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Thomas, Félicien et Alexis: merci de m’avoir aidé être comme chez moi.
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Abstract

Understanding the relation between the sound quality of the classical guitar and their
physical characteristics in depth is an important challenge for instrument makers. Never-
theless, we can provide them with scientific tools that facilitate this task. Our contribution
consists in measuring and modelizing - using the subspace high-resolution algorithm ES-
PRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) - one and
two-dimensional impedance signals at the guitar bridge, which characterize the coupling
between the body and the strings. The chosen synthesis technique - frequency domain
synthesis - allows to keep a clear link between instrument physical parameters and the
parameters of the model.
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Summary

The main purpose of this work is to synthesize sound generated by guitar plucks, linking
the physical parameters of the instrument with the parameters of the synthesis model.

First, a mathematical model of the plucking process - from the musician’s interaction
with the guitar to the final sound- is suggested. One of the key points of the process is the
coupling between the guitar strings and the body, that plays a decisive role in the synthesis.
It will be easily modeled from the string and body admittances by means of the Frequency
domain synthesis method.

The guitar body characterization has a prominent place in this work. On the one
hand, we present the work concerning the measurement protocol of the body admittance
at the bridge, in one and two dimensions. Measurement results are evaluated in terms
of repeteability and resemblance to other examples found in the literature. On the other
hand, measurements have been parameterized so that they can be reconstructed through
a modal sum. Since the admittance signal can be modeled as a sum of decaying sinusoids
added to white noise, its parameters are estimated via a high-resolution method, ESPRIT
(Estimation of Signal Parameters via Rotational Invariance Techniques), that decomposes
signal data in two subspaces: signal and noise. This method requires a previous estimation
of the number of components of the signal. Based on this, the ESTER (ESTimation ERror)
technique is also implemented and tested.

Regarding the string characterization, several parameters are required. It is essential
that they fit the test guitar. Some of them are directly measured in the laboratory (tension,
linear mass), some are deduced from guitar plucks processing (bending stiffness) and some
are calculated from a mathematical model (damping).

Finally, synthesis is implemented and its results are presented and analysed. This final
analysis has mostly served to define the conclusions of the current project and the future
work.
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Chapter 1

Introduction

1.1 Context

This work is part of a project financed by the Agence Nationale de la Recherche (ANR),
which is called Plateforme d’Aide à la Facture Instrumental (PAFI). The target of the
global project is to develop low cost tools that enable instrument makers to improve their
manufacturing process. The idea is to implement a platform (software and hardware) that
helps in the instrument characterization and fulfills the instrument makers needs.

The quality of an instrument has also been an important matter to instrument makers
and musicians. It is not an easy concept to define and evaluate, since it depends on several
different factors as sonority, expressiveness, ease of playing or fabrication aspects. Although
some of these factors are evaluated from a subjective point of view, some others can be
deduced from measurements. The idea is to see how the tools implemented from the study
of these measurements can help in the instrument maker task and, thanks to a bidirectional
knowledge exchange with them, how can the tools be introduced into their activities.

This work, which is in collaboration with the Laboratoire d’Acoustique de l’Université
du Maine (specially with François Gautier), represents a small part of the PAFI project.
It is focused on the classical guitar and is the continuation of the work done by Xabier
Jaureguiberry [1] also in the signal processing department in Télécom ParisTech.

1.2 Overview and aim of the project

The sound produced by a guitar string by itself is very weak since the amount of air that
moves is really small. It is necessary to transmit the vibration from the string to a bigger
surface, able to move bigger amounts of air, which will turn into a louder sound. The bridge
is the device that is in charge of this task and it transmits the vibration from the string to
the soundboard.

When a string is plucked, it exerts a certain force that is transmitted to the bridge,

9



10 CHAPTER 1. INTRODUCTION

through the guitar saddle. Therefore, the bridge starts moving, as well as the soundboard,
and it acquires a certain acceleration. Due to a mechanical coupling between the soundboard
and the bottom deck the air inside the guitar body also starts to move and the resulting
acoustical radiation generates a certain acoustical pression.

The aim of this work is to develop a model of this process from measurements and
experimental data. This is why the first part of the rapport is devoted to the measurement
of the admittance at the bridge and its analysis. After that, the way to validate the model is
to do a resynthesis of the analysed measurements. Once a reasonable resynthesis is achieved,
then the model parameters can be changed in order to observe the effects of these changes
in the synthetic sound.

First, the modelization will be done assuming that the bridge and the string motion have
one direction component and after that, two string polarizations will be taken into account.
Therefore, a significant goal is to be able to do reliable two-dimensional measurements and
develop the model in two dimensions too.

We can not forget that the aim of PAFI is primarily to address questions of interest to
instrument makers. That’s why it is important to keep a clear link between the instrument
physical parameters and the parameters of the model. In this sense, our priorities are
substantially different from those of a real-time synthesis project for instance. The emphasis
there is inevitably on making as simplifications as possible without sacrificing too much in
sound quality, in the interest of speed. On the other hand, the approach taken here is to defer
questions about auditory consequences until the model has been validated by comparing
with experience. Only then, it will be possible to simplify and supress details of the model
provided that there is no auditory impact. It is important to notice that the objective is not
the synthesis itself, but the understanding of the factors and parameters that contribute in
the guitar final sound. In this sense, the aim is to be able to link the musical qualities of
the instrument to physical parameters, which afterwards can be more easily translated into
fabrication details.

1.3 State of the art in guitar sound synthesis

Different physical model approaches can be found in the literature. The path towards to-
day’s most powerful and realistic synthesis models emerged from the extensions by Jaffe
and Smith [2] to the simple, yet efficient Karplus-Strong algorithm [3], that consists in a
feedback loop made up of a low-pass filter, a delay line and a gain. The extensions empha-
sized the physics underlying the algorithm and favored a modular, DSP-based formulation.
Later, Smith generalized these ideas to devise the theory of digital waveguide modeling [4]
[5], which is the basis of the most popular physical model synthesis algorithms today.

An important problem in model-based sound synthesis is the calibration of the parameter
values of the algorithms. The algorithms themselves define the type of sound generation
mechanism, but the individual character of a specific musical instrument, such as a classical
guitar, is reproduced only when the parameter values have been carefully tuned [6]. There
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are several publications that implement plucked string sounds and deal with this matter
[7] [8]. Nevertheless, digital waveguides do not offer an accurate and efficient synthesis for
guitar plucks for ”laboratory” purposes according to [9].

The behavior of plucked strings is now relatively well understood. Progress on modeling
the behaviour of the body is more recent since it is particularly complex [10]. It is worth
noting the complexity of the synthesis task. The radiated sound from a typical note on
a classical guitar shows clear spectral peaks up to at least 5 KHz [9], which corresponds
to about the 60th harmonic of the lowest note on a normal guitar (82Hz). Each of these
isolated string harmonics can appear in two polarisations. A typical guitar body structure
has of the order of 250 vibration modes. Assembling these numbers, it is clear that an
accurate synthesis method may have to account correctly for several hundred degrees of
freedom.

We have chosen a synthesis method called Frequency domain synthesis, proposed by
Woodhouse [9, 11]. It allows us either to use experimental measurements of admittance or
to express the admittance in terms of modes. It has also shown to be accurate and fast in
the ”laboratory” use [9]. The description of the guitar model and this particular method
are the subject of the next chapter.
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Chapter 2

Guitar model

In this chapter we present the mathematical models that describe the classical guitar and its
parts, which are essential to understand the principle of the synthesis method that will be
studied and implemented throughout this work. Before the models are presented, section
2.1 is devoted to guitar generalities and describes the structure and parts of a classical
guitar.

2.1 Classical guitar generalities

The classical guitar, also known as the Spanish guitar, is a six-stringed plucked string
instrument. All six strings are made of nylon, as opposed to the metal strings found on
other acoustic guitars. In this case, the strings are usually plucked with fingernails in
different manners and positions, so that different timbre (of a single note) can be produced.
The main parts of a typical classical guitar are the headstock, the neck and the body (Figure
2.1).

The main function of the headstock is holding the strings by means of the machine heads,
which are used to tune the guitar by adjusting the tension of strings and, consequently, the
pitch of the sound they produce. The neck consists of the guitar frets and the fingerboard,
all attached to a long wooden extension. The frets are the metal strips embedded along
the fingerboard and placed at points that divide the length of the string mathematically,
according to the equal temperament tuning 1.

The body is a major determinant of the overall sound variety for classical guitars. It
is usually discussed in terms of its top, back, and sides. The boby top is known as the
soundboard, and it is where we find the sound hole and the bridge. The majority of the
sound is caused by the vibration of the soundboard as the energy of the vibrating strings
is transferred to it through the bridge.

1In an equal temperament, the distance between each step of the scale is the same interval. The octave
is divided into 12 equal parts, so that the frequency ratio of the interval between two adjacent notes is 12

√
2.

13
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Figure 2.1: Parts of a classical guitar.

The bridge (Figure 2.2) holds the strings in place. Its main purpose is to transfer the
vibration from the strings to the soundboard, which makes vibrate the air inside of the
body, thereby amplifying the sound produced by the strings. The saddle is a strip of bone
or plastic across the bridge upon which the strings rest. It controls the spacing of the strings
from one another. The nut, situated at the opposite end of the instrument from the bridge,
serves a similar string-spacing function at the strings’ other end.

Figure 2.2: Bridge of a classical guitar.

Strings

The standard guitar has six strings, each of the same length, but having different tension
T and mass per unit length ρ, which determines their frequencies of vibration. In general,
strings may be plain (consisting only of a single material, like steel, nylon or gut) or wound,
so that they have a core of one material and an overwinding of other material/s. In the
case of a classical guitar, the three upper strings are usually made of monofilament nylon,
while the three lower strings have a stranded nylon core overwound with bronze wire or
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silver plated copper wire.

The fundamental frequency of each of the six strings and its corresponding tuning note
are shown in Table 2.1. The string frequency of vibration depends on the length (as well
as T and ρ), and the strings’ vibrating length is determined when the strings are pressed
down behind the frets. Therefore, if the second string is not pressed down, the note we
are going to hear after a pluck is the fundamental of the string (which corresponds to
246.9 Hz). However, if the second string is pressed down at the first fret, the length of
the string is reduced and the frequency of the resulting note increases one semitone, i.e.
246.9× 12

√
2 = 261.6 Hz. If the same string is pressed down at the third fret, the resulting

note increases three semitones instead of one, so that 246.9×
(

12
√

2
)3

= 293.7 Hz.

String 1 2 3 4 5 6

Tuning note E4 B3 G3 D3 A2 E2

Frequency (Hz) 329.6 246.9 196.0 146.8 110.0 82.4

Table 2.1: Guitar string corresponding notes and frequencies of tuning.

2.2 General guitar model

To play a note on the guitar, the musician supplies a certain finite energy input, in compari-
son to a bowed string instrument as the violin, where the bow allows players to continuously
input energy and so to maintain a note. This is an important feature that makes the timbre
of both instruments different from ech other: after a pluck, the high harmonics fade away
quickly, leaving only the fundamental and some weak lower harmonics. On the other hand,
bowing maintains the rich harmonic spectrum.

Figure 2.3 shows a schema of how the guitar works. When the musician plays a note,
he exerts a certain force fp on a certain point of the string. This force is transmitted to the
bridge, as well as to the soundboard which starts moving and acquires an acceleration γ. The
air inside the guitar body also starts moving due to the coupling between the soundboard
and the bottom deck, which results in a certain acoustical radiation and generates an
acoustical pression Pa.

Figure 2.3: Diagram of how a classical guitar works.
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The player imposes some initial conditions with regard to velocity and displacement.
This interaction between musician and instrument can be modelled, at the plucking point,
as an inverse step of force, i.e. fp 6= 0 for t < 0, f = 0 for t ≥ 0, so that velocity v = 0 and
displacement y = y0 at t = 0.

We consider that the string is fixed to one end (x = 0) and it is attached to the
soundboard at x = L. Thus, the motion of the string and the soundboard at x = L are
the same: the string and the body are coupled at the bridge. The strings and soundboard
motion can be decomposed in 3 axis: normal, tangential and longitudinal to the top plate.
For guitars, the longitudinal motion is usually smaller than the other two components [12]
and we are going to neglect it throughout this work. Therefore, the relative importance
of the motion axis (y and z) depends on the angle of plucking α. A sketch of the guitar
bridge and the 6 strings (Figure 2.4) shows the direction of motion of the string and the
soundboard at the coupling point (the axis y represents the normal direction and the axis
z the tangential one) as well as the musician angle of plucking α.

Figure 2.4: Sketch of the guitar bridge and the direction of motion of the plucked string.
Axis y and z represent the normal and the tangential direction respectively.

The relation betwen the force applied to the string and the velocity at the bridge can
be described through the admittance. If we excite the soundboard at a particular point x0
of the bridge by means of a force f(t) and we measure the velocity at the same point. The
admittance at x0 is defined as

Ŷ (f) =
γ̂(f)

F̂ (f)
, (2.1)

where γ̂(f) and F̂ (f) are the Fourier transform of the velocity γ(t) and the force f(t). In the
case that two directions of motion are considered, the expresion of the admittance becomes
a matrix of 4 terms and the two directions of motion are coupled because of the cross terms.
The admittance at the bridge will be discussed further in following sections.

