asks you what you want it to do with them and you do not want it
on the table.

– Remove the dish

64

– I do not want them
– Move them away
– Put it somewhere else
– Place it outside the table, please.
– I don’t want it on the table
– Remove the objects from the table
– Please, remove the objects from the table
– Is it possible to move the objects from the table
– Please remove all
– Please take it all
– Go ahead and remove all
– Remove the unidentified objects
– Continue removing all objects

• SetTheTable: You want the robot to set the table.

– All the sentences that the users came up with were recognized by the
skill

• StopRobot: The robot is moving towards you, with risk of touching you
and hurting you.

– Do not move
– You are too close
– Take care
– Stop
– Be careful, I am close
– Stop and wait to be reset
– Do not come close to me
– You are going to hurt me
– Stop now

• ContinueRobot: The robot is not moving, as you have stopped it. What
would you say to it for make it do what it was previously doing?

– Start the robot
– Resume activity
– Move
– Start
– Start working
– Start moving
– Do your job
– Play

65

AIDED

– Why aren’t you moving
– Reset
– Proceed with the task
– Keep it going
– Please finish your job
– Go back to your job please
– May you go back to work
– You are good to go

• UserIsDone: You helped the robot and it is waiting you to indicate some-
how that you have done it.

– I finished what I was doing
– I finished the work I was doing
– I finished the task
– I did for you the task
– I made for you that
– I did the task
– The task is finished
– The task is done
– I am finished
– I just finished the task
– Here are the objects that were missing
– You may put these objects that were missing
– Proceed to put these missing objects on the table
– Here you have what you need to finish/complete
– The situation has been resolved
– I’ve already helped you

We must say that some of the commands such as the ones in the StopRobot
(“Stop”) or in the UserIsDone (“I am finished”) intents, close the skill, instead
of activating the intents. Hence, the system does not receive the petition. Fur-
thermore, we appreciate that the ContinueRobot and the UserIsDone intents
are quite similar, as in both cases the robot has to start working again. Finally,
we would like to remark that some commands such as “do not worry, I will help
you” did not work to activate the intent, although it works saying “I will help
you”.

We can see that the only intent that has worked with all the purposed
sentences is SetTheTable.

All these commands purposed would be added in a future work, as they
have to be evaluated in order to make sure that the skill recognize them as the
correct intent. To illustrate, in the Wait intent, one user came out with “Stop.
Here you have the objects. You can continue”, which could be confused with
the StopRobot intent.

66

In order to narrow the sentences said by users, the system proposes sentences
to the user while it asks to wait, for instance. It says “ Okay, waiting... Let me
know when you are done saying: ‘Alexa, ask aided skill I am done’ ”. You will
see more in sections 4.4.2 and 4.4.3.

4.2.2 Speech recognition

In this Section we evaluate the accuracy of the Alexa skill when it comes to
recognizing a given sentence. The main aspect we want to evaluate is the ease
of understanding the name of the Alexa skill, which in our case is “aided skill”,
because we want to know if Alexa can recognize it properly or if by changing it
we could improve its recognition. To do so, 11 users (the same ones specified in
Table 5) where selected to say the command shown bellow, 10 times.

ask aided skill to set the table for four

We show in Table 6 the results of each user, where a “Y” means that the
sentence was understood by Alexa, “R” means that Alexa partially understood
the command (it does not understand the number of people to set the table
for), and a “N” means that Alexa did not recognize the command at all.

Table 6: Results of different users repeating out loud the same sentence 10 times.

Total
User Results Y R N

1 Y Y N Y N N R N N N 3 1 6
2 Y N Y Y R N N Y N R 4 2 4
3 Y N Y N Y N N R Y Y 5 1 4
4 R Y R N R R N R R R 1 7 2
5 R Y Y Y N N R Y R Y 5 3 2
6 R Y Y Y Y R R R R R 4 6 0
7 Y N R Y Y N Y Y Y Y 7 1 2
8 R R Y R Y Y Y Y Y Y 7 3 0
9 Y Y Y Y Y Y Y Y Y Y 10 0 0
10 Y Y Y Y Y Y Y Y Y Y 10 0 0

In Figure 46 (a) we can see that Alexa has a 56% of probability to understand
the sentence, a 24% to partially understand it, and a 20% to fail if we take into
account all the results. However, we also wanted to analyze the impact on
performance of native speakers against non-native speakers. So if we take a
look at Figure 46 (b), we can see that having only Spanish users as testers,
the Alexa probability of understanding the command is reduced compared to
Figure 46 (a), whereas the probability of partially understanding the sentence or
to not understanding it is increased. On the other hand, considering the results
of the Californian users (Figure 46 (c)), we can see that is easier for Alexa to
understand the full sentence (85%).

In conclusion, we can confirm that Alexa has a high probability to under-
stand which skill the user wants to use (looking at SUCCESS and REGULAR
results). Therefore, it seems that the Alexa skill’s name is properly understood,
having better results with native speakers.

67

AIDED

(a)

(b) (c)

Figure 46: Results of different users saying the same sentence 10 times. (a) Percentages
taking into account all the user. (b) Percentages taking into account the Spanish users. (c)
Percentages taking into account the Californian users.

4.3 Communication with Vision module

In this Section we will explain the different test we have done integrating the
Vision module. We first evaluate if the information send by the Vision module
is received by the rest of the modules. Next, we analyse the reliability of the
Vision module information (in terms that the objects dimensions and positions
are consistent). Finally, a setting the table scenario is tested.

4.3.1 Knowing the state of the world

In this Section we showcase the flow of information provided by the Vision
module throughout the system. Based on this information, the system builds
its internal world model, which is used by the different components to achieve
the different goals set by the user.

Vision is constantly sending information to the Supervisor module which is
sent to the World Manager to store it, and to the Motion Planner to represent
the virtual world of the robot (used by the motion planner). When the user asks
a question about the environment, the Verbal Communication module starts a
connection with the World Manager, which replies with the required informa-
tion. Once the Verbal Communication module has the response, it verbally
transmits it to the user. The information flow is represented in Figure 47.

68

Figure 47: Diagram block of the communication between the Vision, Supervisor, Motion
Planner, World Manager and Verbal Communication modules to get information of the en-
vironment.

To verify the flow of the information within the system, we place different
objects on the table and see if they appear in the world representation. First,
we start with a plate, and we later add a fork. In Figure 48 we can see that the
robot represents what the Vision module is sending perfectly, in both situations.

(a) (b)

(c) (d)

Figure 48: Two scenarios and the representation of the world from the robot’s point of view.
(a) Vision detection of one plate on the table. (b) Robot’s world representation. The green
rectangle represents the plate detection. (c) Vision detection of one plate and one fork on the
table. (d) Robot’s world representation. The green rectangle on the left represents the plate
detection and the one on the right the fork.

69

AIDED

At this point, we can verify if the World Manager module sends the in-
formation properly to the Verbal Communication module. To do so, we ask
the system three different questions about the state of the world (subset from
Section 3.4.3 which are applicable in this case) shown in Figure 49.

(a) (b)

Figure 49: Scenario to test the Alexa skill feedback. (a) Frame from the Vision module to
test the Alexa skill. (b) Representation of the state of the world.

The questions are the following:

• AskHowManyObjects. We can appreciate in Figure 50 that the system
correctly responds that there are four objects on the table.

Figure 50: Alexa response for the AskHowManyObjects intent.

• AskWhichObjectsAre. In Figure 51 Alexa answers the objects that are on
the table, which are a plate, a spoon, a mobile phone, and a fork.

Figure 51: Alexa response for the AskWhichObjectsAre intent.

• AskDoYouSeeObject. Figure 52 shows the reaction of the skill in two
situations: when the user asks for an object that is not in the scenario,
and when s/he asks for another that is on the table.

70

Figure 52: Alexa response for the AskDoYouSeeObject intent.

We can see that Alexa is able to answer the petitions of the user and even
indicating the number of objects of each type that are on the table, accordingly
to the detections of the Vision module.

4.3.2 Reliability on the Vision module

In this Section we want to evaluate the reliability of Vision in terms of identifying
objects and their locations.

To do so, as shown in Figure 53 the modules involved in this test are Vision,
Supervisor, and Motion Planner. The Vision module constantly sends messages
to the Supervisor, which re-sends them to the Motion Planner.

Figure 53: Diagram block of the communication between the Vision, Supervisor, and Motion
Planner modules to get information of the environment.

The main idea is that the Vision module constantly sends messages and
we see the objects in the world representation. With this, we can observe the
accuracy of the objects’ locations reported by the Vision module. Moreover,
we can see if it detects all the objects or sometimes some disappear because
Vision does not recognize them. To see the changes in different detections, we
are showing multiple frames in Figures 54, 55, 56, and 57. We also want to show

71

AIDED

the different values of the dimensions and locations of the objects in Tables 7,
8, 9, 10. As we can see, the detection is almost the same in the four frames and,
therefore, we cannot appreciate a big difference in the world representation.

We can thus conclude that the Vision module is reliable enough for the
purpose of the URL-MONITOR project, as it detects the different objects on
the table, and their locations and sizes are consistent as we can appreciate based
on their representation in the virtual world.

