

Escola Tècnica Superior d’Enginyeria
Electrònica i Informàtica La Salle

Treball Final de Màster

Màster Universitari en Enginyeria de Telecomunicació

Software Defined Networks (SDN)

In Data Center Networks

 Alumne Professors Ponents

 Pau Aragonès Sabaté Joan Navarro Rosa Maria Alsina

ACTA DE L'EXAMEN
DEL TREBALL FI DE CARRERA

Reunit el Tribunal qualificador en el dia de la data, l'alumne

 D. Pau Aragonès Sabaté

va exposar el seu Treball de Fi de Carrera, el qual va tractar sobre el tema
següent:

Software Defined Networks (SDN) in Data Center Networks

Acabada l'exposició i contestades per part de l'alumne les objeccions
formulades pels Srs. membres del tribunal, aquest valorà l'esmentat Treball
amb la qualificació de

Barcelona,

VOCAL DEL TRIBUNAL VOCAL DEL TRIBUNAL

PRESIDENT DEL TRIBUNAL

i

Abstract

Recently, new network services have emerged that have made the technologies we

have been using for fifty years practically reach the limit of their capabilities. The

appearance of Big Data, the introduction of cloud computing, applications in real time

and the fact that modern communications are not exclusively between client and

server, it is evident that a large amount of traffic is generated to the end user. To solve

this increasing demand, temporary fixes have arisen, such as the creation of new

protocols. However, these fixes do not solve the problem, and create the necessity of a

global solution that faces the problems of modern networks and creates effective

methods of communications.

Hence, a new concept is born: Software Defined Networking (SDN), which implements

a new architecture that delegates control of network devices from external software,

called a controller, based on a protocol created for this purpose called OpenFlow.

The general purpose of this project is the creation of a software environment that

allow, by means of the integration of several elements, the implementation and

testing of these networks.

The results obtained show which network is best in terms of performance and

features. As the network grows in elements, the performance of the Software Defined

Networks is superior to that of the traditional network.

These results prove that the SDN is the future networking architecture to implement in

large datacenters as it introduces new features and improvements that the current

business needs demands

Introduction

ii

iii

Resumen

Recientemente, han surgido nuevos servicios de red que han hecho que las tecnologías

que hemos estado usando durante cincuenta años prácticamente alcancen el límite de

sus capacidades. La aparición de Big Data, la introducción de la computación en la

nube, las aplicaciones en tiempo real y el hecho de que las comunicaciones modernas

no son exclusivamente entre el cliente y el servidor, es evidente que se genera una

gran cantidad de tráfico para el usuario final. Para resolver esta creciente demanda,

han surgido soluciones temporales, como la creación de nuevos protocolos. Sin

embargo, estas soluciones no resuelven el problema y crean la necesidad de una

solución global que enfrente los problemas de las redes modernas y cree métodos

efectivos de comunicación.

Por lo tanto, nace un nuevo concepto: Software Defined Networking (SDN), que

implementa una nueva arquitectura que delega control de dispositivos de red desde

un software externo, llamado controlador, basado en un protocolo creado para este

propósito llamado OpenFlow.

El objetivo general de este proyecto es la creación de un entorno de software que

permita, mediante la integración de varios elementos, la implementación y prueba de

estas redes.

Los resultados obtenidos muestran qué arquitectura de red es mejor en términos de

rendimiento y características. A medida que la red crece en elementos, el rendimiento

de las Redes definidas por software es superior al de la red tradicional.

Estos resultados demuestran que SDN es la arquitectura de red futura para

implementar en grandes centros de datos, ya que presenta nuevas características y

mejoras que las necesidades empresariales actuales demandan.

Introduction

iv

v

Resum

Recentment, han sorgit nous serveis de xarxa que han fet que les tecnologies que hem

estat utilitzant durant cinquanta anys pràcticament arriben al límit de les seves

capacitats. L'aparició de Big Data, la introducció de la computació en el núvol, les

aplicacions en temps real i el fet que les comunicacions modernes no són

exclusivament entre el client i el servidor, és evident que es genera una gran quantitat

de trànsit per al usuari final. Per resoldre aquesta creixent demanda, han sorgit

solucions temporals, com la creació de nous protocols. No obstant això, aquestes

solucions no resolen el problema i creen la necessitat d'una solució global que davant

els problemes de les xarxes modernes i creu mètodes efectius de comunicació.