2.2.1 Synthesis principle

At this point, it is essential introducing the principle of the synthesis method we are going
to implement. It is a method proposed by Woodhouse [9] and it is called Frequency domain
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synthesis. The purpose in this kind of synthesis is to deal with the string-body coupling
in the frequency domain and then use an inverse FFT to create the time-varying transient
response. In our problem, the string and the body are coupled together at a single point at
the bridge and there is a very simple method that can be applied: if two systems have input
admittances Y1 and Y2 and they are rigidly connected at the points where these admittances
are defined, then the coupled system has an admittance Y at that point that satisfies

1

Y
=

1

Y1
+

1

Y2
. (2.2)

This result expresses the fact that at the coupling point, the two subsystems have equal
velocities while the total applied force is the sum of the forces applied to the two separate
subsystems.

Equation (2.2) refers to only one direction of motion. In a more general case in which
the coupling applies to more than one direction of motion, then an equivalent result applies
to the relevant admittance matrices

Y−1 = Y1
−1 + Y2

−1. (2.3)

This is a very interesting method due to the nature of the coupling between the subsystem
”string” and the subsystem ”body”. For us, the two added impedances correspond to the
inverse of the string admittance Y1 and the inverse of the body admittance Y2 at the bridge,
which is the coupling point between the two subsystems.

Our target is to synthesize the resulting sound from a guitar pluck, so that the simula-
tion of the pluck has to be included too. We wish to find the vibration at the guitar bridge
that results from applying a step function at a given point of the string. Therefore, we have
to include a subsystem that calculates the force at the end of the string (at the bridge) from
the force at the plucking point of the string. The diagram of the process is shown in Figure
2.5. The force at the bridge is obtained from the force applied at the plucking point fpp
and the transfer function H. Then, the velocity at the bridge can be calculated from the
coupled admittance Ybridge = vbridge/fbridge.

Figure 2.5: Diagram of the system that includes the transfer function H and the admittance
at the bridge.

From the point of view of the reciprocal theorem of vibration response, we can consider
applying the force at the bridge and calculate the resulting motion at the relevant point
of the string (and in the relevant direction if string polarisations are to be taken into
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account). Therefore, the transfer function H will be calculated as the dimensionless transfer
function between a given displacement applied at one end of a string and the corresponding
displacement at the point where the pluck is to be applied. Finally, to solve this problem,
we have to multiply the transfer functions together, so that

Vbridge =
−F0

jw
×H(w)× Y (2.4)

where Vbridge is the velocity at the bridge and (2.2) is the coupled admittance. The expres-
sion for the transfer function H will be derived in section 2.3.2.

The advantage of this kind of synthesis is that it is very simple, due to the nature of the
coupling between the string and the body. Moreover, it gives the choice of expressing the
body admittance in terms of modes or using the measured admittance directly. A potential
disadvantage of the method is that the inverse Fourier Transform needs to be used at the
final stage, to obtain a temporal signal. Given the discrete frequency resolution and finite
bandwith is hard to guarantee an answer absolutely causal. However, the results presented
by [9] are sufficiently causal, as well as the achieved results in this work.

Once the synthesis method introduced and having seen the principle in which it is based,
a mathematical characterization of the strings and the body is required. In the following
sections, the expressions of the string and body admittances (equation (2.2)) are derived.

2.3 Plucked string model

The frequency-domain synthesis method requires a the impedance (inverse of the admit-
tance) at the end of the string, at the coupling point with the guitar. After that, it also
needs the transfer function linking motion at the coupling point to motion at the required
plucking point, as seen in the previous section.

2.3.1 String admittance

The general solution of the wave equation that describes the movement of a string, deduced
in appendix A, can be written in the form of d’Alembert

φ(x, t) = f+(t− x/c) + f−(t+ x/c), (2.5)

where c = is the wave speed in m/s and f+ and f− represent a right-going and a left-going
travelling waves along the x axis. If we consider harmonic solutions, the solution of the
wave equation can be written as in (2.6) and (2.7), where k = w/c and A and B are two
integration constants [13].

φ(x, t) = y(x) coswt = <
[
y(x)e−jwt

]
(2.6)
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y(x) = A sin kx+B cos kx (2.7)

Figure 2.6: Plucked string. x = 0 represents the fixed end while x = L represents the
coupling point string-body at the bridge.

As we have already introduced, in the case of the guitar we suppose that the string is
fixed at the position x = 0 and that an harmonic displacement uejwt is imposed at x = L.
To satisfy the fixed boundary condition at x = 0, A must be null so the string displacement
must take the form

y = y0 sin
wx

c
, (2.8)

where B = y0. The boundary condition at x = L yields

y = u
sinwx/c

sinwL/c
. (2.9)

If the motion at the x = L boundary is caused by a force fejwt applied to the string, then
the force balance requires

f = T
∂y

∂x

∣∣∣∣
x=L

=
Tuw coswL/c

c sinwL/c
. (2.10)

Then, the well-known expression of the string impedance (force per velocity) can be deduced

Z =
f

jwu
=
T

jc
cot

wL

c
= −jZ0 cot

wL

c
, (2.11)

where Z0 = T/c is the characteristic impedance of the string. By means of the series
expansion of the cotangent, this function can be expressed as a infinite sum of poles at
wL/c = nπ for n = 0,±1,±2, ...,

Z =
−jT
L

∞∑
n=−∞

1

w − nπc/L
=
−jT
L

[
1

w
+
∞∑
k=1

1

w + kπc/L
+
∞∑
k=1

1

w − kπc/L

]
. (2.12)
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Then, string damping and bending stiffness are added. The stiffness is included in the modal
frequency wk, while the modal damping is directly added to the impedance expression

Z = −jT
L

[
1

w
+
∞∑
k=1

{
1

w − wk(1 + jηsk/2)
+

1

w + wk(1− jηsk/2)

}]
(2.13)

= −jT
L

 1

w
+

∞∑
k=1

 2w − jwkηsk
w2 − jwwkηsk − w2

k

(
1 + (ηsk/2)2

)
 ,

where wk and ηsk = 1/Qsk are the modal frequency and the loss factor for the kth string
mode. In [9], the string impedance equation is approximated by

Z ≈ −jT
L

[
1

w
+

∞∑
k=1

{
2w − jwkηsk

w2 − jwwkηsk − w2
k

]}
. (2.14)

As it has been said, the modal frequency values can be adjusted so that they include small
bending stiffness by setting

wk ≈
kπc

L

[
1 +

B

2T

(
kπ

L

)2
]
, (2.15)

where B is the bending stiffness in Nm2 [9] that represents the inharmonicity.

Finally, the string admittance is simply found by calculating the inverse of the string
impedance Z (2.16).

Ystring =
1

Z
(2.16)

2.3.2 Transfer function to the plucking point

As it has been explained in section 2.2.1, a transfer function between a given displacement
applied at one end of the string and the displacement at the plucking point is needed.

The expression proposed in [9] for the transfer function, with damping and stiffness
included, derives from equation (2.9) and it can be written as

y

u
≈ x

L
+
c

L

∞∑
k=1

(−1)k
2w sin kπx/L

w2 − jwwkηk − w2
k

(2.17)

where y is the string displacement at the plucking point x (noted as xp in Figure 2.6) and
u is the string displacement at the bridge.

If we start from the series expansion (deduced in [14])
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1

sinx
=

+∞∑
−∞

(−1)k+1

kπ − x
, (2.18)

(2.9) can be rewritten as

y

u
=

sinwx/c

sinwL/c
=

+∞∑
−∞

(−1)k+1

kπ − wL/c
sinwx/c =

c

L

+∞∑
−∞

(−1)k

w − kπc/L
sinwx/c. (2.19)

In the same way that in (2.13), damping and bending stiffness are included in (2.19) and it
yields

y

u
=

c

wL
sin
(wx
c

)
+
c

L

+∞∑
k=1

{
(−1)k sin(wx/c)

w − wk(1 + jηk/2)
+

(−1)k sin(wx/c)

w + wk(1 + jηk/2)

}
(2.20)

=
c

wL
sin
(wx
c

)
+
c

L

+∞∑
k=1

(−1)k sin
(wx
c

) 2w − jwkηsk
w2 − jwwkηsk − w2

k(1 + (ηsk/2)2)
.

Both (2.17) and (2.20) can be used as transfer function, but it has to be noticed that some
approximations have to be done to (2.20) to reach (2.17) [14].

2.4 Guitar body model

According to the frequency synthesis principle (section 2.2.1), the body admittance has to
be calculated at the contact point between the body and the string since string and body
impedances have to be added at the coupling point. The admittance (defined in (2.1)),
which is also known as mobility, is an important factor in the quality of a guitar. The
higher the mobility is, the better the string vibrations are transmitted to the guitar body.

Figure 2.7 shows some examples of inertances measured at the coupling point between
a string and the body. The inertance, also known as accelerance, is the ratio between the
acceleration and the force. Taking into account that the acceleration is the derivative of the
velocity, the relation between inertance Î(f) and admittance Ŷ (f) is simple and equal to

Î(f) =
â(f)

F̂ (f)
=
jwγ̂(f)

F̂ (f)
= jwŶ (f), (2.21)

where â(f) and F̂ (f) are the Fourier transforms of the acceleration a(t) and the force f(t).
Although the total admittance at the coupling point will be calculated as the inverse of the
sum of impedances (equation (2.3)), in practice, we are going to measure body acceleration
by means of an accelerometer and therefore, we are mostly going to work with inertances.
The admittance can be easily calculated from the admittance by integration in temporal
domain, which is equivalent to a division by jw in frequency domain.
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Figure 2.7: Some examples of inertances (2.21) measured at the bridge of 4 different guitars.

2.4.1 Analytical expression of the admittance

The admittance calculation, which can be expressed as a modal sum, will allow us to extract
the properties of the modes: as in the case of the string, each mode has certain parameters:
a resonance frequency, damping, the angle of vibration if two directions of motion are taken
into account, etc. In this section we are going to study the analytical expression for the
admittance, which coincides with the expression used by Woodhouse [9] [11] for the body
admittance synthesis. Let us consider a weakly dissipative structure that is subjected to an
excitation at a point (xF , yF )

fF = f(xF , yF ) = F0δ(x− xF )δ(y − yF ) sin(ωt). (2.22)

The displacement uA of the structure at the observation point (xA, yA) can be decomposed
in the eigenmode basis and written as

uA =
∑
n

Φn(xA, yA)qn(t) (2.23)

The system of n uncoupled oscillators (appendix B.2) can be expressed as

q̈n + 2ζnmωnq̇n + ω2
nqn =

Φn(xF , yF )fF
mn

(2.24)

and the Fourier transform of this expression yields
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Qn(ω) =
Φn(xF , yF )F (xF , yF )

mn(ω2
n + 2jζnmωnω − ω2)

, (2.25)

where F (xF , yF ) is the Fourier transform of fF and Qn(ω) is the generalized displacement
in the frequential domain.

Then, the diplacement at the observation point can be written as

U(xA, yA, ω) =
+∞∑
n=1

F0Φn(xF , yF )Φn(xA, yA)

mn(ω2
n + 2jζnmωnω − ω2)

. (2.26)

Since the admittance is the ratio between the velocity and the force, the transfer function
of the admittance between the excitation point (xF , yF ) and the observation point (xA, yA)
is

YAF (ω) =
U̇(xA, yA)

F (xF , yF )
=
jωU(xA, yA)

F0
= jω

+∞∑
n=1

Φn(xF , yF )Φn(xA, yA)

mn(ω2
n + 2jζnωnω − ω2)

. (2.27)

It is important to notice that the excitation can be exchanged for the observation point
without changing the admittance expression. This is known as the property of reciprocity,
which will be seen again in section 3.2. If we consider that the observation point coincides
with the excitation one, the expression is simplified as

YA(ω) =
U̇(xA, yA)

F (xA, yA)
= jω

+∞∑
n=1

Φ2
n(xA, yA)

mn(ω2
n + 2jζnωnω − ω2)

. (2.28)

This expression is particularly useful to study the guitar when the resonances can be isolated
one from another (at low frequencies) and there is no significant modal overlap.

2.4.2 Two-dimensional admittance

If two directions of string vibration are taken into account, there is also a displacement
z(t) parallell to the soundboard (Figure 2.4). In this case, the analytical expression of the
admittance has to be rewritten so that the two directions of motion are considered.

As for mathematics, the calculated admittance Y has to be replaced for a matrix 2× 2:[
Y11 Y12
Y21 Y22

]
(2.29)

Y11 is the admittance in the normal direction from the soundboard and Y22 in the tan-
gential direction from the soundboard. The diagonal terms, Y12 and Y21, are the crossed
admittances. As in the previous section, these four terms can be expressed as a modal
sum. However, an additional parameter has to be considered: the angle θk of motion of the
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soundboard at the bridge measured from the normal direction [11]. The terms Y11 and Y22
can be expressed as follows,

Y11(w) = jw

+∞∑
k=1

cos2 θk

mk

(
w2
k − 2jζkwkw − w2

) , (2.30)

Y22(w) = jw

+∞∑
k=1

sin2 θk

mk

(
w2
k − 2jζkwkw − w2

) , (2.31)

where the angle θk represents the angle of the body motion measured from the normal
direction, and wk, ζk and mk are the natural frequency, damping ratio and effective mass
for the kth mode.