(a) (b)

Figure 54: Frame 1 to evaluate the reliability of the Vision module. (a) Object detection by
Vision. (b) Virtual world representation.

Table 7: Dimensions and locations of the recognized objects in frame 1.

Object Dimensions Location

Mobile phone
x: 0.120389103889
y: 0.104455254972
z: 0.019999999553

x: 0.212372452021
y: -0.216245129704
z: 0.209999993443

Plate
x: 0.173501938581
y: 0.200058370829
z: 0.019999999553

x: 0.187525197864
y: 0.135311290622
z: 0.209999993443

Fork
x: 0.154027238488
y: 0.0495719835162
z: 0.019999999553

x: 0.478027820587
y: -0.144163429737
z: 0.209999993443

Spoon
x: 0.115963034332
y: 0.133667320013
z: 0.019999999553

x: 0.5289888978
y: 0.154280155897
z: 0.209999993443

72

(a) (b)

Figure 55: Frame 2 to evaluate the reliability of the Vision module. (a) Object detection by
Vision. (b) Virtual world representation.

Table 8: Dimensions and locations of the recognized objects in frame 2.

Object Dimensions Location

Mobile phone
x: 0.121274322271
y: 0.106225684285
z: 0.019999999553

x: 0.211107864976
y: -0.216245129704
z: 0.209999993443

Plate
x: 0.173501938581
y: 0.197402730584
z: 0.019999999553

x: 0.187523603439
y: 0.134046688676
z: 0.209999993443

Fork
x: 0.15491245687
y: 0.0486867688596
z: 0.019999999553

x: 0.476763218641
y: -0.144163429737
z: 0.209999993443

Spoon
x: 0.115963034332
y: 0.134552523494
z: 0.019999999553

x: 0.528987288475
y: 0.153015568852
z: 0.209999993443

73

AIDED

(a) (b)

Figure 56: Frame 3 to evaluate the reliability of the Vision module. (a) Object detection by
Vision. (b) Virtual world representation.

Table 9: Dimensions and locations of the recognized objects in frame 3.

Object Dimensions Location

Mobile phone
x: 0.123044744134
y: 0.105340465903
z: 0.019999999553

x: 0.20984326303
y: -0.216245129704
z: 0.209999993443

Plate
x: 0.169961094856
y: 0.198287934065
z: 0.019999999553

x: 0.188789784908
y: 0.135311290622
z: 0.209999993443

Fork
x: 0.151371598244
y: 0.0486867688596
z: 0.019999999553

x: 0.478027820587
y: -0.144163429737
z: 0.209999993443

Spoon
x: 0.117733463645
y: 0.13809338212
z: 0.019999999553

x: 0.526459693909
y: 0.154280155897
z: 0.209999993443

74

(a) (b)

Figure 57: Frame 4 to evaluate the reliability of the Vision module. (a) Object detection by
Vision. (b) Virtual world representation.

Table 10: Dimensions and locations of the recognized objects in frame 4.

Object Dimensions Location

Mobile phone
x: 0.123044744134
y: 0.106225684285
z: 0.019999999553

x: 0.20984326303
y: -0.216245129704
z: 0.209999993443

Plate
x: 0.168190658092
y: 0.196517512202
z: 0.019999999553

x: 0.190055981278
y: 0.136575877666
z: 0.209999993443

Fork
x: 0.153142020106
y: 0.0486867688596
z: 0.019999999553

x: 0.476763218641
y: -0.144163429737
z: 0.209999993443

Spoon
x: 0.115963034332
y: 0.139863818884
z: 0.019999999553

x: 0.5289888978
y: 0.154280155897
z: 0.209999993443

75

AIDED

4.3.3 Vision integration evaluation

This section shows the Vision integration with the AIDED system to set a table.
In a first place, we want to test the table for one scenario. The dimensions

and localizations of the different zones are shown in Figure 58. The first problem
we find is that the zones specified are too small for the objects used. This is
mainly because if the spoon, for instance, is placed in diagonal (see Figure 54)
it has a bigger area than the zone, so the system detects that it is not correctly
placed or that the object that has to go next to it cannot be placed because of
collision with the spoon.

Figure 58: Dimensions of the set up of the table for one scenario.

For this reason, we design a completely new scenario, where the zones are
20cm x 20cm and exists a separation between them. In Figure 59 we can see the
dimensions of the table used and the positions and dimensions of the different
zones. The objects we use in this setting are a spoon, a fork, a plate, and a cell
phone.

76

Figure 59: Dimensions of the set up of the scenario.

The initial and final state of the world are shown in Figure 60.

(a) (b)

Figure 60: Initial and final conditions to evaluate the complete system with Vision. (a) Initial
scenario. (b) Final scenario.

To do it, we have our system simulated and we moved the objects manually
while the robot is moving them in the representation of the world (see Figure
61). We do not check if there are missing objects in the scenario and if they are
placed properly in order to avoid managing that the Vision module does not
recognize on which zone is the object in that new position and if we placed it
correctly.

77

AIDED

(a) (b)

Figure 61: Initial conditions to evaluate the complete system with Vision. (a) Real state of
the world. (b) Representation of the world.

The first step given by ROSPlan is:

1. Move fork1, which is on green zone, to pink zone

As we can see in Figure 62 we place the fork in that position at the same
time the robot is doing it in the representation of the world.

(a) (b)

Figure 62: Moving the fork on the pink zone. (a) Real state of the world. (b) Representation
of the world.

The second action is:

2. Stack mobile phone1, which is on purple zone, to fork1

We appreciate in Figure 63 (a) that the fork is not recognized by the Vision
module. For this reason, the mobile phone is on the pink zone in Figure 63 (b).

78

(a) (b)

Figure 63: Mobile phone on top of the fork. (a) Real state of the world. (b) Representation
of the world.

The third action to perform is:

3. Move spoon1, which is on blue zone, on green zone

We can see that in Figure 64 the spoon is on the green zone and that it
recognizes the fork, which is under the cell phone.

(a) (b)

Figure 64: Spoon on the green zone. (a) Real state of the world. (b) Representation of the
world.

The last action is:

4. Unstack mobile phone1, which is on fork1, and put it on blue zone

In Figure 65 we can see that we are moving the mobile phone on the blue
zone and that the Vision module does not recognize it while we are moving it.
In this case, when the system reads a Vision message to know if the object is
placed in its position, the mobile phone is not recognized and, therefore, the
system stops.

79

AIDED

(a) (b)

Figure 65: Moving the cell phone on the blue zone. (a) Real state of the world. (b) Repre-
sentation of the world.

To conclude with this section, we want to make emphasis in that we need
further work in order to perform a full task with all the functionalities of the
system. To illustrate, we need:

• the Vision module should recognize in each step the zone on which the
object is placed,

• the Vision module should know the angle of the object in order to put it
vertically or horizontally on its place,

• if we know the angle of the object, the Motion Planner should indicate it
to the gripper for better grasping the object and placing it.

• the Vision module should know that if an object is placed on top of another
one, the object bellow is still there, although the recognition does not say
so. This could be achieved doing object tracking,

• the Supervisor module should be able to wait for more Vision messages to
make sure that the object that has disappeared (in this case, the mobile
phone) is not really there,

• the Task Planner should not consider as a solution the fact of stacking
objects when the object or zone bellow is smaller than the object that is
placed on it,

80

4.4 Scenarios
In this Section we want to test the overall system response to different situations.
We will analyze the following situations:

• if there are objects in the scenario that are not needed

• if there are missing objects

• if the robot cannot move an object because of physical limitations or
collisions with other objects

• if the moved object is not where it is supposed to be

4.4.1 There are more objects than needed

To test the response of the system in this situation, we work with a scenario
with a spoon, a fork, a cell phone, and a candle. The required objects are the
spoon and the fork, whereas the extra objects are a cell phone and a candle.
We have all four objects on the table, as shown in Figure 66. As the image
illustrates, the candle is on the unnecessary objects zone, the spoon is on the
blue zone, the fork on the green zone and the cell phone on the purple zone (see
Figure 59, where the different zones are illustrated).

Figure 66: Initial position of the objects with more objects than needed.

As previously described, the unnecessary objects zone is used to store the
extra objects, so all those objects that are not needed will go there. If there

81

AIDED

is only one unnecessary object, the robot grasps it and places it in that zone.
However, in this scenario there are two unnecessary objects, so we must consider
how the robot must perform. We have three options:

1. Stack the unnecessary objects, one on top of another within the unneces-
sary objects zone.

2. Add a fixed number of unnecessary objects zones to put each extra object
in one of them.

3. Ask the human for help to remove the extra objects.

We discard the first one because, depending on the number of objects to
stack and their material, some objects could be broken. The second option is
also discarded, as we can reach a situation where there are more extra objects
than unnecessary objects zones. Therefore, we opted for option 3, which is
asking the user for help. In Figure 66 we can see that the candle is already on
the unnecessary objects zone, so the robot only needs to move the cell phone
to this zone. But because, as the unnecessary objects zone is full (the candle is
already there), the robot will ask to user for help.

At this point, the user has three options:

1. The user does not help the robot. In this situation, the robot cannot
proceed, so the task is finished without success.