Per tant, neix un nou concepte: Software Defined Networking (SDN), que implementa

una nova arquitectura que delega control de dispositius de xarxa des d'un programari

extern, anomenat controlador, basat en un protocol creat per a aquest propòsit

anomenat OpenFlow.

L'objectiu general d'aquest projecte és la creació d'un entorn de programari que

permeti, mitjançant la integració de diversos elements, la implementació i prova

d'aquestes xarxes.

Els resultats obtinguts mostren quina xarxa és millor en termes de rendiment i

característiques. A mesura que la xarxa creix en elements, el rendiment de les Xarxes

definides per programari és superior al de la xarxa tradicional.

Aquests resultats demostren que SDN és l'arquitectura de xarxa futura per

implementar en grans centres de dades, ja que presenta noves característiques i

millores que les necessitats empresarials actuals demanden..

vii

Appreciations

I would like to thank everyone who has been involved in my thesis or has been

suffering my stress during this time. An special appreciation to my family, my sister, my

colleagues at work and my friends.

ix

Content

1 Introduction... 1

1.1 Background .. 1

1.2 Overview and Goals ... 1

1.3 Project Structure .. 2

2 State of the art .. 5

2.1 Limitations of traditional networking .. 5

2.2 SDN architecture .. 7

2.2.1 Application Layer .. 8

2.2.2 Control Layer .. 8

2.2.3 Infrastructure layer ... 9

2.3 OpenFlow Protocol .. 10

2.3.1 OpenFlow Switch .. 12

2.4 Open vSwitch ... 14

2.5 The controller ... 17

2.5.1 OpenDayLight (ODL) ... 19

2.6 Benefits of Software Defined Networks .. 22

2.7 SDN implementations .. 23

3 Implementation ... 27

3.1 Mininet ... 27

3.2 Environment Setup .. 29

3.3 OpenDayLight controller setup .. 29

3.3.1 Controller access and management ... 31

3.4 Network Design .. 34

3.4.1 SDN network architecture design... 36

Introduction

x

3.4.2 Standard network architecture design ... 38

3.5 Connecting Mininet with OpenDayLight controller ... 39

3.6 Standard network simulation .. 44

4 Results ... 45

4.1 Throughput .. 45

4.2 Latency ... 46

5 Conclusions.. 51

5.1 Future lines of work ... 52

6 Budget ... 53

7 References ... 55

8 Annexes ... 57

8.1 SDN network architecture code .. 57

8.2 Legacy Network architecture code .. 59

xi

Acronyms

API: Application Programming Interface.

GUI: Graphical User Interface.

ICMP: Internet Control Message Protocol.

IP: Internet Protocol.

ODL: OpenDayLight.

OF: OpenFlow.

OSGi: Open Services Gateway Initiative

OvS: Open vSwitch.

REST: Representational State Transfer.

RTT: Round-trip time

SDN: Software Defined Network.

TCP: Transfer Control Protocol.

VM: Virtual Machine.

UI: User Interface.

Introduction

1

1 Introduction

1.1 Background

Throughout my studies in Telecommunications Engineering, I developed an interest in

network architecture, as I see them as one of the fundamental pillars in this field. For

this reason, I was very interested in developing my Master’s Thesis about this theme.

We live in a world in constant change due to the technological advances that

introduces new concepts, new challenges and new ways of solving today’s problems in

a manner that it would not have been imaginable few years ago. Thus, individuals and

enterprises must adapt these changes in order to stay up to date and be competitive

and make sure they are not stalled in a technology no longer in use or deprecated.

Enterprises must face huge revolutionary new technologies that defies the conception

of IT infrastructure that was hard to imagine in the past decades. The introduction of

Cloud technologies, high intensive consumption of infrastructure capabilities from new

trends in the IT sector such as Artificial Intelligence or Machine Learning, and the new

decentralized architectures proposed in technologies like Blockchain, all these factors

make the traditional and current IT infrastructure in enterprises not ideal and

insufficient to adapt to these changes.

Network architecture is currently experiencing a massive innovation due to the

appearance of the Software Defined Networking (SDN) that promises the introduction

of many new features to the immediate future. I presented this topic to the GRITS

research group and Professor Joan Navarro accepted to be my advisor for this thesis.

1.2 Overview and Goals

Introduction

2

This thesis is developed at the Universitat Ramón Llull – La Salle at the GRITS

department, focused in the field of network architecture.

