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Abstract 

 

The aim of this projecte de final de master is to design a firmware with VHDL and the 

Matlab System Generator for Xilinx DSP of a test application, which mixes several of 

the Xilinx tools to create the design. The target FPGA is a Spartan 6 from a SP605 test 

board.   

In addition, this memory contains the main characteristics of the firmware design, a 

description of the tools used and the methodologies available to create the Firmware. 

Furthermore, it provides some theoric background and in some cases, it is useful as a 

guide to implement a similar solution to the one proposed. 

Furthermore, there is a description of the findings in the System Generator design field 

and also with the interaction in the Xilinx FPGA design flow. There have been described 

the tests which were performed to ensure the correctness of the design.  
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Resum 

 

Per aquest projecte, primer de tot es fa una descripció de les capacitats de la 

tecnologia d’FPGA i les eines emprades. S’ha donat especial rellevància a la tecnologia 

de celes i les capacitats de síntesi de les FPGA Xilinx ja que influeixen en gran mesura 

en la metodologia de disseny.    

L’objectiu d’aquest projecte es crear un disseny RTL i un firmware en VHDL per a un 

FPGA Xilinx emprant Xilinx System Generator a l’entorn Matlab Simulink. Tot i això, per 

aconseguir aquest objectiu s’ha portat a terme un exhaustiu estudi de l’entorn de 

disseny utilitzat. Ja que, com en la majoria d’entorns de disseny dels fabricants 

d’FPGAs, la interacció entre varis programes que treballen en diferents aspectes del 

disseny firmware és complex. Per això s’estudien les interaccions entre aquests 

programes i les seves capacitats especifiques dins del procés complet de disseny SoC. 

Aquesta memòria dona especial rellevància a l’estudi del Xilinx System Generator y 

dels passos necessaris per exportar i simular els dissenys resultants. Una de les raons 

principals per aquest interès és el fet que aquest entorn aporta un bon nivell 

d’abstracció al disseny lògic facilitant l’accés a aquest a gent acostumada a treballar en 

el disseny de sistemes de processat digital del senyal en entorn Matlab Simulink. Tot i 

això aquesta guia no pretén substituir a l’ajuda pròpia del System Generator, sinó ser-

ne un complement, per això també es donen algunes indicacions de com accedir a 

aquesta sempre que sigui necessari. 

En quant al System Generator, s’ha fet un estudi detallat dels conceptes de disseny, 

blocs i funcions disponibles per realitzar aquests tipus de dissenys. Addicionalment, 

s’han detallat els mètodes d’interconnexió i el sistema de data rates que existeix entre 

diferents blocs; ja que el sistema de busos i tipus es diferent dels utilitzats per els 

llenguatges HDL i representen la principal font de problemes utilitzant System 

Generator. 

A més a més, s’ha comprovat que les màquines d’estats fetes en Matlab amb un arxiu 

m-code integrat dins del System Generator s’implementen correctament. Ja que 

aquesta metodologia de disseny és interessant degut al fet que és més dissenyar una 

màquina d’estats d’aquesta manera és més senzill i menys propens a errors. Per això 

s’han dut a terme suficients simulacions per assegurar que la implementació és 

correcte. 

Finalment, també s’han realitzat tests en una placa SP605 per assegurar que el disseny 

es sintetitza correctament i per validar la metodologia de disseny utilitzada per crear el 

firmware.  
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1 - Introduction 

 

For this project, first of all, a brief description of the FPGA technology, tools and 

capacities used is made. Special attention to the Xilinx cell technology and device 

implementation capabilities is done, since it significantly affects the design 

methodology. 

The main objective of this project is to create an RTL design and a firmware with VHDL 

for a Xilinx FPGA using the Xilinx System Generator in a Simulink Matlab environment. 

Nevertheless, to achieve this objective an accurate analysis and study of the design 

environment is required. Due to the fact that, as in most FPGA vendor ISE’s, the 

interaction between various programs which work in different aspects of the IC design 

is complex. Therefore, the interaction process, tools and capabilities are also among 

the main fields of study of this thesis.  

This thesis also does an exhaustive exploration of the Simulink design methodology 

integrated with Xilinx System Generator and the steps needed to export and simulate 

the resulting design. This design methodology offers very good abstraction capabilities 

and offers a familiar interface for those used to work in digital signal processing with 

Matlab. Nevertheless, this document does not pretend to replace the System 

Generator help, but being a complement, therefore some tips to access to this help 

whenever necessary are provided.   

Regarding to the System Generator, a detailed study of the design concepts, blocs and 

functions available to perform this type of implementations is done. In addition, the 

interconnection methods available and data rates between blocks have been detailed- 

since the busses and types are different from the ones used by HDL languages and they 

are the main source of design errors when using System generator. 

Furthermore, the correct design of a FSM, using an m-code file integrated into the 

System Generator design, is also viewed; given the fact that it is far simpler and less 

error prone to design a FSM from a script like language such as Matlab, than in VHDL. 

Additionally, an extensive simulation has been done to assure that the correct 

implementation has been also performed. 

Finally, lab tests using the Xilinx SP605 board were performed to ensure that the 

design is properly synthesised and to validate the methodology used to achieve the 

firmware.  
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2 – Tools and design methodology 

  

2.1 – Overview 

 

Xilinx was the first viable FPGA company, it was founded in Silicon Valley in 1984 [5]. In 

2010, Xilinx has around 3000 employees and leads the FPGA market with 1800 million 

$ revenues in 2010, which represents more than the 50 % of the PLD market [6]. It 

develops products for many markets form common electronic devices to the 

aerospace industry. Their current set of products also include a digital design 

development software, a wide range of IP cores which may be embedded indo designs 

made using Xilinx FPGAs and complementary electronic products such as test boards 

and kits [13].   

From the first FPGA made by Xilinx, the XC2064 (1985) [7], to actual FPGAs, the 

complexity and features have been increased dramatically, as it can be seen in Figure 1 

and Figure 2; where the Basic logic blocs of XC2064 and Spartan 6 FPGA family are 

shown, which is the FPGA used for this project. Nevertheless, the main FPGA 

characteristics enabling the low-level implementation of logic functions from HDL 

designs, which enable to embed high-speed custom designs into a programmable 

microchip, remain the same.    

 

Figure 1. XC2064 Cell. 
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Figure 2. Spartan 6 SLICEL [12]. 

Modern FPGAs offer a very high degree of versatility having integrated in those devices 

a superset of technologies such as microprocessors, microcontrollers and IPs. As a 

microprocessor, Xilinx offer the Microblaze microprocessor which is implemented with 

standard blocks [8], adding the easiness of programming and versatility of a 

microprocessor to the high processing capabilities and speed of a FPGA. Regarding to 

the Picoblaze; it is a very compact, full featured, 8 bits micro-controller that facilitate 

to integrate control capabilities to the FPGA design [9]. In some FPGAs, there have 

been implemented even hard coded microprocessors such as PowerPc 

microprocessors in some Virtex FPGA series. Xilinx also offers a wide base of IPs of own 
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craft- 296 made by Xilinx and 299 made by 3rd party vendors which add a lot of power 

and programming easiness to FPGA design trough the Xilinx System Generator [10].  