For the diagonal terms, use can be made of the reciprocity theorem. In the case of linear
systems, the reciprocity theorem states that the displacement at A caused by the force at B
is the same as the displacement at B caused by the force at A. Due to this, the cross-terms
Y12 and Y21 fulfill

Y12 = Y21, (2.32)

and the analytical expression for the matrix cross terms is

Y12(w) = Y21(w) = jw

+∞∑
k=1

cos θk sin θk

mk

(
w2
k − 2jζkwkw − w2

) . (2.33)

Reciprocity is a very important and useful property that will facilitate measurement exe-
cution as it will be seen in the following chapter.

If we want to express damping in the same way that in string admittance (2.13), the
damping ratio ζ, the Q factor Q and the loss factor η are related such that

2ζ =
1

Q
= η, (2.34)

so that (2.30), (2.31) and (2.33) can be rewritten as

Y11(w) = jw
+∞∑
k=1

cos2 θk

mk

(
w2
k − jηkwkw − w2

) , (2.35)

Y22(w) = jw

+∞∑
k=1

sin2 θk

mk

(
w2
k − jηkwkw − w2

) , (2.36)

Y12(w) = Y21(w) = jw

+∞∑
k=1

cos θk sin θk

mk

(
w2
k − jηkwkw − w2

) . (2.37)



Chapter 3

Measurement of the admittance

3.1 Measurement protocol

Measurements have been performed in the small anechoic chamber (Figure 3.1) and the
practical lessons room (Figure 3.2) at the acoustics laboratory of Télécom Paris-Tech 1.
Two classical guitars have been used, Picado 1991 and Ibanez 2005.

The protocol for the measurement of the admittance at the bridge has been the following.
The excitation has been given by a light impact hammer (Brüel & Kjaer 8203) acting as
a pendulum, which ensures good reproducibility of the impacts as it will be seen later.
The response is measured by means of an accelerometre (Brüel & Kjaer 4374 n◦2209533).
Obviously, it is not possible to measure exactly at the excitation point. Nevertheless, the
accelerometre has been placed as closer as possible to the excitation point. If the aim is
to work with velocity signals, they can be obtained through the integration of the signals
delivered by the accelerometers. In our case, most of the time we are going to work directly
with acceleration signals instead of velocity signals.

The guitar has been suspended from the headstock by an elastic strap. It is to note
the importance of the way the guitar is placed since the structure of the studied system
can’t be modified because of its suspension. In order to obtain a correct response of the
system ”guitar”, the suspension must not add any components in the rank of frequencies
of interest. In our case, the vibrational modes introduced by the suspension system are
located at very low frequencies (at very few Hertz) and they do not perturb the studied
modes of vibration.

Figure 3.3 shows a diagram of the experimental set-up for the measurement of the
admittance at the bridge (which can also be seen in the picture in Figure 3.2). Both
force and acceleration signals are delivered to a pre-amplifier (Nexus Brüel & Kjaer) and
then are captured by the sound card and recorded at a sampling rate of 44100 Hz. The
adquisition is done by means of an external sound card Edirol UA-5 and a script generated
with the recording functions of Matlab. To prevent the ground loop connection and the 50

11, rue Barrault, 75013 Paris

25
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Figure 3.1: Anechoic chamber where some measurements have been carried out.

Hz noise that it may involve, all signal grounds are connected to one common point. The
first measurements were recorded by the open source software for recording and editing,
Audacity, and the force signal was monitorized permanently by means of an oscilloscope,
in order to avoid double impulses in the excitation signal. The implemented Matlab script
allows monitoring of the force excitation signal, as well as the delivered acceleration and
their frequency responses.

In the case of one-dimensional measurements, the hammer impact has to be in the
normal direction with respect to the soundboard. The response is also measured by the
accelerometer in the normal direction. A picture of the impact hammer and the accelerom-
eter in this direction is shown in Figure 3.4. It should be noticed that in this picture the
accelerometer is in the right position (normal to the guitar surface) but not in the right
place: it should be placed right beside the sixth string. The exact position can be seen in
Figure 3.11.

One important question about the body admittance measurements relates to what
should be done with the strings. Should they be damped, left undamped or removed
entirely? According to [11], none ot these options is entirely satisfactory. If strings are
undamped, the measurement is of the coupled string plus body system rather than of the
body alone. If the strings are removed, the bridge saddle is not properly in place, and it
should not be removed since the bridge mass would be changed.

The only option that is left is to have the strings in place but damped. In this case,
the strings will add some damping to the body modes. An experiment of the ”worst case”
is carried out in [11]. If the strings were perfectly damped, so that the waves travelled
out along the string but no reflection ever returned, they would be felt by the bridge as
pure resistances, with a value equal to the characteristic impedance of the string. If it is
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Figure 3.2: Experimental set-up in the room where some measurements have been carried
out.

supposed that the six strings are attached at the same point of the bridge, then, the net effect
is calculated by substracting the total string impedance from the body impedance (that is,
the inverse of the body admittance measured with the damped strings). A comparison of
the two curves is done and it is concluded that they are almost indistinguishable except at
some particular points in low-frequencies.

Therefore, two kinds of measurements have been carried out in our case. In order to
obtain the body admittance, strings have been damped by means of a felt placed along
the neck of the guitar. On the other hand, to obtain the coupled system (string+body)
response, all strings have been damped except the one that is attached next to the point of
impact.

The measurements have been made for two of the six strings, the first and the sixth,
which correspond to E4 (329.6 Hz) and E2 (82.4 Hz) respectively. These two strings are
placed in the extremes, where measurements are easier to carry out, especially when two-
dimensional measurements are introduced (section 3.2). There is an example of waveform
for both acceleration and force (measured next to the first string with all strings damped)
in Figures 3.5 and 3.6, which represent the beginning of the signals, at a sampling frequency
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Figure 3.3: Diagram of the experimental set-up for the admittance measurement at the
bridge. The red cross indicates the point where de accelerometer is placed, as well as the
hammer point of impact.

Figure 3.4: Photography that shows a measurement in the normal direction.

of 44100 Hz. In Figure 3.7 there is the magnitude frequency response for the body admit-
tance obtained by spectral division of the acceleration and force signals and its subsequent
integration. In Figure 3.8, a detail of low-frequency is shown.

In order to validate the obtained admittances, they have been compared to the same
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Figure 3.5: Acceleration response captured by the accelerometer to a hammer impact in
the guitar bridge.

Figure 3.6: Force impulse imparted by the hammer.

kind of measurements found in the literature, like [11] and [12], and a reasonable similarity
has been observed. After that, with regard to validate the measurement protocol and the
measurements repetitibility we have done a comparison amongst several trials. Six different
trials are plotted superimposed in different colours in Figure 3.9. As it can be seen, the
similarity remains high at low and medium frequencies, while the difference amongst the
curves rises at high frequency (from 9000 Hz on). In this case, the plotted curves correspond
to the ratio between acceleration and force, instead of velocity. The rank from 0 to 2000
Hz is showed in Figure 3.10.
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Figure 3.7: Example of magnitude frequency response for the body admittance.

Figure 3.8: Magnitude frequency response for the body admittance in the interval 0-2000Hz.

Figure 3.9: Magnitude frequency response for the body admittance from six different mea-
surements.
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Figure 3.10: Magnitude frequency response for the body admittance from six different
measurements in the rank from 0 to 2000 Hz.

3.2 Two-dimensional measurements

As it has been seen in the previous section, for the case of one-dimensional admittance
measurements, the only vibration that is taken into account goes in the normal direction
to the soundboard. In fact, as it has been introduced in section 2.2, both string and bridge
motion can be decomposed into three components: one longitudinal, one perpendicular or
normal and one parallel or tangent to the top plate. For guitars, the longitudinal motion is
usually smaller than the other two components [12]. Therefore, this motion will be neglected
throughout this work. If we want to have information about the two polarizations, normal
and parallel, then measurements in the parallel direction have to be also executed.

In two dimensions, the admittance at the bridge becomes a 2 × 2 admittance matrix
that relates force and velocity magnitudes as

[
Vy
Vz

]
=

[
Y11 Y12
Y21 Y22

] [
Fy
Fz

]
, (3.1)

where Vy, Fy, Vz, and Fz are the velocity and the force in the normal and the parallel
direction respectively. The subscripts ”1” and ”2” in each term of the admittance matrix
also refer to the direction of excitation and response: ”1” refers to the normal direction and
”2” refers to the parallel one. Therefore, with regard to (3.1) each term may be obtained
through a different configuration of hammer and accelerometer. For instance, if the hammer
impacts in the normal direction (Fy 6= 0, Fz = 0) and the accelerometer is also placed in
the same plane (Vy 6= 0, Vz = 0), the term obtained is Y11, which corresponds to the
measurement in one dimension (see section 3.1).

The four possible configurations are shown in Figure 3.11. The sketch represents the
bridge with the six strings, as well as the impact hammer and the accelerometer. For sim-
plicity, the hammer and the accelerometer are drawn in opposite extrems of the bridge but
in fact they are placed at the same one, either the one of the first string or the sixth string.
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In 3.11b, the hammer impacts in the normal direction (Fy 6= 0), then, if the accelerometer
is also placed perpendicular to the soundboard, the term that can be obtained is Y11, while
if the acceleromer is placed parallel, it is Y21. Analogously, in 3.11a the hammer impacts in
the direction parallel to the soundboard. According to equation (3.1), Y22 can be obtained
by placing the accelerometer parallel and the cross-term Y12 by placing it perpendicular.

Figure 3.11: Sketch of the guitar bridge and the 4 possible measurement configurations.
Y22 and Y12 can be obtained in (a) while Y11 and Y21 can be obtained in (b).

At this point, use can be made of the reciprocity theorem, formulated in (2.32). Ac-
cording to it, for linear systems, the cross-terms of the matrix Y12 and Y21 are equal.

The first conclusion that can be drawn from the reciprocity property is that the admit-
tance matrix can be obtained with three measurements instead of four. In this sense, one
measurement with the excitation in parallel to the sondboard can be avoided, since it is
more complex to execute than impacting with the hammer in the normal direction.

On the other hand, the fact of having, in principle, two equal informations allows to
carry out some kind of validation of the two-dimensional measurements. Therefore, the
four configuration measurements have been done in our case. They are shown in Figure
3.12, where Y12 and Y21 are plotted superimposed in the central graphic. This is the best
result with regard to reciprocity that could have been achieved. As it can be observed in
Figure 3.13 the curves keep a very similar form at low frequencies although there are some
differences in the amplitude level. This fact may be owing to the fact that in the parallel
direction is quite difficult impacting with the hammer at the very same point in different
trials.
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Figure 3.12: Curves of the body admittance matrix terms (in terms of acceleration/force).
The top curve represents Y11, in the central one, Y12 and Y21 are plotted superimposed and
the lower curve represents Y22.

Figure 3.13: Detail of Y12 and Y21 at low frequencies.

3.2.1 Obtaining θk

As we have seen in section 2.4.2, for the two-dimensional case each mode involves motion
at the string’s attachment point at a particular angle to the normal to the soundboard,



34 CHAPTER 3. MEASUREMENT OF THE ADMITTANCE

denoted θk. This parameter can not be directly measured since in principle it is different
for every mode k. Woodhouse [11] proposes a statistical approach to this parameter and
generates a statistical distribution of θk between -90o and 90o centered in 0o.

We introduce another possibility for obtaining θk that emerges from the similarities
among the mathematical expressions of the 2×2 admittance matrix terms (equations (2.30),
(2.31) and (2.33)). If we consider a weak modal overlap, around the kth mode the 4 elements
can be written as

Y11(w)|w=wk '
jw cos2 θk

mk

(
w2
k − jwwkηk − w2

)
Y22(w)|w=wk '

jw sin2 θk

mk

(
w2
k − jwwkηk − w2

)
Y12(w)|w=wk = Y21(w)|w=wk '

jw cos θk sin θk

mk

(
w2
k − jwwkηk − w2

) .
(3.2)

Then, some simple mathematical transformations can be used to obtain one element
from the others around wk. For example:

Y12 = Y21 '
√
Y11 × Y22 (3.3)

From this expression we are able to calculate the angle θ for each mode. Figure 3.14
shows the distribution of angles θk calculated from a two-dimensional measurement and
the relations listed above. In the same manner that in [11], most of the modes have a θk
around 0o, which means that the majority of modes oscillate in the normal diraction to the
soundboard.

Figure 3.14: Distribution of angles θk.

3.2.2 Reconstruction of the admittance matrix from 2 measurements

In this section, it is made use of the considerations introduced in the previous one for
obtaining angles θk. In this case, we wonder if it would be possible to reconstruct the
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admittance matrix from 2 measurements. Remember that it is possible to obtain the matrix
from 3 measurements and thanks to the reciprocity theorem (2.32).

If we apply (3.3), which is only valid at the surroundings of wk, the magnitude response
of Y12 or Y21 can be found from Y11 and Y22. Figure 3.15 illustrates this relation with an
example. The red and blue curves represent Y12 and Y21 measured in two different hammer
impacts. Then, the green curve is found by the application of expression (3.3) and as it can
be seen, its similarity with Y12 or Y21 is quite appreciable, specially in the resonances.

Figure 3.15: Y12 (in red) and Y21 (in blue). The green curve is obtained from Y11 and Y22.