The purpose of this project is to design and implement a Software Defined Network

(SDN) in a data center environment and evaluate its performance by means of

extensive simulations.

There are different implementations of SDN deployed nowadays due to most of these

implementations are open source. The most known implementation is Open Daylight

controller software in conjunction with Open vSwitch virtual switch software, as it is

actively developed and supported by The Linux Foundation.

The project’s main goals are:

1. Implement a network architecture using the SDN protocol OpenFlow and the

SDN controller OpenDaylight.

2. Compare a traditional network architecture and a SDN architecture in terms of

features and performance.

1.3 Project Structure

The structure of this thesis has been designed in the following order. Firstly, some

theoretical concepts have been explained in order to understand all the basic concepts

of network architectures and the features the new Software Defined Networks

introduce. In order to accomplish this sections, some related technical papers have

been read and analysed for obtaining this information and presenting the state of the

art of the subject.

Once explained the main theoretical concepts, a practical part is developed so that the

theoretical concepts can be applied and evaluated. Two network architectures are

proposed, a traditional network architecture and a Software Define Network

architecture,. These two networks are designed to be most similar in terms of number

of network elements, hosts and links between the devices.

Introduction

3

After the design of both networks, a set of tools used for evaluating network

performance and simulation are implemented for evaluation and comparison between

them. A pair of network metrics are taken into account for comparing the performance

of both networks for presenting the results of the evaluation.

Finally, a conclusion of this project is developed taken into account the results

obtained in this thesis and some future lines of work are proposed for further

investigation of the subject.

State of the art

5

2 State of the art

Software Defined Networking (SDN) is an emerging network architecture that gives the

network control to an application called controller. This architecture allows splitting

the control management and the data management for achieving networks that are

programmable, flexible and automated. It leads to the separation of the management

of the hardware and software components. This migration of control allows the

underlying infrastructure to be abstracted for applications and network services can

treat the network as a virtual entity.

The SDN controller is a centralized entity, which means, it can be composed of various

physical or virtual instances but it behaves as a single component. It maintains the

global or partial status of the network, allowing enterprises and operators gain control

of the entire network from a single logical point. This leads to an enormous design and

operation simplification.

Moreover, SDN also simplifies all network devices since it is not necessary to

understand and process thousands of protocols, but only accept the instructions of the

controller defined by the network administrator.

2.1 Limitations of traditional networking

Meeting current market requirements is virtually impossible with traditional network

architectures. Faced with flat or reduced budgets, enterprise IT departments are trying

to get the most from their networks using device-level management tools and manual

processes. Existing network architectures were not designed to meet the requirements

of today’s users, enterprises and carriers. This leads to network designers being

constrained by the limitations of current networks. [1]

State of the art

6

Formerly, a traditional network architecture consists of a set of transmission media

(air, fiber optic, copper) and switching (switches, routers). The management of these

networks id distributed, each switching element incorporates a firewall that makes its

own decisions based on certain fields in the frames and received packages. While it is

true that they have helped to mitigate the effects of requirements of the new network

services, it should take into consideration that no longer they are efficient and have

limitations. [2]

 The current protocols are based in RFC’s, and any modification that some entity

wants to introduce will have to pass through a long process of study and

approval by the competent organizations.

 Research and development are not promoted due to manufactures and

administrators are reluctant to experiment and introduce new models in

networks that already work, according to them, in a satisfactory way.

 These traditional network architectures were not designed to support the

bandwidth and services currently required, as is the case with streaming or

online games.

 Traditional networking has little flexibility and is difficult to manage and

configure, since they behave based on the protocols that manufacturers

include in their devices. The substitution or migration of a network element

would probably require rules of the router, the firewall and other elements. For

this reason, the operators tend to maintain an aesthetic structure that causes

the loss of dynamism in the network, which leads to a bad adaptation to the

changes in traffic.

 Enterprises seek to deploy new capabilities and services in rapid response to

changing business needs or user demands. However, their ability to respond is

limited by vendors’ equipment product cycles, which can range to three years

State of the art

7

or more. Lack of standard, open interfaces limits the ability of network

operators to tailor rhe network to their individual environments.

2.2 SDN architecture

Software Defined Networking (SDN) is an emerging network architecture where

network control is decoupled from forwarding and is directly programmable. This

migration of control, formerly tightly bound in individual network devices, into

accessible computing devices enables the underlying infrastructure to be abstracted

for applications and network services, which can treat the network as a logical or

virtual entity.