Xilinx offer a wide variety of products, which range from the programmable devices 

and development cards to the software necessary to synthesize complex electronic 

solutions. This full set of tools associated to the FPGAs is what makes FPGAs such a 

powerful and versatile device. Xilinx ISE enables the design and simulation, and the 

test boards allow the development and testing of the designed application to finally 

implement that solution into a production board, in an error prone environment. In 

Figure 3 a custom board designed to hold a Virtex 5 FPGA can be seen. 

 

Figure 3. Virtex 5 board. 

 

Due to the high performance and capabilities of Xilinx FPGAs it is possible to find them 

in many advanced commercial electronic applications such as motherboards, PCIe 

Cards, video acceleration cards, mobile phones, etc... 

In Figure 4 there can be seen a Xilinx FPGA used as a main controller of a computer 

motherboard.  
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Figure 4. Motherboard using a Xilinx FPGA. 
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2.2 – Xilinx FPGA 

 

The FPGA used to test this project is a Spartan-6 XC6SLX45T, this FPGA is installed in a 

Spartan®-6 FPGA SP605 Evaluation Kit test board. This test board is a stable and 

reliable development environment that allows the testing of the FPGA main features. 

 

Figure 5. Spartan®-6 FPGA SP605 Evaluation Kit test board. 

The Spartan-6 XC6SLX45T is a 45 nm low-power copper process technology FPGA with 

a core voltage of 1.2V [11]. This FPGA can is can perform quite sophisticated tasks 

even holding a small microcontroller or microprocessor such as the ones provided for 

Xilinx as IPs, in addition to other high performance designs such as high rate signal 

processing. A brief description of its resources can be seen at Figure 6. 

Number of Slice Registers   54,576 

Number of Slice LUTs 27,288 

Number of bonded IOBs 296 

Number of DSP48A1s 58 

Number of PLL_ADVs 4 

Figure 6. Outline of Spartan-6 XC6SLX45 resources. 

The Spartan®-6 FPGA SP605 Evaluation Kit is designed to be connected to into a 

computer PCIe slot and expands the functionality of the FPGA providing a wide set of 

interconnection ports; which allow to use the FPGA in conjunction with other designs 

that provide any of those ports.  

Among the ports provided in the SP605 there are: a PCIe port, a USB JTAG port, SMA 

connectors, Multi-Gigabit GTP MGTs Transceivers, a SFP Module Connector, a 

10/100/1000 Tri-Speed Ethernet PHY, an USB-to-UART Bridge and an IIC Bus [6]. A 

detailed description of those ports, their interfaces and configuration options can be 
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consulted at the Xilinx, SP605 Hardware User Guide. As an outline, in Figure 7 a block 

diagram of the connection ports and banking of the SP605 is provided. 

 

Figure 7. SP605 Connectivity features and banking [14]. 
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2.3 – Xilinx design and simulation tools 

 

The set of tools used for this project include Xilinx ISE, Matlab with Xilinx System 

Generator and the Xilinx ISE Simulation Tool. 

They all have a place in the design process and the main design tool continues to be 

the Xilinx ISE, since any design made with Matlab has to be imported as a VHDL or 

Verilog entity and the final pin out configuration has to be done with Plan Ahead. In 

addition, the designs made with Xilinx System Generator cannot handle all the 

functions that a VHDL can do, therefore they are intended to simplify some design 

parts but in most cases, it may be necessary to integrate them into more complex 

VHDL designs.  

In Figure 8 the Xilinx ISE main window is shown, it allows to add the System Generator 

generated VHDL entities with the Add Source… option, then they may be integrated 

and simulated in the design as desired.  

 

 

The Xilinx System Generator integration into Matlab Simulink is the main field of study 

of this project and a sample project can be seen in Figure 9; which shows as a 

background the standard Matlab window. At its central right part the Simulink library 

browser can be seen; where the blocks to design with System Generator are taken 

from. At the central left part of the figure, a design window with a basic design made 

generable for a Xilinx FPGA.   

Figure 8. Xilinx ISE Project Navigator main window. 
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To start a design in Matlab Xilinx System Generator with Matlab R2009a and Xilinx ISE 

12.1 Installed; the first step once Matlab has been opened is to open the Simulink 

Library dialog. The second step is to open or create a design. Once a design window is 

opened, the blocks from the Simulink library can be dropped into the design to be 

used; most of the synthesizable blocks are found in the Xilinx libraries called: Xilinx 

Blockset, Xilinx Reference Blockset and Xilinx XtremeDSP Kit. Marked with number four 

in Figure 9, it can be seen a basic design with the System Generator block at the bottom 

and a basic synthesizable design isolated by a Xilinx input and output from a standard 

Simulink Source and Display sink.       

 

 

Although it is possible to perform simulations of the design in Matlab, it is also 

necessary to use the Xilinx simulation Tool. It is also possible to perform simulations 

using a special version of ModelSim, despite the fact that ModelSim is a very versatile, 

scriptable and powerful simulation tool that is used by many FPGA vendors, it comes 

as an additional package and it was not available for this project.  

If not set by default, the selection of ISim as the default Xilinx ISE simulator is quite 

tricky; since, if another simulation software is chosen and the license is not correctly 

set, the program will just fail to execute. To set ISim as the default ISE simulator first it 

is necessary to right clicking on the design FPGA model instance and choose Design 

Figure 9. Matlab main window with an open Simulink Library dialog and a System Generator 

project. 

1 

2 

3 

4 
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Properties, once the Design Properties dialog is open, ISim can be set in the Simulator 

option; as marked in the Figure 10.  

 

Figure 10. Choose ISim as Xilinx ISE simulator. 

Once the correct simulation enviroment is used, the simulation option in the project 

design tab may be choosen. At the simulation tab, the different test benches of the 

design are available to be chosen. In the processes window situated below, the 

simulator can be launched by double clicking on the corresponding optio of the tree; in 

Figure 11 the Behavioral Check Syntax has been made prior to the Simulate Behaioral 

Model option is chosen which will launch ISim to view te simulation of the current 

testbench. 

The type of sumulation available (Behavioral, Post-Translate, Post-Map or Post-Route) 

depends on the compilation level achieved in the implementation tab, so prior to 

simulate it is necessary to run the processes needed for the desired level of simulation 

in the implementation Tab.  

It has been observed during the simulation and exporting process from System 

Generator a bug in which the Test Bench choosen in the simulation tab is allways  

oberriden by the generated with System Generator, a workaround to solve this 

problem is to remove the ISim folder of the project root folder.  

1 

2 
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Figure 11. Xilinx ISE- process to open a simulation with ISim. 

 

Once the simulation process is launched, as seen in Figure 11, the simulation 

compilation process will start and an ISim instance will be launched which 

automatically runs the selected testbench. In Figure 12, ISim can be seen performing a 

simulation of a full adder. As it can be seen ISim and ModelSim share a similar aspect, 

configuration options and functionality; therefore, it is easy to adapt to this tool for 

those who come from other simulation environments.  

1 2 

3 
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Figure 12. ISim simulation window. 
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2.4 – Matlab and Xilinx System Generator 

 

2.4.1 – Matlab Simulink and Xilinx System Generator integration  

 

The design environment for System generator embedded in Matlab Simulink is a 

graphical tool that allows an easy and quick design of common communication 

devices; it simplifies very much the work of bit scaling and IP interconnection, since 

these matters are almost automatically handled by the Simulink System Generator 

tool.   