2. The user removes the candle. Now that the unnecessary objects zone is
free, the robot can move (if it reaches to grasp and place the object) the
cell phone there.

3. The user removes the cell phone from the table. In this case, the robot
does not need to do anything else, since the extra objects are removed or
on the unnecessary objects zone.

In the second and third options, the robot will proceed moving the needed
objects to their positions. A flow diagram of all the options explained is shown
in Figure 67.

82

Figure 67: Diagram flow when there are extra objects in the scenario.

Having seen how the robot acts depending on the situation, we tested the
different flows based on the scenario described in Figure 66. The first thing
the robot does when noticing that it cannot move the cell phone because the
unnecessary objects zone is full is to advise the user by saying “It seems that
the unnecessary objects zone has an object, may you take it away, please? Or if
you prefer to take out the cell phone”. Now, we are listing the three scenarios
and their results:

1. The user does not help the robot. We have fixed two attempts for the
user to help. The first timeout, the robot reminds the user by saying
“Remember to clear the unnecessary objects zone or to take out the cell
phone to let me proceed”. In case that there is a second timeout, the robot
says “It seems you cannot help me, and I cannot proceed. I am aborting...”.
In this case, the final state reminds as the initial one, as shown in Figure
66 since the robot could not find any alternative plan to reach the final
goal.

2. The user takes out the candle, and the state of the world is updated as
shown in Figure 68 (a). Once the robot detects it, it proceeds computing
if it can move the cell phone to the unnecessary objects zone. As it can,
it warns to the user by saying “I am moving the cell phone” and it grasps
the cell phone (Figure 68 (b)) and poses it in the unnecessary objects zone
(Figure 68 (c)). When the task is finished, the scenario looks as shown in
Figure 68 (d), the final state. The task has been successfully achieved.

83

AIDED

(a) (b)

(c) (d)

Figure 68: Performance of the robot when the user takes out the candle. (a) The user has
just removed the candle and therefore, is no longer represented in the virtual world. (b) The
robot grasps the cell phone. (c) The robot places the cell phone on the unnecessary objects
zone. (d) Final state of the scenario.

3. The user takes out the cell phone, as shown in Figure 69. In this case,
the robot does not need to do anything since the candle is already in the
unnecessary objects zone, and the cell phone is removed from the working
area.

As explained before, in the second and third situation the robot proceeds
replanning what to do to achieve the goal and moves the objects to their places.

In conclusion, the robot is able to find a solution when there are objects in
the table that are not needed and the user should help to remove the objects
from the table, in case there are more than one.

84

Figure 69: Scenario when the user removes the cell phone from the table, and therefore is no
longer visible in the virtual world.

4.4.2 Some objects are missing

In this Section we will evaluate the robot behavior when some needed objects
are not on the table. We are using the same scenario as shown in Figure 66,
but in this case, we will need the plate, the knife, and the glass, which are not
in the scenario. Therefore, there are the missing objects.

First of all, as seen in Section 4.4.1, the robot will start by putting away the
extra objects (cell phone and candle). In this case, the user takes out the cell
phone (see Figure 69).

Secondly, it evaluates if the necessary objects are present. As already de-
scribed, the plate, the knife and the glass are missing, therefore the robot says
“ I need a glass, a plate, a knife to proceed. Say ‘Alexa, ask aided skill to wait’,
if you are going to bring me one, or, ‘Alexa, ask aided skill to replan’, if I have
to work without them’ ”. The user, again, has three options:

1. The user does not say anything. In this case, the robot cannot do anything
else, so it finishes the task. Similarly to the previous case, the user has two
opportunities to help out. If the first attempt fails, the robot reminds the
user that it is waiting for the user’s decision: “I’m waiting for you to tell
me if you want me to wait for you to bring me a glass, a plate, a knife or
if you want me to work without them”. If the second attempt fails again,
the robot finishes the execution and tells to the user: “I do not know what
you want me to do. I am aborting...”.

2. The user says “Wait”. In this case the robot waits, and indicates to user
that it receives the petition by saying “ Okay, waiting... Let me know
when you are done saying: ‘Alexa, ask aided skill I am done’ ”. The user,
then, has two options:

(a) The user does not do anything. The robot provides a remember after
some time to indicate that it is waiting. It says, “I am waiting a glass,
a plate, a knife to proceed”. After a second timeout, the robot cannot
proceed so it ends the task and indicates it by saying “It seems you
cannot help me, and I cannot proceed. I am aborting...”.

85

AIDED

(b) The user brings the missing objects and says, “I am done”. The robot
indicates that it has received the message saying “Okay, received,
thank you” and proceeds replanning and executing the task.

3. The user says “Replan”. In this case the robot plans with only the current
objects and starts again. It indicates to user that it is thinking saying
“Let me see...”.

A diagram flow of all the options explained above is shown in Figure 70.

Figure 70: Diagram flow when there are missing objects in the scenario.

86

4.4.3 The robot cannot move an object

Every time the robot must perform a movement, it evaluates if it can do it or
not. It evaluates both grasp and place actions. To do so, the robot must know
which objects are on the table, the initial position it must go to, and the final
pose to reach. We are going to separate the grasp and the place because, as we
will see, they do not work in the same way.

When talking about grasping, the initial pose is the current one, whereas the
final pose is the place where the object is (see Figure 71 (a) to see an example).
MoveIt evaluates if the action can be successfully performed without colliding
with other objects.

(a) (b)

Figure 71: Robot planned trajectory. (a) Only providing the final pose, and therefore, the
initial pose is the current one. (b) Providing both, the initial pose and the final pose.

Whereas when we talk about placing the object, the initial pose is the po-
sition of the object, and the final pose is the surface where it must be on (see
Figure 71 (b) to see an example). To evaluate if a place action is feasible, we
attach a virtual object (see Figure 72), with the same characteristics as the ob-
ject we want to move, to the end effector of the robot arm. We do this because
it is not the same to evaluate the movement without the object than with the
object. Imagine that the object to move is a bottle. The robot will grasp it
by the neck, so now, the distance between the end of the arm and the area of
collision is increased; the motion planner must consider not only the dimensions
of the end effector, but also the bottle. All these dimensions will be, from now
on, part of the collision area of the robot.

87

AIDED

Figure 72: Arm with a copy of the cell phone in its end effector.

As part of the safety measures of the robot, once the robot has evaluated if
it can do the movement, it processes, once again, the movement before actually
execution the action for real. In Figure 73 (a) we can see this procedure, where
the real robot and a watermarked copy of the robot are shown. The watermarked
copy represents the motion of the robot. This watermarked copy appears with
all the robots, although in Figure 73 the UR3 arm is shown.

(a) (b)

Figure 73: Robot planning and moving. (a) The robot is planning if it can move to the desired
pose. (b) The robot has moved to the desired pose as there are no problems.

The first evaluation we have done is to see if the robot is able to dodge
objects that are between the initial and end poses. Therefore, we add an object
and run the planner. The result is shown in Figure 74, where the robot avoids
it perfectly well. The green line represents the trajectory of the end effector,
and it is one of the many trajectories that the robot could do to achieve the end
pose.

88

(a) (b)

(c) (d)

Figure 74: Arm avoiding a wall which is between the initial and end poses. (a) The robot
starts the planning. (b) The robot is in the middle of the planning. (c) The robot reaches its
final position while planning. (d) The trajectory that would have to do the robot to achieve
the final pose.

Now we know what are the conditions to evaluate if the robot can grasp and
place the object, and that the robot is able to avoid the objects, we can enu-
merate the multiple causes of why the robot could not perform the movement:

1. There are objects surrounding the one that the robot wants to grasp that
collision with the end effector. It can also happen when placing the object.

2. When trying to make a move, the robot finds multiple objects that do not
allow it to move.

3. The robot does not reach one or both poses specified (initial and/or final).

In these situations, the robot asks for the user’s help. An example would be
“ I cannot move the glass on the blue zone. Can you do it, please? When you
have finished say, ‘Alexa, ask aided skill I am done’ ”. At this point, the user
has two options:

1. The user does not do anything. In this case, the robot cannot do anything
else, so it finishes the task. The user has two opportunities to help out: the

89

AIDED

first one as a remember that it is waiting, and the second one to finish the
program as the user has not helped. When the first timeout finishes, the
robot says, “Remember to move the glass on the blue zone”. On the second
timeout, it says “It seems you cannot help me, and I cannot proceed. I am
aborting...” and finishes the program.

2. The user helps the robot moving the object to its position and says, “I am
done”. In this case the robot will proceed its execution.

We could add another option that would be that the user says that s/he
cannot help and the robot, then, aborts. This option has not been implemented
as we assume that s/he can do everything.

A diagram flow of all the options explained above is shown in Figure 75.

Figure 75: Diagram flow when the robot cannot move an object.

90

4.4.4 The object does not reach its final position

In this Section we evaluate what happens if the object grasped by the robot
is not in the desired position. It can be for many causes, such as the user has
moved it, the object fell from the gripper, or simply, because the robot did not
actually grasp the object. Before talking about what does the robot do in this
situation, we need to talk about what we refer to when saying that an object is
not at its place.