In a SDN, the key resides in the previously mentioned separation of the control and

data management. This leads to a reformulated network architecture, which would

consist of three layers that are accessible from various application programming

interface (API).

Figure 1: Software Defined Network Architecture

State of the art

8

2.2.1 Application Layer

This layer consists of applications intended for end-users who will be the consumers of

SDN communications services. The end-users use SDN communication services

through the northbound API such as REST, JSON, XML among others. This northbound

API is used to connect the SDN controller to the services and applications above,

allows services and applications to simplify and automate the tasks of configuring,

provisioning and managing new services in the network, offering operators new ways

of income, differentiation and innovation, as well as meeting the needs of different

applications through the SDN network’s programmability.

The northbound API crosses the limit between this layer and the Control Layer. These

are the most critical interfaces, as mentioned above; they support a large number of

applications and services critical for the end-user.

2.2.2 Control Layer

This layer provides centralized control functionality that monitors the behavior of the

data network through an open interface; allows application developers to use network

capabilities but abstracted from their topology or functions. In this layer it has to be

mentioned the SDN controller, since it is the logical control entity responsible for

translating SDN service requests to lower data paths, giving the application layer an

abstract view of the network through statistics and possible events.

It could be said that the controllers are the brain of this network architecture, since

they have exclusive control over the way to manage and configure network nodes to

correctly direct traffic flows. In addition, the architecture allows it to generate a wide

range of data plane resources, which offers the potential to unify and simplify its

configuration.

It provides a set of common APIs to the application layer (northbound APIs), while

implements one or more network protocols for controlling network devices

(southbound interface). SDN does not only support SDN-oriented networking

State of the art

9

protocols, in fact, it also supports traditional networking protocols like Open Shortest

Path First (OSPF), MultiProtocol Label Switching (MLPS) or Border Gateway Protocol

(BGP).

The controller may also include a set of modules that allow him to carry out a set of

basic networking tasks: inventory of the connected devices, statistics management and

other functions. Providers can add new functionalities in the controller’s core

according to their needs, being this one of the key points of the SDN architecture.

2.2.3 Infrastructure layer

The network nodes that carry out packet switching and routing constitute this layer. It

provides a programmable open access through the southbound API, such as

OpenFlow. The southbound APIs facilitate control over the network, allowing the

controller to make dynamic changes according to the demands in real time and needs.

Southbound APIs facilitate efficient control over the network and enable the SDN

Controller to make changes dynamically according to real-time demands and needs.

OpenFlow, which was developed by the Open Networking Foundation (ONF), is the

first and probably most well-known southbound interface. It is an industry standard

that defines the way the SDN Controller should interact with the forwarding plane to

make adjustments to the network, so it can better adapt to changing business

requirements. With OpenFlow, entries can be added and removed to the internal flow-

table of switches and potentially routers to make the network more responsive to real-

time traffic demands. Besides OpenFlow, Cisco OpFlex (the company’s response to

OpenFlow) is also a well-known southbound API.

State of the art

10

Figure 2: Components of each layer of the SDN architecture

2.3 OpenFlow Protocol

OpenFlow is one of the first communication standards defined between an OpenFlow

switch and the controller in an SDN architecture. It facilitates the programmability of

the network through the configuration, management and control of data flows from a

centralized software. It allows partitioning the traffic; decide the best routes for the

packets and how the packages are processed. It is focused on the control of traffic,

security and the creation of new forms of routing, among other features.[3]

The first OpenFlow specification was created in 2008 by the Stanford University. They

released the version 1.0 by the end of 2009, but with a clear goal of making it open

and owned by the community [10]. This is why, since 2011, the Open Network

Foundation has been the organization responsible for its promotion and adoption.

Currently, it is supported by many switch and router vendors such as Cisco, IBM,

Juniper Networks or Hewlett-Packard.

State of the art

11

The first version developed already managed by the Open Networking Foundation, the

1.1, was released on 28 February 2011. One year later it was released the version 1.2,

and the most recent one is the version 1.4.

OpenFlow allows the actual moving of network control from the switches to the

control layer, actually separating the control plane from the data plane. However, as a

southbound interface, it needs to be implemented on both sides it, this is, in the SDN

controller and the infrastructure devices. These last ones are called OpenFlow

Switches.