 

 

The Simulink environment simplifies the design process very much; since it is very easy 

to connect busses and wires between blocks and the sizing of the buses is done 

automatically, just some occasional casts performed over buses and the adjustment of 

the sample rate are required form time to time. Matlab software also allows to easily 

group blocks and connections to organize the designs and even to allow reusing 

common used modules in your designs. 

The main design process using Xilinx System Generator is based in using the Xilinx 

Blocksets accessible from the Simulink Library browser. They represent, in the majority 

of the cases, IPs available with Xilinx ISE and the design process consists in aligning, 

connecting and configuring them to achieve the desired result. The Xilinx Blockset 

library of the Simulink Library browser can be seen at Figure 14. 

Figure 13. Xilinx System Generator Simulink sample design. 
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Figure 14. Xilinx Simulink Blockset Library. 

In addition to the huge functionality achievable with the Xilinx blocks, it is possible to 

import VHDL entities and m files with the Black Box and the M-Code Xilinx blocks to 

use them in the Simulink design. On the contrary, for the system generator it is not 

possible to instantiate standard Simulink blocks apart from the Demux, From, Goto and 

Mux blocks. Nevertheless, it is possible to use them for simulation purposes.   

As told before, the basics of designing a project with System generator consists in 

placing in the Simulink environment, blocks taken from the Xilinx block sets to 

elaborate a logic design. The simplest type of design is composed by a Xilinx System 

Generator block and it is divided per se in two parts with the Gateway In and Gateway 

Out blocks- one part which is synthesizable and one part which is not. In Figure 15 a 

simple design with the synthesisable part of the design in the blue circle.  

The synthesisable part of the design must be separated from the non synthesisable 

part of the design by Gateway In and Gateway Out blocks from the Xilinx block set and 

in the synthesisable region, the blocks must be from the Xilinx blockset allowing few 

exceptions as described in section 2.4.2.5 – Can common Matlab Simulink blocks be 

synthesized by System Generator?. 

The non synthesisable part of the design can contain any type of block and it can be 

used to compare the signal and to generate complementary test structures. This part 

of the design will be ignored when the generation step to map the design to the FPGA 

is performed. 
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Figure 15. System generator basic design. 

Once the design is made and all the pins and buses are closed it can be simulated as a 

normal Simulink model with the play button and it can be exported to the Xilinx ISE 

with the System Generator block. The System Generator block offers various options 

to configure the type of exported 

project desired, even allowing to 

choose a bitstream to program the 

FPGA. It is also possible to choose the 

target FPGA, the folder where to 

store the project and the HDL 

language to describe the generated 

blocks and TestBenches. 

With the system generator dialog it is 

also possible to tune up some 

features of the Simulink blocks such 

as the Simulink system period and 

the Block icon display; which is very 

useful to debug data type errors, 

allowing to view the input and the 

output data types which is a common 

source of conflicts when 

interconnecting blocks. Figure 16. System Generator Dialog. 
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Despite the fact that working with System Generator blocks simplifies very much the 

logic design process, it is still necessary to take care of the bus data types and sizes in 

addition to the sample time. These parameters are what enables system generator to 

instantiate the IPs and to manage the clock and data synchronization trough modules. 

Since some IPs expect specific data types and the sample time may change in some 

blocks. Double clicking on some blocks that have the ability to change those 

parameters allows editing the output of those blocks, as seen in the dialog of Figure 17. 

Nevertheless, the input is generally fixed, and the output is automatically set by the 

bloc; therefore, special blocks are provided to perform sample time and data type 

conversions. 

 

Figure 17. Bus type edit dialog. 

 

Additionally to the descriptions given in this thesis, Xilinx System Generator has a very 

complete built in help and block description, since this work does not pretend to 

substitute this source of information, whenever needed it is possible to obtain this 

type of information right clicking over the desired block in the Simulink Block Library or 

in the design and clicking at the help option of the menu; as seen in Figure 18. 

Moreover, from the System Generator menu all the Xilinx blocks can be consulted. 
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Figure 18. System Generator Blocks Help. 
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2.4.2 – Matlab Simulink System Generator facts 

 

When designing with System Generator toolset, some questions may arise on how to 

resolve common design aspects or about the System Generator environment itself. In 

order to aid solving these questions this section gives some explanations to the most 

common ones. 

2.4.2.1 – What does the green System Generator blocks mean?  

These blocks, in the current version of the Simulink Library, are formed by complex 

encode and decode modules which are licensed cores, available for purchase on the 

Xilinx website. Some of them have limitations related to supported devices where they 

may be implemented.  

2.4.2.2 – What does the brown System Generator blocks mean?  

These blocks allow the input or output of signals into the instantiable design, logically 

separating the compilable part by the System Generator of the design, from other 

blocks of the Matlab Simulink Libraries. Some of these blocks are the Input, the Output 

or the Signal Probe. 

2.4.2.3 – Can m-code files be added to a design made with System Generator?  

m-code blocks can be added with the Xilinx special block called M-Code Block which 

allows the association of an .m file to de block. This block generates the necessary 

connections to enable the interconnection of the M-Code Block with the rest of the 

design.  

2.4.2.4 – Can VHDL or Verilog code be added to a design made with System 

Generator? 

A self contained piece of VHDL or Verilog code may be added to a Simulink System 

Generator design with the Black Box Block. Once the project has been saved to a 

directory, the VHDL or Verilog code file has to be copied to the project directory root. 

The third step to be performed is to add a Black Box Block to the design, which will 

open a window to select the desired VHDL or Verilog file. After the selection is made 

the block will automatically generate the necessary ports in order to allow the 

interconnection of the code input and output signals with the rest of the design.  

The Black Box Block does not correctly compile VHDL entities with generic values, this 

issue may be solved by manually changing, with the search and replace tool of a text 

editor, the generic variable name descriptor for the desired value and removing the 

generic declaration from the entity declaration.        
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2.4.2.5 – Can common Matlab Simulink blocks be synthesized by System 

Generator? 

In general, Simulink blocks may be added to a design for simulation purposes; 

nevertheless, they cannot be mapped to hardware by the System Generator. However, 

there are some blocks which are fully supported and can be mapped to a hardware 

device which are the Demux block, the From block, the Goto Block and the Mux Block. 

2.4.2.6 – Can mixed simulation with Simulink and ModelSim be performed? 

The ModelSim block allows simulating the design using ModelSim after a simulation 

made with Simulink is performed; this feature may be useful in order to compare the 

results between the Simulink design and the resulting implementation.   

In addition, the Create Testbench option may be selected when opening the System 

Generator, this will create at compile time an HDL testbench and the necessary script 

files for ModelSim. This is a very useful feature that simplifies verification process of 

the generated hardware. Furthermore, the files generated by the System Generator 

may be modified to allow specific hardware tests.      

2.4.2.7 – What are the Xilinx Simulink blocks and how are they implemented? 