Each object and zone has two specifications: dimension and location, which
are shown in Figure 76. The locations belongs to the midpoint of the object
or zone, and has an x, y, and z values, referenced from the base of the robot,
whereas the dimensions represent the size of the object or zone, and also have
an x, y, and z values. We are only working on a surface, so the z values of
location and dimension are not used to know if the object is on the zone.

Figure 76: Objects and zones specifications.

Once we know the specifications, we can now show the computation done to
know if the object is inside a zone or not. In Figure 77 we can see an example
where the object is inside the zone. Also, the formulas applied for each zone
limitation to compare with the limits of the object are represented. In case that
the object is on top of another object, the formulas are still valid. As we can
see, the object border cannot coincide with the limits of the zone. With this
we want to make sure that the object does not hinder another item that will be
placed in the side zone. If so, it will not be considered a valid position.

Figure 77: Formulas applied to know if the object is inside the zone limits.

91

AIDED

We thus say that an object has not reached its final position if the object is
not within a given zone. Let us go back to analyzing what happens if during
the execution of a plan, the object does not reach the expected position, i.e. it
is not correctly placed at its final position.

As described in Section 3.5, the Vision module does not perform object
tracking. Therefore, while the robot executes an action, the system stops lis-
tening the Vision messages regarding the positions of the objects because we
cannot rely on the information provided. Hence, the internal state of the world
and the real world, might temporally mismatch.

The system, so, only relies on its internal world during the execution of an
action. Once the robot finishes, the system verifies with the Vision system the
current state of the world. It is only then, that it can realize if the objects are
at their expected locations or not. Figure 78 illustrates a situation where the
robot believes it has properly grasped an object (the spoon). It is only at the
end of the execution that the system realizes that it has not. At this point, it
informs the user by saying “It seems that the object is not in its place, I will
do it again”. Then, it finishes the current program, starts a new one, and plans
again.

(a) (b)

(c) (d)

Figure 78: Robot beliefs when moving an object. (a) Initial scenario. (b) The robot believes
it is grasping the spoon. (c) The robot believes it is placing the spoon on the cell phone. (d)
The real state of the world after the performance of the robot.

92

4.5 Setting the table - a full task
In this section we show the full robot’s task when setting the table for one. The
scenario is the one shown in Figure 79 (a), where there are two extra objects
(the candle and the cell phone) and a missing one (the spoon). The final goal
we will achieve is the one shown in Figure 79 (b), where we will remove the cell
phone from the scenario and we will not bring the spoon.

(a) (b)

(a) (b)

Figure 79: (a) Initial and (b) Final states of the world to perform a full setting the table task
with the robot.

It is important to mention that the Vision module has not been used as the
focus of this Section is to test the system combining different situations described
in Section 4.4. Hence, the different scenarios that the Supervisor receives are
hard-coded and are only send once. In Figure 80 we can see the initial scenario,
from the robot believes.

93

AIDED

Figure 80: Initial state of the system to test the full system.

The first thing the system does is to evaluate if there are extra objects, which
in this case there are two: the candle and the cell phone. For this reason, the
robot says:

“The cellphone, the candle are not needed, taking them out.”

Although, when trying to move the cell phone to the unnecessary objects
zone, the robot detects that there is a candle there, and asks for user’s help
saying:

“It seems that the unnecessary objects zone has an object, may
you take it away, please? Or if you prefer to take out the cell
phone.”

In this case the user takes out the cell phone, as shows Figure 81. The robot
indicates to the human that it can proceed saying:

“All the extra objects are out.”

Figure 81: The cell phone is removed from the scenario.

Once the extra objects are out or on the unnecessary objects zone, the system

94

computes if any object is missing, which in this case the spoon is not on the
table. Therefore, the robot asks the human what s/he wants it to do by saying:

“I need a spoon to proceed. Say ‘Alexa, ask aided skill to wait’,
if you are going to bring me one, or, ‘Alexa, ask aided skill to
replan’, if I have to work without it.”

In this case the user asks to replan:

“Alexa, ask aided skill to replan.”

Then, the robot evaluates the initial state, which is the goal, and builds a
plan. To indicate this to the user, says:

“Let me see...”

And when starts planning says:

“Replan started.”

In this case, the first step of the plan is:

1. Move glass1, which is on pink zone, to blue zone

The Motion Planner computes if the goals are reachable, but in this case,
they are not, so the robot asks for the user’s help saying:

“I cannot move the glass on the blue zone. Can you do it,
please? When you have finished say, ‘Alexa, ask aided skill I
am done’.”

The user moves the glass to that zone and indicates it to the system.

“Alexa, ask aided skill I am done.”

“Okay, thank you.”

The result is shown in Figure 82.

95

AIDED

Figure 82: Glass on the blue zone.

The second step to achieve the goal is the following:

2. Move knife1, which is on yellow zone, to orange zone

This time the robot is capable to perform the action, and indicates it, while
moving the knife, by saying:

“I am moving the knife.”

The result is shown in Figure 83.

Figure 83: Knife on the orange zone.

The third and final step to achieve the goal is:

3. Move fork1, which is on green zone, to pink zone

The robot says it can do it by saying:

“I am moving the fork.”

In this case, however, it believes that it has grasped the fork, as shows Figure
84 (a). Although, once the action is performed, it realizes that it did not grasp

96

the object (shown in Figure 84 (b)) and, therefore, indicates to the user that it
is going to do it again by saying:

“It seems that the object is not in its place, I will do it again.”

(a) (b)

Figure 84: Robot’s beliefs and the real state of the world. (a) Moving the fork on the pink
zone. (b) Received a Vision message and the fork has not moved to the pink zone.

It performs again the movements, grasping the fork this time, and saying
again:

“I am moving the fork.”

The result is shown in Figure 85.

Figure 85: After another performance of the robot, the fork is on the pink zone, and the
program is finished.

The robot realizes that there are no more actions to perform and, hence, it
indicates the human so by saying:

“I have finished.”

97

AIDED

98

5 Time costs
In this Section we indicate the time costs of this TFM.

• State-of-the-art study: 20 hours.

• Follow-up meetings: 40 hours.

• Planning techniques: 250 hours.

• Motion Planner module integration: 230 hours.

• Verbal communication module integration: 150 hours.

• Vision module integration: 100 hours.

• System tests and bug fixes: 100 hours.

• Document: 220 hours.

Hence, the total of hours invested in this project is of 1110 hours. In Figure
86 a graphic with the percentages of time invested in each task with respect to
the total is shown.

Figure 86: Time costs.

99

AIDED

100

6 Conclusion and future lines
We have presented our work towards a collaborative robot that supports instru-
mental daily life tasks. Although the Corona Virus Disease 2019 (COVID-19)
has limited our evaluation of the system, we are proud of the results achieved,
as we have a robust and functional system that includes:

• The Task Planner that finds an optimal solution for different situations.

• The Motion Planner that plans a collision-free trajectories.

• The Vision module capable of detecting objects instead of QR codes. Fur-
thermore, we have evaluated the reliability of the detections and its con-
sistency.

• The Verbal Communication, capable of recognizing user petitions thanks
to the different sentences that the testers came up with. It also provides
feedback of what the robot is doing.

• The Supervisor module capable of orchestrating the different modules of
the system and adapting its behavior to different situations:

– when there are more objects than needed on the table,
– when objects are missing,
– when the Motion Planner cannot find a collision-free trajectory and,

therefore, the robot cannot move the object,
– when the object is not correctly placed.

Furthermore, the URL-MONITOR project can still be improved in an easy
and fast way, as it is implemented with ROS.

As for further directions, a number of improvements and new features can be
added to the current project. As already said in Section 2, in the SOCRATES
project [12], they detect any safety concern. It would be interesting to add this
in our project too as the robot has to work with a human and it should know
what s/he is doing to change its behavior accordingly.

Right now, the system treats two objects of the same type (spoon, to illus-
trate) as if they were two items completely different and each one has to be
placed in a specific zone. Imagine that we have spoon1 on the zone which it
has to be placed spoon2. The robot would take out spoon1 to place spoon2,
when the result is exactly the same, as the goal is that it must be a spoon there.
The main disadvantage of this is that the system executes unnecessary actions,
hence it takes more time to achieve the goal. To solve this, we should get more
in deep with ROSPlan.

Following with the previous example, another important aspect of having
two equal spoons is that we cannot assure that, in different frames of the Vision
module recognition, the spoon1 of the first frame is the same spoon1 of the
second frame, as the module does not do tracking of the objects. Adding object
tracking we could also know if an object is below another one if a stack operation
is performed and the Vision module does not detect it. To illustrate, the mobile
can be placed on the top of a fork and then it does not recognize the fork. With
the tracking, the system would know that the fork is under the mobile phone.

101

AIDED

We could also work with the depth sensors of the camera to know the height
of the objects, and color detection to detect the zones and to know on which
zone is every object. All this information is hard-coded in the current system.

