ESCOLA TECNICA SUPERIOR D’ENGINYERIA
ELECTRONICA I INFORMATICA LA SALLE

PROJECTE FI DE MASTER

MASTER EN TELECOMUNICACIO

Embedded and DSP
design tools integration
for Xilinx FPGA
development

ALUMNE PROFESSOR PONENT

Carles Estevadeordal Serra Ricard Aquilué

ACTA DE L'EXAMEN
DEL PROJECTE FI DE CARRERA

Reunit el Tribunal qualificador en el dia de la data, l'alumne

D. Carles Estevadeordal Serra

va exposar el seu Projecte de Fi de Master, el qual va tractar sobre el tema seglent:

Embedded and DSP design tools integration for Xilinx FPGA development

Acabada l'exposicié i contestades per part de I'alumne les objeccions formulades pels
Srs. membres del tribunal, aquest valora I'esmentat Projecte amb la qualificacié de

Barcelona,

VOCAL DEL TRIBUNAL VOCAL DEL TRIBUNAL

PRESIDENT DEL TRIBUNAL

Agraiments

M’agradaria agrair al meu ponent, el Ricard Aquilué I'ajuda donada durant la realitzacio
d’aquest projecte.

Index

Y o1 i - ot PSRRI v
RESUM ittt e 1
1 - INEPOAUCTION .ttt ettt e s ee e sab e s bt e e sabeeesaneeea 3
2 —Tools and design MethodolOgy........ccouvuiiiiiiiiiiieic e 5
2.1 = OVEIVIEW ciiiiiiiieritt ettt et e e s e s s s b b e s e e tr e e s s s s nsbaneeeee s 5
2.2 = XIlINX FPGA ..ottt ettt ettt ettt e s e st be e st eenbe e s bt e e beenaee 9
2.3 = Xilinx design and simulation tOOIS.........cccevviiiiiiriiiie e 11
2.4 — Matlab and Xilinx System GeNeratorccccccueeeiviiieei i e 17
2.4.1 — Matlab Simulink and Xilinx System Generator integration............ccecuee.n. 17
2.4.2 — Matlab Simulink System Generator factS........ccccevvviieeiiiiieeeniee e 22

I I L] 1= o USSRt 29
I R O o [T | I D =T 1= U PPPPRUPUPPRR 29
3.2 — FSM implementation with Matlab........cccoeeiiiiiiniiiii e 32
3.3 —Exporting procedure for XilinX ISEcoooiiiiiiiiiiiiieeiiieecerieee e ee e 35
3.4 — Exporting procedure for XilinX XPScoiiiiiiiiiiniiieeieee e 38

4 - TeStS aNd RESUIES c...eeeiiiiieiee et s 49
4.1 - Simulations and test BENChES........ocuiiiiiiie e 49
B.2 = FSIM T@SE ittt ettt ettt et e s s e st e e 50
4.3 - Field experiments and teSES. ...t e e e 53

5 - RESOUICES SPENT. ...ttt e e 59
6 = CONCIUSIONS ..ttt s e st e st e e s snb e e sbeeesaneeesnneeeas 61
FIBUIES INUEX...eeiiiiiiieeieiitie ettt s st se e e st e e e s st e e s saba e e e ssatbbeeessssaeessnsreeeeanns 63
(€] (o 11 USRI 65
2] o1 [ToT={ 0T o1 1V 2P PUPTRRRRPP 67

Abstract

The aim of this projecte de final de master is to design a firmware with VHDL and the
Matlab System Generator for Xilinx DSP of a test application, which mixes several of
the Xilinx tools to create the design. The target FPGA is a Spartan 6 from a SP605 test
board.

In addition, this memory contains the main characteristics of the firmware design, a
description of the tools used and the methodologies available to create the Firmware.
Furthermore, it provides some theoric background and in some cases, it is useful as a
guide to implement a similar solution to the one proposed.

Furthermore, there is a description of the findings in the System Generator design field
and also with the interaction in the Xilinx FPGA design flow. There have been described
the tests which were performed to ensure the correctness of the design.

Vi

Resum

Per aquest projecte, primer de tot es fa una descripcié de les capacitats de la
tecnologia d’FPGA i les eines emprades. S’ha donat especial rellevancia a la tecnologia
de celes i les capacitats de sintesi de les FPGA Xilinx ja que influeixen en gran mesura
en la metodologia de disseny.

L’objectiu d’aquest projecte es crear un disseny RTL i un firmware en VHDL per a un
FPGA Xilinx emprant Xilinx System Generator a I'entorn Matlab Simulink. Tot i aix0, per
aconseguir aquest objectiu s’ha portat a terme un exhaustiu estudi de I'entorn de
disseny utilitzat. Ja que, com en la majoria d’entorns de disseny dels fabricants
d’FPGAs, la interaccidé entre varis programes que treballen en diferents aspectes del
disseny firmware és complex. Per aix0 s’estudien les interaccions entre aquests
programes i les seves capacitats especifiques dins del procés complet de disseny SoC.

Aquesta memoria dona especial rellevancia a I'estudi del Xilinx System Generator y
dels passos necessaris per exportar i simular els dissenys resultants. Una de les raons
principals per aquest interés és el fet que aquest entorn aporta un bon nivell
d’abstraccio al disseny logic facilitant I'accés a aquest a gent acostumada a treballar en
el disseny de sistemes de processat digital del senyal en entorn Matlab Simulink. Tot i
aix0 aquesta guia no pretén substituir a I'ajuda propia del System Generator, sind ser-
ne un complement, per aixo també es donen algunes indicacions de com accedir a
aguesta sempre que sigui necessari.

En quant al System Generator, s’ha fet un estudi detallat dels conceptes de disseny,
blocs i funcions disponibles per realitzar aquests tipus de dissenys. Addicionalment,
s’han detallat els métodes d’interconnexid i el sistema de data rates que existeix entre
diferents blocs; ja que el sistema de busos i tipus es diferent dels utilitzats per els
llenguatges HDL i representen la principal font de problemes utilitzant System
Generator.

A més a més, s’ha comprovat que les maquines d’estats fetes en Matlab amb un arxiu
m-code integrat dins del System Generator s’implementen correctament. Ja que
aquesta metodologia de disseny és interessant degut al fet que és més dissenyar una
maquina d’estats d’aquesta manera és més senzill i menys propens a errors. Per aixo
s’han dut a terme suficients simulacions per assegurar que la implementacio és
correcte.

Finalment, també s’han realitzat tests en una placa SP605 per assegurar que el disseny
es sintetitza correctament i per validar la metodologia de disseny utilitzada per crear el
firmware.

1 - Introduction

For this project, first of all, a brief description of the FPGA technology, tools and
capacities used is made. Special attention to the Xilinx cell technology and device
implementation capabilities is done, since it significantly affects the design
methodology.

The main objective of this project is to create an RTL design and a firmware with VHDL
for a Xilinx FPGA using the Xilinx System Generator in a Simulink Matlab environment.
Nevertheless, to achieve this objective an accurate analysis and study of the design
environment is required. Due to the fact that, as in most FPGA vendor ISE’s, the
interaction between various programs which work in different aspects of the IC design
is complex. Therefore, the interaction process, tools and capabilities are also among
the main fields of study of this thesis.

This thesis also does an exhaustive exploration of the Simulink design methodology
integrated with Xilinx System Generator and the steps needed to export and simulate
the resulting design. This design methodology offers very good abstraction capabilities
and offers a familiar interface for those used to work in digital signal processing with
Matlab. Nevertheless, this document does not pretend to replace the System
Generator help, but being a complement, therefore some tips to access to this help
whenever necessary are provided.

Regarding to the System Generator, a detailed study of the design concepts, blocs and
functions available to perform this type of implementations is done. In addition, the
interconnection methods available and data rates between blocks have been detailed-
since the busses and types are different from the ones used by HDL languages and they
are the main source of design errors when using System generator.

Furthermore, the correct design of a FSM, using an m-code file integrated into the
System Generator design, is also viewed; given the fact that it is far simpler and less
error prone to design a FSM from a script like language such as Matlab, than in VHDL.
Additionally, an extensive simulation has been done to assure that the correct
implementation has been also performed.

Finally, lab tests using the Xilinx SP605 board were performed to ensure that the
design is properly synthesised and to validate the methodology used to achieve the
firmware.

2 - Tools and design methodology

2.1 - Overview

Xilinx was the first viable FPGA company, it was founded in Silicon Valley in 1984 [5]. In
2010, Xilinx has around 3000 employees and leads the FPGA market with 1800 million
S revenues in 2010, which represents more than the 50 % of the PLD market [6]. It
develops products for many markets form common electronic devices to the
aerospace industry. Their current set of products also include a digital design
development software, a wide range of IP cores which may be embedded indo designs
made using Xilinx FPGAs and complementary electronic products such as test boards
and kits [13].

From the first FPGA made by Xilinx, the XC2064 (1985) [7], to actual FPGAs, the
complexity and features have been increased dramatically, as it can be seen in Figure 1
and Figure 2; where the Basic logic blocs of XC2064 and Spartan 6 FPGA family are
shown, which is the FPGA used for this project. Nevertheless, the main FPGA
characteristics enabling the low-level implementation of logic functions from HDL
designs, which enable to embed high-speed custom designs into a programmable
microchip, remain the same.

...

COMB.
LOGIC

A
B
INPUTS
D

o

Figure 1. XC2064 Cell.

T 0
OE:0 &5 a4 g g
25
— 1ce Lo
— K
CaRARYT4 OSFINTD u O
. _‘l QERNT e
L EF:]D— s —
—-D_ il — T e
¥ B
CKg
o oCRsL
| ||| i
DX [=]
= L . A

]

OSFIHTDY

oOSRINHT1
:]D_—| ER

—T —

CME

D .
CECIC———Agal O r s

“§4q3

?
5

T g QE=co

c Ko
e D ' .
— 5
oLk 0 ERIMTY
R

33%4“

CEC
SR
- . [" I —=B
BER1—REal Q5
Q5 [=] aQ
L1l cE
OSFIHTDY
OSFIHT
‘:D—E'::D—j =
— —T
BE= l
= " |:D_ [
3 BER [
PLE A = o - = 5
CE
HH %
OSFIHTD
OEFIHT
— —| ER
E—
g \
AE +

Figure 2. Spartan 6 SLICEL [12].

Modern FPGAs offer a very high degree of versatility having integrated in those devices
a superset of technologies such as microprocessors, microcontrollers and IPs. As a
microprocessor, Xilinx offer the Microblaze microprocessor which is implemented with
standard blocks [8], adding the easiness of programming and versatility of a
microprocessor to the high processing capabilities and speed of a FPGA. Regarding to
the Picoblaze; it is a very compact, full featured, 8 bits micro-controller that facilitate
to integrate control capabilities to the FPGA design [9]. In some FPGAs, there have
been implemented even hard coded microprocessors such as PowerPc
microprocessors in some Virtex FPGA series. Xilinx also offers a wide base of IPs of own

craft- 296 made by Xilinx and 299 made by 3" party vendors which add a lot of power
and programming easiness to FPGA design trough the Xilinx System Generator [10].

Xilinx offer a wide variety of products, which range from the programmable devices
and development cards to the software necessary to synthesize complex electronic
solutions. This full set of tools associated to the FPGAs is what makes FPGAs such a
powerful and versatile device. Xilinx ISE enables the design and simulation, and the
test boards allow the development and testing of the designed application to finally
implement that solution into a production board, in an error prone environment. In
Figure 3 a custom board designed to hold a Virtex 5 FPGA can be seen.

TITLELL

[ONIEER) L1 =|

@) .27

Figure 3. Virtex 5 board.

Due to the high performance and capabilities of Xilinx FPGAs it is possible to find them
in many advanced commercial electronic applications such as motherboards, PCle
Cards, video acceleration cards, mobile phones, etc...

In Figure 4 there can be seen a Xilinx FPGA used as a main controller of a computer
motherboard.

Figure 4. Motherboard using a Xilinx FPGA.

2.2 - Xilinx FPGA

The FPGA used to test this project is a Spartan-6 XC6SLX45T, this FPGA is installed in a
Spartan®-6 FPGA SP605 Evaluation Kit test board. This test board is a stable and
reliable development environment that allows the testing of the FPGA main features.

FPGA: XCESLX45T SMA CLE
FGEGAB4 Spartan-§ SFP (Ditterantial) Status LEDs

GTP RefCLE
SMA

SysamACE CF

dx 1D High-spaed Difterantial GPIC (SMA)

Sarial ISB-UART

A
USE JAG Download :‘Ut4\ s

Powar OnsOn

Moda Switches:
Etharnct Status LEDs

& DIF Switchas

Etharmet Rusgb 1 . - L. L PROG 2rd Rosst Push Buttons
T : F s
q e v 3
I
: i o

10 10001000 Etheenat PHY
Systom ACE Mode Salactions
Vidoo DVIFVGA

Powar Monitoring
Suspand "

HC EEPROM

User CLK Low-power GIP Transcaisar

1 4z Push Buttons
{(ProgrSeir Haadser) Socket

Figure 5. Spartan®-6 FPGA SP605 Evaluation Kit test board.

The Spartan-6 XC6SLX45T is a 45 nm low-power copper process technology FPGA with
a core voltage of 1.2V [11]. This FPGA can is can perform quite sophisticated tasks
even holding a small microcontroller or microprocessor such as the ones provided for
Xilinx as IPs, in addition to other high performance designs such as high rate signal
processing. A brief description of its resources can be seen at Figure 6.

Number of Slice Registers 54,576
Number of Slice LUTs 27,288
Number of bonded I0Bs 296
Number of DSP48A1s 58
Number of PLL_ADVs 4

Figure 6. Outline of Spartan-6 XC6SLX45 resources.

The Spartan®-6 FPGA SP605 Evaluation Kit is designed to be connected to into a
computer PCle slot and expands the functionality of the FPGA providing a wide set of
interconnection ports; which allow to use the FPGA in conjunction with other designs
that provide any of those ports.

Among the ports provided in the SP605 there are: a PCle port, a USB JTAG port, SMA
connectors, Multi-Gigabit GTP MGTs Transceivers, a SFP Module Connector, a
10/100/1000 Tri-Speed Ethernet PHY, an USB-to-UART Bridge and an IIC Bus [6]. A
detailed description of those ports, their interfaces and configuration options can be

consulted at the Xilinx, SP605 Hardware User Guide. As an outline, in Figure 7 a block
diagram of the connection ports and banking of the SP605 is provided.