There are many reasons to justify the desire of reducing the necessary number of mea-
surements to obtain the admitance matrix, specially from an experimental point of view.
Sometimes, the bridge geometry does not help very much and does not allow to carry out
measurements easily. For example, in our test guitar it is very difficult to do a measurement
in the tangential direction in the middle strings (from the 2nd to the 5th). From this point
of view, reducing the number of required measurement would be interesting.
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Chapter 4

Parameter estimation

This chapter is devoted to the study of high-resolution parameter estimation techniques.
The analysed admittance signals are assumed to be made up of a sum of complex exponen-
tials added to white noise and the aim is to estimate the exponential amplitudes, frequencies
and damping factors, as well as the noise variance σ2.

The maximum likelihood estimation method leads to a least squares problem to estimate
the complex amplitudes and phases. Nevertheless, in the case of frequencies and damping
factors problem resolution becomes more difficult. Although the methodology for maximum
likelihood estimation is simple, its implementation is mathematically intense. Besides, the
Fourier analysis has a spectral resolution limit which depends on the window length and
very close frequency peaks ought to be estimated from the signal.

Consequently, in order to estimate the modal frequencies and damping factors, a high-
resolution method is applied to the analysed signals since these methods are able to discern
close peaks. Historically, the Prony or the Pisarenko methods rely on the resolution of
a linear prediction equation [15]. In contrast, more recent techniques are based on the
properties of the signal’s covariance matrix. The study of its rank allows to decompose the
data space onto two subspaces: the subspace spanned by the sinusoids (signal subspace)
and its ortogonal complementary (the noise subspace). The Matrix Pencil [16], the MUSIC
and the ESPRIT [15] algorithms are based on this principle. The latter has been chosen
in this project since it takes into account the rotational invariance property of the signal
subspace, ensuring a more precise and robust estimation.

4.1 Signal model

Let us consider the discret signal model

s[t] =

K−1∑
k=0

ake
δktej(2πfkt+φk), (4.1)

37
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defined for t ∈ Z, where each frequency fk ∈
[
−1

2 ,
1
2

]
is associated to a real amplitude

ak > 0, a phase φk ∈ [−π, π] and a damping factor δk ∈ R. If complex amplitudes are
defined as

αk = ake
jφk , (4.2)

and complex poles (all different) are given by

zk = eδkej2πfk , (4.3)

(4.1) can be rewritten in the form:

s[t] =
K−1∑
k=0

αkzk
t. (4.4)

The signal is observed in temporal windows of length N ≥ K. Thus, we consider a
temporal window {t− l+1 . . . t+n−1}, where n and l fulfill N = n+ l−1. Afterwards, s(t)
is evaluated at the particular instants of the defined temporal window, so that N dimension
vector s(t) (4.5) is obtained.

s(t) = [s(t− l + 1), . . . , s(t+ n− 1)]> (4.5)

Defining the vector v(z) as

v(z) = [1, z, . . . , zN−1]
>
, (4.6)

we can rewrite the temporal signal vector s(t) as:

s(t) =

K−1∑
k=0

αkz
t−l+1
k v(zk). (4.7)

This equality can still be rewritten in the form of a product

s(t) = VNDt−l+1α (4.8)

where α = [α0, . . . , αK−1]
> is a vector of dimension K and D = diag(z0, . . . , zK−1) is a

diagonal matrix with dimensions K×K. VN = [v(z0, . . . , zK−1)] is the N×K Vandermonde
matrix (4.9):

VN =


1 1 · · · 1
z0 z1 · · · zK−1
...

...
...

...
z0
N−1 z1

N−1 · · · zK−1
N−1

 . (4.9)

Defining the amplitudes vector at the instant t as
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α(t) = Dt−l+1α, (4.10)

s(t) can be rewritten once again

s(t) = VNα(t). (4.11)

The determinant of the square Vandermonde matrix VK (made up of the K first rows of
VN ) can be expressed as

det
(
VK

)
=

∏
0≤k1<k2≤K−1

(zk2 − zk1). (4.12)

If M is square matrix of order p, rank(M) = p⇔ det(M) 6= 0. If there are at least two
equal poles, it follows from (4.12) that the rank of VK is lower than K, and so is the rank
of VN . Thus, VN matrix has full rank if and only if its poles are different. Equation (4.11)
shows that s(t) lives in the image space of VN , whose dimension is lower than or equal to
K in the general case or equal to K if all poles are different.

Besides, a general signal x(t) can be modeled as the summation of the deterministic
signal s(t) defined in (4.1) and a white Gaussian noise b(t) with variance σ2 and probability
density function

p(b) =
1

πσ2
e−
|b|2

σ2 . (4.13)

Hence,

x(t) = s(t) + b(t). (4.14)

Let us define b(t) as the vector that contains the noise samples

b(t) = [b(t− l + 1), . . . , b(t+ n− 1)]>. (4.15)

Since b(t) is a Gaussian random vector, its covariance matrix will be given by

Rbb = σ2IN . (4.16)

Therefore, vector x(t) = [x(t− l + 1), . . . , x(t+ n− 1)]> verifies the relation

x(t) = s(t) + b(t). (4.17)

In what follows, different techniques will be explained (see sections 4.2 and 4.3) on how
to analyse x(t). The aim of these analyses consists in estimating the complex amplitudes
α(t), the poles zk and the variance σ2.
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4.2 Maximum likelihood estimation

The maximum likelihood estimation is a general method of parameter estimation which con-
sists of maximizing the probability of observing the signal x in the interval {t− l + 1, . . . , t+ n− 1}
or the logarithm of that probability (the so-called logarithmic likelihood function). Since
x(t) is the sum of a deterministic vector and a complex Gaussian random vector (equa-
tion (2.16)) with covariance matrix Rbb, x(t) is a complex Gaussian random vector with
covariance Rbb. The probability density function of such a vector is

p(x(t)) =
1

πNdet (Rbb)
e−(x(t)−s(t))

HR−1
bb (x(t)−s(t)). (4.18)

Consequently, the logarithmic likelihood function of x(t) is

L(σ2, z0, . . . , zK−1,α(t)) = −N ln(πσ2)− 1

σ2
g (z0, . . . , zK−1,α(t)) , (4.19)

where

g (z0, . . . , zK−1,α(t)) =
(
x(t)−VNα(t)

)H (
x(t)−VNα(t)

)
. (4.20)

The maximization of equation (4.19) with respect to σ2, z0, . . . , zK−1,α(t) can be done
by minimizing g with respect to (z0, . . . , zK−1,α(t)) and maximizing L with respect to σ2.
The latter yields

σ2 =
1

N
g (z0, . . . , zK−1,α(t)) , (4.21)

which can also be written in the form

σ2 =
1

N

∥∥x(t)−VNα(t)
∥∥2 , (4.22)

so that σ2 appears to be estimated by calculating the power of the substraction of the
exponentials from the signal x(t).

To minimize g with regards to (z0, . . . , zK−1,α(t)) the following algebraic manipulation
needs to be performed.

g (z0, . . . , zK−1,α(t)) = x(t)Hx(t)− x(t)HVN
(
VNH

VN
)−1

VNH
x(t) +

+

(
α(t)−

(
VNH

VN
)−1

VNH
x(t)

)H (
VNH

VN
)(

α(t)−
(
VNH

VN
)−1

VNH
x(t)

)
(4.23)

VN is a full rank matrix since it has been supposed in section 4.1 that its poles are different.

Therefore, it can be seen that VNH
VN is invertible.

The last term of equation (4.23) is always positive and may be equal to zero if α(t)
takes the form
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α(t) =
(
VNH

VN
)−1

VNH
x(t) = VN †x(t). (4.24)

Consequently, the complex amplitudes α(t) become estimated in the same way that
when using a least squares method (see section 4.4). Finally, function g is minimized when
the zk poles maximize the Γ function

Γ(z0, . . . , zK−1) = x(t)HVN
(
VNH

VN
)−1

VNH
x(t). (4.25)

This is an optimization problem that does not have an analitical solution in its general
case. It might be solved by means of numerical analysis. Unfortunately, it has a difficult
implementation since the function contains several local maximums. This is the reason why
other methods are used to estimate the poles instead. However, once the complex poles
are determinated, the maximum likelihood estimation can be used to find the complex
amplitudes (equation (4.24)) and the noise variance (equation (4.22)).

4.3 Subspace methods

Before the application of the specific high-resolution method ESPRIT, the signal data ought
to be decomposed in two subspaces (signal and noise). This decomposition process is next
described in sections 4.3.1 and 4.3.2 before the ESPRIT method in section 4.3.3.

4.3.1 Data matrix structure

In linear algebra, a Hankel matrix is a square matrix in which each term aij can be expressed
as ai−1j+1. For instance,

H =


a b c d
b c d e
c d e f
d e f g

 (4.26)

is a Hankel matrix. From now on it is supposed that n ≥ K + 1 and N = n+ l− 1. S(t) is
a n× l matrix made up of data samples (without noise) according to a Hankel structure.

S(t) =


s(t− l − 1) · · · s(t− 1) s(t)
s(t− l) · · · s(t) s(t+ 1)

...
. . .

...
...

s(t− l + n) · · · s(t+ n− 2) s(t+ n− 1)

 (4.27)

The S(t) matrix can also be written in the following form:

S(t) = VnA(t)Vl> (4.28)
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where A(t) is a diagonal K ×K matrix

A(t) =


zt−l+1
0 α0 0 · · · 0

0 zt−l+1
1 α1 · · · 0

...
...

. . .
...

0 0 · · · zt−l+1
K−1 αK−1

 (4.29)

and Vn and Vl are similar to VN (see (4.9)) but respectively having dimensions n×K and
l ×K.

If VK is the Vandermonde matrix made up of the first K rows of Vn or Vl, equation
(4.12) shows that VK is invertible since all the zk poles are different from each other.
Consequently, rank(Vn) ≥ K and rank(Vl) ≥ K. Taking into account that dim(Vn) =
n × K and dim(Vl) = l × K, then rank(Vn) = rank(Vl) = K. In addition, the K × K
matrix A(t) is also invertible, that is, it has rank K.

It can be proved that S(t) also has rank K ([15]). In that case, its image space is
generated by the Vn matrix.

This data matrix structure leads to an equivalent structure for the correlation matrix
defined in the next section.

4.3.2 Correlation matrix structure

Subspace methods are based on the particular structure of the correlation matrix Css(t) =
S(t)S(t)H. Rss(t) = 1

lCss(t). From (4.28) it follows that

Rss(t) = VnP(t)VnH, (4.30)

where

P(t) =
1

l
A(t)Vl>Vl∗A(t)H (4.31)

is a symmetric positive defined matrix. Equation (4.30) shows that Rss(t) has rank K as
S(t). The K dimension image space of the Rss(t) matrix is therefore generated by the Vn

matrix. It is the so-called signal space.

Denote with {wm}m=0...n−1 an orthonormal basis of Rss(t) eigenvectors with associated
eigenvalues λ0 ≥ λ1 ≥ . . . λn−1 ≥ 0. Since Rss(t) has a rank K, λm = 0 ∀m ≥ K.
Define W(t) as the matrix [w0 . . .wK−1] and W⊥(t) as the matrix [wK . . .wn−1]. It can
be proved that Im(W(t)) = Im(W(n)), so that W(t) is another basis of the signal space,
usually different from Vn.

In the same way that S(t) was defined in equation (4.27), X(t) and its correlation matrix
are defined including the noisy signal samples:

Cxx(t) = X(t)X(t)H (4.32)
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R̂xx(t) =
1

l
Cxx(t). (4.33)

Since the added noise b(t) is white and centered, with variance σ2, it verifies

Rxx(t) = Rss(t) + σ2In. (4.34)

By means of equation (4.34), it can be proved that {wm}m=0...n−1 is also an orthonormal
basis of Rss(t) eigenvectors with associated eigenvalues

λ̄m =

{
λm + σ2∀m ∈ {0, . . .K − 1}
σ2∀m ∈ {K, . . . n− 1} . (4.35)

As it can be seen from (4.35), all Rss(t) eigenvectors are also eigenvectors of Rxx(t)
and the corresponding Rxx(t) eigenvalues are the same as Rss(t) eigenvalues plus σ2. Con-
sequently, the signal space that has been defined as the Rss(t) image space, is also the K
dimensional space of Rxx(t), that is, the space of Rxx(t) associated to the K largest eigen-
values (all larger than σ2). The n −K eigenvalues which are associated to the orthogonal
complementary of the signal space, the so-called noise space, are all equal to σ2.

Therefore, signal and noise spaces can be estimated by calculating the eigenvalue decom-
position of R̂xx(t). W(t) = [w0 . . .wK−1] is obtained juxtaposing the main K eigenvectors
of R̂xx(t) and W⊥(t) = [wK . . .wn−1] is obtained juxtaposing the other n−K eigenvectors.
In this way, n×K signal space and n× (n−K) noise space can be spanned.

4.3.3 Estimation of Signal Parameters via Rotational Invariance Tech-
niques (ESPRIT)

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) is based
on a signal space particular property: the rotational invariance. The Vandermonde matrix
Vn and the diagonal matrix D are made up of the zk poles.

Vn =


1 1 · · · 1
z0 z1 · · · zK−1
...

...
...

...

zn−10 zn−11 · · · zn−1K−1

 (4.36)

D =


z0 0 · · · 0
0 z1 · · · 0
...

...
. . .

...
0 0 · · · zK−1

 (4.37)

Their rank is K and they verify
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Vn
↑ = Vn

↓D, (4.38)

where Vn
↓ is a (n− 1)×K matrix, which contains the first (n− 1) rows of Vn, and Vn

↑ is
the (n− 1)×K matrix that contains the last (n− 1) rows of Vn.