They mainly implement Xilinx IPs. The Xilinx DSP blockset for Simulink is provided by 

over 90 Xilinx DSP building blocks. They include a wide variety of building blocks in 

order to allow the implementation of almost any design. Among these blocks there can 

be found from simple bocks such as adders, multipliers and multiplexers; to far more 

complex blocks such as FFTs, memories and forward correction blocks. All these blocks 

are implemented using the Xilinx IP core generators which intend to deliver optimized 

hardware implementations for a selected device. 

2.4.2.8 – What is the block Sample Rate? 

The block Sample Rate is the sample rate in which data arrives to a given block, this is a 

configuration parameter and must be correctly set in order to allow a correct design 

implementation. The typical sample rate is 1, therefore it must be the lowest sample 

rate of the design, if there are some parts of the design which work at higher sample 

rates it has to be correctly set at each block. 

 

Figure 19. Sample time block. 
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The Sample Time Block, which may be seen at Figure 19, reports the normalized 

sample period of its input. This sample period used by the Xilinx blocks is not 

equivalent to the Simulink sample period which is used for simulation purposes, the 

sample period of the Xilinx blocks is implemented as a hardware constant instead. 

Special attention must be taken at the Input and Output Blocks of the Xilinx System 

Generator design to grant that its sample rate is equivalent to the minimum multiple 

of the design sample rates when blocks that change the sample rate are used, such as 

DUCs or DDCs. 

In order to visualize the different sample rates of a design the following techniques 

may be applied. In one hand, the sample period may be seen configuring the Simulink 

window options available at format -> sample time display. In the other hand it may be 

seen implementing a Sample Time display block, with no hardware cost- such as the 

one in Figure 20 which is implemented with a Sample Time block, a Xilinx Out Block 

and a standard Simulink Display. 

    

Figure 20. Sample Time view block. 

2.4.2.9 – C/C++ support in Xilinx System Generator. 

There is no block in the Xilinx System Generator that allows to directly import C/C++ 

functions to be translated in Hardware. Nevertheless, it is possible to use C/C++ code 

in a Xilinx FPGA implementing a Mocroblaze or a Picoblaze block, which may run C/C++ 

compiled programs. 

2.4.2.10 – Picoblaze support 

The 8 bit Xilinx microcontroller, which is implemented with basic building blocks may 

be instantiated in the system generator using the block called Picoblaze 

microcontroller. The System Generator environment handles some of the basic 

connection and configuration issues of the Picoblaze Microcontroller, which may 

simplify its use.  

3.4.2.11 – Microblaze support 

The small Xilinx microprocessor Microblaze can be instantiated with the block located 

at Xilinx Blockset -> Control Logic, EDK Processor. In order to allow its operation, shared 
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memory blocks or shared FIFO blocks must also be instantiated in order to allow data 

exchange. In this case, Simulink environment will also handle some of the 

interconnection issues of the microprocessor, aiding in with its setup. 

2.4.2.12 – FIR filter design with FDA tool and FIR compiler 

The FDA Tool block works altogether with the FIR Compiler block. Once the FDA Tool 

block is placed in the design, double clicking on it opens an FDA Tool window where 

the desired filter response can be configured; a small preview of the filter response will 

be shown over the FDA Tool block.   

In order to configure the FIR Compiler from an FDA Tool block the desired filter has to 

be set using the FDA Tool with a given precision; after this is done the option: File -> 

Export… has to be used in order to export the filter coefficients. In the Export dialog 

the variable name of the coefficients has to be set and it is recommended to enable 

the option Overwrite Variables, as it can be seen in Figure 21.   

 

Figure 21. FDA Tool Export dialog. 

Regarding to associate the FIR Compiler and the FDA Tool filter the same name has to 

be used for the Variable Name, in the FDA Tool export dialog, and Coeficient Vector, in 

the FIR Compiler. As the variable used resides in the Matlab variables data space, each 

time the design is load the variable has to be exported anew from the FDA Tool. 

There are some adjustments that have to be done in the FIR Compiler configuration 

dialog, which can be seen in Figure 22, in order to handle the FDA Tool input. In the 

Implementation Tab it is also necessary to change the Quantization Option to 

Maximize_Dynamic_Range, Filter architecture to Systolic_Multiply_Accumulate, 

Coefficient structure to Inferred, coefficient type to Signed, Quantization to 

Maximize_Dynamic_Range, Coefficient width to 16, Select Best Precision Fraction 

Length, Number of paths to 1 and finally Output rounding mode to Full_Precision.  
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There are many configuration options available for the FDA Tool and the Fir Compiler, 

and the correct function of a FIR setup may involve modifying also the Sample Rate of 

its input and form the main System Generator option, nevertheless these are the main 

steps to test a basic filter. 

 

Figure 22. FIR Compiler configuration dialog. 

2.4.2.13 – Interesting utilities and the Xilinx Toolbar 

The Xilinx Toolbar has some complements useful when designing with Simulink blocks; 

it allows block sorting and port termination of unused ports. Port termination is 

required when using entities whose ports are not used completely allowing to compile 

the design. Whenever the terminators are used as inputs, sometimes it is necessary to 

fix some the terminations setting the correct data types.     
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2.4.2.14 – Xilinx special Simulink data types 

There are some special data types used in Xilinx System Generator Simulink designs, 

this special data types have to be taken in account when programming m-code 

functions in this environment. 

Xilinx fixed-point data types: 

 xlUnsigned ( <word length>, <binaty piont>) 

 xlSigned ( <word lenth>, <binary point>) 

Xilinx state machine variable:  

xl_state ( init, precision)   

 Init: is the initial value of the register 

 Precision: is a Xilinx fixed-point data type. 

2.4.2.15 – Bus management and configuration  

The Xilinx Simulink buses may be Boolean, signed and unsigned. Boolean buses are 

simple bit connections, where no further bus configuration is needed. In the other 

hand, for signed and unsigned buses it is necessary to configure the binary point value, 

which defines the number of fractional bits that the bus represents. 

As an example- in Figure 23, a fixed precision 16 bits bus with the binary point value set 

to 14 is shown. In order to represent integer values in a Xilinx bus the binary point 

must be set to 0.  

 

Figure 23. Xilinx bus distribution and nomenclature. 

Xilinx System generator has a collection of blocks to aid interconnection between 

different bus sizes and data types. They are necessary in most designs, due to the 
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automatic handling of inputs and outputs of the blocks and the fact that some blocks 

have restrictions in the data types and bus widths of their inputs.  

The most commonly used blocks to perform bus conversion operations are: 

Scale block: It is used to configure the way bus is scaled and the resulting data format. 

Slice block:  The Slice block is used to get a range of bits from the input bus and to 

assign them a data type for the exit. 

Concat block: The Concat block is the opposite of the slice block; it is used to mix two 

buses into one, allowing some basic configuration of its output format. 

Convert block: The convert block is one of the most useful blocks to adapt buses, in 

order to configure the convert block- the output format has to be set and the block 

adapts the data to match this format. Nevertheless, the default behaviour of the 

convert block is to shift the data to match the output format, in order to adapt the 

binary point of a bus, the Reinterpret block is recommended, since no data will be lost.  

Reinterpret block: It is used to achieve similar results compared to the ones obtained 

with the Convert block; in contrast to the convert block, this type of conversion does 

not modify the data of the bus in any way, It just displaces de coma or changes the 

type without modificating the data itself. 