LED 1-Lane I/Fs: PCle 125 MHz Clk Part of
) PCle Edge Conn, SMA REFCLK FMC-LFC
Do Seiten o | |sma xa sFp SFPCLK Expansion | | SFF ICBus
FMGC-LPC FMC GBTCLK Connector
T f ‘
JTAG JTAG |-
System ACE L] l | Main IC Bus
MPU /F DED | MGTs | Bark 0
an

. USB UART and

JT. Lis
he s 25V . |usewminie
USB JTAG Logic Connector
and USB Mini-B
Connector Spartan-6
Bfrglff XCESLX45T-3FGG484 Bgrgly B . | BVI Codec and
DDR3 : U1 . [DV Connector
Component - *
Memory 10100/ 000
Bank 2 Ethemet PHY,
Pushbuttons 25V : Status LEDs,
DIP Switch : : : 3 L and Connector
GPIO Header = l 1 k DVI IIC Bus Parallel Flash
LED, SPI x4, Part of FMG-LPC
DIP Switzh SPI Header | | Expansion Conn.

= Level Shifter UGs26_01_110400

Figure 7. SP605 Connectivity features and banking [14].

10

2.3 - Xilinx design and simulation tools

The set of tools used for this project include Xilinx ISE, Matlab with Xilinx System
Generator and the Xilinx ISE Simulation Tool.

They all have a place in the design process and the main design tool continues to be
the Xilinx ISE, since any design made with Matlab has to be imported as a VHDL or
Verilog entity and the final pin out configuration has to be done with Plan Ahead. In
addition, the designs made with Xilinx System Generator cannot handle all the
functions that a VHDL can do, therefore they are intended to simplify some design
parts but in most cases, it may be necessary to integrate them into more complex
VHDL designs.

In Figure 8 the Xilinx ISE main window is shown, it allows to add the System Generator
generated VHDL entities with the Add Source... option, then they may be integrated
and simulated in the design as desired.

15 Project Navigator (M.53 Pocuments\Projectes\Master (\Master s - [Design Summary]

G main Preject Status (06/10/2010 - 11:51:43)
|V & 8 trplemeritanbon) B Smulatien S i B Propasties rr—— [revm—— [Parser Lrronss rer——
4] | Hiesarchy s] Module Level Utiization [T — e |implcmentation State: Placed ared Reusted
; @ %] Timing Constraints ¢ 1
Lof) ? Target Device: w5 11404 Errors:
o Product Version: 15€ 12.1 Warnings:
= Design Geaak e Roating Resuits: S5l Compie ety Rouied
a el ok e - I
. e ” Taming Constraints:
a esis Miessages [e— Solemielns «Final Taning Scare: |0 esm Becartt
< [Tramsletion Messeges - .
= & Map Messages
lace |r;j:o.ne Messages Device Utikzation Senmary S|
ming Messages k - - 2
s b sEnrty Sher Lo (ikration Used Avadable Utiatson Natels)
N Al M, Mumber of] $3,120 o
Dunincfpues. P of Shom LT] =560 "
u] Synthess Sepont I !
Feport Mmises of oonies Sees] 11640 o
Murber oFLUT Pl Flog pars used]
Mesrises of bersted 1083] ™ [
Mumber of RAMBIGE LFIFOE 15] 15 %
= || | Mumber of RA 106 LFIFO 186 18] 312 %
il - & b wembes of BL [1 %
: z o Enable Message Filtering s of 3 o e %
| el Cptenal Desig Sumenary Contents . s —
| #JS e i Shaw Clock Heport nberof Lo o 0 b |
EY) Implement Design Shaw Failing Corstraings Vosmber of BECANS 0 [[
3 Gener egrammang File Shvow Warmings it | 1
B Conhg s ca Mumbes of BUPHCES [n o
jidr w Ervors i 4 et
& Ansipe Mermses of BUFOS] 5 o
Mumber of BUFIDOSS [* %
arbes of BUFRE [5 0%
Mumiser of CAPTLRES] [
b Sert | B3 Pewgn | Fhes |10 Lbvanes|] 5 Dasign Suste InfCeniter b Devign Summary (%]

=1

U Corese |G Erers | 1L Wernnos | (6 Frd i Fles et

Figure 8. Xilinx ISE Project Navigator main window.

The Xilinx System Generator integration into Matlab Simulink is the main field of study
of this project and a sample project can be seen in Figure 9; which shows as a
background the standard Matlab window. At its central right part the Simulink library
browser can be seen; where the blocks to design with System Generator are taken
from. At the central left part of the figure, a design window with a basic design made
generable for a Xilinx FPGA.

11

To start a design in Matlab Xilinx System Generator with Matlab R2009a and Xilinx ISE
12.1 Installed; the first step once Matlab has been opened is to open the Simulink
Library dialog. The second step is to open or create a design. Once a design window is
opened, the blocks from the Simulink library can be dropped into the design to be
used; most of the synthesizable blocks are found in the Xilinx libraries called: Xilinx
Blockset, Xilinx Reference Blockset and Xilinx XtremeDSP Kit. Marked with number four
in Figure 9, it can be seen a basic design with the System Generator block at the bottom
and a basic synthesizable design isolated by a Xilinx input and output from a standard
Simulink Source and Display sink.

) wate ZRORROOSS -8 x|

dow Help
2 @ 9 o | § rf B | @ | CunentDirectory:| C\Users\Carles\Document:\MATLAR | (]
Shortcuts [2] Howto Add 2] Wi

Current Directory w0 2 x| Command Window w0 7 x| Workspace “goeox

@ % |l « Documents » MATLA | g @ Newto MATLAB? Watch this or read Getting Started. x| @ o= %R [| Seck) B
[Name Date Modifie e 2 Name Value Min
& ans <Dl xISgSocketServe..
Ll usapoat LA 12, MEE DS..
W] Simulink Library Browser I 3 I l=[@] =
" [= + | Entersearch v\”—E[/
Libraries Library: Simuiink/Sinks ‘ Search Results: (none) \
| 5 Simuink z
W untited * EE=) oot IssI Bl =1 o= B rstraswse
File Edit View Simulation Format Teols Help - Continuous
Discontinutties =
o z \ - E)“ Outt)|§| Scope
DFEHE {BE -5 = > 100 [Nomnal - e 1D
- Logic and Bit Operations
ipmane et
Math Operations
Model Verfcation ToFile To Warspace .
= T ~ Model-Wide Utilities
—»_—». =] Pors 8 Subystens - “Dax
- s
Gaisway Out v Signal Aftributes i -5
- Signal Routing -t
Sinks
Sources.
* - User-Defined Functions
-~ Addttional Math & Discrete
@] acrospace Blockset
-] Communications Blockset
L 9 ~ 8] Control System Toolox
Details W Data Acquistion Toolbox _
-t
Ready 100% odet5 4 Block Description x
El Simulink/Sinks/Scope
Select a file to view details
Showing: Simulink/Sinks
4 Start| Ready OVR

Figure 9. Matlab main window with an open Simulink Library dialog and a System Generator
project.

Although it is possible to perform simulations of the design in Matlab, it is also
necessary to use the Xilinx simulation Tool. It is also possible to perform simulations
using a special version of ModelSim, despite the fact that ModelSim is a very versatile,
scriptable and powerful simulation tool that is used by many FPGA vendors, it comes
as an additional package and it was not available for this project.

If not set by default, the selection of ISim as the default Xilinx ISE simulator is quite
tricky; since, if another simulation software is chosen and the license is not correctly
set, the program will just fail to execute. To set ISim as the default ISE simulator first it
is necessary to right clicking on the design FPGA model instance and choose Design

12

Properties, once the Design Properties dialog is open, ISim can be set in the Simulator
option; as marked in the Figure 10.

: 4 ISE Project Navigator (M.53d) - C:\Users\Carles\Documents\MATLAB\fft_FSM_ISE\fft_fsm_cw.ise - [fft_fsm_tb.vhd]

DaHF i sDbxwal 1 PAEE,2RA 2ET2 L L)@
Design > & 1
T | View: @ @Implementﬁﬁon 2 -- Compan
e i 5 e 3 -— Engineer
&l |erlrjc y a
= =] fft_fsm_cw _ E
el = A xcOshd5t-3csgaBe @ Design Properties |i|
s [ﬁan fft_fsm_cw - structural (fft_fsm_cw.whd) F5M I
e g synth_reg_reg - behav (fft_fsm.vhd) Mame: fft_fsm_cw B =
= <\ fft_FSM.mdl :
—_— Location: C:\Users\Carles\Documents\MATLAB\fft_FSM_ISE
: Working directory: C:\Users\Carles\Documents \MATLAB\fft_FSM_ISE
J— Description: 3
— W
Project Settings
Property Name Value 2
Top-Level Source Type HOL E
¥ | B2 No Processes Running
T | Mo single design module is selected. Product Category Al hed e tyr
= % Design Utilities Family Spartanb E Le. x
= Device HCBSLXAST [+] 2 -
A Package CsG4as fto tn
m Speed -3 E
Synthesis Tool KST (VHDL/Verilog) E | 8
Simulator ISim (VHDL/Verilog) E
Preferred Language VHDL E o
Property Specification in Project File | Store all values E
Manua LCammnila Nedar] e
QK] [Cancel] [Help]
@ Start | B3 Design luj Files |D Libraries | ' = —

Warnings
Figure 10. Choose ISim as Xilinx ISE simulator.

Once the correct simulation enviroment is used, the simulation option in the project
design tab may be choosen. At the simulation tab, the different test benches of the
design are available to be chosen. In the processes window situated below, the
simulator can be launched by double clicking on the corresponding optio of the tree; in
Figure 11 the Behavioral Check Syntax has been made prior to the Simulate Behaioral
Model option is chosen which will launch ISim to view te simulation of the current
testbench.

The type of sumulation available (Behavioral, Post-Translate, Post-Map or Post-Route)
depends on the compilation level achieved in the implementation tab, so prior to
simulate it is necessary to run the processes needed for the desired level of simulation
in the implementation Tab.

It has been observed during the simulation and exporting process from System
Generator a bug in which the Test Bench choosen in the simulation tab is allways
oberriden by the generated with System Generator, a workaround to solve this
problem is to remove the ISim folder of the project root folder.

13

' Design +0 8 x
View:) i:!;l:E Implementation @ (& Simulation

Behavioral o Izl
Hierarchy

- 1B fft_fsm_cw 2 1
= G xchshed5t-3csgd84

- g fft_fsm_th - behavior (fft_fsm_tb.vhd)
'y synth_reg_reg - behav (fft_fsm.vhd)

o B || |5 =

3 Mo Processes Running

Processes: fit_fsm_tb - behavior

E}‘y' ISim Simulator
- PAE) Behavioral Check Syntax
ol Simulate Behavioral Model

L.]

H(88|28 | v

|E Start | B2 Design | U] Fies | [Libraries

Figure 11. Xilinx ISE- process to open a simulation with ISim.

Once the simulation process is launched, as seen in Figure 11, the simulation
compilation process will start and an ISim instance will be launched which
automatically runs the selected testbench. In Figure 12, ISim can be seen performing a
simulation of a full adder. As it can be seen ISim and ModelSim share a similar aspect,
configuration options and functionality; therefore, it is easy to adapt to this tool for
those who come from other simulation environments.

14

[File Edit View Simalstion Window

Layout Melp
*d & D 0X®| 0 o @ = = PR AA
Source Fles

[Adderenchoihd
sddesvhal
aic_L1E4:

vhd

vhid

gy | e P |

Dot wcfy

B conscle | @ Breaimonss

B4 FredinFiesfenin |Gl SearchResis

Simm Tiene: 1,000,000 ps

Figure 12. ISim simulation window.

15

16

2.4 - Matlab and Xilinx System Generator
2.4.1 - Matlab Simulink and Xilinx System Generator integration

The design environment for System generator embedded in Matlab Simulink is a
graphical tool that allows an easy and quick design of common communication
devices; it simplifies very much the work of bit scaling and IP interconnection, since
these matters are almost automatically handled by the Simulink System Generator

tool.

File Edit View Simulstion Format Tools Help

D &H& » 100 [Nomal B EE BER®
3-Stage

o »n cie
. L [STl
il Hi Rate 1:€ Interpolator E
o) Convert xn_im «im = out
i xn_in

CIC Filte st g
P B T

al
e Convert1
3-Stage MCode1

YrYyvwy
v 7
E]

ql Hi Rate 1:€ Interpolator

CIC Filtert

CIC Filter3.

2-Stage
cic

8:1 Dedimator

FrTTEET;

CIC Filter2

Ready 100% oded5

Figure 13. Xilinx System Generator Simulink sample design.

The Simulink environment simplifies the design process very much; since it is very easy
to connect busses and wires between blocks and the sizing of the buses is done
automatically, just some occasional casts performed over buses and the adjustment of
the sample rate are required form time to time. Matlab software also allows to easily
group blocks and connections to organize the designs and even to allow reusing
common used modules in your designs.

The main design process using Xilinx System Generator is based in using the Xilinx
Blocksets accessible from the Simulink Library browser. They represent, in the majority
of the cases, IPs available with Xilinx ISE and the design process consists in aligning,
connecting and configuring them to achieve the desired result. The Xilinx Blockset
library of the Simulink Library browser can be seen at Figure 14.

17

ESimulinkLibraryBerser . . ¥ Tumessbendl Wl B S s 53

File Edit View Help

O = « Enter search term - M

Libraries Library: Xilinx Blockset/ndex | Search Results: (none) I Most Freguently Used Blocks

ShEE p Accumulator
Generator =

Addressa

Shift Register

+E Video and Image Processing Blockset i

= T Xilinx Blockset

-~ Basic Elements

AddSub

m

-~ Communication BitBasher

- Control Logic
- DSP CIC Gompiler 2
Bl B g ChMult
- Data Types ey D 0 5
s e A Clock Enable
- Math CORDIC 4.0 ChipScope obels s
- emory
-~ Shared Memory Complex

Clodk Probe Concat

~3looks D Multiplier 2.1
= E Xilinx Reference Blockset B

- Communication PRy E Constant o
-~ Control Logic
..DSP B
- Imaging
- Math
- | Xilinx XtremeDSF Kit D

[|

+ E *PC Target =

Showing: Xilinx Blocksetindex

Convelution
Encoder 7.0

DDS Compiler
40

Counter

m

mEFQEEREM

DS5P48 maoo 2.
o

DSF4s DSF48 Maoo

mmE[VRE

Figure 14. Xilinx Simulink Blockset Library.

In addition to the huge functionality achievable with the Xilinx blocks, it is possible to
import VHDL entities and m files with the Black Box and the M-Code Xilinx blocks to
use them in the Simulink design. On the contrary, for the system generator it is not
possible to instantiate standard Simulink blocks apart from the Demux, From, Goto and
Mux blocks. Nevertheless, it is possible to use them for simulation purposes.

As told before, the basics of designing a project with System generator consists in
placing in the Simulink environment, blocks taken from the Xilinx block sets to
elaborate a logic design. The simplest type of design is composed by a Xilinx System
Generator block and it is divided per se in two parts with the Gateway In and Gateway
Out blocks- one part which is synthesizable and one part which is not. In Figure 15 a
simple design with the synthesisable part of the design in the blue circle.