Analogously, W(t)↓ is a (n− 1)×K matrix that contains the first (n− 1) rows of W(t)
and W(t)↑ is the (n − 1) ×K matrix that contains the last (n − 1) rows of W(t). Both,
the columns of Vn and W(t) are bases of the same K-dimensional vector space. Therefore,
there exists a K ×K matrix G that allows to change from one basis to the other,

Vn = W(t)G(t). (4.39)

Shifting (4.39) up and down yields

Vn
↓ = W(t)↓G(t) (4.40)

W(t)↑ = Vn
↑G(t)−1. (4.41)

If (4.39) and (4.40) are substitued in (4.41), we get

W(t)↑ = W(t)↓G(t)DG(t)−1 ⇒W(t)†↓W(t)↑ = G(t)DG(t)−1. (4.42)

This equation highlights the rotation-invariance property of W and shows that the K
eigenvalues of W(t)†↓W(t)↑ are the poles zk=0...K−1.

Equation (4.42) can also be expressed as

W(t)↑ = W(t)↓Φ(t) (4.43)

where Φ(t) is called the spectral matrix and can be replaced by its eigenvalues and eigen-
vectors

Φ(t) = G(t)DG(t)−1. (4.44)

Multiplying (4.43) by W(t)H↓ leads to

W(t)H↓W(t)↑ = W(t)H↓W(t)↓Φ(t). (4.45)

A square matrix is invertible if and only if its rank is maximum. Accordingly, if
rank(W(t)↓) = K, W(t)H↓W(t)↓ is invertible because it has the same rank as W(t)↓. This

can be proved since ∀x ∈ Cn, W(t)H↓W(t)↓x = 0⇔W(t)↓x = 0. Then, dim(Ker(W(t)H↓W(t)↓)) =

dim(Ker(W(t)↓)) and the rank theorem shows that rank(W(t)H↓W(t)↓) = rank(W(t)↓) =
K. As a result, (4.45) can be expressed as

Φ(t) =
(
W(t)H↓W(t)↑

)−1
W(t)H↓W(t)↓. (4.46)
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Finally, the ESPRIT algorithm consists of the following stages:

1. Calculate and diagonalize the correlation matrix R̂xx(t) (equation (4.33))

2. Extract a basis from the signal space W(t)

3. Extract the matrices W(t)↓ and W(t)↑ from W(t)

4. Calculate de spectral matrix Φ(t) from equation (4.46)

5. Diagonalize Φ(t) to find the estimated poles.

Once the poles are found and taking into account equation (4.3), the frequencies and
damping factors can be calculated from (4.47) and (4.48)

fk =
1

2π
arg(zk), (4.47)

δ = ln |zk| . (4.48)

4.4 Least squares method

ESPRIT and, in general, the high-resolution methods only estimate the poles zk. To carry
out the estimation of the other model parameters (amplitudes and phases) the method of
least squares is next presented.

4.4.1 Linear model

A signal s(n; h) is linearly expressed in function of an unknown parameter h following the
expression

s(n; h) = xn,1h(0) + · · ·+ xn,Ph(P − 1), (4.49)

where xn,j , j ∈ [1, . . . , P ] represents a component of a vector that belongs to a subspace

S and h =
[
h(0) · · · h(P − 1)

]>
. In the case of a measured signal y(n), the expression

becomes

y(n) = s(n; h) + w(n) (4.50)

where w(n) represents the noise in the measurement. A matrix expression of y(n) can be
made up from N successive samples, so that
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 y(1)
...

y(N)

 =

x1,1 · · · x1,P
...

...
xN,1 · · · xN,P


 h(0)

...
h(P − 1)

+

w(1)
...

w(N)

 ,
which can be written in the notation

y = Xh + w, (4.51)

where X is the N × P data matrix.

4.4.2 Least squares parameter estimation

In order to solve the problem exposed on (4.51) and find the vector h, we firstly consider

s = Xh, (4.52)

where s is a N dimension vector. If s could be measured without noise, y = s and h would
be estimated by means of N = P equations. In this case, X would be a square matrix.
Therefore, if X was considered an invertible matrix, the system solution would be unique
and equal to

h = X−1y. (4.53)

The so-called least squares estimator ε is defined as follows,

ε = ‖e‖22 = eHe = (y −Xh)H (y −Xh) , (4.54)

where e is the estimation error. In this first case, ε = 0, so that P measured values are
enough to estimate h without error.

However, with noise there is no h vector that verifies simultaneously the N equations,
especially when N >> P . Consequently, it can only be found a vector h that minimizes the
squared error (y−Xh)H(y−Xh). It is worth considering the fact of taking N >> P . The
least squares estimator is, among all linear estimators without bias, the one with minimum
variance (and this variance becomes smaller as N grows up) [17].

Since there are more equations than unknowns the system is overdetermined and it does
not exist a vector h such that Xh is equal to the y vector. In other words, the N -dimensional
y vector does not belong to the vector subspace generated by the P column-vectors of X,
this is, the image of X. The target, then, is to find the closest vector (belonging to the
image of X) to vector y in the quadratic distance sense. The solution of the problem is
given in section 4.4.3 by the projection theorem.
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4.4.3 Projection theorem

Denote with H a Hilbert space, C a subspace of H and y an element of H, then:

• There is a unique element s0 ∈ C such that

∀s ∈ C, ‖y − s0‖2 ≤ ‖y − s‖2 (4.55)

• s0 verifies

∀s ∈ C, y − s0 ⊥ s (4.56)

In practice, the expression that is used to find s0 is (4.56), which is known as the
orthogonality principle. It is also commonly said that s0 is the orthogonal projection of y
on C. Figure (4.1) illustrates this property.

Figure 4.1: Projection Theorem

In our case, in terms of the projection theorem H is the CN space of N dimension
vectors and C is the image of X, i.e the subspace generated by the P column vectors of X.
Any vector belonging to C is characterized by a P dimension vector h and can be written
as Xh. According to the orthogonality principle in (4.56), the intended vector (y−Xh) is
orthogonal to all X columns, which can be written as

XH(y −Xh) = 0⇔ XHXh = XHy. (4.57)

The orthogonal projection of y on C is unique.

If X has rank P , i.e, it is a full-rank matrix, the P column-vectors of X are linearly
independent and the matrix XHX of dimensions P × P is invertible. Consequently, the
intended solution is

h = XHX
−1

XHy (4.58)
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Figure 4.2: Image of X

In the particular case where N = P , X is squared and XHX
−1

XH = X−1. We find then
the solution for the case of a linear system of P equations and P unknowns.

If X has rank R < P , there exist P −R independent vectors u of dimension P such that
Xu = 0. The space N(X) generated by these vectors is the so-called kernel of X.

In this case, vector h is not unique. Let us suppose that h verifies (4.57). For every
u ∈ N(X), XHX(h + u) = XHXh + 0 = XHy and then vector g = h + u verifies
XHXg = XHy as well. Therefeore, there exist infinite solutions h to equation (4.57). All
these solutions are equivalent in the quadratic distance sense.

In conclusion, there is always at least a solution to (4.57), which is called least squares
estimator

h = X+y (4.59)

where X+ is the so-called pseudo-inverse of X.

For the particular case of the calculation of the complex amplitudes of the measured
signal (its poles have already been found by means of ESPRIT, explained in section 4.3.3),
the expression coincides with the one in (4.24).

4.5 Pre-processing: Noise whitening

In principle, the results of the ESPRIT analysis correspond to the complex frequencies of
the signal only if the additive noise is white (equation (4.13)). For wide-frequency bands,
including a noise whitening step in the signal conditioning may improve the precision of
the modal results [18]. Hence, a pre-processing based on noise whitening is applied to our
measured signals before the application of the high-resolution algorithm.

A method proposed by [15] consists in estimating the power spectral density of the noise
and deduce the correponding whitening filter from it. First, the Fourier transform of the
signal is calculated and a median filter is applied in order to smooth the spectrum. The
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inverse Fourier transform of this smoothed signal is calculated and then the autocovariance
function. The coefficients of the whitening filter are finally given by a linear prediction on
the autocovariance estimator. The original signal then is filtered by the calculated noise
whitening filter.

This median filtering and noise whitening process is part of the signal conditioning before
the estimation of the modal parameters and some examples of the effect on the signal will
be shown in section 4.7.

4.6 Estimation Error

In the method ESPRIT the dimensions of the subspaces must be chosen a priori and the
quality of the estimation depends on a proper choice of these parameters. The best choice
for the dimension of the signal space is the number of complex exponentials in the signal,
i.e twice the number of decaying sinusoids. Obviously, a larger value may also be chosen:
in this case, some of the noise will be projected on to the signal space, producing very weak
or highly attenuated components. On the other hand, a choice smaller than the number of
complex exponentials for the dimension of the signal space would introduce errors in the
estimations of the modal components. Therefore, it is advisable to estimate this number
before applying the algorithm. This is done by means of the technique ESTER (ESTimation
ERror)[15], [19].

The first steps of this procedure are in common with those of the ESPRIT algorithm
(section 4.3.3). The signal data x(t) is written in the form of a matrix Hankel in the same
way that S(t) was defined in (4.27)

X(t) =


x(t− l − 1) · · · x(t− 1) x(t)
x(t− l) · · · x(t) x(t+ 1)

...
. . .

...
...

x(t− l + n) · · · x(t+ n− 2) x(t+ n− 1)

 . (4.60)

The correlation matrix R̂xx(t) is computed (4.33) and then diagonalised so that the eigen-
values and the correponding eigenvectors (4.35) are calculated. Ordering the eigenvalues in
decreasing order naturally selects the ones associated with the modal signal: in principle, K
is the number of eigenvalues that verify λm > σ2. The ESTER criterion proves to be more
robust than this condition for the determination of K.

W(p) is defined as the matrix formed by columns {w1, . . . , wp} with p < n. The matrix
W↑(p) is defined by removing the first line of W(p) and W↓(p) is defined by removing the
last line of W(p). The following matrix Φ(p) is equivalent to Φ in (4.42) and (4.43)

Φ(p) = W↓(p)
†W↑(p) (4.61)

E(p) = W↑(p)−W↓(p)Φ(p) (4.62)
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The ESTER criterion defines K as the highest p maximising

J(p) = 1/ ‖E(p)‖2 . (4.63)

In other words, K is found as the highest number such that E(K) approaches zero, which
corresponds to the so-called rotation invariance of W.

4.7 Implemention and results

The high-resolution method ESPRIT has been implemented and applied to the measured
admittance signals with the aim of estimating its parameters (modal frequencies, damping
factors and complex amplitudes), which will be used in synthesis later on.

ESPRIT, as well as the previous estimation of the number of components has been used
in other musical instruments modal analysis. For instance, in [20], it is used to analyse
sympathetic modes in the concert harp. In the same way, a modal analysis of aluminium
plates is done in [18].

In this section, a study of the number of components of the admittance signals is pre-
sented first, and after that, the results of the application of ESPRIT are shown.

4.7.1 Estimation of the number of components

As it has been said in the previous section, one important matter is to determine the
number of complex exponentials of the signal. Therefore, before the application of the
high-resolution method, a previous estimation of the number of components is done by
means of the technique ESTER.

Before applying ESTER to the admittance signals, a first test of the implemented tech-
nique with well-known signals has been done. Some examples are included next to show
how it works. First, a synthetic signal made up with three decaying sinusoids and added
noise (signal to noise ratio SNR = 50 dB) has been created. The values of the frequencies
and their corresponding amplitudes and damping factors are shown in Table 4.1.

Parameters of the test signal

Frequency (Hz) 2000 2025 2100

Damping factor (s−1) 21 31 27

Amplitude 1 0.8 0.4

Phase (rad) 5.97 5.69 1.11

Table 4.1: Parameters of the sinusoids which compose the test signal.

The function J(p) is then calculated (4.63) (in this case, with a dimension of the sig-
nal+noise space equal to 100). A thereshold Jt has to be chosen in correpondance with the
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SNR, and the searched value K is considered as the highest value of p for which J(p) > Jt.
Here, the function J(p) is shown in Figure 4.3. Only the pair values are plotted, since K
represents the number of complex exponentials in the signal, this is, twice the number of
sinusoids. The red line represents the threshold (here, 102). As it can be seen, the highest
value of p that exceeds threshold is K = 6, which means that the number of estimated
sinusoids is 3.

Figure 4.3: Application of the ESTER criterion to a signal made of three damped sinusoids
and additive noise (SNR = 50 dB, see Table 4.1 for the other parameters). The value K = 6
(corresponding to 3 modes) is clearly detected.

Some other tests have also been done with synthetic signals composed by a higher
number of sinusoids. Specifically, the sinusoid parameters have been extracted from the
analysis ESPRIT of one measurement. The number of components of the synthetic signal
has to be always known, so that the robustness of the ESTER technique can be proved. In
the first example, (Figure 4.4), the analysed signal is composed by 15 sinusoids between 106
and 827 Hz and additive noise (SNR = 50 dB). The found value is K = 30, which coincides
with the number of complex exponentials.