BitBasher block: It is the most versatile of the bus casting blocks, it interprets Verilog 

code lines and allows more complex and exact conversion operations. 

  



 
29 

3 - Design 

 

3.1 - General Design  

 

The design finally implemented for this thesis aims to be a prove of concept of the 

design methodology presented in it, the System Generator design is a peripheral which 

can work alone or integrated in a SOC system using an EDK processor and the 

Microblaze bus interconnection.  

This type of design was chosen due to the fact that it was the most versatile of all the 

available options, since it enables the System Generator design to be directly 

interconnected to the FPGA pins and it also provides a standard interface to allow a 

higher level of abstraction. 

The function performed is a FFT, it is constructed with a FFT IP and a FSM which 

manages the control signals to make it work transparently from other modules as a 

FIFO, Figure 24. This structure can be used as a proof of concept for other signal 

processing designs with a higher degree of complexity. 

Attached to the System Generator Design there is a Simulink simulation environment 

which helps to view the behaviour of the system in conjunction with the Simulink 

blocks enabling fast error correction. Nevertheless, it has been necessary to simulate 

the different parts of the design with ISim. 

 

Figure 24. System Generator FFT peripheral design. 
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 This peripheral incorporates the necessary logic to work with a FIFO interface; this has 

been achieved placing a demultiplexer memory at the output of the FFT since the data 

resulting from the IP is received disordered. The FSM manages all the necessary steps 

and signals to interface it with a FIFO. The descrambling section of the design can be 

seen in Figure 25; the FSM manages the selection bit of the multiplexer in the two steps 

that the data resulting from the FFT has to do, first kn_index is used to store the data 

resulting from the FFT to two 16 bits and 512 position RAMs; this data has been scaled 

by the reinterpret blocks to fit in the 16 bit real and imaginary output format. After the 

data is written in order to the RAMs, the select bit is changed by the FSM to use the 

counter to write the data sequentially to the FIFO.  

 

Figure 25. Descrambling section of the System Generator peripheral design. 

 

The FFT Symbol can be seen in Figure 26, it is a radix-4 IP from the Xilinx IP repository. 

The most important signals are the start signal- which starts the FFT loading and 

unloading data process and FFT calculation; the rfd signal- which marks the cycles 

where the FFT is loading data; the dv signal- which identifies the cycles where the FFT 

is unloading data; and finally the done and edone which point out the cycle where the 

FFT finishes the calculation process and more data can be loaded.   
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Figure 26. FFT block symbol from Xilinx System Generator. 

 

The behaviour of the FFT has been deduced from Xilinx documentation [19] and from 

simulations, since some fields are outdated and the exact behaviour is not described in 

the documents or help of the FFT. 

The FIFO interface is modelled after an FSL bus, which is supported by many Xilinx IPs, 

including the Microblaze microprocessor. This has been done this way since the FSL 

interface resembles very much a standard FIFO interface and it allows the 

interconnection with other peripherals transparently. This is achieved by renaming 

some of the pins that would have equally been used if the interface was a common 

FIFO and joining the 16 bits of the real and imaginary parts of the data into a 32 bits 

bus which is the FSL data bus.  
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3.2 – FSM implementation with Matlab 

 

FSM design in Xilinx System generator is quite easy, since it can be done with a Matlab 

switch statement, in a way similar to other programming languages such as C++, Java 

or VisuaBasic.  

A basic example of this type of design can be seen in Figure 27. 

persistent state, state = xl_state(0,{xlUnsigned, 5, 0}); 

  switch state 

   case 0 

    if din == 1 

     state = 1; 

    else 

     state = 0; 

    end 

   case 1 

    matched = 0; 

state = 0; 

   otherwise 

            state = 0; 

  END 

Figure 27. Basic Matlab FSM example. 

 

To design a FSM, it is necessary to include a special variable to allocate the current 

state, this is done with the persistent state, state = xl_state(0,{xlUnsigned, 5, 0}); 

sentence; where state is the name of the variable, persistent is a Matlab keyword that 

enables the variable to hold its previous value between simulation steps and 

xl_state(0,{xlUnsigned,5,0}) is a Xilinx defined variable of type unsigned and size 5 

which acts as registered signal which will hold the current state. Nevertheless, it is 

quite easier to develop a FSM with this method. It is still necessary to define default 

values for the variables as it would be done in VHDL since inferred latches are not 

allowed.  

A common issue that still have to be taken in account is that, despite the fact that 

abstract design may come very handy and seem easy, glitches generated by state 

transitions may still affect the general behaviour of the FPGA. Therefore, extensive 

simulation has to be done to observe signal propagation and stability. And in some 
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cases the use of registers in the form: var,var = xl_state... or instantiated using System 

Generator blocks, may still be necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. FFT peripheral FSM simplified representation. 
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In Figure 28 a simplified representation of the FSM used to control the FFT peripheral is 

shown, the FSM starts a transformation cycle whenever it detects data from the slave 

FSL bus, checking the fsl_s_exists signal. Once the data is detected it sets the start 

signal of the FFT to true for a cycle and starts unloading the data from the FSL bus and 

loading it to the FFT internal memory. Once this loading process is finished, the FFT 

block automatically starts the calculation of the transformation rising the edone and 

done signals to 1 when it finishes. At this state S2, the underlying characteristics of the 

radix-4 FFT bloc which starts simultaneously the loading and unloading of data and a 

new calculation cycle whenever the start cycle is set to 1 makes necessary to check if 

there is really new data waiting to be transformed, if this is the case fsl_s_exists will 

have a true value.  

In the case that there is no data waiting to be processed the S3 state, the simple 

unloading path, will be chosen; it consists in waiting for the FFT to automatically write 

the resulting transformation data which come scrambled from the FFT to two 

intermediate RAMs, then a counter will be used to write it ordered to the FSL bus 

which the peripheral is master of and the flow returns to the idle state S0.  

In the other case, when there is data waiting to be transformed the loading and 

unloading steps are made altogether; after the unloading process is done, the data is 

written into the FSL bus as it would be in the S4 state and, since all this process is 

finished before the calculation of the FFT is done, the execution flow returns to S2 to 

wait for a new FFT calculation to finish.   

In the real FSM some of these steps require to be separated in smaller ones due to the 

peripheral dataflow characteristics, this implementation issues have been skipped 

since they make the understanding of the FSM more complex and is not meaningful for 

this study. 
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3.3 – Exporting procedure for Xilinx ISE 

 

Once the design in System Generator is done, the System Generator block can be used 

to export de design to Xilinx ISE, once the System Generator Dialog is open; it is 

possible to configure all de relevant import options needed, Figure 29. 

 

Figure 29. System Generator Export Dialog. 

 

It is convenient to choose that System Generator generates a VHDL netlist, since this 

type of exported files can be edited afterwards with Xilinx ISE. To correctly import the 

design to Xilinx ISE the correct FPGA has to be set and the language to represent the 

hardware, in this case a Spartan 6 and VHDL.  

In some cases, it may be also desirable that System Generator exports the current 

Simulink test environment as a testbench since it can be useful to compare the 

simulation results and evaluate its correctness with the ISE simulator. Nevertheless, 

whenever that is done a bug may arise forbidding to simulate any other testbench 

generated with Xilinx ISE, that bug can be solved erasing the ISim folder located at the 

project root, which will allow to choose and simulate any of the available testbenches 

of the project.  