The synthesisable part of the design must be separated from the non synthesisable
part of the design by Gateway In and Gateway Out blocks from the Xilinx block set and
in the synthesisable region, the blocks must be from the Xilinx blockset allowing few
exceptions as described in section 2.4.2.5 — Can common Matlab Simulink blocks be
synthesized by System Generator?.

The non synthesisable part of the design can contain any type of block and it can be
used to compare the signal and to generate complementary test structures. This part
of the design will be ignored when the generation step to map the design to the FPGA
is performed.

18

" B untitled * ESER)

File Edit Wiew Simulation Format Tools Help
DeME& BB =4[22 » =100 [Noma]|
r
ﬂ‘u p| In Out]
Sine Wave Gatewsy Gategfay Cut IEmpE-
s'
i
System
Generator
Ready (100 % oded5

Figure 15. System generator basic design.

Once the design is made and all the pins and buses are closed it can be simulated as a
normal Simulink model with the play button and it can be exported to the Xilinx ISE
with the System Generator block. The System Generator block offers various options
to configure the type of exported

S

n System Generator: Tutoriall =]lL=

project desired, even allowing to

— Compilstion Cption:

choose a bitstream to program the oA
FPGA. It is also possible to choose the oL Nt
Part:
target FPGA, the folder where to (5 Spartand xcBsixdt-4csgans
store the project and the HDL Target drectory :
language to describe the generated s = N
Synthesis tool Hardware description language :
blocks and TestBenches. xsT < o =
|:| Create testhench Import as configurable subsystem
With the system generator dialog it is || cockig ostion
. FPGA clock period (ns) : Clock pin location :
also possible to tune up some
10
features Of the Slmu“nk blOCkS SUCh ultirate implementation : DCM input clock period (ns)
as the Simulink system period and Sk g] |o
. . i X [] Provide clock enable clear pin
the Block icon display; which is very

According to Block Seftings

useful to debug data type errors,

. . . Simulink system period [zec) : 1
allowing to view the input and the ;
. . Block icon display: Default -
output data types which is a common :
source of conflicts when |enerate | [orc | [apdly | | cancel | [o |

interconnecting blocks. Figure 16. System Generator Dialog.

19

Despite the fact that working with System Generator blocks simplifies very much the
logic design process, it is still necessary to take care of the bus data types and sizes in
addition to the sample time. These parameters are what enables system generator to
instantiate the IPs and to manage the clock and data synchronization trough modules.
Since some IPs expect specific data types and the sample time may change in some
blocks. Double clicking on some blocks that have the ability to change those
parameters allows editing the output of those blocks, as seen in the dialog of Figure 17.
Nevertheless, the input is generally fixed, and the output is automatically set by the
bloc; therefore, special blocks are provided to perform sample time and data type
conversions.

3¢ Gateway Inl (Xilinx Gateway In) =

Gateway in block. Converts inputs of type Simulink integer, double
and fixed point to Xilinx fixed point type.

Hardware notes: In hardware these blodks become top level input
ports.

Basic Implementation |

Qutput type:
7 Boolean @ Signed (s comp) () Unsigned

Mumber of bits 16

Binary point 14

Quantization:

() Truncate @ Round (unbiased: +/- Inf)
Overflow:

7i Wrap @ Saturate) Flag as error

Sample period 1

Simulation
Cwverride with doubles
K J I Cancel ‘ I Help I I Apply
[.

Figure 17. Bus type edit dialog.

Additionally to the descriptions given in this thesis, Xilinx System Generator has a very
complete built in help and block description, since this work does not pretend to
substitute this source of information, whenever needed it is possible to obtain this
type of information right clicking over the desired block in the Simulink Block Library or
in the design and clicking at the help option of the menu; as seen in Figure 18.
Moreover, from the System Generator menu all the Xilinx blocks can be consulted.

20

File

fdn Debog D)

Desitzg Window Help

| B Simulink Library Beowser

- e . e

Fie EQt Vew M
0=

Enter search tem

Lieary: Xanx BocossControl Logic ||

2O r x| Wodapace

-

Blaik B

HEmRE=EE
%

File fon View Go
LM

Index search || Favortes

Debag

Desttap Windew el

L AL LY

@ Down Samole
osra

W DSPLS Macro

% O5P4d macro 2.0
@ osrans

@ nmpasE

o Dl Foet 2am
s EO Bricmsenr

—

MCode
This: bilock is hted in e fallowing Xilin Biocksed ibranes: Control Logis, Math. and
Inir.

The Xikree m bleek |u a :enﬂmer far a:ulnnq a
‘within Simulink.
eadcLtns the M 1] CGl:l‘nhb bdack outpats dunnq a Snmn‘nl: simulation The same
code it ¥ g HOLMerilog
e braechware i3 gvnurm

The block's Simulink imesface is dertved from the MATLAE fumcticn signature, and from
Eiock mask paramatars. Thees is one input port for aach parameter 1o the functicn, and
ant autput port for sach walue the function rtums Padt names and ardenng camespand 15
the names and ordenng of paramelers and retum valves.

The MCede biock supports a limied subset of the MATLAE languags that (s usshd for
implementing s, finite state machines and control kogic. Users who
wish 10 imploment camplnte MATI.»\E algorithms on Sxed-point FPGA hatdware should
consider using the Xibue AccelDSP™ Synthesis Todd. AcceiDER can be used to create
custom IP blocks, from high-level, fosting-point MATLAB, for use i combmatson with the
o DSP Biockaet

E’m block has the following throe primary coding quidelines that must ba
owed

ar: suppied MATU\B tuncsan
Tha block

Al Block inputs and oulputs must be of Xilinx fxed-point bype.

+ The block must have a1 keast ona autput port.

+ The code for the block must exist on the MATLAS path of in the same direcieey 88
the directory as the model that uses the block

This Rixpic: Cornpaling MATLAB inta an FPGA shows thire examples of fanctions for the
MCode block. The st example (#50 descrbed below] consists of a function x1mae

- I Vidow and iage recmaaing B T Evpression
= i s Blociant W Fast Founier Transfoem 7.1
|- Banic Eiwrmacss roateel
- Commusatin o @0
[ool Lege: riR Compiler 5.0
- ose 1evee @ From FIFO
[~ Dt Types. O From Register
s Legimi @ Gateway In
- E W Catoway Out
ey i | [B Indeterminate Frobe
BI M" i cuir | @ interieaver Deintarlaaver 6.0
Inueste
B s b i S
" sPRE | 9 ‘o-Simulation
& IES BT » B
L Bk Devcrpton
Abinx BlocksetControl LogicMCode: Pass Fout values 128
METLAS functen for evalupien i Xinx fued-pent tyoe. The it
The sutput
Poraorie backied et nguents of e fuackn. 4 Bubaryabom Ganerator
Showing: [Te—
A St

Figure 18. System Generator Blocks Help.

21

2.4.2 - Matlab Simulink System Generator facts

When designing with System Generator toolset, some questions may arise on how to
resolve common design aspects or about the System Generator environment itself. In
order to aid solving these questions this section gives some explanations to the most
common ones.

2.4.2.1 - What does the green System Generator blocks mean?

These blocks, in the current version of the Simulink Library, are formed by complex
encode and decode modules which are licensed cores, available for purchase on the
Xilinx website. Some of them have limitations related to supported devices where they
may be implemented.

2.4.2.2 - What does the brown System Generator blocks mean?

These blocks allow the input or output of signals into the instantiable design, logically
separating the compilable part by the System Generator of the design, from other
blocks of the Matlab Simulink Libraries. Some of these blocks are the Input, the Output
or the Signal Probe.

2.4.2.3 - Can m-code files be added to a design made with System Generator?

m-code blocks can be added with the Xilinx special block called M-Code Block which
allows the association of an .m file to de block. This block generates the necessary
connections to enable the interconnection of the M-Code Block with the rest of the
design.

2.4.2.4 - Can VHDL or Verilog code be added to a design made with System
Generator?

A self contained piece of VHDL or Verilog code may be added to a Simulink System
Generator design with the Black Box Block. Once the project has been saved to a
directory, the VHDL or Verilog code file has to be copied to the project directory root.
The third step to be performed is to add a Black Box Block to the design, which will
open a window to select the desired VHDL or Verilog file. After the selection is made
the block will automatically generate the necessary ports in order to allow the
interconnection of the code input and output signals with the rest of the design.

The Black Box Block does not correctly compile VHDL entities with generic values, this
issue may be solved by manually changing, with the search and replace tool of a text
editor, the generic variable name descriptor for the desired value and removing the
generic declaration from the entity declaration.

22

2.4.2.5 - Can common Matlab Simulink blocks be synthesized by System
Generator?

In general, Simulink blocks may be added to a design for simulation purposes;
nevertheless, they cannot be mapped to hardware by the System Generator. However,
there are some blocks which are fully supported and can be mapped to a hardware
device which are the Demux block, the From block, the Goto Block and the Mux Block.

2.4.2.6 - Can mixed simulation with Simulink and ModelSim be performed?

The ModelSim block allows simulating the design using ModelSim after a simulation
made with Simulink is performed; this feature may be useful in order to compare the
results between the Simulink design and the resulting implementation.

In addition, the Create Testbench option may be selected when opening the System
Generator, this will create at compile time an HDL testbench and the necessary script
files for ModelSim. This is a very useful feature that simplifies verification process of
the generated hardware. Furthermore, the files generated by the System Generator
may be modified to allow specific hardware tests.

2.4.2.7 - What are the Xilinx Simulink blocks and how are they implemented?

They mainly implement Xilinx IPs. The Xilinx DSP blockset for Simulink is provided by
over 90 Xilinx DSP building blocks. They include a wide variety of building blocks in
order to allow the implementation of almost any design. Among these blocks there can
be found from simple bocks such as adders, multipliers and multiplexers; to far more
complex blocks such as FFTs, memories and forward correction blocks. All these blocks
are implemented using the Xilinx IP core generators which intend to deliver optimized
hardware implementations for a selected device.

2.4.2.8 - What is the block Sample Rate?

The block Sample Rate is the sample rate in which data arrives to a given block, this is a
configuration parameter and must be correctly set in order to allow a correct design
implementation. The typical sample rate is 1, therefore it must be the lowest sample
rate of the design, if there are some parts of the design which work at higher sample
rates it has to be correctly set at each block.

5T b

sample Time

Figure 19. Sample time block.

23

The Sample Time Block, which may be seen at Figure 19, reports the normalized
sample period of its input. This sample period used by the Xilinx blocks is not
equivalent to the Simulink sample period which is used for simulation purposes, the
sample period of the Xilinx blocks is implemented as a hardware constant instead.
Special attention must be taken at the Input and OQutput Blocks of the Xilinx System
Generator design to grant that its sample rate is equivalent to the minimum multiple
of the design sample rates when blocks that change the sample rate are used, such as
DUCs or DDCs.

In order to visualize the different sample rates of a design the following techniques
may be applied. In one hand, the sample period may be seen configuring the Simulink
window options available at format -> sample time display. In the other hand it may be
seen implementing a Sample Time display block, with no hardware cost- such as the
one in Figure 20 which is implemented with a Sample Time block, a Xilinx Out Block
and a standard Simulink Display.

sT | —] oOut]—pl|]

Found2 —
Display

(W]

Figure 20. Sample Time view block.

2.4.2.9 - C/C++ support in Xilinx System Generator.

There is no block in the Xilinx System Generator that allows to directly import C/C++
functions to be translated in Hardware. Nevertheless, it is possible to use C/C++ code
in a Xilinx FPGA implementing a Mocroblaze or a Picoblaze block, which may run C/C++
compiled programs.

2.4.2.10 - Picoblaze support

The 8 bit Xilinx microcontroller, which is implemented with basic building blocks may
be instantiated in the system generator using the block called Picoblaze
microcontroller. The System Generator environment handles some of the basic
connection and configuration issues of the Picoblaze Microcontroller, which may
simplify its use.

3.4.2.11 - Microblaze support

The small Xilinx microprocessor Microblaze can be instantiated with the block located
at Xilinx Blockset -> Control Logic, EDK Processor. In order to allow its operation, shared

24

memory blocks or shared FIFO blocks must also be instantiated in order to allow data
exchange. In this case, Simulink environment will also handle some of the
interconnection issues of the microprocessor, aiding in with its setup.

2.4.2.12 - FIR filter design with FDA tool and FIR compiler

The FDA Tool block works altogether with the FIR Compiler block. Once the FDA Tool
block is placed in the design, double clicking on it opens an FDA Tool window where
the desired filter response can be configured; a small preview of the filter response will
be shown over the FDA Tool block.

In order to configure the FIR Compiler from an FDA Tool block the desired filter has to
be set using the FDA Tool with a given precision; after this is done the option: File ->
Export... has to be used in order to export the filter coefficients. In the Export dialog
the variable name of the coefficients has to be set and it is recommended to enable
the option Overwrite Variables, as it can be seen in Figure 21.

rnEKF}DI"t = ET—

— Export To

Workspace b
— Export As

Coefficients -

— Yarigble Mames

Mumerator: Mum

[¥] Dverwrite Variables

[Expurt] | I:Ius&] | Help]

Figure 21. FDA Tool Export dialog.

Regarding to associate the FIR Compiler and the FDA Tool filter the same name has to
be used for the Variable Name, in the FDA Tool export dialog, and Coeficient Vector, in
the FIR Compiler. As the variable used resides in the Matlab variables data space, each
time the design is load the variable has to be exported anew from the FDA Tool.

There are some adjustments that have to be done in the FIR Compiler configuration
dialog, which can be seen in Figure 22, in order to handle the FDA Tool input. In the
Implementation Tab it is also necessary to change the Quantization Option to
Maximize_Dynamic_Range, Filter architecture to Systolic_Multiply Accumulate,
Coefficient structure to Inferred, coefficient type to Signed, Quantization to
Maximize_Dynamic_Range, Coefficient width to 16, Select Best Precision Fraction
Length, Number of paths to 1 and finally Output rounding mode to Full_Precision.

25

There are many configuration options available for the FDA Tool and the Fir Compiler,
and the correct function of a FIR setup may involve modifying also the Sample Rate of
its input and form the main System Generator option, nevertheless these are the main
steps to test a basic filter.

3¢ FIR Compiler 50 (Xilinx FIR Compiler 5.0) (el /S| |

Filter Specification | Implementation | Detailed Implementation |

Filter Coeffidents
Coeffident Vector : I

MNum

Mumber of Coeffident Sets: 1

Filter Specification

Filter Type : Single_Rate -

Rate Change Type : Integer -

. Interpolation Rate Value : |1

Decmation Fate Value : 1
| Zero Pack Factor : 1
Mumber of Channels : 1
Hardware Oversampling Spedification
Select format : Maximum_Fossible -
Sample period 1
Hardware Oversampling Rate : |1
Ok] ’ Cancel] ’ Help] ’ Apply
[. - g al

Figure 22. FIR Compiler configuration dialog.