Moreover, if we want more interaction between the robot and the user, we
should be more specifics with the objects position, and it is more important if
there are objects of the same type. Going back to the previous examples of the
spoons, imagine that the robot wants the user to pick up the spoon of his/her
left. If the robot only says to the user to move the spoon, there will not be
enough information since the user has two possibilities. We could differentiate
them if the spoons had different colors; hence the robot could ask the user
to pick up the blue one. Work related in this field can be found in [39]. We
have also talked about the importance of the non-verbal communication. We
could also add gesture recognition to facilitate the HRI. If the user is now the
one who wants an object and the spoons are equals, having only the verbal
communication s/he would have to indicate what objects are next to it or if it
is on top of an specific zone, whereas with gestures the robot could infer which
object the user is referring to without ambiguity.

In Section 4.4.3 we have talk about a scenario where the user cannot help
the robot moving an object. We could also add this command for those users
that have physical limitations. In this case, neither the robot nor the user could
fully perform a given action. One potential solution could be to split the action
in actions that are affordable for both agents. For instance, one agent could
reach the object and hand it to the other agent, who would then place it at the
final location. By doing so, we would achieve a collaborative action.

The gripper used could also be improved. In our case we use the one shown in
Figure 87. Such gripper type has difficulties when it comes to picking up objects
like a plate or a cell phone. For this reason, we are developing a new one based
on electromagnetic fields to easily manipulate different types of objects with no
clear grasping points.

Figure 87: Gripper.

To conclude, as it uses Alexa, it can easily connect to smart devices in a
digital home with WiFi, Bluetooth and Zigbee. Thanks to it, the user could
control the temperature, the lights, among others, of the house. Other skills
could be created such as CARU cares [2], or CO-TRAIN [4], already mentioned
in Section 2.

102

7 References
[1] AAL official page. URL http://www.aal-europe.eu/.

[2] CARU cares. URL http://carucares.com/en/home-en/.

[3] ChefMySelf. URL http://www.aal-europe.eu/projects/chefmyself/.

[4] CO-TRAIN. URL https://www.cotrain.eu/.

[5] FEARLESS. URL https://cogvis.ai/.

[6] Gazebo. URL http://gazebosim.org/.

[7] HOPE. URL http://www.hope-project.eu/.

[8] ngrok. URL https://ngrok.com/.

[9] ROS. URL https://www.ros.org/.

[10] rviz. URL http://wiki.ros.org/rviz.

[11] SmartHeat. URL http://www.smartheat-aal.eu/.

[12] SOCRATES. URL http://www.socrates-project.eu/.

[13] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language. 1977.
ISBN 0-19-501919-9.

[14] A. Andriella, J. Lobo-Prat, C. Torras, and G. Alenyà. Robot interaction
adaptation for healthcare assistance, . URL http://www.iri.upc.edu/files/
scidoc/2196-Robot-interaction-adaptation-for-healthcare-assistance.pdf.

[15] A. Andriella, C. Torras, and G. Alenyà. Short-Term Human-
Robot Interaction Adaptability in Real-world Environments, . URL
http://www.iri.upc.edu/files/scidoc/2243-Short-term-human-robot-
interaction-adaptability-in-real-world-environments.pdf.

[16] A. Andriella, C. Torras, and G. Alenyà. Cognitive System Framework
for Brain-Training Exercise based on Human-Robot Interaction, . URL
http://www.iri.upc.edu/files/scidoc/2318-Cognitive-System-Framework-
for-Brain-Training-Exercise-Based-on-Human-Robot-Interaction.pdf.

[17] U. R. A/S. Universal Robots ExternalControl URCap, 2020. URL https://
github.com/UniversalRobots/Universal Robots ExternalControl URCap.

[18] U. R. A/S. Universal Robots ROS Driver, 2020. URL https://github.com/
UniversalRobots/Universal Robots ROS Driver.

[19] AssistedLivingToday. What Are IADLs or the Instrumental Activities of
Daily Living?, 2019. URL https://assistedlivingtoday.com/blog/what-are-
iadls/.

[20] C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Sa-
banovic. Human-Robot Interaction: An Introduction. 02 2020. ISBN
9781108735407. doi: 10.1017/9781108676649.

103

http://www.aal-europe.eu/
http://carucares.com/en/home-en/
http://www.aal-europe.eu/projects/chefmyself/
https://www.cotrain.eu/
https://cogvis.ai/
http://gazebosim.org/
http://www.hope-project.eu/
https://ngrok.com/
https://www.ros.org/
http://wiki.ros.org/rviz
http://www.smartheat-aal.eu/
http://www.socrates-project.eu/
http://www.iri.upc.edu/files/scidoc/2196-Robot-interaction-adaptation-for-healthcare-assistance.pdf
http://www.iri.upc.edu/files/scidoc/2196-Robot-interaction-adaptation-for-healthcare-assistance.pdf
http://www.iri.upc.edu/files/scidoc/2243-Short-term-human-robot-interaction-adaptability-in-real-world-environments.pdf
http://www.iri.upc.edu/files/scidoc/2243-Short-term-human-robot-interaction-adaptability-in-real-world-environments.pdf
http://www.iri.upc.edu/files/scidoc/2318-Cognitive-System-Framework-for-Brain-Training-Exercise-Based-on-Human-Robot-Interaction.pdf
http://www.iri.upc.edu/files/scidoc/2318-Cognitive-System-Framework-for-Brain-Training-Exercise-Based-on-Human-Robot-Interaction.pdf
https://github.com/UniversalRobots/Universal_Robots_ExternalControl_URCap
https://github.com/UniversalRobots/Universal_Robots_ExternalControl_URCap
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://assistedlivingtoday.com/blog/what-are-iadls/
https://assistedlivingtoday.com/blog/what-are-iadls/

AIDED

[21] K. Becker. Artificial Intelligence Planning with STRIPS, A Gentle
Introduction, 2015. URL http://www.primaryobjects.com/2015/11/06/
artificial-intelligence-planning-with-strips-a-gentle-introduction/.

[22] K. Becker. strips, 2018. URL https://github.com/primaryobjects/strips.

[23] M. Cashmore, D. Magazzeni, S. Krivic, G. Canal, D. Buksz, A. Collins,
B. Krarup, I. Moraru, P. Zehtabi, and O. Lima. ROSPlan. URL https:
//kcl-planning.github.io/ROSPlan/.

[24] R. Cecilia. Detecció d’objectes amb xarxes neuronals per a la comprensió
de l’entorn en robòtica col·laborativa, 2020.

[25] F. EMIKA. Introducing the Franka Emika Robot. URL https://
www.franka.de/.

[26] FANUC. M-2000iA/2300. URL https://www.fanuc.eu/es/es/robots/p%
c3%a1gina-filtro-robots/serie-m-2000/m-2000ia-2300.

[27] N. C. for Health Statistics (https://www.cdc.gov/nchs/nhis/shs/tables.htm).
Table P-3. Persons having limitation in activities of daily living and instru-
mental activities of daily living among persons aged 18 and over, by selected
characteristics: United States, 2018, 2018. URL https://ftp.cdc.gov/pub/
Health Statistics/NCHS/NHIS/SHS/2018 SHS Table P-3.pdf.

[28] A. Garrell. Experimentation on HRI. Oral presentation at IRI’s sum-
mer school ROBOTICS & AI, 29-30 June and 1 July 2020. URL https:
//www.iri.upc.edu/workshops/RoboticsAISummerSchool2020/.

[29] E. Golobardes and A. Orriol. Intel·ligència Artificial, 2008.

[30] M. Heerink. Assessing acceptance of assistive social robots by aging
adults. PhD thesis, 11 2010. URL https://www.researchgate.net/
publication/254852003 Assessing acceptance of assistive social robots by
aging adults.

[31] U. KBO. ChefMyself Conclusies. URL https://www.uniekbo.nl/aal/
chefmyself/?page=conclusies.

[32] R. Matheson. Showing robots how to do your chores, 03 2020. URL https:
//news.mit.edu/2020/showing-robots-learn-chores-0306.

[33] MathWorks. Augment Images for Deep Learning Workflows Using Image
Processing Toolbox. URL https://es.mathworks.com/help/deeplearning/
ug/image-augmentation-using-image-processing-toolbox.html?s tid=
srchtitle#AugmentImagesForDeepLearningWorkflowsExample-1.

[34] M. Mori. The Uncanny Valley, 1970. URL https://web.ics.purdue.edu/
∼drkelly/MoriTheUncannyValley1970.pdf.

[35] J. Osorio, G. Tulio, and G. Motoa. Planificación jerárquica de la
producción en un job shop flexible. hierarchical production plan-
ning in the flexible job shop. Rev. Fac. Ing. Univ. Antioquia, 44:
158–171, 07 2008. URL https://www.researchgate.net/publication/
313407409 Planificacion jerarquica de la produccion en un job shop
flexible Hierarchical production planning in the flexible job shop.