When the information of the configuration dialog is properly set, the generation 

process can be started. As in the Simulink simulation process, the design is revised in 

this step and any design errors will arise. After a successful generation, a window like 

the one seen in Figure 30 will appear. 
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Figure 30. System Generator generation log after a successful generation. 

 

Once the design generation has finished, a project for Xilinx ISE is stored in the target 

folder. There are three main ways to use the newly generated project in conjunction 

with other designs or tools:   

• The generated project can be opened with Xilinx ISE directly to perform tests 

and simulations, assign the pins to with Plan Ahead and finally generate a FPGA 

programming file of the design as it was designed with System Generator.  

• The System Generator exported files may also be imported into an existing ISE 

project using the generated VHDL files- including them to another project and 

instantiating the entities as components.  

• Finally, the most advanced way to integrate various design methodologies into 

an advanced SOC design with one or more microprocessors- is to generate an 

IP of the ISE project with the Xilinx Platform Studio to integrate the design as a 

peripheral; this type of solution can be seen in the next section.  

Despite the design methodology chosen, it may be always useful to open the System 

Generator generated project with Xilinx ISE to test the design behaviour individually, 

performing the required test with the Simulation tool.  

In the case that any modification is required it is not recommended to edit the System 

Generator generated files since they are very complex, for that case the second design 

methodology would be advised. 

Finally, to generate the programming file with Xilinx ISE- Plan Ahead has to be used to 

set the input and output pins, since there is no way to adjust the pins with System 
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Genretor. To manually set each pin to an output the option of the right click menu 

place I/O Ports in a I/O bank has to be selected and then select the desired I/O pin, as 

seen in Figure 31. 

 

Figure 31. Plan Ahead pinout selection. 
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3.4 – Exporting procedure for Xilinx XPS 

 

It is also possible to import the designs made with Xilinx System Generator in Matlab 

to the Xilinx Platform Studio, this allows access to the peripherals made with system 

generator from a microprocessor, enhancing the capabilities of the overall design 

allowing the creation of complete SOC solutions. Furthermore, if a default 

interconnection interface supported by the microprocessor is implemented in the 

module designed with Simulink- the access from the microprocessor can be done in a 

transparent form. 

For this project, a default wizard generated project is used, XPS allows to create 

projects with one or multiple EDK Processors for the standard test boards built by 

Xilinx or other test boars built by 3rd party partners with the Base System Builder. 

Those standard XPS projects automatically configure all the peripherals of those 

boards simplifying the design process and supplying an error free base environment to 

test the main capabilities of the board [17].   

The first step, which can be seen in Figure 32, is to import the design into the Xilinx 

Platform Studio is to create a user defined IP, this can be performed by opening the 

hardware tab and choosing the Add or Import Peripheral option. 

 

Figure 32. XPS peripheral import. 

 

The next step consists in choosing the Import Existing Peripheral option, as it can be 

seen in Figure 33.  
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Figure 33. XPS peripheral import- peripheral flow selection. 

 

In the following step, the project where the new User defined IP must be created must 

be chosen, in this case the current project is used, as seen in Figure 34. 

 

Figure 34. XPS peripheral import- source type selection. 
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The next step consists in identifying the top level entity of the imported design, which 

must be previously known and it also allows indentifying the resulting IP with a 

revision number, as it can be seen in Figure 35. 

 

Figure 35. XPS peripheral import- top level entity name selection. 

 

 

Figure 36. XPS peripheral import- import files selection. 
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In the following step, shown in Figure 36, the type of files to import must be chosen, it 

is always a good advice to include the HDL and Netlist files. In the next step the ISE 

project from which the IP has to be created has to be selected with a file browser, as 

seen in Figure 37. 

 

Figure 37. XPS peripheral import- ISE project location. 

 

 

Figure 38. XPS peripheral import- VHDL sources selection. 
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For the following step, shown in Figure 38, in a project like the one used for this thesis 

the fields are fine and nothing has to be done. 

Once arrived to the step where an interconnection between the peripheral and the 

EDK processor is required, as it can be seen in Figure 38, there are two main procedures 

preferred: 

 

Figure 39. XPS peripheral import- bus interface selection. 

 

The first and most versatile one is performed using the PLB v46 bus standard, this bus 

is used by the peripherals imported by default and it is the main interconnection 

option used by Xilinx IPs and 3rd party IPs. This type of interface can be accessed 

transparently by the Xilinx microprocessors once an address space is assigned.  

Despite that in some cases it is possible to implement, in a semiautomatic manner, an 

interface to the PLB bus using what is called a GPIO module provided by Xilinx, which is 

configurable and handles most of the interconnection issues; it could not be achieved 

to instantiate this module in this project and trying to implement the PLB bus interface 

by hand was too difficult- it has various transmission modes and, even for the slave 

side, many signals which the peripheral has to take care about [16], as it can be seen in 

the Figure 40.  

Since the scope of this project is not to achieve an advanced bus interconnection 

system for SOC peripherals, another simpler default interconnection method should be 

considered for simple modules. 
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Figure 40. PLB v 46 bus slave interface. 

 

The second preferred and much simpler interconnection mechanism is performed 

using the Fast Simplex Link V20 Bus. As illustrated in Figure 41, this bus is mainly a 

simplex FIFO buffer between a master, which writes to the FIFO, and a slave, which 

reads from the FIFO; therefore, to achieve a bidirectional communication channel two 

bus interfaces are required [16]. This bus is also easily accessible by a Microblaze 

microprocessor and its interface can be automatically imported during the Create 

Import peripheral process of the Xilinx Platform Studio environment if some design 

requirements are met.   
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The instructions for reading and writing from FSL bus can be blocking and non-

blocking, and they have the following format [1]: 

C Function Call 
Assembly-Level 

Instruction 
Description 

Microblaze_bread_datafsl(val, id) get blocking data read 

Microblaze_bwrite_datafsl(val, id) put blocking data write 

Microblaze_nbread_datafsl(val, id) nget non-blocking data read 

Microblaze_nbwrite_datafsl(val, id) nput non-blocking data write 

Microblaze_bread_cntlfsl(val, id) cget blocking control read 

Microblaze_bwrite_cntlfsl(val, id) cput blocking control write 

Microblaze_nbread_cntlfsl(val, id) ncget non-blocking control read 

Microblaze_nbwrite_cntlfsl(val, id) ncput non-blocking control write 

 

Where val is the data to read/write which for the read operation it must be a variable 

and Id is the FSL port number starting from 0 set in the XPS bus interfaces tab. 

 
Figure 41. Fast Simplex Link(FSL) V20 Bus Block Diagram. 

To be automatically imported, the bus signals of the top imported entity have to 

comply with the nomenclature shown in Figure 42.  

Master side Slave side 

FSL_Clk FSL_Clk 

FSL_Rst FSL_Rst 

FSL_M_Clk FSL_S_Clk 

FSL_M_Data FSL_S_Read 

FSL_M_Control FSL_S_Data 

FSL_M_Write FSL_S_Control 

FSL_M_Full FSL_S_Exists 

Figure 42. FSLv20 nomenclature conventions. 