2.4.2.13 - Interesting utilities and the Xilinx Toolbar

The Xilinx Toolbar has some complements useful when designing with Simulink blocks;
it allows block sorting and port termination of unused ports. Port termination is
required when using entities whose ports are not used completely allowing to compile
the design. Whenever the terminators are used as inputs, sometimes it is necessary to
fix some the terminations setting the correct data types.

26

2.4.2.14 - Xilinx special Simulink data types

There are some special data types used in Xilinx System Generator Simulink designs,
this special data types have to be taken in account when programming m-code
functions in this environment.

Xilinx fixed-point data types:
xlUnsigned (<word length>, <binaty piont>)
xISigned (<word lenth>, <binary point>)
Xilinx state machine variable:
x|_state (init, precision)
Init: is the initial value of the register

Precision: is a Xilinx fixed-point data type.

2.4.2.15 - Bus management and configuration

The Xilinx Simulink buses may be Boolean, signed and unsigned. Boolean buses are
simple bit connections, where no further bus configuration is needed. In the other
hand, for signed and unsigned buses it is necessary to configure the binary point value,
which defines the number of fractional bits that the bus represents.

As an example- in Figure 23, a fixed precision 16 bits bus with the binary point value set
to 14 is shown. In order to represent integer values in a Xilinx bus the binary point
must be set to 0.

Integer Fraction

>
Wiord Length

Figure 23. Xilinx bus distribution and nomenclature.

Xilinx System generator has a collection of blocks to aid interconnection between
different bus sizes and data types. They are necessary in most designs, due to the

27

automatic handling of inputs and outputs of the blocks and the fact that some blocks
have restrictions in the data types and bus widths of their inputs.

The most commonly used blocks to perform bus conversion operations are:
Scale block: It is used to configure the way bus is scaled and the resulting data format.

Slice block: The Slice block is used to get a range of bits from the input bus and to
assign them a data type for the exit.

Concat block: The Concat block is the opposite of the slice block; it is used to mix two
buses into one, allowing some basic configuration of its output format.

Convert block: The convert block is one of the most useful blocks to adapt buses, in
order to configure the convert block- the output format has to be set and the block
adapts the data to match this format. Nevertheless, the default behaviour of the
convert block is to shift the data to match the output format, in order to adapt the
binary point of a bus, the Reinterpret block is recommended, since no data will be lost.

Reinterpret block: It is used to achieve similar results compared to the ones obtained
with the Convert block; in contrast to the convert block, this type of conversion does
not modify the data of the bus in any way, It just displaces de coma or changes the
type without modificating the data itself.

BitBasher block: It is the most versatile of the bus casting blocks, it interprets Verilog
code lines and allows more complex and exact conversion operations.

28

3 - Design
3.1 - General Design

The design finally implemented for this thesis aims to be a prove of concept of the
design methodology presented in it, the System Generator design is a peripheral which
can work alone or integrated in a SOC system using an EDK processor and the
Microblaze bus interconnection.

This type of design was chosen due to the fact that it was the most versatile of all the
available options, since it enables the System Generator design to be directly
interconnected to the FPGA pins and it also provides a standard interface to allow a
higher level of abstraction.

The function performed is a FFT, it is constructed with a FFT IP and a FSM which
manages the control signals to make it work transparently from other modules as a
FIFO, Figure 24. This structure can be used as a proof of concept for other signal
processing designs with a higher degree of complexity.

Attached to the System Generator Design there is a Simulink simulation environment
which helps to view the behaviour of the system in conjunction with the Simulink
blocks enabling fast error correction. Nevertheless, it has been necessary to simulate
the different parts of the design with ISim.

Helicopter way
A\ 5000 Hz, 8 bit METEC w < ! })
a pesi

To Audio
=vies reinterprat
o o Reinterpret2
xn_i i
n_i
inv i
i

[adar

o
e }
ngle Port Ram[®('®
- J‘ Concat
EEED o]
data;! FSL_M_Data

we

From Multimedis File

reinterpret

FSL_S_Dats

B !ri g\r\rl

ngle Port RAM1

NG
i
!
[
&
- B
Yy v

] sonait n

Signs! Buildert

Helst +H
Counter!
cast

Canvens + N
} Wave)Soope]
=t

Con

System
Geneator

& Out

[FSL_S_Read Continuous

]

FSL_M_Write Simulatior

FSL_M_Control

FSL_S Ck

2 TR

FSL_8_Gontrol

| ﬁ\é‘

FSL_M_Full

T

o

g

EE
n
a
b
I3
]

=)

Figure 24. System Generator FFT peripheral design.

29

This peripheral incorporates the necessary logic to work with a FIFO interface; this has
been achieved placing a demultiplexer memory at the output of the FFT since the data
resulting from the IP is received disordered. The FSM manages all the necessary steps
and signals to interface it with a FIFO. The descrambling section of the design can be
seen in Figure 25; the FSM manages the selection bit of the multiplexer in the two steps
that the data resulting from the FFT has to do, first kn_index is used to store the data
resulting from the FFT to two 16 bits and 512 position RAMs; this data has been scaled
by the reinterpret blocks to fit in the 16 bit real and imaginary output format. After the
data is written in order to the RAMs, the select bit is changed by the FSM to use the
counter to write the data sequentially to the FIFO.

} } —s{ 2ddr
- jw{ datas!] hi
o Audic (e . }
Device Single Port RAM
reinterpret
Concat
& _re Reinterpret2 ——» addr m
_im|—| reinterprat | data; FSL_M_Data
m—!ndﬂ i Reinterpretd | we
wk_index Single Port RAM1
rid
brsy
= dv
edone ' ZE=
done
insform 7.1 L (4D

[EH
(T

1

(st ++

Counter1

Figure 25. Descrambling section of the System Generator peripheral design.

The FFT Symbol can be seen in Figure 26, it is a radix-4 IP from the Xilinx IP repository.
The most important signals are the start signal- which starts the FFT loading and
unloading data process and FFT calculation; the rfd signal- which marks the cycles
where the FFT is loading data; the dv signal- which identifies the cycles where the FFT
is unloading data; and finally the done and edone which point out the cycle where the
FFT finishes the calculation process and more data can be loaded.

30

= "

Jxn_re Xk_rel>
Axn_im xk_imp>
¥ start xn_index[>
AN fwd_inv xk_index|»
Ffwd_inv_we fdi>
3 scale_sch busy>
Yy scale sch we dv>
Arst edone[>
yen done>

Fast Fourier Transfarm 7.1

Figure 26. FFT block symbol from Xilinx System Generator.

The behaviour of the FFT has been deduced from Xilinx documentation [19] and from
simulations, since some fields are outdated and the exact behaviour is not described in
the documents or help of the FFT.

The FIFO interface is modelled after an FSL bus, which is supported by many Xilinx IPs,
including the Microblaze microprocessor. This has been done this way since the FSL
interface resembles very much a standard FIFO interface and it allows the
interconnection with other peripherals transparently. This is achieved by renaming
some of the pins that would have equally been used if the interface was a common
FIFO and joining the 16 bits of the real and imaginary parts of the data into a 32 bits
bus which is the FSL data bus.

31

3.2 - FSM implementation with Matlab

FSM design in Xilinx System generator is quite easy, since it can be done with a Matlab
switch statement, in a way similar to other programming languages such as C++, Java
or VisuaBasic.

A basic example of this type of design can be seen in Figure 27.
persistent state, state = x|_state(0,{xIUnsigned, 5, 0});

switch state

case 0
if din ==
state =1,
else
state = 0;
end
case 1l
matched = 0;
state = 0;
otherwise
state = 0;

END

Figure 27. Basic Matlab FSM example.

To design a FSM, it is necessary to include a special variable to allocate the current
state, this is done with the persistent state, state = xl_state(0,{xIUnsigned, 5, 0});
sentence; where state is the name of the variable, persistent is a Matlab keyword that
enables the variable to hold its previous value between simulation steps and
xl_state(0,{xIUnsigned,5,0}) is a Xilinx defined variable of type unsigned and size 5
which acts as registered signal which will hold the current state. Nevertheless, it is
quite easier to develop a FSM with this method. It is still necessary to define default
values for the variables as it would be done in VHDL since inferred latches are not
allowed.

A common issue that still have to be taken in account is that, despite the fact that
abstract design may come very handy and seem easy, glitches generated by state
transitions may still affect the general behaviour of the FPGA. Therefore, extensive
simulation has to be done to observe signal propagation and stability. And in some

32

cases the use of registers in the form: var,var = xI_state... or instantiated using System
Generator blocks, may still be necessary.

Reset of all signals

Idle state, waiting data from FSL bus

Wait for fsl_s_exists
data load
and unload Wait for data to load in the FFT
from FFT
! rfd

Wait for the FFT to
be calculated

edone &
fsl_s_exists

o

edone & ! fsl_s_exists

Write sorted
data to the
FSL Bus

Wait for data
unloaded from the
FFT block

count ==511 I dv

Write sorted
data to the
FSL Bus

count==511

Wait for the FFT to

edone be calculated

o

Figure 28. FFT peripheral FSM simplified representation.

33

In Figure 28 a simplified representation of the FSM used to control the FFT peripheral is
shown, the FSM starts a transformation cycle whenever it detects data from the slave
FSL bus, checking the fsl_s_exists signal. Once the data is detected it sets the start
signal of the FFT to true for a cycle and starts unloading the data from the FSL bus and
loading it to the FFT internal memory. Once this loading process is finished, the FFT
block automatically starts the calculation of the transformation rising the edone and
done signals to 1 when it finishes. At this state S2, the underlying characteristics of the
radix-4 FFT bloc which starts simultaneously the loading and unloading of data and a
new calculation cycle whenever the start cycle is set to 1 makes necessary to check if
there is really new data waiting to be transformed, if this is the case fsl_s_exists will
have a true value.

In the case that there is no data waiting to be processed the S3 state, the simple
unloading path, will be chosen; it consists in waiting for the FFT to automatically write
the resulting transformation data which come scrambled from the FFT to two
intermediate RAMs, then a counter will be used to write it ordered to the FSL bus
which the peripheral is master of and the flow returns to the idle state SO.

In the other case, when there is data waiting to be transformed the loading and
unloading steps are made altogether; after the unloading process is done, the data is
written into the FSL bus as it would be in the S4 state and, since all this process is
finished before the calculation of the FFT is done, the execution flow returns to S2 to
wait for a new FFT calculation to finish.

In the real FSM some of these steps require to be separated in smaller ones due to the
peripheral dataflow characteristics, this implementation issues have been skipped
since they make the understanding of the FSM more complex and is not meaningful for
this study.

34

3.3 - Exporting procedure for Xilinx ISE

Once the design in System Generator is done, the System Generator block can be used
to export de design to Xilinx ISE, once the System Generator Dialog is open; it is
possible to configure all de relevant import options needed, Figure 29.

DEES L@ . Pl b om 50 [roms A RaRdls REES

57619 SAsH

Compation Oplicess
Compiation
3| HOL Netit

|
o
ol
|
|| e

|| (2] Spartans sofsinit-deagets

Tanged direchiey

£ AmamiCanes Documents MATLARIE_FSH ISE

Syrithesis tool Hardwiane

FPGA clock periced (ne) Clock pin location

Mutirabe implementation DM input clock period (na)

Smink yystem period (36 1

Biock ieon dhapley, Detdt

sty
P

(4 Start] 1 Ready 100% odeds

Figure 29. System Generator Export Dialog.

It is convenient to choose that System Generator generates a VHDL netlist, since this
type of exported files can be edited afterwards with Xilinx ISE. To correctly import the
design to Xilinx ISE the correct FPGA has to be set and the language to represent the
hardware, in this case a Spartan 6 and VHDL.

In some cases, it may be also desirable that System Generator exports the current
Simulink test environment as a testbench since it can be useful to compare the
simulation results and evaluate its correctness with the ISE simulator. Nevertheless,
whenever that is done a bug may arise forbidding to simulate any other testbench
generated with Xilinx ISE, that bug can be solved erasing the ISim folder located at the
project root, which will allow to choose and simulate any of the available testbenches
of the project.

When the information of the configuration dialog is properly set, the generation
process can be started. As in the Simulink simulation process, the design is revised in
this step and any design errors will arise. After a successful generation, a window like
the one seen in Figure 30 will appear.

35

J MATLAB 780 (R2005a)

.
W
+ W
W
+W
L
L
W
o
W
-
e
v W
+ W
-

inx HocksetIndexReinterpret Changes snal tyoe wittaut alenng Te trary
,,,,,, R o

oK [Hide Detads i 1

Figure 30. System Generator generation log after a successful generation.

Once the design generation has finished, a project for Xilinx ISE is stored in the target
folder. There are three main ways to use the newly generated project in conjunction
with other designs or tools:

e The generated project can be opened with Xilinx ISE directly to perform tests
and simulations, assign the pins to with Plan Ahead and finally generate a FPGA
programming file of the design as it was designed with System Generator.

e The System Generator exported files may also be imported into an existing ISE
project using the generated VHDL files- including them to another project and
instantiating the entities as components.

e Finally, the most advanced way to integrate various design methodologies into
an advanced SOC design with one or more microprocessors- is to generate an
IP of the ISE project with the Xilinx Platform Studio to integrate the design as a
peripheral; this type of solution can be seen in the next section.

Despite the design methodology chosen, it may be always useful to open the System
Generator generated project with Xilinx ISE to test the design behaviour individually,
performing the required test with the Simulation tool.

In the case that any modification is required it is not recommended to edit the System
Generator generated files since they are very complex, for that case the second design
methodology would be advised.

Finally, to generate the programming file with Xilinx ISE- Plan Ahead has to be used to
set the input and output pins, since there is no way to adjust the pins with System

36

Genretor. To manually set each pin to an output the option of the right click menu
place I/O Ports in a I/O bank has to be selected and then select the desired 1/0O pin, as
seen in Figure 31.

S [SE\planAhesd] run T\t fom cw.ppe] - Plandhesd 121

S metest K Pryzical Constraints. £ Trmng Constramts | W8 Clock Tlegons =04

V0 Port Properies...

10 Part Properes PO0@x
+ 5 Unplace Ctrll)
il dore .
- %
Marmet; done

Demctien: Output L

General | Configure]

1 Perts

Austo-place /0 Ports.
{ Place 10 Ports in an U0 Bank
Place /O Ports in Area

Place /0 Ports SequertiaBy

Unfis Ports

Set Part Compatibiltty
Set Contiguration Modes...

Senematc]

_ B L A 7 vighlighe o L

&4 Tel Consele | Reports

Mark CirlsM

Place 10 Parts in lank: chok on an 10 st to place ol the selected LD ports in that bank 15 bregraton Flow

Figure 31. Plan Ahead pinout selection.