It is interesting to observe how the algorithm behaves depending on the complexity of
the signal and its signal to noise ratio. In Figure 4.5, there is a comparison of the function
J(p) for signals with more or less number of sinusoids and different SNR. In the row (a),
the signal is made up with 20 components, in row (b) with 40 and in row (c) with 60. The
difference between the first and the second column is the SNR, which is 50 dB in the first
case and 40 dB in the second. For a signal with the same number of components, the fact
of decreasing the SNR makes the detection more difficult. For instance, in (a), either with
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Figure 4.4: Application of the ESTER criterion to a signal made of fifteen damped sinusoids
and additive noise (SNR = 50 dB). The value K = 30 (corresponding to 15 modes) is clearly
detected.

a SNR of 50 dB or 40 dB the estimation of components is well done (K = 40), but it is
more evident with a SNR = 50 dB than with a SNR = 40 dB. The effect is much more
obvious in (b). While the detection is quite clear in the case of SNR = 50 dB (K = 80), it
is harder to do in the case of SNR = 40 dB. All the values of J(p) are mixed and it is not
easy to define a threshold.

The number of components of the signal also appears to be an important factor that
makes easier the estimation. For the same SNR (we can observe the first column for
example), the distance between the correct value of p and the ”background noise” decreases
as the number of components of the signal increases. In Figure 4.5(c), even with a SNR of
50 dB, the algorithm does not find the expected K = 120.

After the mentioned tests with synthetic signals, the ESTER method has been applied to
the measured admittance signals. Measurements have been done with a sampling frequency
of 44100 Hz, so that the modal information goes up to 22050 Hz. Since the number of modes
of the body is very large (up to 250 vibrational modes according to [9]), and the results given
by ESTER for such a quantity of components and additive noise are not easy to analyse,
we have focused on the low frequencies, which is the rank that we are specially interested
in modelize. The processing of the high-frequency rank is adressed in section 4.7.3.

Therefore, we have decimated the admittances in a factor 16, so that the new sampling
frequency is 2756 Hz and the modal information goes up to 1378 Hz. The method has been
applied to 3 measurements of the normal body admittance (exciting the bridge next to the
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Figure 4.5: Application of the ESTER criterion to: (a) a signal made of 20 damped sinusoids,
(b) a signal made of 40 damped sinusoids and (c) a signal made of 60 damped sinusoids.
The SNR of the signals is either of 50 dB or 40 dB.

first string). Since the method works with temporal signals and we have the frequency
response of the admittance, we have done the reconstruction of the Hermitian symmetry of
the frequency response and then the inverse Fourier Transform. After that, the signal has
been decimated.

The resulting J(p) functions for the 3 measurements are shown from Figure 4.6 to 4.8.
Since we are working with real mesured signals, the estimation is not as evident as in the
previous case with synthetic signals. However, in the 3 studied cases the number of complex
exponentials found is either K = 42 or K = 44, so that the estimated number of sinusoidal
components of the signal in the range from 0 to 1378 Hz is 21 or 22.

4.7.2 ESPRIT results

As well as in the previous section, the high-resolution algorithm has been tested with syn-
thetic signals composed of damped exponentials and additive noise. The comparison be-
tween the true parameters of the synthetic signal and the parameters estimated by the
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Figure 4.6: Application of the ESTER criterion to an admittance signal with modal infor-
mation until 1378 Hz.

Figure 4.7: Application of the ESTER criterion to an admittance signal with modal infor-
mation until 1378 Hz.
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Figure 4.8: Application of the ESTER criterion to an admittance signal with modal infor-
mation until 1378 Hz.

algorithm is shown in Table 4.2.

Test signal parameters Estimated parameters

fk(Hz) 2017 2025 2036 2017 2024.80 2035.90

α(s−1) 21 31 27 28.38 30.39 27.41

ak 1.00 0.80 0.40 0.99 0.80 0.40

ϕ(rad) π/2(≈ 1.57) −π/3(≈ −1.05) −π/6(≈ −0.52) 1.57 -1.05 -0.52

Table 4.2: Comparison between the synthetic signal parameters and the estimated ones.
The SNR of the signal is 50 dB.

With regard to the estimation of the body admittance parameters, the analysed signals
correspond to those that have been measured with damped strings, i.e., the admittance of
the body without the effect of the strings. As well as we have seen in the previous section
for the ESTER technique, since ESPRIT works with temporal signals (and we construct
the admittance by spectral division of the acceleration and force measured signals), the
following process has been followed before applying the high-resolution algorithm:

• First, the reconstruction of the Hermitian symmetry of the frequency response of the
admittance because we are working with real signals.

• The inverse Fourier Transform in order to obtain the admittance temporal response.
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• A resample process. The factor may change depending on the higher frequency with
modal information we are interested in. Since the sampling frequency of the measure-
ment is 44100 Hz, if a factor 2 is applied, the new sampling frequency becomes 22050
Hz and the signal information goes from 0 to 11025 Hz.

• Preprocessing based on median filtering and noise-whitening (section 4.5).

A first test with measured signals has been done from the obtained results with ESTER.
A factor 16 has been applied to the body admittance signal and the signal space dimension
has been fixed to K = 46 (we have left a margin of 1-2 components from the results). The
result is shown in Figure 4.9, where the blue curve represents the real signal while the red
curve represents the estimated one.

Figure 4.9: Measured admittance decimated a factor 16 (in blue) and reconstructed signal
from the ESPRIT estimated parameters (in red).

We have also done a test with the same signal, but only decimated a factor 2, so that the
information goes up to 11025 Hz. The obtained curve is shown in Figure 4.10, superimposed
to the original signal. The signal space dimension has been expressly fixed to a large number
(K = 300) because it is preferable to have extra components and then eliminate them, than
to introduce errors due to a lack of components. The final number of components that
have been found in the 0-1378 Hz range is 21, which is the same number estimated by the
ESTER method for this frequency range. The result from 0 to 1378 Hz is plotted in Figure
4.11, so that it can be compared to the result with previous filtering (Figure 4.9). In this
second case, there is an improvement on the estimation, specially in the range of 0-600 Hz.

The effect of the pre-processing applied to the signal can be seen in Figure 4.12. The
curve in grey represents the power spectral density of the original signal, in yellow there is
the estimated autocovariance and the resulting signal after applying the whitening filter is
represented in red.

Since the repetitibility of the measurements done at the same point can be assured at low
and medium frequencies (as it has been shown in section 3.1), a comparison of the estimated
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Figure 4.10: Measured admittance decimated a factor 2 (in blue) and reconstructed signal
from the ESPRIT estimated parameters (in red).

Figure 4.11: Measured admittance decimated a factor 2 (in blue) and reconstructed signal
from the ESPRIT estimated parameters (in red).

frequencies for 3 different measurements next to the sixth string has been done. The results
are represented in a histogram (Figure 4.13), which represents the number of times that
a particular frequency appears estimated in the analysis. The results are presented with
a frequential resolution of 5 Hz, this is, if an estimated frequency is equal to 150 Hz and
another one is 108 Hz, they will be represented in the same histogram bin.

Therefore, the maximum value in the y axis should be normally 3, since it is the number
of different measurements that we are taking into account. However, near 270 Hz there
is a component that is found 4 times. This means that in one of the measurements, the
algorithm finds two components separated less than the taken resolution (5 Hz). If the
number of components until 2200 Hz is about 38, in 15 of 38 cases (39.47 %) the components
are separated less than 5 Hz and in 13 of 38 cases (34.21 %) they are separated less than
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Figure 4.12: Effect of the signal conditioning.

10 Hz.

Figure 4.13: Histogram that shows the frequencies that appear in the ESPRIT estimation.

4.7.3 High-frequency processing

As frequency increases, damping also increases, resonances are thus less pronounced, modes
overlap and the frequency response tends to a smooth curve. In the high-frequency domain,
the vibration can be described as a diffuse wavefield [18]. Since modal overlap is significant
and it becomes increasingly difficult to recognise and fit individual modes, another method
should be used instead, both for analysis and synthesis.

For the processing of the high frequencies, some methods are suggested. For example,
Skudzryk [21] proposes the mean-value method and identifies a structure by its character-
istic admittance, which is equivalent to the admittance of an infinitely extended structure.
Equation (2.28) is replaced by an integral formula that involves the modal density and the
structure total mass.
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Woodhouse [9] [11], whose experiments have served as a basis for this work, uses a
statistical approach in the same way that he does with angles θk (section 3.2.1). Modal
parameters from 1400 Hz on are generated by pseudorandom processes that fit a certain
value range and a certain modal density. Thus, he synthesizes a ”statistical guitar” at
high-frequency rather than trying to fit the exact behaviour of a particular guitar.

In our case, as it can be seen in Figure 4.10, estimation results are satisfying for the high-
frequency range. Then, we do the parameter estimation with the signal space dimension
fixed to a large number (if there are extra components, we can eliminate them afterwards).
It should be noticed that, in this case, the parameters found at high-frequency have no
physical signification because of modal overlap. Nevertheless, since the reconstruction of
the signal with the estimated parameters is quite convincing, this method is at least as
justifiable as the statistical approach.
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Chapter 5

Frequency domain synthesis

This chapter is devoted to the implementation of the Frequency domain synthesis [9]. The
principle of the method has already been described in section 2.2.1. Here, the synthesis of
plucked guitar sounds taking into account one or two polarizations of the string is explained
and illustrated with examples.

5.1 String parameter determination

For the string characterization, some physical parameters are required as it can be seen from
the analytical expressions of the string impedance (2.13) and the modal frequency values
(2.15): tension T , bending stiffness B, wave speed c, linear density ρ and string length L.
The manufacturer’s web site 1 provides values for some of these parameters, like tension or
linear mass density. Anyway, we are going to measure and deduce all the string parameters
as far as possible.

Tension, linear mass density

First, the string length and its linear mass density have been measured in the laboratory
by means of a tape measure and a balance. The process has been done for the first (E4)
and the sixth string (E2) with the following results:

ρE4 =
mass

length
=

4.1× 10−4

1.035
= 3.96× 10−4kg/m

ρE2 =
mass

length
=

4.96× 10−3

0.925
= 5.36× 10−3kg/m

The required length for calculating the linear mass density refers to the total string length
(which is different to L), not only the segment between the fixed ends. The measured string

1http://www.savarez.fr/

61
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length between the fixed ends is L = 0.65 m. As expected, the linear mass density of the
sixth string, made of a stranded nylon core overwound with copper wire, is higher than such
of the first string, nylon made only.

The next step is to find the string tension T . According to the expression

c =

√
T

ρ
, (5.1)

T = ρc2

T can be obtained from the linear density and the wave speed. If the fundamental frequency
of the string is a known value f0, c can be easily calculated by means of

c = 2f0L. (5.2)

The obtained values are the following:

TE4 = ρE4 × 2× f0E4 × L = 3.96× 10−4 × 2× 329.6× 0.65 = 72.5N

TE2 = ρE2 × 2× f0E2 × L = 0.0054× 2× 82.4× 0.65 = 61.53N

Inharmonicity

The frequencies of the partials of string instrument sounds are not exactly harmonic. They
can be calculated as

fn = nf0
√

1 + βn2, (5.3)

where n is the partial number, f0 is the fundamental frequency and β is the inharmonicity
coefficient, whose value depends on the string design and parameters. This inharmonicity
is particularly caused by stiffness of real strings [22]. That’s why bending stiffness B is
the parameter related to the inharmonicity of stringed instruments. It can be determined
through several methods. For instance, it can be calculated from measurements of overtone
frequencies, fitted to the well-known theoretical result for a stiff string [11]. First, a chosen
note is analysed by the sonogram method. The modal frequencies are required to a higher
accuracy than that given by the spacing of the FFT bins from the sonogram, since this is
based on short FFT analysis. A more accurate value of each frequency can be found by
analysing the variation of phase as a function of time in the relevant frequency bin. If the
signal in this bin is dominated by a single decaying sinusoid, the phase should vary linearly
in time with a gradient which can be fitted by linear regression. This gradient can be used
to correct the rough frequency estimate given by the bin-centre frequency.
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In our case, we calculate the inharmonicity through the analysis of the recording of a
plucked note. The note has been played by breaking one hair, at 20 cm of the bridge saddle.
The algorithm consists in successively estimating the frequence of each partial around fn,
(fn+1 = 2fn). Figure 5.1 shows the detection of the partials frequency. Let us suppose
that a point is plotted to show the ratio fn/n as a function of harmonic number n. In the
absence of bending stiffness the points would lie near a horizontal line in this plot (string
frequencies would only be disturbed away from exact harmonic relations by the influence of
coupling to the body). In a real guitar string, what is seen is a parabolic curve, since the
effect of bending stiffness (assumed to be small) leads to a progressive sharpening of higher
overtones, such that the nth partial is given by the following approximation [11]:

fn ≈ nf0
(

1 +
Bπ2

2TL2
n2
)
, (5.4)

where T is the tension and L is the length of the string. If values fn/n are plotted as a
function of n2, what in fact is seen is that they can be approximated by a straight line with
a nonzero slope (Figure 5.2). For this purpose, we do linear regression using least squares.

Figure 5.1: Detection of the frequency of the string partials, circled in red.

The obtained straight line (in red) can be expressed as a function of n2, so that

P (n2) = P0 + P1n
2, (5.5)

where

P0 = f0 P1 =
f0Bπ

2

2TL2
. (5.6)
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Figure 5.2: Ratio of frequency to harmonic number n as a function of n2 (in blue) for the
sixth string (E2) of our test guitar. The obtained straight line from linear regression is
plotted in red.