The FSL bus allows synchronous and asynchronous communications; for the 

synchronous configuration the FSL_M_Clk, the FSL_S_Clk, the FSL_M_Control and the 

FSL_S_Control signals may be ignored leaving the interface to an even simplified form 
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similar to a simple FIFO. Those parameters, the peripheral address and the FIFO size 

can be configured with the XPS platform [16].  

Once the FSL bus is chosen as the bus supported by the peripheral, the next two steps 

allow to make the pin associations for that bus, if the name tags and connections are 

correctly set in the peripheral- the connections will be almost made automatically. 

Nevertheless, for the case of Figure 43 and Figure 44 it was needed to correctly set the 

FSL_Clock signal, since the clock is not directly accessible in blocks made with System 

Generator and it could not be set in the IP; it must be associated with the clk signal.   

 

 

Figure 43. XPS peripheral import- Master FSL pin configuration step. 

 

 

Figure 44. XPS peripheral import- Slave FSL pin configuration step. 
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The remaining steps can be let with the default values proposed by the dialog until the 

they are finished, remaining to include all the required files.  

 

Figure 45. User defined IP available from the IP Catalog. 

 

 

Figure 46. Open Microblaze configuration Wizard. 
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Back to XPS main window, at the IP Catalog tab, it is possible to see the newly created 

IP core from the ISE project imported from the Simulink design done with System 

Generator, as it can be seen in Figure 45. To add the newly created IP to the design as a 

new peripheral it is just necessary to double-click over it.  

The remaining step is to connect this peripheral to the Microblaze microprocessor 

trough FSL, in order to achieve the FSL interconnection two FSL busses have to be 

added trough the Micrblaze Configuration Wizard, right clocking over the Microblaze 

instance in the System Assembly view.   

In the Microblaze Configuration Wizards, it is necessary to advance clicking next until 

finding the PVR and Buses dialog and adding the two required FSL buses to connect the 

peripheral (Figure 47). 

 

 

Figure 47. Microblaze Configuration Wizard buses dialog. 

 

The remaining step to connect the new peripheral is to physically connect in the 

System Assembly View a slave FSL connection from the Microblaze to a Master FSL 

connection of the peripheral and establish another connection with the remaining bus 

in the opposite communication direction, as it can be seen in Figure 48. 
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Figure 48. XPS FSL Master/Slave port configuration between the Microblaze and peripheral. 

 

Now to be able to use the newly created peripheral transparently with the test 

program of the SDK a final Export Step is required: Project -> Export Hardware Design 

to SDK. When the export process finishes the design can be open with the SDK and it 

can be programmed as an embedded system. 
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4 - Tests and Results 

 

4.1 - Simulations and test benches 

 

For each significant component used in this project, simulations and testbenches have 

been performed to assure its correct operation. In fact, some of them allowed the 

recycling of almost all the code since some of the signals where shared. 

The simulation of the components separately allows to perform a much more precise 

design and avoiding interaction errors between the different modules while making 

them easier to find and fix. Nevertheless, tests over the complete peripheral where 

also made, since assuring the correct operation of all the blocks together with 

simulations is a crucial part of design process and some of those simulations can be 

seen in the following section, Figure 49 and Figure 50. 

Given the fact that System Generator has a good graphic environment, specially 

designed to simulate math algorithms it plays also a role in the simulation process. 

Nevertheless, Matlab simulation environment is not well suited for working with the 

time scale of the FPGA signals. To help with that- Xilinx provides the WaveScope block, 

which allows visualizing the signals in a FPGA time scale. Nevertheless, the WaveScope 

block does not achieve the level of functionality available with Xilinx ISE simulation 

tools. 
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4.2 – FSM Test 

 

To test the FSM, a special version of the peripheral has been implemented which 

allows the visualization of all the signals inside the peripheral; this facilitates an easier 

verification of the values of all signals during each step. 

The FSM behaved as expected and there has not been any unexpected issue due to a 

bad synthesization of the m-code file, in fact the design of a m-code FSM in System 

Generator is very similar to designing it in VHDL, with the difference that the signal 

propagation is taken care of by System Generator. Nevertheless, transition glitches 

may appear in the same manner as they would in VHDL and in most cases a cast block 

is needed to adapt the output signal of the FSM to the incoming format of each 

destination block. 

The tested FSM has 20 states and two execution branches, as described in section 3.2, 

to perform the test, a custom test bench has been done and a set of test data has been 

written to it form files; since the size of the FFT- 512 elements, makes it difficult to use 

written constants. In fact the test data has been exported from a Matlab signal to a 

file, then read by the testbench, processed by the peripheral and the result is written 

back to another file in a Matlab friendly format. This has allowed to verify the 

behaviour of the device with a mathematical tool such as Matlab to see if the results 

are as expected.  

The testbench has the necessary procedures to synchronize the required input signals 

to manage the behaviour of the module and it mainly serves data to the peripheral in 

various cycle modes to test the different execution branches. As stated before, the 

FPGA behaves as expected. 

To avoid issues if the Microblaze is not enough fast to load a new value of data each 

cycle, a protection mechanism has been implemented, if the fsl_s_exists changes to ‘0’ 

during the loading process, the enable signal of the FFT is set to ‘0’ halting its operation 

until the a new value arrives. 

In Figure 49 a capture of the overall simulation process is shown, and as it can be seen, 

there are a total of 6 cycles in the simulation, 5 of simultaneous load and unloading of 

data and 1 of separate loading and unloading. The FFT loading data cycles are marked 

with a black arrow, the FFT unloading cycles are marked with a blue arrow, additionally 

to test the peripheral good behaviour even if not all the data is loaded continuously a 

starvation period has been introduced marked with the orange arrow, where it can be 

seen that the FFT resumes is operation after the data input resumes.   

To get a detailed view of the steps taken to start the calculation of a new FFT, a plot of 

the simulation of the first 500 ns of operation of the peripheral can be seen at Figure 
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50. First of all the peripheral is reset by the fsl_rst signal marked with a black arrow. 

The FSM resets the other blocks of the peripheral setting the internal reset signals to 

‘1’, marked with the dark blue arrow. After the FSL bus stops resetting the peripheral, 

the FSM initializes the FFT IP storing the forward/inverse and the scale parameters 

(light blue arrows) and waits in the idle state. Once data is received trough the bus, the 

fsl_s_exists signal changes its value to ‘1’; after one cycle, the start signal is set to one 

to enable the loading process of the FFT block (green arrow). Finally, in the next cycle 

the FFT starts accepting data and signals while setting the rfd signal to ‘1’, the FSM 

starts in this same cycle the unload process of the FSL FIFO setting the fsl_s_read signal 

to 1, which will pop a value from the FSL bus while the FFT stores it in the 

corresponding position.  

 

Figure 49. General simulation capture with all the cycles. 
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Figure 50. FFT peripheral FSM initial cycles simulation.  
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4.3 - Field experiments and tests 

 

The SP605 board available at La Salle has been used to test the final designs and the 

findings done in the field of firmware development. Furthermore, basic tests and 

training for this specific board was done, since its capabilities where yet to be 

explored.  

Regarding to the tests of the embedded system- a serial communications layer was 

established taking advantage of an UART instantiated with Xilinx Platform Studio. First 

the FPGA had been programmed with the system and after this step is performed the 

test programs could be loaded.  