37

3.4 - Exporting procedure for Xilinx XPS

It is also possible to import the designs made with Xilinx System Generator in Matlab
to the Xilinx Platform Studio, this allows access to the peripherals made with system
generator from a microprocessor, enhancing the capabilities of the overall design
allowing the creation of complete SOC solutions. Furthermore, if a default
interconnection interface supported by the microprocessor is implemented in the
module designed with Simulink- the access from the microprocessor can be done in a
transparent form.

For this project, a default wizard generated project is used, XPS allows to create
projects with one or multiple EDK Processors for the standard test boards built by
Xilinx or other test boars built by 3" party partners with the Base System Builder.
Those standard XPS projects automatically configure all the peripherals of those
boards simplifying the design process and supplying an error free base environment to
test the main capabilities of the board [17].

The first step, which can be seen in Figure 32, is to import the design into the Xilinx
Platform Studio is to create a user defined IP, this can be performed by opening the
hardware tab and choosing the Add or Import Peripheral option.

& Kilinx Platfonm Shadio - CALsersCasies Doruments\ MATLAH s 1\ system amp - [System Assemibly View]
& File Edit View Project JATERNI Software Device Configuration < Nug Simulition Window Help
3 HS Generate Netlist i DR AR poAR me B Brl ezl m=a o
Propect [Generate Bestream Ports | Addresses Bus Interface Filers
Platform 15 Crupte o e Piph B Mame IP Type P Version By Cornection
Teajack Fllis 5 Configure Coprocesser b0 300, : ﬁs:::l:,d
MHS File: systemmhs | =% T b0 100 b
MSS File satarrmes Launch Clock Wizard.. % plbws 10ia By s Stndard
UCF Files data/systernuef, Check and View Core Licenses.. A i :'mi{ws
IMPACT Command File: ¢ T bram block 1.00.4 i FsL
" y i s

Implernentation Ot { Clean Metlist
: ¥ B ¥ Kilree Poine To Poine

Diagen Options Files #te/bl [Clean Bits B¢ tenbs_braen & 5 x
- Froject Options i 3 s mch .. 30l By Interface Type
Device. sebstudtfgguss.3 3 Clean Hardware e irarne £00a j?l‘n;:r
Netlist: ToplLevel ¥ madm 1.00.5 S casites
Implementation: X5 (iflow) -4 > ¥ ompinte 20la B Fpester SLevis
HOL: VHOL " Tr plbvit pce 4040 v ;'"""‘""
Sarm Modek BEHAVICRAL prs & ups_etheme... 400 ’J"ﬂ‘_"
Design Summary > fr wigeo 200a 2 Initisters
e Y opigpic 2008
- ¥r wigpio 20Ma
- T s 1038
- B wpie 2038
- P sps e 20%a
- ¥ wpinsace 101a
» wps_uartiite 1008
clock_gener. ¥ gene_. 400
pre_sy_re. _sysie. 1008
Legend
Master @Slave dMaster/Slave B Target (Intistor $Cennected JUnconnected
Fproduction [iLicense (paid) @license (eval) “Tiocal iapre Production ¥Beta BDevelepment
i == _t| 1 Superseded Discontinued
& project | apcicatons | % P ot | B Start Lo Page T Design Summary - Bodk Dagram - System Assermbly View [x]

fer
el xslseripraConvercEduardieraion. xal

[l comce | wamngs [Erors

Canate ot lemprort Perpheral

Figure 32. XPS peripheral import.

The next step consists in choosing the Import Existing Peripheral option, as it can be
seen in Figure 33.

38

“0&x

C2HY EEE Lo0bxGloc i ENEERS BEN P-AR wa EE B e RS TR
Project L-EET Y — e et ™ ¥
ilﬂ.lllum L MI .{thumlnnponmn_l_mq - S m '; 5 By Connection
| = Project Files | Peripherst Fow 11 ¥ Connected
MHS Files systermumhs -l Incteate if you waeit v @ 1. [¥] Unconnected
MSS File: system.mss I D,'!:us':n:-i
LICF Fae: lata/system uck " {| .‘;.'
MRACT Command Fle: etc/demmlond 5 T Trem e vl el yous czente tempiates for & new EDX CareC rhep — s L
Imphementation Opticns Files ete/fastn H z fa | 1 P }
i - ! s nznly | Wil Peint To Peint
| Mgeur:)mmﬁle:mmw.u - E By bkedace Type
| & Project Opt M -
Devece: acbsladStiggdid-3 -—3 o Seectfow | : Su:.";n
Meslist: Tapeve . Create Templates : b—i-m
Implementation: XPS (iflow} - jl i x S e o oo ey | ,‘: m’:f""
HOL: YHDL o - B Import existng perphersl !; 7 Taw
Sorn Modek BEHAVIORAL - .I 1 o
Design Sumemary s 31 | v s
- 4 Faw desaoten
-
- L P you mpoet a fuly L = |
H R
" |
v |
L 3 i |
Lepend
dsaster &
TeProduc
t LI ') L4 J_sll.pﬂl'i 4
[® srowet [aopicators | @ weataon| & 8
i)) [| r I L ES
Generating Block Diagram to Buffer | l Mook jobs| (et Sackas) | cancel] e
CEAX414nx\12. 10 ISE_DS\EDR\ daca\ il s e

Generated Block Diagram SVG

m

(] consce [15 Worwes [@ Evor|

Figure 33. XPS peripheral import- peripheral flow selection.

In the following step, the project where the new User defined IP must be created must

be chosen, in this case the current project is used, as seen in Figure 34.

Archive B

Ver Imagen res s

[EEEEES EEEER
[g] n HREE " EEs
TS FE & Lmpost Periphersl ;e . ey —— —— [ECARE-E) BT =
A MSS File: system.mss =
.‘, = UCF File: data/sysem. el Repasitory or Project
IMPACT Cammand File: ete/deownload. It where: you want b skore the new peripheral, gl 8
A Implementstion Opticns File: etefast n| | |
N Biagen itians File: etc/Bitgen 1 |
= Project Options. A et Whe W accessed by multgie: I
o= s 4 Device: ucebelStiggdsd-3 AP prejects.
= Netlist: TopLevel |
. Implenentation: XPS ({fow)
HOL YHOL
(| IR e e et yor 8
@ Deslgn Summary Gepostory: 7] | ovowse
f1
| @ Toan S propect :| |
) Project: | CilseE\Cares Docusments MATLAR e f— | |
|
n— A
A ot | acchoasons | S 1 catsing l i s, al
= € hers e Pousmerts MATLAB s preres i
| Generating Biock Diagram to B y =2
CihXilin 12, INISE DS\EDE\dats 3 Z -
Generaved Block Diagram SVG pare infe | < | [woaz][co |
‘ L -
1] consce | Ay Warin [@ Brers
. " ~ .

Para abtentr Ayuds, haga clic en Temas de Apuda en ol mend Ayuds.

Figure 34. XPS peripheral import- source type selection.

39

The next step consists in identifying the top level entity of the imported design, which
must be previously known and it also allows indentifying the resulting IP with a

revision number,

as it can be seen in Figure 35.

& 7 <1 #ix
G- DBE - XBloo i ENEBDRS MRS P~AR PR AX Br) RESTR
Project nO&X oy Ll i e ~ Bus
7 [
P T o ol e — =2]| & by connection
| & Project Fies Mamne and Version 11 R) Condent
] MHS File systerm mb indca | ¥ Unconnected
e parnanhs e the rame of your s | |- L
MSS Files system.ms [y s
UICF Fibe: data/system uct | o :'L";u
IMPACT Command Fie et/ dowmioad.q artimod " &
Implementation Opticas File ete/Tast_ni R s e D . e O ,_,dm = | ¥ Pt .
| Bibgrers Options File: ebe/ttgen.ul | 1Ht_form_ow [= 1 & x""‘;"’""‘“h"“
- Project Options | - 3"‘:" bk
Device: ebsbidStigadsd-3 1E 1 /) Staves
Netlist: TopLevel Lse verson: 1008 |) ot
et 5 D M rewson: Meorrgwsan: raware sofware compatilty renson: | T
1 @ o ! §
Sim Modek BEHAVIORAL > L _i8 . 2 | i
Sumemary e | !
- 1
. |
v
s |
-
: !
3 I
|
Logicnl ibeary name: fFt_fam_ow_vi_00_a |
e s for - ¥ named sbove, I oot . ther are ther
ssmmed tn be svalsbi n T P throuh = o vl 4
ol de: i compled in the same din ther Than Qiven above
conflcts,
&
Legend
master
| Produc|
|« i * | 4 Superad |
| # proect [scckators | @ P oasog | = 0
g — : f vl wO#x
Generating Block Diagram fo Buffer || Lo=if sivi] (utomz) (utmeial (F :
Ci\Xilinx\12.1\ISE _DS\EDE\data'xml\xs e — —
Generated Block Diagrem 5VG
|4) v
>

Figure 35. XPS peripheral import- top level entity name selection.

- . + &%
DAHG | - DR s 00x@oud BHEBORSG MBS AR i @% Br c| 2508
r=r i o A T
T —) MLl
| Platicem L i i @ bmpont Periphont o & . ' =i Dy Connection
| = Project Files | Source file Types b
IS File: system.mhs | It e bypees of et Bk maki g your peviphr, @ ! ¥ Unconnected
WSS File system.mss By Burs Stancland
WICF File: datay/systemn.uscf | ;;‘L‘:m
MPACT Command File: ete/doanload.q i ar perpheral
Emplenentation Optiens File ete/ast | B ==] FiL :
Ritgen Cptions Files et/bitgen.ut - . o :;“""‘M"“M
- Project Options %] HOL pource flles (.vhd, “.vhd, *x, “.vh) hy ":' e Type
M‘;mﬂw! U] Ntk S (=, o, =, = g, ®.rge)) Masters
Iiplerertation: XPS [Kfow) Doaumentation fles (* pdf, * doc, *.txt) od :"’“m
HOL: VHOL o Monators
Sirn Modet DEHAVIORAL ’-;"9”
Dasion Summary | Initiators
-3
-
v
—
e 3
—3
T
| {
& z +| 2 supernd|
;Q Prapect :; Apheanorn | B B Catsiog ||] al
[Cormoie 1 I O&x
| Genersting Block Disgrem to Butfes [—t.-':ﬂ"—l [soe | [pemz] -
CrhXalinmh 12, INISE DEVEDE\davalamllas)
Gererated Block Diagram 5VG]
[i " v
»

Figure 36. XPS peripheral import- import files selection.

40

In the following step, shown in Figure 36, the type of files to import must be chosen, it
is always a good advice to include the HDL and Netlist files. In the next step the ISE
project from which the IP has to be created has to be selected with a file browser, as
seen in Figure 37.

@& | e ol | Bnﬂg_mrﬁe RS A-AR M @E B | 25T

C2H@ . Bbg s0bx
Froject ~08x| @y oy = s - Ben
s o o
[Piottorm LMM O .mwrlve-.phnd_ f = — y = y -~ . Vo 5 Dy Connection
| ject Files | HoL source Files S :'E:wm: ar
MHS Files system.mhs | e HOL s it s o yenr prpher . :?? . !
MSS File: system mes | Py B Sandad
VUCF File: data/system uch | : :‘:m
IMPACT Command File: etc/downiosd.q
bttty j || rox ene ed o mlemert yous peends et =] e
Eagen Optiors File: exe/bitgen.t 1| . % M Pl T Poi
Project Options | nalie || i ndartece Tyt
Device: ckehedSelggidd 3 o S | ot ok] Sheves
Hetiist: TopLevet i |] Mictwe
Implementation: KPS (Dicw) - | 7] Mister Slaves
HOL: YHOL - | B Maniton
Surm Whodel: BEHAVIORAL o How talocate your HOL source fles nd dependent lbrery fles T s
¥ Initiators.
Deign Summuary -
v]| o v ST oot e o
- This ool wll nput the HEL & el ey fomthe s i1 the prapect fle.
-
- CxWiners'Carles Documents MATLAS My _PSM_ISE Vi _PSM_ow.pr Browse... |
-
w
>
Lise encsting Peripheral Analyss Drder fle (*.pac)
-
rgerad |
| diraster 4
b . | Feproduch B 10 your RO scusce e e Moy s {7, *.vhed, %,) s et g
k S A4 Supersg)
| " " Argheaners | % [P Catiog |
| # srouct | appkcnsers | & P Categ | [| e [x]
Console. e TR [TR] “wOfx
| Ganesating Block Disgram to Buffer | L rmm [7
C:AXE14nx\ 12 INTSE_DI\EDE \ datalxnlixs = —
Generated Block Diagram SVG
|« Wi
| [consce |2 Warmincs [0 &
>

Figure 37. XPS peripheral import- ISE project location.

0 ’ * v & x
OaEag DB s XBloo | PP DRS AR P-AR MR BE R e =5TR
Froject wO8x| o) W o - Cme— { Filts
[| et — = -
e L b B bmport Peripheral —— ey - o | By Connestion
Project Fles | HOL Anabysis Information i E"‘““ﬂ: ’
IS File system.mbs - Inchcate the HOL anafrne onder and the logsl Ivands your HOL fies are compled into, ’.\\:’Z; | Ursconnached
M5 File: syttern.mes et Byh,u_sumnni
VICF File: datalsystemuuet e 7 LMB
MPACT Command File: ete/downlopd.q 4 | S0 84t 1 4L, el crd Ll
Implementation Options File: ete/fast_r | | 3 | il
Hibgen Opticas File cte/bibgerut - 7] Xl Poirt T Ponk
= Project Optioms - Language Logical Library DL Source File Pat S By Intarface Typa
Device: xebietdStiggiid 3 b ¥l Sheves
Metist: TopLevel % 1 |vhat | ftest v] Mastess
Implementaticn: XPS (dlow) > ; s | Mastes Stives
HDL: VHIDL " 2 whdl | =f i tect ow = CAUsers\Carles... ¥ Menitors
Sim Model BEHAVIORAL > : :2.'.",.,
Design Summary - !
-
v
-
*—
—
-
»
e
aaster |
| Wersductl
I i ' | it Supersd)|
;o»m-n; Aonkcatirs | & B Cataios|| 1 a
ek | [rveiois_] [ocma | [metr] [cance] F 408 x
- oek Diagram to Buffer - ! il) & ! .
IVISE_DSAEDK \data’xmlixs —

Geperated Block Disgram SVG

18] corme AL waenngs [Q) erors

Figure 38. XPS peripheral import- VHDL sources selection.

41

For the following step, shown in Figure 38, in a project like the one used for this thesis
the fields are fine and nothing has to be done.