Then, B can be easily calculated from (5.6). Figure 5.2 shows the values of the harmonics
of the sixth string, which corresponds to E2. In this case, with the tension calculated above,
B = 45.32× 10−6Nm2. Regarding string properties, [11] shows the values provided by the
manufacturer’s web site. For the sixth string, the bending stiffness is B = 57× 10−6Nm2.

Damping

The damping factor for each string modal component is also required. It is one of the
hardest string properties to determine reliably, since it is the sum of several contributions.
In this sense, two ways for calculating it have been carried out. First, a model proposed in
[11], which includes three parameters associated with three damping mechanisms: viscous
damping due to movement of the string through the air, internal friction and energy loss
associated with the bending stiffness. The expression for the loss factor of the kth mode of
the string is

ηsk =
T (ηF + ηA/wk) +BηB(nπ/L)2

T +B(nπ/L)2
, (5.7)

where ηF , ηA and ηB are the coefficients related to ”friction”, ”air” and ”bending” respec-
tively, whose values are given for each string in the cited article.

Otherwise, guitar string damping factors have also been searched on the literature.
Decay rates for nylon and steel guitar first string have been found in [23] for the first 10
partials. As it is shown in Figure 5.3, damping factors are significantly different depending
on the material. For nylon strings, partials decay faster than for steel-made ones.
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Figure 5.3: Comparison between measured decay rates in s−1 of the 10 first partials of a
steel-made and a nylon-made first string (E4). The values are extracted from [23].

Steel strings are usually used in acoustic guitars, so we are interested in the nylon-
made ones. Since it can be observed that their values follow a linear progression, the decay
rates for the string harmonics above the 10th have been calculated by means of a linear
extrapolation. The result is shown in Figure 5.4, where the decay rates for the harmonics
until 11025 Hz of the first guitar string E4 (329.6 Hz) have been plotted.

Figure 5.4: Decay rates in s−1 for the first guitar string. The 10 first values are extracted
from [23] and the other ones are calculated by linear extrapolation.
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Once the decay rates αk are obtained in s−1, they have to be expressed in terms of
ηk = 1/Qk to fit equation (2.13). Given a damped resonance, the factor Qk, the peak
resonance wk and αk are related such that

ηk =
1

Qk
=

2αk
wk

. (5.8)

Equation above (5.8) allows to express damping either dimensionlessly or in s−1. We
can compare, thus, damping values calculated from (5.7) and those found in [23]. Both
options appear to be quite similar, although there are some noticeable differences. Values
calculated from (5.7), in red, have a parabolic tendency while the other ones have been
linearly extrapolated (in blue). Furthermore, values corresponding to the first partials are
higher for the measured case than for the calculated case. Besides, the results of (5.7)
change significantly when bending stiffness changes.

It is complex to provide a fully convincing predictive model regarding to damping,
since the physical mechanisms are not understood in sufficient detail. Only very limited
information on such questions is available in the current literature [24]. However, several
issues concerning damping should be studied in detail since this factor has a strong impact
on synthesis, as will be shown later.

Figure 5.5: Comparison between damping factors measured for the first string by Tre-
fethen et al. [23] and those calculated by means of equation (5.7) with values proposed by
Woodhouse [11]

.

5.2 Synthesis results

5.2.1 Synthesis in 1D

The first step of the synthesis process is to synthesize the bridge admittance. According
to our synthesis principle, the bridge impedance is the sum of the string and the body
impedances at the coupling point (2.2). Since both the estimation of the body admittance
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parameters via high-resolution analysis and the body admittance synthesis are done in terms
of inertance (â/f̂ instead of γ̂/f̂), the sum of the body and string contributions is made in
terms of f̂/â instead of f̂/v̂. That’s why equation (2.13) is multiplied by a factor 1/jw, in
order to transform velocity to acceleration (its derivative).

A comparison between the impedance of an ideal string and a real string for the 6th
guitar string is plotted in Figure 5.6. The real string impedance, in red, shows the effects
of damping and bending stiffness. Damping increases with frequency (Table 5.2 lists the
damping factors of the 10 first resonances in this example) so each partial decreases com-
pared with the previous. The effect of bending stiffness can be seen with the mismatch
between the resonance frequencies in the ideal and the real case. The first harmonics coin-
cide in both cases but, as frequency increases, the difference between harmonics increases
too.

Figure 5.6: Synthesized impedance of the 6th string with the parameters of Table 5.1 and
the damping factors listed in Table 5.2.

f0(Hz) B (Nm2) T (N) ρ (kg/m) c (m/s) L (m)

82.4 57 · 10−6 61.53 5.36 · 10−3 107.12 0.65

Table 5.1: String parameters used in the string impedance synthesis of Figure 5.6

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9
f (Hz) 82.40 164.81 247.22 329.64 412.08 494.54 577.01 659.52 742.06 824.63

α (1/s) 0.6052 0.6109 0.6176 0.6256 0.6355 0.6477 0.6627 0.6811 0.7031 0.7294

Table 5.2: Damping factors of the 10 first resonance frequencies of the impedance of the
real string of Figure 5.6.

With these values, string impedance has been synthesized and then, added to the body
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impedance. The coupling effect between string and body can be clearly seen in Figure 5.7,
where the body admittance is plotted superimposed to the total admittance. Since it is the
synthesis of the admittance of the bridge at the 6th string, the peaks, which represent the
string contribution, are situated at approximately multiples of 82 Hz.

Figure 5.7: Synthesized body admittance (in red) compared with the synthesized total
admittance at the bridge (in blue), at the 6th string.

Figure 5.8 shows a comparison between the measured and the synthesized acceleration
at the bridge in temporal domain. In Figure 5.9, the same comparison is done in frequency
domain. A note has been plucked by breaking a hair at 20 cm of the saddle and an
accelerometer has captured the acceleration signal at the bridge (right next to the 6th
string). The synthesized acceleration, thus, corresponds to a plucked note at a distance of
20 cm from the saddle. This information has to be introduced in the transfer function to
the plucking point (2.17).

Figure 5.8: Comparison between the measured and the synthesized acceleration in one
dimension: temporal domain.

As it can be seen, the general appearence of the synthesized signal is relatively well
in comparison with the measurement. However, one can state that string damping is not
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Figure 5.9: Comparison between the measured and the synthesized acceleration in one
dimension: frequency domain.

well-reproduced. In the spectra, damping of the individual string modes of the measured
signal and the synthesized one mismatch. In the temporal representation, it can clearly be
seen that the synthesized acceleration decays well before the measured one does, which is
also confirmed by the sonogram representation in Figure 5.10.

Figure 5.10: Comparison between the measured and the synthesized acceleration in one
dimension: sonogram.

String damping has been calculated by means of a model proposed by Woodhouse,
introduced in section 5.1, in which 3 parameters associated with 3 damping mechanisms
are related through equation (5.7). Here, the values of ηA, ηB and ηF have been directly
taken from the proposed values for the 6th string in [11]: ηA = 1.2, ηB = 2 × 10−2 and
ηF = 2×10−5. We can deduce from (5.7) that a high value of the parameter that represents
viscous damping due to the movement of the string through the air, ηA, increases damping
at low frequency. This is exactly what happens in our case (it is clearly seen in the sonogram
comparison of Figure 5.10).
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Since the current values of damping do not fit our test guitar, we have manually adjusted
them in order to improve the synthesis, with particular emphasis on ηA. The final values
are ηA = 0.1, ηB = 4 × 10−2 and ηF = 10 × 10−5. Figures 5.11, 5.12 and 5.13 show the
results of the synthesis with the changed damping coefficients.

Figure 5.11: Comparison between the measured and the synthesized acceleration in one
dimension with the string damping coefficients modified : temporal domain.

Figure 5.12: Comparison between the measured and the synthesized acceleration in one
dimension with the string damping coefficients modified : frequency domain.

With regard to inharmonicity, the comparison of spectra shows that the frequency of the
partials matches fairly well. The similarities at high-frequency, however, are very poor, but
the ESPRIT procedure used to obtain a representative body behaviour at higher frequencies
should not be expected to match the actual guitar in detail. One may observe peak-splitting,
that can be caused by coupling through the guitar body vibration [11] [25], as well as
additional peaks, that may be attributed to non-linear effects [11] [25].
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Figure 5.13: Comparison between the measured and the synthesized acceleration in one
dimension with the string damping coefficients modified : sonogram.

5.2.2 Synthesis in 2D

For two dimensions, the synthesis process is similar to that already described in one di-
mension. The main difference is that the body admittance/impedance becomes a matrix
(section 2.4.2) and the string impedance too: the string behaviour is rotationally symmetric
so that the corresponding impedance matrix is simply the string impedance from equation
(2.13) multiplied by a 2× 2 unit matrix.

In this case, we obtain a normal and a tangent acceleration, that can be calculated in
the following way:

γ̂chY = jwv̂chY = jw × (Ych11 + Ych12)×H × f̂ (5.9)

γ̂chZ = jwv̂chZ = jw × (Ych21 + Ych22)×H × f̂ (5.10)

where γ̂chY and v̂chY are the Fourier transforms of the acceleration and the velocity at the
bridge in the normal direction, γ̂chZ and v̂chZ are the equivalents in the tangent direction,
H is the transfer function to the plucking point and f̂ is the Fourier transform of the force
(modelled as a step function). Ychij with i = 1, 2 and j = 1, 2 are the terms of the calculated
coupling matrix, which has the contributions both of the string and the body. Figure 5.14
shows the synthesized acceleration in the normal and the tangential directions. As expected,
the tangential contribution is lower than the normal one. The difference is about a factor
2.

The comparison between the synthesis in two dimensions and the acceleration measure-
ment is shown in Figures 5.15, 5.16 and 5.18. String damping has been modified to fit
our test guitar, as in the previous section. There is a slight improvement in the temporal
envelope, as well as in the sonogram and the spectrum. Figure 5.16 shows a detail of the
spectra at low-frequency.

Although damping factors have been modified, there are still some disparities between
measurement and synthesis. Several hypothesis are suggested in order to explain the differ-
ences. It can be tentatively attributed to the detailed boundary conditions at the ends of
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Figure 5.14: Synthesized normal and tangential accelerations in temporal domain.

Figure 5.15: Comparison between the measured and the synthesized acceleration in two
dimensions with the string damping coefficients modified : temporal domain.

Figure 5.16: Comparison between the measured and the synthesized acceleration in two
dimensions with the string damping coefficients modified : frequency domain.

the string, where slight rolling on the fret and/or the bridge saddle can result in different
effective lengths for the two polarisations. The difference of effective lengths is not large:
it is of the same order as the diameter of the string. However, this is enough to produce
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Figure 5.17: Comparison between the measured and the synthesized acceleration in two
dimensions with the string damping coefficients modified : zoom at low frequencies.

Figure 5.18: Comparison between the measured and the synthesized acceleration in two
dimensions with the string damping coefficients modified : sonogram.

an effect to the instrument vibration. On the other hand, the presence again of non-linear
effects which create additional peaks (it is presumed to involve excitation of longitudinal
string motion by the transverse vibration [11]).

The fact of having added tangential vibration should be perceptually evaluated, after
having included the radiation effects, detailed in the next section. This evaluation will not
be done in this work, but it fully deserves to be studied in the context of the project PAFI.

5.3 Acoustic radiation

The synthesized sounds obtained so far correspond to acceleration or velocity signals at the
guitar bridge. If a more realistic synthesized sound wants to be achieved, acoustic radiation
must be added in order to obtain pressure signals. The radiation impedance Zrad(w) (5.11)
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is the ratio between the radiated pressure to the environment and the velocity at a given
frequency.

Zrad(w) =
P̂a(w)

v̂(w)
(5.11)

Zrad has been measured by means of the following experimental set-up. A shaker is
used to provide a white noise excitation at the same place where the normal admittance
measurements have been carried out (Figure 3.11). At the same time, the acceleration is
measured with an accelerometer placed right next to the shaker. The radiated pression
is recorded with a microphone Schoeps Digital (Figure 5.19), which consists of a cardioid
capsule MK-4 and a digital microphone amplifier CMD-2. The measurement has been done
in a recording studio room at the acoustics laboratory of Télécom Paris-Tech 2.

Figure 5.19: The Schoeps Digital microphone used in the radiation impedance measurement.
It consists of a cardioid capsule MK-4 (left) and a digital amplifier CM-2 (right).

There are several configurations to record a classical guitar and different sound qualities
of the instrument can be obtained depending on the configuration used. It is common to
place the microphone at the level of the neck to the body juncture. We have situated it
at approximately 80 cm from the instrument and at 30o from the perpendicular plane to
the guitar. Pressure and acceleration have been recorded in independent channels during
several minutes. The processing of the temporal signals consists in dividing them into Nt

frames, multiplying each frame with a Hanning window and calculating its FFT. For each
frame, the ratio between pressure and acceleration is calculated and averaged. Then, the
impedance is smoothed by multiplying the temporal signal with half a Hanning window.
Figure (5.20) shows the measured radiation impedance in function of frequency for the test
guitar Ibanez 2005.

21, rue Barrault, 75013 Paris
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Figure 5.20: Radiation impedance measured in the recording studio room for the test guitar.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This work has been devoted to the synthesis of guitar pluckings, mainly from the method
proposed by Woodhouse [9] [11], and its comparison with measurements made in the labora-
tory with a test guitar. It is therefore a interdisciplinary work, which combines the acoustic
measurements field and the digital signal processing, both analysis and synthesis fields.