In Figure 51 a screenshot of the tests made in the system loaded in the SP605 board 

and the test program run with the resulting output read from the serial connection at 

its side is shown. This simple test which is a proof of concept of the design 

methodology developed during this project uses the FSL peripheral, developed with 

System Generator, which works as a loopback tester between a master FSL bus and a 

slave FSL bus, after being instantiated as a peripheral for the Microblaze it is used for 

the C program done by the Microblaze to test the loopback connection and the result 

is printed with the UART. In this example the value 65 is first written to the master FSL 

bus and then read with the slave FSL but proving the correctness of the setup.  

 

Figure 51. Xilinx ISE screenshot of the FSL test program with the result read from the UART. 

 

Despite the fact that testing the FSL peripheral yet validates the design methodology 

developed, it was intended to test a more useful block that may be used in 

communications systems to prove System Generator’s reliability and convenience for 
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creating those types of designs. Therefore, the FFT peripheral has been also tested 

having successfully performed transformations which is was the final objective of this 

thesis.  

Despite the fact that the tests have been successfully accomplished, problems were 

encountered with the first designs due to the instantiation of the clocks of the 

peripherals, which made them unresponsive trough, the FSL bus. This was solved 

assuring that the clk signal of the peripherals was connected to one of the clocks of the 

FPGA. 

To prove the stated before Figure 52 is provided where the output of the peripheral 

read by the Microblaze and printed through the UART. 

 

Figure 52. Tests with a SP605 of the FFT and FSL peripherals run by a C program from the 

Microblaze soft microprocessor. 

 

In order to use the data output from the FSL bus it is necessary to split the 32 bits 

signal into two 16 bits integers and extend the signal bit, due to limitations of Matlab’s 

bit treatment functions, this issue has to be solved in C on the Microblaze with the 

following code to extract each value, which is : 

temp=val&0x0000FFFF; 

     if((temp&0x00008000)==0x00008000) temp|=0xFFFF0000; 

     printf("%d, ",temp); 

     temp=(val&0xFFFF0000)>>16; 

if((temp&0x00008000)==0x00008000) temp|=0xFFFF0000; 

 printf("%d, ",temp); 
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In Figure 53, represented in Matlab the resulting continuous signal of performing a FFT 

to a delta with amplitude 10 at t=0 is represented.  

 

Figure 53. 10·δ(t) FFT calculated with the Microblaze peripheral. 

 

The following figures represent a δ at n-1 input signal of two different amplitudes 

transformed, which allow to observe the behavior of the real instantiated device 

compared to the expected ideal result. In Figure 54 and Figure 55 there can be seen the 

result of the δ of amplitude 10. Since this is a low value, the limited precision of the 

FFT causes low power high frequency noise, which is traduced in small random 

oscillations around the expected values. On the contrary, with a high value as an input 

such as 1000- this small noise caused to the fixed coma arithmetic of the FFT becomes 

unnoticeable and as it can be seen in Figure 56 and Figure 57; the signals resulting from 

Matlab and the Microblaze look alike. 

During the tests, no problems related to bad routing and delays have been observed, 

which implies that the designs made with System Generator are reliable and are not 

affected during the placement process. In addition, the FSL bus interconnection system 

has also proven to be reliable and a good option regarding to connecting peripherals of 

system on chip design. 
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Figure 54. 10·δ(n-1) FFT calculated with the Microblaze peripheral. 

 

Figure 55. 10·δ(n-1) FFT calculated with the Microblaze peripheral. 
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Figure 56. 100·δ(n-1) FFT calculated with Matlab. 

 

Figure 57. 100·δ(n-1) FFT calculated with Microblaze peripheral. 
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5 - Resources spent 

 

For this project around 780

coordination meetings, research, writing of the memory and revision

Regarding to the physical resources 

Xilinx SP605 board and the necessary connection cables. 

packages used are: Matlab, Xilinx ISE and Microsoft Office. 

No resources have been required to be specially acquired for this 

has been free of charge, however the 

equipment used for its development is considerable.

the engineer hours in tasks can be seen below. 
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780 engineer hours have been spent among its development, 

coordination meetings, research, writing of the memory and revision.  

Regarding to the physical resources used- 1 personal computer has 

605 board and the necessary connection cables. The most relevant 

are: Matlab, Xilinx ISE and Microsoft Office.  

required to be specially acquired for this project

has been free of charge, however the number of already available resources and 

equipment used for its development is considerable. A graphic of the distribution of 

the engineer hours in tasks can be seen below.  
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6 - Conclusions 

 

With this project we have reached objectives far beyond the initial ones, which where 

to explore and document Xilinx System Generator and its integration capabilities with 

Xilinx ISE. In addition to the initial objectives, we have successfully created instantiable 

designs with System Generator that can be used with Xilinx ISE to create a firmware 

alone or as a component of other entities. Furthermore, we have achieved to integrate 

these designs in the complete Xilinx SoC design flow, in the form of peripherals for a 

Microblaze microprocessor. This setup enables these peripherals to be directly 

connected to free pins of the FPGA, other modules with custom interconnection 

methods and to be accessed transparently as trough the Microblaze supported buses.  

Regarding to the lab tests performed, a set of simulations and tests have been run on 

the various elements that have been created for this project to assure its proper 

operation; including the FFT alone, a modified version of the FFT which allows to see 

its internal signals, the FSM alone and the FSL interface. Additionally, tests with the 

SP605 board on the lab have been performed to verify the assumptions made during 

the theoric studies and simulations made for this project. During those tests, the full 

SoC solution was verified loading programs to the Microblaze microprocessor to 

perform actions to the System Generator generated peripherals. The correct operation 

of the C compiled program run by the Microblaze implies the correct interaction of all 

the design tools used to implement this solution, a part of the tests made to the 

different parts by separate. 

The creation of an embedded system into a FPGA implemented with a soft processor 

including various design sources working altogether to create a mixed platform 

capable to execute compiled programs on a higher level of abstraction is a very 

complex duty not in reach for most engineers. In fact, this was not yet achieved at La 

Salle. Therefore, considering that the work done for this project is of a very high 

complexity- this project could be qualified as a great success. 
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Glossary 

 

BSB: Base System Builder 

CMOS: Complementary Metal Oxide Semiconductor 

CPU: Central Processing Unit 

DSP: Digital Signal Processing 

EDK: Embedded Development Kit 

EDAC: Error Detection And Correction 

ELF: Executable and Linkable Format 

FIFO: First Input First Output 

FPGA: Field Programmable Gate Array 

FSM: Finite State machine 

GUI: Graphical User Interface 

GPIO: General Purpose Input/Output 

HDL: Hardware Description Language 

I2c: Inter-Integrated Circuit protocol 

IC: Integrated Circuit 

IP: Intellectual Propriety 

ISE: Integrated Software Environment 

LED: Light Emitting Diode 

PC: Personal Computer 

PMT: PhotoMultiplier Tube 

RAM: Random Access Memory  

ROM: Read Only Memory 

RS: Red Solomon 

SDK: Software Development Kit 

SOC: System On Chip 

SRAM: Static Random Access Memory 

VHDL: VHSIC (Very High Speed Integrated Circuits) Hardware Description Language  

XPS: Xilinx Platform Studio 
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