Once arrived to the step where an interconnection between the peripheral and the
EDK processor is required, as it can be seen in Figure 38, there are two main procedures
preferred:

Xilirre Platinern Studso - CALers\Carles\Documents\MATLAR R T\ systemeamg - [System Assembly View]

&

Froject [=N-21 Lo taci - e— e Bus Interface Filters

Pitiorm L ‘H-g # Imprt Peripheral - - - ol S —
Project Fles W Bus Interlaces : E"”fmf $
N File system.mixs 4 Sdentfy the bus interfaces supoorned by your perphersl, @ rconncted
S5 File: sytern.mes ot By Bus Stndard
UCF Files data/system.ucl e ! t:—‘:m
MPACT C : 4P
IMPACT Command File: etc/downlosd.¢ A b 4 & d (L&, PLIVG, DCR, or FRL), Select the bus interface(s) supported | FaL
Implemantation Options File: chc/Tst E by wour penohersl o ndcate o thene i no aopkcable bus nterface.) e Pt T Posink
Hitgen Optices File ctebibgenut - o
; . By Interface Ty
Project Options ' | Select bus interface(s) 1 r: s‘::"s iy
Device: xebstelStfggdte-3 e i
Metlist: TopLevel - Processor Local Bus (versan 4.6) nterface Pt Sampheis Lirk bus imterface] Masters
Implementaticn: XPS [(lew) > | Mustor Slaves
HOL: VHDL 2 PLENE Master (MPLE) 7] P Master (MFSL)] Monitors
Sarm Model BEHAVICRAL > I s el 1 7 Im;eu
Design Summary v / 2| Inisiaters
-
PURVAS Slave [SPUR)
v L)
-
v Device Control Regster bus interface
-
- DCR Save (SDCR)
-
Legend
Master o
HWerreduet)
g . e i ! | 4 Supersg
& frowect | @ Agvlcatons | @ [P Catakog | | | e a
Concin 1
Mare Info < Badk Peext > Cancel =
loek Diagr
-IAISE_DSY

ock Disgz

8 Corncie | £ Warmings [Eros

Figure 39. XPS peripheral import- bus interface selection.

The first and most versatile one is performed using the PLB v46 bus standard, this bus
is used by the peripherals imported by default and it is the main interconnection
option used by Xilinx IPs and 3™ party IPs. This type of interface can be accessed
transparently by the Xilinx microprocessors once an address space is assigned.

Despite that in some cases it is possible to implement, in a semiautomatic manner, an
interface to the PLB bus using what is called a GPIO module provided by Xilinx, which is
configurable and handles most of the interconnection issues; it could not be achieved
to instantiate this module in this project and trying to implement the PLB bus interface
by hand was too difficult- it has various transmission modes and, even for the slave
side, many signals which the peripheral has to take care about [16], as it can be seen in
the Figure 40.

Since the scope of this project is not to achieve an advanced bus interconnection
system for SOC peripherals, another simpler default interconnection method should be
considered for simple modules.

42

w08 x

Clk

SPLE_Rst[m]

FLE_PaValid
PLE buslock

PLE_MasterlD[0:2]

PLE_RNW
PLE BE[X:15]
PLB_size[03]
PLE typa([0:2]

FLE MSiza[0:1]

PLE TaAttribute

PLE S1_MIRG [m*8:m*8+7) Slava[m)

Core PLE_LockEr Interface

PLE abort
M_RMNWIn]
FPLE_LJABus[0:3], PLE ABus[0:31]
S1_addrack]m]
S1_wait[m]
S1_SSize[m*2:2+1]
SI_rearbitrate[m)
Sl_MBusy[m*8:m8 +7]]
SI_MRAdEr T 2am 847, S1_MWEEr e 3:m 847
PLE_SAValid
PLE_rdPrim[m]

FLE wirFrim[m]
FLE_wrDBug[0:21]

PLE wrBurst
S wrDAckm]

S wrCompm]
S_wrBterm[m)

FLE rdBurst
S1_rdDBus[m™128:m"1284+127]
S1_rdWdAddm*4:m*4+3]
S1_RdDackm]
SI_rdComplm]
SI_rdBETarm[m]

Figure 40. PLB v 46 bus slave interface.

The second preferred and much simpler interconnection mechanism is performed
using the Fast Simplex Link V20 Bus. As illustrated in Figure 41, this bus is mainly a
simplex FIFO buffer between a master, which writes to the FIFO, and a slave, which
reads from the FIFO; therefore, to achieve a bidirectional communication channel two
bus interfaces are required [16]. This bus is also easily accessible by a Microblaze
microprocessor and its interface can be automatically imported during the Create
Import peripheral process of the Xilinx Platform Studio environment if some design
requirements are met.

43

The instructions for reading and writing from FSL bus can be blocking and non-
blocking, and they have the following format [1]:

Assembly-Level

C Function Call . Description
Instruction

Microblaze_bread_datafsl(val, id) get blocking data read
Microblaze_bwrite_datafsl(val, id) put blocking data write
Microblaze_nbread_datafsl(val, id) nget non-blocking data read
Microblaze_nbwrite_datafsl(val, id) nput non-blocking data write
Microblaze_bread_cntlfsl(val, id) cget blocking control read
Microblaze_bwrite_cntlfsl(val, id) cput blocking control write
Microblaze_nbread_cntlfsl(val, id) ncget non-blocking control read
Microblaze_nbwrite_cntlfsl(val, id) ncput non-blocking control write

Where val is the data to read/write which for the read operation it must be a variable
and Id is the FSL port number starting from 0 set in the XPS bus interfaces tab.

FSL_M_Clk —» < FSL_S_Clk
FSL_M_Data —» | » FSL_S_Data
FSL_M_Control —— FIFO = FSL_S_Control
FSL_M_Write — = S < FSL_S_Read
FSL_M_Full <— | » FSL_S_Exists

Figure 41. Fast Simplex Link(FSL) V20 Bus Block Diagram.

To be automatically imported, the bus signals of the top imported entity have to
comply with the nomenclature shown in Figure 42.

Master side Slave side
FSL_Clk FSL_Clk
FSL_Rst FSL_Rst
FSL_M_Clk FSL_S_Clk
FSL_M_Data FSL_S Read
FSL_M_Control FSL_S Data
FSL_M_Write FSL_S Control
FSL_M_Full FSL_S_Exists

Figure 42. FSLv20 nomenclature conventions.

The FSL bus allows synchronous and asynchronous communications; for the
synchronous configuration the FSL_M_Clk, the FSL_S_Clk, the FSL_M_Control and the
FSL_S_Control signals may be ignored leaving the interface to an even simplified form

44

similar to a simple FIFO. Those parameters, the peripheral address and the FIFO size
can be configured with the XPS platform [16].

Once the FSL bus is chosen as the bus supported by the peripheral, the next two steps
allow to make the pin associations for that bus, if the name tags and connections are
correctly set in the peripheral- the connections will be almost made automatically.
Nevertheless, for the case of Figure 43 and Figure 44 it was needed to correctly set the
FSL_Clock signal, since the clock is not directly accessible in blocks made with System
Generator and it could not be set in the IP; it must be associated with the clk signal.

& Import Penipheral T &
| MEsL:port |

Define: the MFEL bus interface pertls) for this peripheral. o |
[|
| The MFSL bus interface s defined by a predefined set of ports and 1f your perip L , this ool

s automaticnly done the aeiections for you. Otherydse indicnte the ports that rarrespond t the hus connectoes,

Bus Interface Portis): MFSL

FSLBus Connect Your Port 2| ‘

1 The Wizard was not able to sutomatically
1 P Ok e I_| man ol b inarrface perts for MESL. Please |
2 FSL_Rst Filpst NS aclec: yo per o mecH your |
| 3| FSLM_Ck el E ‘

4 FSIMData fal_m_data |

|

|

|

| a =| HOLfe.

| Please select port for bus connector:
T

S FSI_M Contral fsl_m_control e
& FSL M Write fal_m_write -
|
|
|
| \
| - ; =
I More Infa. | sk || Mewta !! Coneel |
Ll B ‘

Figure 43. XPS peripheral import- Master FSL pin configuration step.

4 Import Peripheral . B
SFSL: Port
Define the SFSL bus interface port(s) for this peripheral. N

The SFSL bus interface is defined by a predefined set of ports and parameters. If your peripheral follows the standard naming conventions, this tool has
automatically done the selections for you. Otherwise indicate the ports that correspond to the bus connectors.

Bus Interface Port(s): SFSL

FSL Bus Connecte Your Port o[inee
The Wizard was not able to automatically
I| fELdk o B map all bus interface ports for SFSL. Please
manually select your ports or modify your
2 FSLRst fol_rst ||
3 FSL5.Clk fel_s clic '
4 FSLSRead filsread L4
Please select part for bus connector:
5 FSL_S_Data fsl_s_data FSL_Clk!
6 FSL.S_Control fsl_s_control o

<Back || Medt» || cancel

Figure 44. XPS peripheral import- Slave FSL pin configuration step.

45

The remaining steps can be let with the default values proposed by the dialog until the

they are finished, remaining to include all the required files.

1P Catalog +08 X
2®
Description IP Version IP Type Status Processor Suppor IP Classification
= £ EDKInstall
[Analog
-- Bus and Bridge
-- Clock, Reset and Interrupt
[#- Cornmunication High-Speed
-- Communication Low-5peed
- DMA and Timer
-- Debug
- General Purpose 10
10 Modules
nterprocessor Communication
Memary and Memory Controller
PCI
-- Peripheral Controller
[Processor
- Utility
(=} Project Local pcores
= USER
% fft_FSM_cw 1.00.a fft_FSM_cw % PRODUCTION PERIPHERAL
|Q Project |Q Applications |Q IP Catalog |
Figure 45. User defined IP available from the IP Catalog.
'ﬂ- Bus Interfaces Ports I Addresses |
Mame Bus Mame IP Type IP Versio =
- FEL WU U T TEI_V2U £llL.C
el w30 1 Tr fslv20 211.c
e f5l w30 2 Tr fsl_v20 211.c
fsLvi0 3 1‘,} fel_w20 211.c
- dimb Tr Imb_v10 1.00.3
- ilmb T Imb_v10 1.00.a
- mb_plb ¥r plb_vi6 10da |-
EE microbloze O 7.30.a
[imb_bram 1‘,} bram_block 1.00.a
[dimb_cntir 1‘,} Imb_bram_i.. 2.10.b
[ilmb_cntlr 1‘,} Imb_bram_i... 2.10.b
B FLASH 1r xps_mch_e.. 3.0l.a
B MCE_DDR3 Tr mpmc 6.00.3
= mdm 0 1r mdm 1.00.q
> SPLE mb_plb -
~~MFSL0 |No Connectien -
- MBDEB... microblaze 0 mdm bus
L XMITC mdm 0 XMTC
G- xps_tntc_ 0 1r xps_intc 2.01.a
= fft_FSM_cw_0 G fft_FSM_cw 1.00.a
- SFSL fsl_v20_0 -
COMFSL fslwv20 1 - =
1| i | r

Figure 46. Open Microblaze configuration Wizard.

46

Back to XPS main window, at the IP Catalog tab, it is possible to see the newly created
IP core from the ISE project imported from the Simulink design done with System
Generator, as it can be seen in Figure 45. To add the newly created IP to the design as a
new peripheral it is just necessary to double-click over it.

The remaining step is to connect this peripheral to the Microblaze microprocessor
trough FSL, in order to achieve the FSL interconnection two FSL busses have to be
added trough the Micrblaze Configuration Wizard, right clocking over the Microblaze
instance in the System Assembly view.

In the Microblaze Configuration Wizards, it is necessary to advance clicking next until
finding the PVR and Buses dialog and adding the two required FSL buses to connect the
peripheral (Figure 47).

— - al
@ XPS Core Config - microblaze_0 - microblaze_v7_30_a &
Page 4 of 4 - PVR and Buses
Processor Version Registers
Spedifies Processor Version Register NOME E|
Specify USER 1 Bits in PVR. 0x00
Specify USER 2 Bits in PVR. 0x00000000
Buses
Mumber of FSL Links 2] =
Enable Additional FSL Instructions |l
Enable F5L Exception
Frequency BRAM : :
i |
|
Performance | B _|
[OK] [Cancel] [Help
d

Figure 47. Microblaze Configuration Wizard buses dialog.

The remaining step to connect the new peripheral is to physically connect in the
System Assembly View a slave FSL connection from the Microblaze to a Master FSL
connection of the peripheral and establish another connection with the remaining bus
in the opposite communication direction, as it can be seen in Figure 48.

47

D2Hd (=]l S XxB el ErEBORS R R=AR WG BE BE] 2SN

1P Catabog »O&X%|| pyp FEL 6 Businterfoces | Ports | addesses | Eus Intertace Fers
G : LMSSM Hame Bus Mame P Type 1P Version = By Cannecton
| Desenption B Versson 1P Type st —EBLLE ey ST Fciotiane Fa 7' Connected
|& £ oK nstall & J DIME | dimb [¥ Urconnected
- Anslog - 1 IMB amb I 1 By Dt Standard
0 Bus and Bon " DPLE | pib = 7 MG
i Clock, Reset and Intemupt ™ I BB bl = 7 PLEVAS
4 Communication High-Speed S50 [N Connecon = L)
s Conmmunication Low-Spesd -—_— MISLD 6 0 1 4 Wil i To Point
40 DA and Tiener 1 EEEI M- Cennecticn ! =i By Interface Type
it Debug 1 M5 | Mo Connection & Slaves
il General Purpese 10 DRFSLD | New Cannection O Magters
10 Modides DWFSLO | fel w300 & Master Slaves
4 Iterprocessor Communication DRFSLY o Moritaes
4 hhernoey and Memnoey Contralier 1 DwWesLL oz | o lngm
i Pl 1 DNCL microbiaze @ DXCL - ¥ Intiators
il Penphersl Controller moL microblase 0 XCL =
i Processor 1 DEBUG | maroblaze O mdem bus []
3 Lty 1 TRACE mworoblace 0 TRACE
| & Project Local peores | i b bram o bram bicck 1003
| =usr I ..t - gllmb_ o ¥ b bram i 2405
o P ew 1008 #_FSM_ew ik, PRODUCTION | -— - dnob_entle P Ienb_bram i 2108
» + 4 FLASH o wpimche.. 301a
pe 7 MCE_DORS S mpme 600
S mdm 0 T mam 1009
' W8 mbpb I
MFSLOD Ne Connection L=
MBDER... micrcbicse O mdem but
i XMTC et 0L XMTC
- : @ xpsinte, @ i wps,inte 2018
| fFFSM w0 i P w100
- oSl (R0 ™
- MPSL il =
- i BCie_fridge dr plndt_peie 4048
» L Etleeres MRS B L b
4 ‘ i ' ‘ = %
Legend
Master @Slave dMaster/Stave b Target <initiator $Connected DUnconnected i
la - | Seeroduction (BLicense (paid) BLicense {eval] “Thiocal Lpre Production B2Betas FiDevelopment
L L
[proect [& popkcatens | & P ateiog — T 7 FS S s |
Conscle s
[staveim
IPHAME : f21 w20 INSTAMCE:fal w20 3 -
| miitiasraiparissl Bosimant el METIATL vnasl avanan, mha 14na 272 - 1 maamarisl i 0
| X ,

e A W [B
Figure 48. XPS FSL Master/Slave port configuration between the Microblaze and peripheral.
Now to be able to use the newly created peripheral transparently with the test
program of the SDK a final Export Step is required: Project -> Export Hardware Design

to SDK. When the export process finishes the design can be open with the SDK and it
can be programmed as an embedded system.