104

http://www.primaryobjects.com/2015/11/06/artificial-intelligence-planning-with-strips-a-gentle-introduction/
http://www.primaryobjects.com/2015/11/06/artificial-intelligence-planning-with-strips-a-gentle-introduction/
https://github.com/primaryobjects/strips
https://kcl-planning.github.io/ROSPlan/
https://kcl-planning.github.io/ROSPlan/
https://www.franka.de/
https://www.franka.de/
https://www.fanuc.eu/es/es/robots/p%c3%a1gina-filtro-robots/serie-m-2000/m-2000ia-2300
https://www.fanuc.eu/es/es/robots/p%c3%a1gina-filtro-robots/serie-m-2000/m-2000ia-2300
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2018_SHS_Table_P-3.pdf
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2018_SHS_Table_P-3.pdf
https://www.iri.upc.edu/workshops/RoboticsAISummerSchool2020/
https://www.iri.upc.edu/workshops/RoboticsAISummerSchool2020/
https://www.researchgate.net/publication/254852003_Assessing_acceptance_of_assistive_social_robots_by_aging_adults
https://www.researchgate.net/publication/254852003_Assessing_acceptance_of_assistive_social_robots_by_aging_adults
https://www.researchgate.net/publication/254852003_Assessing_acceptance_of_assistive_social_robots_by_aging_adults
https://www.uniekbo.nl/aal/chefmyself/?page=conclusies
https://www.uniekbo.nl/aal/chefmyself/?page=conclusies
https://news.mit.edu/2020/showing-robots-learn-chores-0306
https://news.mit.edu/2020/showing-robots-learn-chores-0306
https://es.mathworks.com/help/deeplearning/ug/image-augmentation-using-image-processing-toolbox.html?s_tid=srchtitle#AugmentImagesForDeepLearningWorkflowsExample-1
https://es.mathworks.com/help/deeplearning/ug/image-augmentation-using-image-processing-toolbox.html?s_tid=srchtitle#AugmentImagesForDeepLearningWorkflowsExample-1
https://es.mathworks.com/help/deeplearning/ug/image-augmentation-using-image-processing-toolbox.html?s_tid=srchtitle#AugmentImagesForDeepLearningWorkflowsExample-1
https://web.ics.purdue.edu/~drkelly/MoriTheUncannyValley1970.pdf
https://web.ics.purdue.edu/~drkelly/MoriTheUncannyValley1970.pdf
https://www.researchgate.net/publication/313407409_Planificacion_jerarquica_de_la_produccion_en_un_job_shop_flexible_Hierarchical_production_planning_in_the_flexible_job_shop
https://www.researchgate.net/publication/313407409_Planificacion_jerarquica_de_la_produccion_en_un_job_shop_flexible_Hierarchical_production_planning_in_the_flexible_job_shop
https://www.researchgate.net/publication/313407409_Planificacion_jerarquica_de_la_produccion_en_un_job_shop_flexible_Hierarchical_production_planning_in_the_flexible_job_shop

[36] D. Pellier and H. Fiorino. Pddl4j: a planning domain de-
scription library for java, journal of experimental theoretical ar-
tificial intelligence. Journal of Experimental Theoretical Artifi-
cial Intelligence, DOI: 10.1080/0952813X.2017.1409278, 30:1:143–176,
2017. URL https://doi.org/10.1080/0952813X.2017.1409278. GitHub:
https://github.com/pellierd/pddl4j.

[37] F. Portugal. ChefMyself – Beginning the trials in two countries. URL
https://www.aicos.fraunhofer.pt/en/news and events aicos/news archive/
older archive/chefmyself- -beginning-the-trials-in-two-countries.html.

[38] U. Robots. Cobots from Universal Robots. URL https://www.universal-
robots.com/.

[39] D. Roy. Learning visually-grounded words and syntax for a scene de-
scription task. Computer Speech Language, 16:353–385, 07 2002. doi:
10.1016/S0885-2308(02)00024-4.

[40] A. Shah, S. Li, and J. Shah. Planning With Uncertain Specifica-
tions (PUnS), 06 2019. URL https://www.researchgate.net/publication/
333671681 Planning With Uncertain Specifications PUnS.

[41] I. A. Sucan and S. Chitta. MoveIt. URL https://moveit.ros.org/.

[42] U. R. Support. Overview of client interfaces. 2020. URL
https://www.universal-robots.com/articles/ur-articles/overview-of-client-
interfaces/.

[43] U. R. Support. Dashboard server cb-series, port 29999. 2020. URL
https://www.universal-robots.com/articles/ur-articles/dashboard-server-
cb-series-port-29999/.

[44] U. R. Support. Remote control via tcp/ip. 2020. URL https://
www.universal-robots.com/articles/ur-articles/remote-control-via-tcpip/.

[45] U. R. Support. Real-time data exchange (rtde) guide. 2020. URL
https://www.universal-robots.com/articles/ur-articles/real-time-data-
exchange-rtde-guide/.

[46] W. Tansey. strips, 2011. URL https://github.com/tansey/strips.

[47] thorsten gehrig. alexa-remote-control. URL https://github.com/thorsten-
gehrig/alexa-remote-control.

[48] I. Tischer and A. Carrión Garćıa. La planificación jerárquica y su
aplicación a la cosecha de la caña de azúcar en colombia. Ciencia
y Tecnoloǵıa, 4:42–52, 01 2003. doi: 10.25100/iyc.v4i2.2312. URL
https://www.researchgate.net/publication/266878034 La Planificacion
Jerarquica y su Aplicacion a la Cosecha de la Cana de Azucar en
Colombia.

[49] K. Tsiakas, V. Karkaletsis, and F. Makedon. A taxonomy in robot-
assisted training: Current trends, needs and challenges. pages
208–213, 06 2018. doi: 10.1145/3197768.3197787. URL https:
//www.researchgate.net/publication/326026076 A Taxonomy in Robot-
Assisted Training Current Trends Needs and Challenges.

105

https://doi.org/10.1080/0952813X.2017.1409278
https://www.aicos.fraunhofer.pt/en/news_and_events_aicos/news_archive/older_archive/chefmyself-_-beginning-the-trials-in-two-countries.html
https://www.aicos.fraunhofer.pt/en/news_and_events_aicos/news_archive/older_archive/chefmyself-_-beginning-the-trials-in-two-countries.html
https://www.universal-robots.com/
https://www.universal-robots.com/
https://www.researchgate.net/publication/333671681_Planning_With_Uncertain_Specifications_PUnS
https://www.researchgate.net/publication/333671681_Planning_With_Uncertain_Specifications_PUnS
https://moveit.ros.org/
https://www.universal-robots.com/articles/ur-articles/overview-of-client-interfaces/
https://www.universal-robots.com/articles/ur-articles/overview-of-client-interfaces/
https://www.universal-robots.com/articles/ur-articles/dashboard-server-cb-series-port-29999/
https://www.universal-robots.com/articles/ur-articles/dashboard-server-cb-series-port-29999/
https://www.universal-robots.com/articles/ur-articles/remote-control-via-tcpip/
https://www.universal-robots.com/articles/ur-articles/remote-control-via-tcpip/
https://www.universal-robots.com/articles/ur-articles/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur-articles/real-time-data-exchange-rtde-guide/
https://github.com/tansey/strips
https://github.com/thorsten-gehrig/alexa-remote-control
https://github.com/thorsten-gehrig/alexa-remote-control
https://www.researchgate.net/publication/266878034_La_Planificacion_Jerarquica_y_su_Aplicacion_a_la_Cosecha_de_la_Cana_de_Azucar_en_Colombia
https://www.researchgate.net/publication/266878034_La_Planificacion_Jerarquica_y_su_Aplicacion_a_la_Cosecha_de_la_Cana_de_Azucar_en_Colombia
https://www.researchgate.net/publication/266878034_La_Planificacion_Jerarquica_y_su_Aplicacion_a_la_Cosecha_de_la_Cana_de_Azucar_en_Colombia
https://www.researchgate.net/publication/326026076_A_Taxonomy_in_Robot-Assisted_Training_Current_Trends_Needs_and_Challenges
https://www.researchgate.net/publication/326026076_A_Taxonomy_in_Robot-Assisted_Training_Current_Trends_Needs_and_Challenges
https://www.researchgate.net/publication/326026076_A_Taxonomy_in_Robot-Assisted_Training_Current_Trends_Needs_and_Challenges

AIDED

[50] Wikipedia. Sussman anomaly, 2019. URL https://en.wikipedia.org/wiki/
Sussman anomaly.

[51] Wikipedia. Automated planning and scheduling, 2020. URL https://
en.wikipedia.org/wiki/Automated planning and scheduling.