With regard to the admittance measurement protocol and the obtained admittance sig-
nals, the results are mostly satisfactory. The guitar suspension has not added new compo-
nents in the rank of frequencies of interest and the reproducibility of the measurements has
been ensured until 8500− 9000 Hz (Figure 3.9). However, the task of impacting at the very
same point in all measurements has been more difficult, especially in the two-dimensional
ones, because of the swinging produced by the guitar suspension.

In the current experimental set-up we have a single acceleremoter, both for one-dimensional
and two-dimensional measurements. In the case of two-dimensional measurements, we have
performed four hammer impacts in different configurations (three if reprocity property is
considered, since Y21 = Y12). Although the single accelerometer has proved adequate to
carry out the two-dimensional measurements, with two accelerometers (and the two corre-
sponding channels) the four configurations are reduced to two. Y11 and Y21 can be simul-
taneously obtained from a normal impact and Y22 and Y12 from an impact parallel to the
soundboard (Figure 3.11).

The normal admittance measurement can be done for any of the guitar strings, since
the accelerometer can be placed right next to each string and there is space enough for the
hammer to hit. In the case of the parallel components of the two-dimensional admittance,
though, the accelerometer can only be right placed for the 1st and the 6th string, which are
at the ends of the bridge. For this reason, we were unable to measure the elements of the
admittance matrix for the 2nd, 3rd, 4th and 5th string.

The matter concerning the reconstruction of the admittance matrix from 2 measure-
ments remains an open question. Further work should be done on it since it would make
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the experimental part easier in case the bridge geometry is not helpful and there is no
possibility to use other measurement material.

Regarding signal analysis, ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) is the algorithm that has been used to estimate signal parameters.
In this way, a parametric representation of the admittance at the bridge can be obtained
and a selective modification of the parameters can be done, which is particularly interesting
for the instrument makers since there is no need to build a new guitar every time you want
to make a change.

The result of the estimation depends on a proper choice of the dimension of the sub-
spaces. A choice smaller than the number of complex exponentials of the signal would
introduce errors in the estimation of the modal components. In this sense, we have studied
the ESTER (ESTimation ERror) method and, from our experience, we can conclude that
doing a previous estimation of the dimension of the signal space (the signal number of com-
plex exponentials) is not an essential requirement but it is advisable. If put into practice,
the ESTER technique results improve as the SNR of the analysed signal increases or the
number of sinusoidal components of the signal decreases. In order to improve ESPRIT
estimating results, a previous conditioning of the signal based on noise whitening has to be
done as well [18].

Parameters regarding strings are as important as those regarding the body. The method
to calculate inharmonicity and bending stiffness B proves to work fairly well and it is a sim-
ple way to automate the process from a measurement of a plucked note. The model to
calculate damping, however, is not so clear. Finding the value of the parameters that com-
pose the damping model (5.7) is not obvious. The parameter concerning viscous damping
due to the movement of the string through the air, ηA, introduces a dependency on fre-
quency: a high value of ηA provokes a high damping particularly at low frequencies, so that
the fundamental frequency and the first partials decrease rapidly.

We have applied ESPRIT to all the frequency range. At low-frequency, the general
appearence of the synthesized signal is quite good in comparison with the measurement
(although damping coefficients are not all well-reproduced due to the implemented damping
model). At high-frequency we have applied ESPRIT as well despite being aware that it has
no physical sense: modal overlap becomes important as frequency increases. In fact, from
5KHz on, the synthesis result has not been satisfactory, nor was the ”statistical approach” of
Woodhouse [11]. Besides, as frequency increases, non-linear effects, such as the occurrence
of extra peaks, should be also taken into account.

6.2 Future work

The conclusions of the current work lead us to the future work, which can be summarized
in the following points:

• As for the experimental set-up, other configurations could be tested. The light swing-
ing of the guitar makes it difficult to always impact at the very same point. Besides,



suspending the guitar is the best way to isolate the instrument. It is suggested to
hold the guitar with foam supports at the edges of the soundboard.

• With regard to the measurement process, trying with the wire-break method proposed
in [11], which allows to carry out the measurements closer to the contact point between
the string and the bridge and does not depend on the bridge geometry. It is based on
the principle that the acceleration response to a step function of force is the same as
the velocity response to an impulsive force.

• In two-dimensional measurements, study in depth the possibility of reconstruction of
the admittance matrix from 2 measurements.

• It would be interesting to separate the synthesis model in two regions, low-frequency,
where there is a weak modal overlap and high-frequency, where there is an important
modal overlap and applying a signal model of the kind ESM (4.1) loses its physical
sense. Thus, an alternative method should be explored for this frequency range.

• Validate the model also from a perceptual point of view.
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Appendix A

Transverse wave equation for a
string

We start the study of the free transversal vibration of a string from the forces exerted to
an infinitesimal string segment ds (Figure A.1). Since the gravity does not appear in the
sketch, the sketch plane corresponds to a plane perpendicular to the gravity. F (x, t) and
F (x + dx, t) are forces in the direction tangent to the string and are associated with the
initial tension F0.

Figure A.1: Sketch of an infinitesimal section of a string and the forces exerted on it.

If we consider a uniform string, then the linear density is constant, µ(x) = µ0[kg/m].
Since dy is small, ds ∼= dx and the mass of the segment dm ∼= µ0dx. The transversal
net force, restoring segments ds to its equilibrium position, is the difference between the y
components of F at the two ends of the segment, so Newton’s second law becomes

µ0dx
∂2y(x, t)

∂t2
= F (x+ dx, t) sin θ(x+ dx, t)− F (x, t) sin θ(x, t) (A.1)

The term on the right can be rewritten as
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F (x+dx, t) sin θ(x+dx, t)−F (x, t) sin θ(x, t) ≡ Ft(x+dx, t)−Ft(x, t) =
∂Ft(x, t)

∂x
dx, (A.2)

where the subscript t indicates transversal.

If the longitudinal movement is not considered, then, longitudinal forces Fl must be
balanced. So,

Fl(x+ dx, t)− Fl(x, t) = 0⇒ F (x+ dx, t) cos θ(x+ dx, t) ' F (x, t) cos θ(x, t) ' F0. (A.3)

Therefore, Newton’s second law can be rewritten in the form

µ0dx
∂2y(x, t)

∂t2
' F0 [tan θ(x+ dx, t)− tan θ(x, t)] = F0

{[
∂y(x, t)

∂x

]
x+dx

−
[
∂y(x, t)

∂x

]
x

}
,

(A.4)
where the right term can be expressed as function of the second spatial derivative of y(x, t)

∂2y(x, t)

∂x2
=

1

dx

{[
∂y(x, t)

∂x

]
x+dx

−
[
∂y(x, t)

∂x

]
x

}
. (A.5)

Consequently, the equation for transverse waves in a vibrate string becomes

µ0
∂2y(x, t)

∂t2
= F0

∂2y(x, t)

∂x2

∂2y(x, t)

∂t2
= c2

∂2y(x, t)

∂x2
, (A.6)

where c ,
√
F0/µ0.
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Appendix B

Natural modes of vibration in
discrete systems

B.1 Conservative system

A conservative system is a system subjected to forces that do not dissipate or add energy,
so the total energy of the system is conserved. For a conservative system we can write the
equation of motion in the matrix form

Mẍ+ Kx = 0, (B.1)

where M is the inertia or mass matrix, K is the stiffness matrix and the coordinates vector
x = (x1, x2, . . . , xn). The motion corresponding to this case is known as the undamped
free vibration. If a conservative system is imparted some energy in the form of initial
displacements, velocities, or both, the system will vibrate indefinitely, because there is no
energy dissipation. M and K are positive definite matrices [26].

We wish to have solutions of (B.1) separable in time and of the form

xi(t) = φiqi(t), i = 1, 2, . . . , n (B.2)

which implies that the amplitude ratio of any two coordinates during motion does not
depend on time. Introducing (B.2) in (B.1) we obtain

Mφq̈(t) + Kφx = 0, (B.3)

which implies n equations of the type

n∑
j=1

mijφj q̈(t) +
n∑
j=1

kijφjq(t) = 0, i = 1, 2, . . . , n. (B.4)

The time dependence can be separated as follows:
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− q̈(t)
q(t)

=

∑n
j=1 kijφj∑n
j=1mijφj

, i = 1, 2, . . . , n. (B.5)

The right side of (B.5) is independent of time, and, because of the left side is independent
of index i, both sides must be equal to a constant. Let it be a positive constant w2, so that
(B.5) leads to the relations

q̈(t) + w2q(t) = 0, (B.6)

n∑
j=1

(kij − w2mij)φj = 0, i = 1, 2, . . . , n. (B.7)

The problem of determining the constant w2 for which a set of homogeneous equations has
a nontrivial solution is known as the eigenvalue problem. The trivial case in which all φj
are zero must be ignored, because it represents the static equilibrium case. The eigenvalue
problem as given by (B.7) can be written in the matrix form

Kφ = w2Mφ. (B.8)

A nontrivial solution is possible only if the determinant of the coefficients vanishes,

∆ =
∣∣K− w2M

∣∣ = 0, (B.9)

where ∆ is called the characteristic determinant. Expanding the determinant we obtain
an algebraic equation of nth order known as the characteristic equation whose roots are
called eigenvalues. Since M and K are symmetric and definite positive, the roots w2

i of the
characteristic equation are real and positive [26]. The positive square root of these values
are the natural frequencies wi of the system.

Introducing the eigenvalues in (B.8) we obtain n equations of the type

Kφ = w2
rMφ, r = 1, 2, . . . , n. (B.10)

For each w2
r , (B.10) has a nontrivial vector solution φ(r) called the eigenvector or modal

vector associated to rth mode. Column vectors φ(r) consists of elements φ
(r)
i which are

real numbers determined within a multiplicative arbitrary constant, because αrφ
r is also a

solution of the homogeneous equation (B.8). It follows that although we cannot determine

the amplitudes φ
(r)
i uniquely, we can determine the ratio between the elements of any vector

φ(r). Hence, for a given natural frequency wr, (B.10) will furnish a vector φ(r) which has
a unique shape but arbitrary amplitude. A process of normalization is usually done: the
value of one of the elements of φ(r) is specified and the remaining n−1 elements are adjusted
according, thus determining uniquely the modal vectors. The resulting vectors are called
normal modes. Vectors can be normalized with respect to M (or K if desired) by setting
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φ(r)
>

Mφ(r) = 1. (B.11)

Each normal mode can be excited independently of the other. If φ(s) is a column vector
representing a normal mode different than the mode φ(r), the orthogonality properties are
given by

〈
φ(r),Mφ(s)

〉
= φ(r)

>
Mφ(s) = δrs〈

φ(r),Kφ(s)
〉

= φ(r)
>

Kφ(s) = w2
rδrs

(B.12)

where δrs is the Kronecker delta [26].

The modal vectors can be arranged in a square matrix of order n, Φ, and because of the
orthogonality property, normal modes can be used to uncouple the equations of motion of
the system by using the linear transformation

x(t) = Φq(t), (B.13)

where q(t) are the normal coordinates of the system. If the used orthogonal properties are
normalized regarding to modal mass mr instead of the identity matrix (B.11),

〈
φ(r),Mφ(s)

〉
= φ(r)

>
Mφ(s) = mrδrs〈

φ(r),Kφ(s)
〉

= φ(r)
>

Kφ(s) = krδrs
. (B.14)

When the system is subjected to a force field F, (B.1) can be written as

q̈(t)
〈
φ(r),Mφ(s)

〉
+ q(t)

〈
φ(r),Kφ(s)

〉
=
〈
φ(r),F

〉
. (B.15)

Equation above becomes a system of n one degree of freedom uncoupled oscillators, which
can be expressed as

q̈r(t) + w2qr(t) =
fr
mr

, r = 1, 2, . . . , n (B.16)

where fr is the generalized force and represents the projection od the force on the r mode.

B.2 Dissipative system

The movement equation of a dissipative system can be written as

Mẍ+ Cẋ+ Kx = 0, (B.17)

where C is the damping matrix, symmetrical and nonnegative. In the same way that in
the undamped system (B.1), x can be written according to the eigenvectors basis of the
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associated conservative system. If a force F is introduced and the orthogonality properties
are applied (B.14), the generalized modal displacement qn are solution of

q̈n + 2ζnnwnq̇n + w2
nqn =

fn
mn
− 2wn

∑
n6=m

ζnmq̇m, (B.18)

where ζnn are the damping coefficients (ζnn) of the n mode defined by

〈φn,Cφm〉 = 2ζnmmnwn. (B.19)

ζnn, also noted as ζn, are the damping coefficients already mentioned. The intermodal
damping coefficients are specifically the ζnm coefficients when n 6= m. In the general case,
C is not diagonalizable and equations remain coupled because of the intermodal damping
coefficients. The system of equations (B.19) could be simplified if the coupling caused by
damping was null, this is, if ζnm was a diagonal matrix.

This hypothesis is the so-called proportional damping approximation and it can only be
applied to a weakly dissipative system, where modal frequencies are sufficiently separated
[26]. In this case, the influence of the intermodal coefficients compared to the spectral
content can be neglected. The matrix C can be then expressed as a linear combination of
M and K and its projection on the eigenvectors basis is diagonal (demonstration can be
found in [26]). Proportional damping approximation yields

〈φn,Cφm〉 = 2ζnmmnwnδnm (B.20)

and the system of n uncoupled oscillators becomes

q̈n + 2ζnmwnq̇n + w2
nqn =

fn
mn

. (B.21)
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