48

4 - Tests and Results

4.1 - Simulations and test benches

For each significant component used in this project, simulations and testbenches have
been performed to assure its correct operation. In fact, some of them allowed the
recycling of almost all the code since some of the signals where shared.

The simulation of the components separately allows to perform a much more precise
design and avoiding interaction errors between the different modules while making
them easier to find and fix. Nevertheless, tests over the complete peripheral where
also made, since assuring the correct operation of all the blocks together with
simulations is a crucial part of design process and some of those simulations can be
seen in the following section, Figure 49 and Figure 50.

Given the fact that System Generator has a good graphic environment, specially
designed to simulate math algorithms it plays also a role in the simulation process.
Nevertheless, Matlab simulation environment is not well suited for working with the
time scale of the FPGA signals. To help with that- Xilinx provides the WaveScope block,
which allows visualizing the signals in a FPGA time scale. Nevertheless, the WaveScope
block does not achieve the level of functionality available with Xilinx ISE simulation
tools.

49

4.2 - FSM Test

To test the FSM, a special version of the peripheral has been implemented which
allows the visualization of all the signals inside the peripheral; this facilitates an easier
verification of the values of all signals during each step.

The FSM behaved as expected and there has not been any unexpected issue due to a
bad synthesization of the m-code file, in fact the design of a m-code FSM in System
Generator is very similar to designing it in VHDL, with the difference that the signal
propagation is taken care of by System Generator. Nevertheless, transition glitches
may appear in the same manner as they would in VHDL and in most cases a cast block
is needed to adapt the output signal of the FSM to the incoming format of each
destination block.

The tested FSM has 20 states and two execution branches, as described in section 3.2,
to perform the test, a custom test bench has been done and a set of test data has been
written to it form files; since the size of the FFT- 512 elements, makes it difficult to use
written constants. In fact the test data has been exported from a Matlab signal to a
file, then read by the testbench, processed by the peripheral and the result is written
back to another file in a Matlab friendly format. This has allowed to verify the
behaviour of the device with a mathematical tool such as Matlab to see if the results
are as expected.

The testbench has the necessary procedures to synchronize the required input signals
to manage the behaviour of the module and it mainly serves data to the peripheral in
various cycle modes to test the different execution branches. As stated before, the
FPGA behaves as expected.

To avoid issues if the Microblaze is not enough fast to load a new value of data each
cycle, a protection mechanism has been implemented, if the fsl_s_exists changes to ‘0’
during the loading process, the enable signal of the FFT is set to ‘0’ halting its operation
until the a new value arrives.

In Figure 49 a capture of the overall simulation process is shown, and as it can be seen,
there are a total of 6 cycles in the simulation, 5 of simultaneous load and unloading of
data and 1 of separate loading and unloading. The FFT loading data cycles are marked
with a black arrow, the FFT unloading cycles are marked with a blue arrow, additionally
to test the peripheral good behaviour even if not all the data is loaded continuously a
starvation period has been introduced marked with the orange arrow, where it can be
seen that the FFT resumes is operation after the data input resumes.

To get a detailed view of the steps taken to start the calculation of a new FFT, a plot of
the simulation of the first 500 ns of operation of the peripheral can be seen at Figure

50

50. First of all the peripheral is reset by the fsl_rst signal marked with a black arrow.
The FSM resets the other blocks of the peripheral setting the internal reset signals to
‘1’, marked with the dark blue arrow. After the FSL bus stops resetting the peripheral,
the FSM initializes the FFT IP storing the forward/inverse and the scale parameters
(light blue arrows) and waits in the idle state. Once data is received trough the bus, the

fsl_s_exists signal changes its value to

‘1’; after one cycle, the start signal is set to one

to enable the loading process of the FFT block (green arrow). Finally, in the next cycle

the FFT starts accepting data and signals while setting the rfd signal to

1", the FSM

starts in this same cycle the unload process of the FSL FIFO setting the fsl_s_read signal
to 1, which will pop a value from the FSL bus while the FFT stores it in the
corresponding position.

lgce

15 ek

11 fsl_s_clk

1% fsim ful

1§ fsl_s_control
15 fsl_rst

9 fsl_s_data[31:0]
1% rsl_s_exists

1[5 bussy

2% court[8:01

1§ done

Ua dv

11§ edone

L rrt_enable

% fsl_error

L5 fsl_m_control
9 fsl_m_data[31:0]
1 fsl_m_wrie

1§ fsl_s_read

% Twed_inw

]_E Favd_inv_we
1§ rfd

1[5 rst_counter

1 rst_fft

g scale_scn9:0]
U'g scale_sch_we
15 sel

1 start

B xk_im[15:0]

S xk_index[8:0]
5§ xk_re[15:0]

S xk_reint_im[15:0]
5 xk reint re[15:0]
B xn_im15:0]

5§ xn_ndex(8:0]
B xn_re[15:0]

L wrrelog

% writeinpu:

|13 ck_period

|4 fsl_s_clk_period
L fsl_m _clk_period

15 fsl_m ck

|C ns 20,000 ns 40,000 ns 0,000 ns
AR i e
SEE000000000... A 0°NN00000...)7 25 000000000... 1277504 000000000...)77 £ « 000000000000000...
: | L |
I | [— L L
(" oooovoooo A W SHESH(0 SRR RO R e s
1 1 =1 1 l_
| | LI
(oomononon oo i R OB R O O
v ! !
| = [M1 [1 [
et] L | | N | (N
: 0000000000

i 0

:}:&; i Wxx;@»@m« e wfm

i 88
(0 0000000001111100

(FALSE)(

{ FALSE

{ 10000 ps

(10000 ps

¥ IGOO(Ips

bo SmssmesissRRna s % SrmmssesETEREE R e
HE = R S i S

Figure 49. General simulation capture with all the cycles.

51

P PR PR R
}% E: AMWMWWMHMMMMHW
Lo felsck
1 fsLs_exiss = ! !
13 done
1 fre_enatie | I |
2 fsl_m data[31:0] { 0000000000 Y 00000000000000000
1 fsim wrre | / Ve
L fwd_inv_we

LG fsLm_rul

Qo mwwwmmmmuumnmmn /ﬁmﬂwummmmummmmw
L bussy

v

L& fsLerror |

14 fsis_read

Ly | | |

1 rst_counter | | | |

N = s

] T -

L fstrst

B fel = data[31:0] {

g count[8:0] {

L =done

15 fet_m contral

14 fwd_inv | | | |
g scale_sch[9:0]

L[5 scale_sch_we |l
L=l
1 start il

g nk_im[15:0]

S wk_index[B:0]
g xk_re[15:0]

G xk_reint_in{15:0]
g xk_reint_re[15:0]
g xn_im{15:0]

g xn_index[8:0]
¥ xn_re[15:0]

1§ writelog

15 writeinput

L& ck_period

L& Fsl_s_clk_period
L el ek_perina

D00O0000000000G

00000-00000000000

0000000000000000

0000000000000

o e e e e e e e e e e e
=1
=

Figure 50. FFT peripheral FSM initial cycles simulation.

52

4.3 - Field experiments and tests

The SP605 board available at La Salle has been used to test the final designs and the
findings done in the field of firmware development. Furthermore, basic tests and
training for this specific board was done, since its capabilities where yet to be
explored.

Regarding to the tests of the embedded system- a serial communications layer was
established taking advantage of an UART instantiated with Xilinx Platform Studio. First
the FPGA had been programmed with the system and after this step is performed the
test programs could be loaded.

In Figure 51 a screenshot of the tests made in the system loaded in the SP605 board
and the test program run with the resulting output read from the serial connection at
its side is shown. This simple test which is a proof of concept of the design
methodology developed during this project uses the FSL peripheral, developed with
System Generator, which works as a loopback tester between a master FSL bus and a
slave FSL bus, after being instantiated as a peripheral for the Microblaze it is used for
the C program done by the Microblaze to test the loopback connection and the result
is printed with the UART. In this example the value 65 is first written to the master FSL
bus and then read with the slave FSL but proving the correctness of the setup.

[P Project Brplorer 22 = O |/ gz systemaxml iy system.mss [¢] helloworld.c £3 . [g platform.c [d platformh | stdioh |1 = O)(5= outli 32\ _@Mak | = 8

=]~ #include "xparamecters.n” 7 @ e e 4
= #include "mb_interface.h" xw
#include "xbasic_types.h” ¥ COM49600baud - Tera Term VT =R)

File Edit Setup Control Window Help

I hello_world_0
Binaries
& Includes
= Debug
& src
[€) hellowerld.c

int main()
i

Hello Horld
int val: har veceived by FSL: 65,
init_platform(): i1

[platform_config.h
[& platform.c
[# platform.h
) Iscript.d
15 hello_world_bsp_0
¥ hw_platform_0

xil_printf("Char received by FS5L: %d.\n\r",val): '
print ("Ei!!!\n\z"): T
cleanup placform();
retorn 0;
[2: Problems | ¥ Tasks | Bl Console &2 [Properties | 3 2§¢‘ % GE | B0

<terminated> hello_world 0.ff [Xilinx C/C++ ELF] C:\Users\Carles\Document=\MATLAB\ embedded ISE\syster\SDK\SDK_Workspace 354h
Process STDIO not connected to console.
If you'd like to see UART ocutput in this console, please modify STDIC settings in the Run/Debug configuration.

_world_0\Debug\hello_world_0

Figure 51. Xilinx ISE screenshot of the FSL test program with the result read from the UART.

Despite the fact that testing the FSL peripheral yet validates the design methodology
developed, it was intended to test a more useful block that may be used in
communications systems to prove System Generator’s reliability and convenience for

53

creating those types of designs. Therefore, the FFT peripheral has been also tested
having successfully performed transformations which is was the final objective of this
thesis.

Despite the fact that the tests have been successfully accomplished, problems were
encountered with the first designs due to the instantiation of the clocks of the
peripherals, which made them unresponsive trough, the FSL bus. This was solved
assuring that the clk signal of the peripherals was connected to one of the clocks of the
FPGA.

To prove the stated before Figure 52 is provided where the output of the peripheral
read by the Microblaze and printed through the UART.

- e W COMES800maud - Tera Term V1
’* Edd Sets Contred Wandew

1 Slan D @8R @-&-d-@- K-0- -0 &P~ [H ':15_,“”“‘ e e

) Preject Explorer 10 = 0L asternaml ([systemmss | (2] hellowaridic £3° (@ pltorme | B adion | s orid

e 3t Cur recained walors M g
3] 35t 2 Char received valor: 5 «
Malar: 3 ™

e helle_workd 0
5 Binaries
&' Includes
[Debug
|€) heBeraaie.c

I8 platform_config.h

Fi F&L Tt 11
Start BT Tapl
i

Bselbs: (5000, -7 \ TEODGE, IESEN, GOO6E, SN, ST, TS, W

e i . I, TNTI4, 160, IHJ.?JZ] l
RESIH, WM, SR, SOSETG, RSN, MR, TN, MOTGHE, MSHIM, TGS, GETis] 1=
PTRE, Siras, iois o, s, MHed, MO, SIS, YBEAR), TSeett, Sukot
i?% {;ﬂi:’ .5!] mw .yl £
af, mwzmid mm} WG], TR, TR, TR, (R, mmléi ?aulmd ‘,|Iﬁﬂ .1
i 96T, oA, Dqvantl, ere TEIe, vomnt, e, He0wE), 2211
A, FA, IR, ZHRAAI, U], FIIH, AU, ARIZAIY, ACNE, 19, 19T,
nms. RuTi, SR, i, LKA, 1M1l TN, TERESS, TREHEL, TSR, o, 17 | bals

!!‘JW lwl !im"? lﬂn?])& 1m: 1s!m|§ TN, 1SR, 150409, JEmad, 1
sl 1), 3 T, VRN, TR, T, TN, 1306,
LT, ml]?ﬁ- 12'm I.?HWJ m WW nmn IIN'-'J? 1T, us:lm Llﬁm?
10715, 10, 1M, 1004, BRI, 10, 10 5»5 o,
g, Seiti, 9171301, AXSESe, GUNOAD, EATELTE, RIS, i Wy mm; i

7, MR, m ?W TEORE, OMRAN, MIEHI, '-‘Z'ME)! Wl mm ", ML, g

S G e GNER. D A, ISy S, SIS S0k, A Bl 04
mlm]mmmﬂmﬁﬂmm;ﬂmmm

m HEANO, Woon, mﬂ 000, TNLL, HEO], WEN, M] Tl !!??SS &11 i

TR, U, TR, 183, 01, 1Arts, 1, ke, T, 13

I'l IHW 1, 10430, 20T, 05?11 m?s G, A, €hels, TR, mr mm m
R 1T, T, 11

T, ~a, . . "
Cijias, e, S, Ak, 13, e 2R, 215088, 2L, -
-0l E £, - <X, <BTNES, -

16l platform.c

(5 platfermnh

T keeriptid
(M hello_world_bsp 0
(8 bw_platiorm,

®il_printf(“2 nd AT Dedely ed By FSL: Md.\n\z",val): M. mlﬁ BS15, 9300, -BIma, -SUPIS04, SN0, D0, RN, -SRI, -IMRTOH, 1
? Tl g

e, iy 3 , -}
aa: 2 ite dataf. ' A0, -AIPTE, -1o0l, 120, 12006560, - 116G,
VL e, RS, NCRCe LYy FYTEE, ~IWONTY, LI, L], -1, 1S, IR, mum HMJV s,
~piTiE, -y, -5, -1, -5, ~is0al, -ditival, - t'i mmx
= Y mm T, Hm 1N, -1 mml, 1!:19?&1’ m “
1mn T, - “ymeRa, I, R Siimet -\?L 3%
e embedd e, A, i) %xi %1 o,] z:l?mr 3?:,;"55« o8
<terminated> hello_world 0.e¥f [X&inx C/Ce+ ELF) C:\Users\Carles' Do e\ MATLAR, ndl!}e“‘i MF‘ N, N R, SINT I, DN, o
Frocess $1D10 not comnected to console, oM, W, -1, -, -Fn, m m_ o),];u
If you'd like to see TRRT cutput in this console, plesse sodify _51-5:-!!!95, s, i, “Tu, i, Aod, MG, G, “tainid, s,

& Prosiems | 4 Tasks | & Comscle % . [Properties

i

Figure 52. Tests with a SP605 of the FFT and FSL peripherals run by a C program from the
Microblaze soft microprocessor.