106

https://en.wikipedia.org/wiki/Sussman_anomaly
https://en.wikipedia.org/wiki/Sussman_anomaly
https://en.wikipedia.org/wiki/Automated_planning_and_scheduling
https://en.wikipedia.org/wiki/Automated_planning_and_scheduling

8 Appendix

8.1 PDDL files used for test
In this Section we show the files used to test the different planners.

8.1.1 domain.pddl

(d e f i n e (domain BLOCKS)
(: requ i rements : s t r i p s : typing)
(: types block t ab l e − obj)
(: p r e d i c a t e s (on ?x − block ?y − obj)

(c l e a r ?x − obj)
)

(: a c t i on move
: parameters (?b − block ? t1 − t ab l e ? t2 − t ab l e)
: p r e cond i t i on (and (on ?b ? t1) (c l e a r ? t2) (c l e a r ?b))
: e f f e c t (and (on ?b ? t2) (not (on ?b ? t1)) (c l e a r ? t1) (not
(c l e a r ? t2)))

)
(: a c t i on move2

: parameters (?b − block ?a − block ? c − block)
: p r e cond i t i on (and (on ? c ?a) (c l e a r ?b) (c l e a r ? c))
: e f f e c t (and (on ? c ?b) (not (on ? c ?a)) (c l e a r ?a) (c l e a r ? c)
(not (c l e a r ?b)))

)
(: a c t i on stack

: parameters (? a − block ?b − block ? t1 − t ab l e)
: p r e cond i t i on (and (c l e a r ?a) (c l e a r ?b) (on ?a ? t1))
: e f f e c t (and (on ?a ?b) (not (on ?a ? t1)) (c l e a r ? t1) (not
(c l e a r ?b)))

)
(: a c t i on unstack

: parameters (? a − block ?b − block ? t1 − t ab l e)
: p r e cond i t i on (and (c l e a r ?a) (on ?a ?b) (c l e a r ? t1))
: e f f e c t (and (on ?a ? t1) (not (on ?a ?b)) (c l e a r ?b) (not
(c l e a r ? t1)))

)
)

8.1.2 table for one problem.pddl

(d e f i n e (problem t a b l e f o r o n e)
(: domain BLOCKS)
(: o b j e c t s b lue pink purple ye l low green orange

u n n e c e s s a r y o b j e c t s − t ab l e
g l a s s 1 p l a t e1 spoon1 knive1 fo rk1 ce l l phone1 − block)

(: INIT
(on g l a s s 1 pink)
(on ce l lphone1 purple)
(on spoon1 blue)
(on p la t e1 ye l low)
(on knive1 p la t e1)
(on fo rk1 green)
(c l e a r g l a s s 1)
(c l e a r ce l lphone1)
(c l e a r orange)
(c l e a r fo rk1)

107

AIDED

(c l e a r spoon1)
(c l e a r knive1)
(c l e a r u n n e c e s s a r y o b j e c t s)

)
(: goa l (and (on fo rk1 pink) (on p la t e1 purple) (on knive1 orange)
(on spoon1 green) (on g l a s s 1 blue) (c l e a r ye l low)
(on ce l lphone1 u n n e c e s s a r y o b j e c t s)))

)

8.1.3 romantic dinner problem.pddl

(d e f i n e (problem dinner problem)
(: domain BLOCKS)
(: o b j e c t s blue1 blue2 red1 red2 green1 green2 orange1 orange2

pink1 pink2 purple1 purple2 black1 black2 ye l low1
ye l low2 u n n e c e s s a r y o b j e c t s − t ab l e
g l a s s 1 g l a s s 2 p l a t e1 p la t e2 breadp late1 breadp late2
spoon1 spoon2 knive1 knive2 fo rk1 fo rk2 minispoon1
minispoon2 candle1 ce l l phone1 − block)

(: INIT
(on fo rk1 green2)
(on g l a s s 2 orange2)
(on p la t e1 purple2)
(on fo rk2 p la t e1)
(on knive1 pink2)
(on spoon1 black2)
(on candle1 blue2)
(on knive2 red2)
(on breadp late1 ye l low1)
(on breadp late2 ye l low2)
(on p la t e2 red1)
(on minispoon1 blue1)
(on g l a s s 1 black1)
(on minispoon2 pink1)
(on spoon2 purple1)
(on ce l lphone1 green1)
(c l e a r u n n e c e s s a r y o b j e c t s)
(c l e a r ce l l phone1)
(c l e a r orange1)
(c l e a r spoon2)
(c l e a r minispoon2)
(c l e a r g l a s s 1)
(c l e a r minispoon1)
(c l e a r p l a t e2)
(c l e a r breadp late2)
(c l e a r breadp late1)
(c l e a r candle1)
(c l e a r knive2)
(c l e a r spoon1)
(c l e a r fo rk1)
(c l e a r g l a s s 2)
(c l e a r fo rk2)
(c l e a r knive1)

)
(: goa l (and (on g l a s s 1 blue1) (on p la t e1 purple1)

(on knive1 orange1) (on fo rk1 pink1) (on spoon1 green1)
(on minispoon1 black1) (on breadp late1 red1)
(on g l a s s 2 blue2) (on p la t e2 purple2) (on knive2 orange2)

108

(on fo rk2 pink2) (on spoon2 green2) (on minispoon2 black2)
(on breadp late2 red2) (on candle1 ye l low1)
(on ce l lphone1 u n n e c e s s a r y o b j e c t s)
)

)
)

8.2 Communication
In this Section we show the messages created to communicate the different nodes
of the project.

8.2.1 std msgs/String

It is the message send by the url project brain to speech topic. It contains:

s t r i n g data

8.2.2 url project/speech to brain msg

It is the message send by the url project speech to brain topic. It contains:

uint8 r eque s t
u r l p r o j e c t / s p e e c h n e w g o a l d e s c r i p t i o n new goa l ro sp lan

std msgs / St r ing o b j e c t 1
s t r i n g data

std msgs / St r ing o b j e c t 2
s t r i n g data

std msgs / St r ing ac t i on
s t r i n g data

std msgs / St r ing s e t t a b l e f i l e
s t r i n g data

8.2.3 url project/grasp description

It is the message send by the url project grasp topic. It contains:

std msgs / St r ing support sur face name
s t r i n g data

std msgs / St r ing object name
s t r i n g data

moveit msgs /Grasp [] g r a s p o b j e c t
s t r i n g id
t r a j e c t o r y m s g s / Jo in tTra j e c to ry p r e g r a s p p o s t u r e

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

t r a j e c t o r y m s g s / Jo in tTra j e c to ry g ra sp pos tu r e
std msgs /Header header

109

AIDED

uint32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

geometry msgs /PoseStamped grasp pose
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

geometry msgs /Pose pose
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

f l o a t 6 4 g r a s p q u a l i t y
moveit msgs / Gr ipperTrans lat ion pre grasp approach

geometry msgs /Vector3Stamped d i r e c t i o n
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

geometry msgs / Vector3 vec to r
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 3 2 d e s i r e d d i s t a n c e
f l o a t 3 2 min d i s tance

moveit msgs / Gr ipperTrans lat ion p o s t g r a s p r e t r e a t
geometry msgs /Vector3Stamped d i r e c t i o n

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

geometry msgs / Vector3 vec to r
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 3 2 d e s i r e d d i s t a n c e
f l o a t 3 2 min d i s tance

moveit msgs / Gr ipperTrans lat ion p o s t p l a c e r e t r e a t
geometry msgs /Vector3Stamped d i r e c t i o n

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

geometry msgs / Vector3 vec to r
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 3 2 d e s i r e d d i s t a n c e
f l o a t 3 2 min d i s tance

110

f l o a t 3 2 max contac t fo rce
s t r i n g [] a l l o w e d t o u c h o b j e c t s

8.2.4 url project/objects description

It is the message send by the url project objects description topic. It contains:

moveit msgs / AttachedCo l l i s i onObjec t [] s t a t i c o b j e c t s
s t r i n g l ink name
moveit msgs / C o l l i s i o n O b j e c t object

byte ADD=0
byte REMOVE=1
byte APPEND=2
byte MOVE=3
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

s t r i n g id
o b j e c t r e c o g n i t i o n m s g s /ObjectType type

s t r i n g key
s t r i n g db

shape msgs / S o l i d P r i m i t i v e [] p r i m i t i v e s
u int8 BOX=1
uint8 SPHERE=2
uint8 CYLINDER=3
uint8 CONE=4
uint8 BOX X=0
uint8 BOX Y=1
uint8 BOX Z=2
uint8 SPHERE RADIUS=0
uint8 CYLINDER HEIGHT=0
uint8 CYLINDER RADIUS=1
uint8 CONE HEIGHT=0
uint8 CONE RADIUS=1
uint8 type
f l o a t 6 4 [] d imensions

geometry msgs /Pose [] p r i m i t i v e p o s e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs /Mesh [] meshes
shape msgs / MeshTriangle [] t r i a n g l e s

u int32 [3] v e r t e x i n d i c e s
geometry msgs / Point [] v e r t i c e s

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs /Pose [] mesh poses
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x

111

AIDED

f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs / Plane [] p lanes
f l o a t 6 4 [4] c o e f

geometry msgs /Pose [] p l ane pos e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

s t r i n g [] subframe names
geometry msgs /Pose [] subframe poses

geometry msgs / Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

byte opera t i on
s t r i n g [] t o u c h l i n k s
t r a j e c t o r y m s g s / Jo in tTra j e c to ry detach pos ture

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

f l o a t 6 4 weight
moveit msgs / AttachedCo l l i s i onObjec t [] movab le ob ject s

s t r i n g l ink name
moveit msgs / C o l l i s i o n O b j e c t object

byte ADD=0
byte REMOVE=1
byte APPEND=2
byte MOVE=3
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

s t r i n g id
o b j e c t r e c o g n i t i o n m s g s /ObjectType type

s t r i n g key
s t r i n g db

shape msgs / S o l i d P r i m i t i v e [] p r i m i t i v e s
u int8 BOX=1
uint8 SPHERE=2
uint8 CYLINDER=3
uint8 CONE=4
uint8 BOX X=0