In order to use the data output from the FSL bus it is necessary to split the 32 bits
signal into two 16 bits integers and extend the signal bit, due to limitations of Matlab’s
bit treatment functions, this issue has to be solved in C on the Microblaze with the
following code to extract each value, which is :

temp=val&0x0000FFFF;

1if ((temp&0x00008000)==0x00008000) temp|=0xFFFF0000;
printf ("%d, ",temp);

temp=(val&OxFFFF0000)>>16;

1if ((temp&0x00008000)==0x00008000) temp|=0xFFFF0000;
printf ("%d, ",temp);

54

In Figure 53, represented in Matlab the resulting continuous signal of performing a FFT
to a delta with amplitude 10 at t=0 is represented.

'Figure2 | o

Eile Edit Wiew Insert Tools Desktop Window Help o

Odde | AROTDEMN- S |0EH ad

a MNote new toolbar buttons: data brushing & linked plots jf @) Play video X
" T T T T T

10.5 .

10 =

1 | | 1 1
0 100 200 300 400 500 600

=
[Ag]
T
1

i
=
(B
T
|

1 | | 1 1
0 100 200 300 400 500 600

Figure 53. 10-6(t) FFT calculated with the Microblaze peripheral.

The following figures represent a 6 at n-1 input signal of two different amplitudes
transformed, which allow to observe the behavior of the real instantiated device
compared to the expected ideal result. In Figure 54 and Figure 55 there can be seen the
result of the 6 of amplitude 10. Since this is a low value, the limited precision of the
FFT causes low power high frequency noise, which is traduced in small random
oscillations around the expected values. On the contrary, with a high value as an input
such as 1000- this small noise caused to the fixed coma arithmetic of the FFT becomes
unnoticeable and as it can be seen in Figure 56 and Figure 57; the signals resulting from
Matlab and the Microblaze look alike.

During the tests, no problems related to bad routing and delays have been observed,
which implies that the designs made with System Generator are reliable and are not
affected during the placement process. In addition, the FSL bus interconnection system
has also proven to be reliable and a good option regarding to connecting peripherals of
system on chip design.

55

Real Part

Armnplitude

I I I I I
a 100 200 300 400 500 500
Samples

Irmaginary Part
T T T T T

Arnplitude

I I I I I
a 100 200 300 400 500 500
Samples

Figure 54. 10-8(n-1) FFT calculated with the Microblaze peripheral.

Real Part
T T T T T
ar
=
=
= 4
=
T
1 1 1 1 1]
1} 100 200 300 400 500 500
Samples
Imaginary Part
T T T T T
10 B
5 -
@
=
=)
= 0 7
£
T
i 4
-0 4
1 1 1 1 1
0 100 200 300 400 a0d 600
Sarmples

Figure 55. 10-8(n-1) FFT calculated with the Microblaze peripheral.

56

Amplitude

Amplitude

Real Part

Arnplitude

Arnplitude

1DDD T T T T T]
500 a5
D 4
-500 i
-1000 B
0 100 200 300 400 500 600
Samples
Imaginary Part
/000 . . . T .]
a00 2
] .
-500 2l
-1000 e
0 100 200 300 400 500 B00
Samples
Figure 56. 100-6(n-1) FFT calculated with Matlab.
Real Part
1DDD T T T T T B
200 .
D -
-500 .
-1DDD 1 1 1 | 1]
1] 100 200 300 400 a00 &O0
Samples
Imaginary Part
1DDD T T T T T]
a00 .
D -
-500 .
-1DDD 1 1 1 | 1 £l
1] 100 200 300 400 s00 =]
Samples

Figure 57. 100-6(n-1) FFT calculated with Microblaze peripheral.

57

58

5 - Resources spent

For this project around 780 engineer hours have been spent among its development,
coordination meetings, research, writing of the memory and revision.

Regarding to the physical resources used- 1 personal computer has been used, the
Xilinx SP605 board and the necessary connection cables. The most relevant software
packages used are: Matlab, Xilinx ISE and Microsoft Office.

No resources have been required to be specially acquired for this project, therefore it
has been free of charge, however the number of already available resources and
equipment used for its development is considerable. A graphic of the distribution of
the engineer hours in tasks can be seen below.

Engineer Hours Spent
50 50

20

M Research

B Meetings

m Development
B Writting

B Tests

m Revision

59

60

6 - Conclusions

With this project we have reached objectives far beyond the initial ones, which where
to explore and document Xilinx System Generator and its integration capabilities with
Xilinx ISE. In addition to the initial objectives, we have successfully created instantiable
designs with System Generator that can be used with Xilinx ISE to create a firmware
alone or as a component of other entities. Furthermore, we have achieved to integrate
these designs in the complete Xilinx SoC design flow, in the form of peripherals for a
Microblaze microprocessor. This setup enables these peripherals to be directly
connected to free pins of the FPGA, other modules with custom interconnection
methods and to be accessed transparently as trough the Microblaze supported buses.

Regarding to the lab tests performed, a set of simulations and tests have been run on
the various elements that have been created for this project to assure its proper
operation; including the FFT alone, a modified version of the FFT which allows to see
its internal signals, the FSM alone and the FSL interface. Additionally, tests with the
SP605 board on the lab have been performed to verify the assumptions made during
the theoric studies and simulations made for this project. During those tests, the full
SoC solution was verified loading programs to the Microblaze microprocessor to
perform actions to the System Generator generated peripherals. The correct operation
of the C compiled program run by the Microblaze implies the correct interaction of all
the design tools used to implement this solution, a part of the tests made to the
different parts by separate.

The creation of an embedded system into a FPGA implemented with a soft processor
including various design sources working altogether to create a mixed platform
capable to execute compiled programs on a higher level of abstraction is a very
complex duty not in reach for most engineers. In fact, this was not yet achieved at La
Salle. Therefore, considering that the work done for this project is of a very high
complexity- this project could be qualified as a great success.

61

62

Figures Index

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

D (O 10 N T | S 5
SPArtan 6 SLICEL [12]. .uuuuiiieieee ittt e e e cetree e e e e e e e cnrree e e e e e e e e e nrraaeeeaeeeeas 6
VAT (= =Tl oo =T o AU UU 7
Motherboard using a XilinX FPGA.......cccoviiiiiiiiiieeeriiee et 8
Spartan®-6 FPGA SP605 Evaluation Kit test board........ccocvveeeeiiiiiiiiiieeeneceeiennns 9
Outline of Spartan-6 XCOSLXAS rE€SOUICES.cccvvereeeeeeieiirrrreeeeeeeeiiinreeeeeeeneeenns 9
SP605 Connectivity features and banking [14].coovveviveeeeieeiiiiireeeeeee e, 10
Xilinx ISE Project Navigator main WindOoW.ccoeecuveeeiniiieeeniiieee e 11
Matlab main window with an open Simulink Library dialog and a System
LY T=T = L (o] g o] o] [FR T 12
Choose ISim as Xilinx ISE simulator.ccccoeeeeiiieeeeciee e 13
Xilinx ISE- process to open a simulation with ISim.......cccccvvveeieiiiiiiiiieennneenn. 14
ISIM SiMUlation WINAOW.coeiiiiieiiiiieec e 15
Xilinx System Generator Simulink sample design.ccccccvvviieeiiniieeeinineenn. 17
Xilinx Simulink Blockset Library.oocveeiniieiiiniiescieee e e 18
System generator basiC deSIZN. ...cccvveeeieiiiiiciiieeiee e 19
System GeNerator DIialOg.......ccoucciiireeiieiieireeeeee e 19
Bus type edit dialog. ..cccvveiiiiiiiii e 20
System Generator BIOcks Help.ooivviiiiiiiiiiieeccee e 21
Sample time BIOCK. «...vviiiiiieee 23
Sample Time VIEW DIOCK.ceiiiiiiiiiieiic ettt sreee e 24
FDA TOOI EXPOrt dialOg. couvvvveeeieiiieiiiiiieeiee ettt e e e 25
FIR Compiler configuration dialog.cccueeeiviiiiiiiiiiieiirieecerieee e 26
Xilinx bus distribution and nomenclature.cccccovveciiiieee e, 27
System Generator FFT peripheral design.cccovvvieiiiiiieeiiniieee e 29
Descrambling section of the System Generator peripheral design. 30
FFT block symbol from Xilinx System Generator.......ccccccccoevevveveeeieeieiicnnnenen, 31
Basic Matlab FSIM @XamPle......uccioiieiiirieieiie e 32
FFT peripheral FSM simplified representation........cccccceevveeeiviieeeiniieee s, 33
System Generator EXport DIialog.cocuvevieiiieiiiiiieecciiee e 35
System Generator generation log after a successful generation.................. 36
Plan Ahead pinout SEIECION........cooeeeuirieieiic e 37
XPS peripheral iMPOrt. ... e e e e e 38
XPS peripheral import- peripheral flow selection........ccccccovvveeiiiiieniiniinenn. 39
XPS peripheral import- source type selection.........ccccvvveeeiviveeeeniieee e, 39
XPS peripheral import- top level entity name selection.cccccevvvveennneenn. 40
XPS peripheral import- import files selection.cccceevvvveeeeiiiiiiiiiieeeee e, 40
XPS peripheral import- ISE project [0cation.ccccccovevvvveeeeeeieiiciiiieeeee e, 41
XPS peripheral import- VHDL sources selection........cccccceeeveiveeiiniveeennieennnn 41

Figure 38.

63

Figure 39. XPS peripheral import- bus interface selection.........ccccevcveeiivieeeinciieeinns 42

Figure 40. PLB v 46 bus slave interface.cccvviieiiiiiii et 43
Figure 41. Fast Simplex Link(FSL) V20 Bus Block Diagram.ccccceeeeeiiivreeeereeennicnnnnnen. 44
Figure 42. FSLv20 nomenclature CONVENTIONS. ...cccuvvveeeeeeiiiiiiireeeeeeeeceeiireeeeeeeeesesnnnanns 44
Figure 43. XPS peripheral import- Master FSL pin configuration step........ccccccccevnnnneee. 45
Figure 44. XPS peripheral import- Slave FSL pin configuration step......ccccccceverviveeenns 45
Figure 45. User defined IP available from the IP Catalog........ccccevvvviiiiiiniieeiiniieeeees 46
Figure 46. Open Microblaze configuration Wizard.ccccceeviiieiiiiiieiiniiiee e 46
Figure 47. Microblaze Configuration Wizard buses dialog........cccccceevveicnvveeenieeiiiicnnnneen. 47
Figure 48. XPS FSL Master/Slave port configuration between the Microblaze and

[X=TaT o] o 1=T - | PP PUPPPRRRPPPRP 48
Figure 49. General simulation capture with all the cycles.cccvvivviiiiiiniiiiiniees 51
Figure 50. FFT peripheral FSM initial cycles simulation.cccccceeevvviiieinniieeiinieeecs 52
Figure 51. Xilinx ISE screenshot of the FSL test program with the result read from the
LAY 2 OO PP PP PPPPPPPTPPIOt 53
Figure 52. Tests with a SP605 of the FFT and FSL peripherals run by a C program from
the Microblaze soft MICrOPIrOCESSON. wuovuuiiiiiiiiiiie et e e 54
Figure 53. 10-6(t) FFT calculated with the Microblaze peripheral.ccccccevevvverrennnneen. 55
Figure 54. 10-6(t-1) FFT calculated with the Microblaze peripheral........ccccccveeevvnnnneee. 56
Figure 55. 10-6(t-1) FFT calculated with the Microblaze peripheral........ccccceveeeeennnneee. 56
Figure 56. 100-6(t-1) FFT calculated with Matlab.cccccccoevviivreeiiiiiiiee s 57
Figure 57. 100-6(t-1) FFT calculated with Microblaze peripheral........ccccccveveivveviennnneen. 57

64

Glossary

BSB: Base System Builder

CMOS: Complementary Metal Oxide Semiconductor
CPU: Central Processing Unit

DSP: Digital Signal Processing

EDK: Embedded Development Kit
EDAC: Error Detection And Correction
ELF: Executable and Linkable Format
FIFO: First Input First Output

FPGA: Field Programmable Gate Array
FSM: Finite State machine

GUI: Graphical User Interface

GPIO: General Purpose Input/Output
HDL: Hardware Description Language
12c: Inter-Integrated Circuit protocol
IC: Integrated Circuit

IP: Intellectual Propriety

ISE: Integrated Software Environment
LED: Light Emitting Diode

PC: Personal Computer

PMT: PhotoMultiplier Tube

RAM: Random Access Memory

ROM: Read Only Memory

RS: Red Solomon

SDK: Software Development Kit

SOC: System On Chip

SRAM: Static Random Access Memory
VHDL: VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
XPS: Xilinx Platform Studio

65

66

Bibliography

[1] Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast
Simplex Link (FSL) Channel; Hans-Peter Rosinger; May 12, 2004; Xilinx

[2] Sklar, Bernard; Digital Communications: Fundamentals and Applications; 2"
Edition; Prentice Hall; 2001

[3]1 ISE Simulator (ISim) In-Depth Tutorial; April 27, 2009; Xilinx

[4] Hamming code definition; Wikipedia;
http://en.wikipedia.org/wiki/Hamming code

[5] http://en.wikipedia.org/wiki/Xilinx

[6] http://www.xilinx.com/company/about.htm

[7]1 http://www.ehow.com/about 5390865 introduction-xilinx.html

[8] http://en.wikipedia.org/wiki/Microblaze

[9] PicoBlaze 8-bit Embedded Microcontroller User Guide

[10] ISE Design Suite: Intellectual Property

[11] Part Family Details for: "Spartan 6 FPGAs e Xilinx";
http://www.supplyframe.com/content/part-
family/xilinx/XC6SLX4 | XC6SLX9 [XC6SLX16 | XC6SLX25 | XCO6SLX25T | XC6SLX4S5 |
XC6SLX45T | XC6SLX75] XC6SLX75T | XC6SLX100| XC6SLX100T | XC6SLX150|XC6S
LX150T?id=1932196

[12] Spartan-6 FPGA Configurable Logic Block User Guide; UG384 (v1.1) February
23, 2010; Xilinx

[13] Xilinx Homepage; Xilinx Products & Services;

http://www.xilinx.com/products/index.htm

[14] SP605 Hardware User Guide; UG526 (v1.3) June 16, 2010; Xilinx

[15] Processor Local Bus (PLB) v4.6 Product Specification; December 2, 2009; Xilinx

[16] LogiCORE IP Fast Simplex Link (FSL) V20 Bus Product Specification; April 19,
2010; Xilinx

[17] EDK Concepts, Tools, and Techniques. Guide to Effective Embedded System
Design; Xilinx

[18] XPS General Purpose Input/Output (GPIO) (v2.00a); December 2, 2009; Xilinx

[19] LogiCORE IP Fast Fourier Transform v7.1; April 19, 2010; Xilinx

67