112

uint8 BOX Y=1
uint8 BOX Z=2
uint8 SPHERE RADIUS=0
uint8 CYLINDER HEIGHT=0
uint8 CYLINDER RADIUS=1
uint8 CONE HEIGHT=0
uint8 CONE RADIUS=1
uint8 type
f l o a t 6 4 [] d imensions

geometry msgs /Pose [] p r i m i t i v e p o s e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs /Mesh [] meshes
shape msgs / MeshTriangle [] t r i a n g l e s

u int32 [3] v e r t e x i n d i c e s
geometry msgs / Point [] v e r t i c e s

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs /Pose [] mesh poses
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs / Plane [] p lanes
f l o a t 6 4 [4] c o e f

geometry msgs /Pose [] p l ane pos e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

s t r i n g [] subframe names
geometry msgs /Pose [] subframe poses

geometry msgs / Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

byte operat i on
s t r i n g [] t o u c h l i n k s
t r a j e c t o r y m s g s / Jo in tTra j e c to ry detach pos ture

113

AIDED

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

f l o a t 6 4 weight

8.2.5 url project/place location description

It is the message send by the url project place location topic. It contains:

std msgs / St r ing support sur face name
s t r i n g data

std msgs / St r ing object name
s t r i n g data

moveit msgs / PlaceLocat ion [] p l a c e l o c a t i o n o b j e c t
s t r i n g id
t r a j e c t o r y m s g s / Jo in tTra j e c to ry p o s t p l a c e p o s t u r e

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

geometry msgs /PoseStamped p l a c e po s e
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

geometry msgs /Pose pose
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

moveit msgs / Gr ipperTrans lat ion pre p lace approach
geometry msgs /Vector3Stamped d i r e c t i o n

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

geometry msgs / Vector3 vec to r
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 3 2 d e s i r e d d i s t a n c e

114

f l o a t 3 2 min d i s tance
moveit msgs / Gr ipperTrans lat ion p o s t p l a c e r e t r e a t

geometry msgs /Vector3Stamped d i r e c t i o n
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

geometry msgs / Vector3 vec to r
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 3 2 d e s i r e d d i s t a n c e
f l o a t 3 2 min d i s tance

s t r i n g [] a l l o w e d t o u c h o b j e c t s

8.2.6 url project/vision description

It is the message send by the url project vision topic. It contains:
u r l p r o j e c t / o b j e c t v i s i o n [] o b j e c t s v i s i o n

std msgs / St r ing id
s t r i n g data

std msgs / St r ing name
s t r i n g data

std msgs / St r ing type
s t r i n g data

std msgs / St r ing type pddl
s t r i n g data

std msgs / St r ing c o l o r
s t r i n g data

u r l p r o j e c t / ob j e c t d imens i on s dimensions
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

u r l p r o j e c t / o b j e c t l o c a t i o n l o c a t i o n
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

std msgs / St r ing [] i s o n
s t r i n g data

std msgs / St r ing [] i s b e l l o w
s t r i n g data

8.2.7 Data

They are the messages received and send by the Data service, respectively (sep-
arated by −−−):
uint8 r eque s t
std msgs / St r ing s t r i n g i n f o r m a t i o n

s t r i n g data
uint16 i n t e g e r i n f o r m a t i o n
u r l p r o j e c t / v i s i o n d e s c r i p t i o n o b j e c t s

u r l p r o j e c t / o b j e c t v i s i o n [] o b j e c t s v i s i o n
std msgs / St r ing id

s t r i n g data
std msgs / St r ing name

s t r i n g data
std msgs / St r ing type

s t r i n g data

115

AIDED

std msgs / St r ing type pddl
s t r i n g data

std msgs / St r ing c o l o r
s t r i n g data

u r l p r o j e c t / ob j e c t d imens i on s dimensions
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

u r l p r o j e c t / o b j e c t l o c a t i o n l o c a t i o n
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

std msgs / St r ing [] i s o n
s t r i n g data

std msgs / St r ing [] i s b e l l o w
s t r i n g data

−−−
bool e r r o r
u r l p r o j e c t / o b j e c t v i s i o n object

std msgs / St r ing id
s t r i n g data

std msgs / St r ing name
s t r i n g data

std msgs / St r ing type
s t r i n g data

std msgs / St r ing type pddl
s t r i n g data

std msgs / St r ing c o l o r
s t r i n g data

u r l p r o j e c t / ob j e c t d imens i on s dimensions
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

u r l p r o j e c t / o b j e c t l o c a t i o n l o c a t i o n
f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

std msgs / St r ing [] i s o n
s t r i n g data

std msgs / St r ing [] i s b e l l o w
s t r i n g data

std msgs / St r ing s t r i n g i n f o r m a t i o n
s t r i n g data

uint16 i n t e g e r i n f o r m a t i o n
f l o a t 3 2 [] a r r a y l o c a t i o n
u r l p r o j e c t / v i s i o n d e s c r i p t i o n o b j e c t s

u r l p r o j e c t / o b j e c t v i s i o n [] o b j e c t s v i s i o n
std msgs / St r ing id

s t r i n g data
std msgs / St r ing name

s t r i n g data
std msgs / St r ing type

s t r i n g data
std msgs / St r ing type pddl

s t r i n g data
std msgs / St r ing c o l o r

s t r i n g data
u r l p r o j e c t / ob j e c t d imens i on s dimensions

f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

u r l p r o j e c t / o b j e c t l o c a t i o n l o c a t i o n

116

f l o a t 3 2 x
f l o a t 3 2 y
f l o a t 3 2 z

std msgs / St r ing [] i s o n
s t r i n g data

std msgs / St r ing [] i s b e l l o w
s t r i n g data

8.2.8 Plan

They are the messages received and send by the Plan service, respectively (sep-
arated by −−−):

bool i s p l a c e
geometry msgs /Pose t a r g e t p o s e

geometry msgs / Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

geometry msgs /Pose s t a r t s t a t e
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

moveit msgs / AttachedCo l l i s i onObjec t a t t a ch e d o b j e c t
s t r i n g l ink name
moveit msgs / C o l l i s i o n O b j e c t object

byte ADD=0
byte REMOVE=1
byte APPEND=2
byte MOVE=3
std msgs /Header header

u int32 seq
time stamp
s t r i n g f rame id

s t r i n g id
o b j e c t r e c o g n i t i o n m s g s /ObjectType type

s t r i n g key
s t r i n g db

shape msgs / S o l i d P r i m i t i v e [] p r i m i t i v e s
u int8 BOX=1
uint8 SPHERE=2
uint8 CYLINDER=3
uint8 CONE=4
uint8 BOX X=0
uint8 BOX Y=1
uint8 BOX Z=2
uint8 SPHERE RADIUS=0
uint8 CYLINDER HEIGHT=0
uint8 CYLINDER RADIUS=1
uint8 CONE HEIGHT=0

117

AIDED

uint8 CONE RADIUS=1
uint8 type
f l o a t 6 4 [] d imensions

geometry msgs /Pose [] p r i m i t i v e p o s e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs /Mesh [] meshes
shape msgs / MeshTriangle [] t r i a n g l e s

u int32 [3] v e r t e x i n d i c e s
geometry msgs / Point [] v e r t i c e s

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs /Pose [] mesh poses
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

shape msgs / Plane [] p lanes
f l o a t 6 4 [4] c o e f

geometry msgs /Pose [] p l ane pos e s
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

s t r i n g [] subframe names
geometry msgs /Pose [] subframe poses

geometry msgs / Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

byte opera t i on
s t r i n g [] t o u c h l i n k s
t r a j e c t o r y m s g s / Jo in tTra j e c to ry detach pos ture

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] j o int names
t r a j e c t o r y m s g s / Jo in tTra j e c to ryPo in t [] po in t s

118

f l o a t 6 4 [] p o s i t i o n s
f l o a t 6 4 [] v e l o c i t i e s
f l o a t 6 4 [] a c c e l e r a t i o n s
f l o a t 6 4 [] e f f o r t
durat ion t i m e f r o m s t a r t

f l o a t 6 4 weight
−−−
bool e r r o r

119

	Introduction
	Human-Robot Interaction (HRI)
	Objectives
	Contributions

	State-of-the-art
	Design and technical implementation
	Supervisor
	Task Planning
	STRIPS
	PDDL4J
	ROSPlan

	Motion Planning
	UR remote control
	MoveIt (ROS)

	Verbal Communication
	Siri
	Google Home
	Alexa

	Vision system
	World Manager
	Communication
	Topics
	Services

	Use Case evaluation
	Initial proof of concept evaluation
	Verbal Communication
	Intents evaluation
	Speech recognition

	Communication with Vision module
	Knowing the state of the world
	Reliability on the Vision module
	Vision integration evaluation

	Scenarios
	There are more objects than needed
	Some objects are missing
	The robot cannot move an object
	The object does not reach its final position

	Setting the table - a full task

	Time costs
	Conclusion and future lines
	References
	Appendix
	PDDL files used for test
	domain.pddl
	table_for_one_problem.pddl
	romantic_dinner_problem.pddl

	Communication
	std_msgs/String
	url_project/speech_to_brain_msg
	url_project/grasp_description
	url_project/objects_description
	url_project/place_location_description
	url_project/vision_description
	Data
	Plan