In a conventional network, each network device has proprietary software that

implements a methodology of packet routing. However, with OpenFlow, packet

routing decisions are centralized. This allows the network to be programmed

independently of the individual switches and data center hardware.

Figure 3: OpenFlow Switch Architecture

A switch that implements the OpenFlow protocol is composed of three components

that allow the correct operation of this protocol.

State of the art

12

2.3.1 OpenFlow Switch

It is the representation of the actual underlying switch that the SDN controller is going

to manage. It consists of one or more OpenFlow tables and a group table, which

perform packet analysis and forwarding within the switch. These switches that support

OpenFlow can be both virtual or physical.

The physical ones are not only those built with OpenFlow in mind, but also those

legacy switches that can be updated to support at least the first version of OpenFlow.

Whichever is the case, an OpenFlow Switch will consist of the following components:

 Ports: packets will enter the switch and exit it through them. They do not have

to be physical as they may be logical ports defined by the switch.

 OpenFlow tables: they perform packet analyzing and forwarding. They contain

a series of OpenFlow entries, which are used to match and process packets

according to their packet headers.

 Channel: it is the interface used to communicate the switch with the controller,

therefore the switch receives the configuration from it.

2.3.1.1 Flow tables

These tables include information about an action associated with each entry in the

table, indicating to the switch how it should process that flow (flow entries).

Each entry consists of the following fields:

Match fields Priority Counters Instructions Timeout Cookie

Table 1: Flow entry in a Flow Table

 Match fields: it includes information about the header and port.

 Priority: assigns the flow entry priority.

 Counters: this value is updated when a coincidence is found.

State of the art

13

 Instructions: this value is used for modifying a set of actions.

 Timeout: maximum wait time until a flow expires.

 Cookie: this value is used by the controller for flow modifications, filter

statistics, among other uses. It is not used when processing packages.

2.3.1.2 Group tables

These tables consist of a group of entries. The groups provide an efficient way to

indicate that the same set of actions must be done by multiple flows. For this reason, it

is useful to implement both multicast and unicast.

Group identifier Group Type Counters Action Buckets

Table 2: Flow Entry in a Group Table

 Group Identifier: unique unsigned integer that identifies a group.

 Group Type: determines group semantics. Some of them are, i.e.: all (execute

all actions of a group) and select (execute one action of a group).

 Counters: this value is updated once a group processes the packets.

 Action buckets: ordered list of actions. Each action contains a set of actions to

execute and associated parameters.

2.3.1.3 OpenFlow Channel

The OpenFlow channel is the interface that connects each OpenFlow switch with a

controller. Through this interface, the controller configures and manages the switch,

receives events from the switch and sends packets out of the switch. Between the

datapath and the OpenFlow channel, the interface implements a specific

implementation. However, all OpenFlow channel messages must be formatted

State of the art

14

according to the OpenFlow protocol. It is usually encrypted using TLS, but it can be

directly used over TCP.

Figure 4: Example of OpenFlow Instruction Set

In Figure 3, an OpenFlow Instruction set is compared with a Flow table. This instruction

sets updates the flow tables of the network device so that it stays up to date with the

network status. Any changes that the controller needs to notify to all network

elements are done through this sets. It is also important to note that this instruction

sets are personalized for each network device, so when new instructions need to be

updated, not all network elements would receive exactly the same instruction set, it

would be fitted for each element conditions in the network.

2.4 Open vSwitch

Open vSwitch is a software implementation of a virtual multilayer network switch,

designed to enable effective network automation through programmatic extensions,

while supporting standard management interfaces and protocols such as NetFlow,

OpenFlow, sFlow, SPAN, RSPAN, CLI, LACP and 802.1ag. [4]

State of the art

15

In order to define what Open vSwitch (OVS) is, it is extremely important to first

understand virtual switching and the new network access layer with in the data center.

In the past, servers would physically connect to a hardware-based switch located in the

data center. When VMware created server virtualization, the access layer changed

from having to be connected to a physical switch to being able to connect to a virtual

switch. This virtual switch is a software layer that resides in a server that is hosting

virtual machines (VMs). VMs, have logical or virtual Ethernet ports. These logical ports

connect to a virtual switch.

Figure 5: Open vSwitch features and capabilities

From a control and management perspective, Open vSwitch leverages OpenFlow and

the Open vSwitch Database (OVSDB) management protocol, which means it can

operate both as a soft switch running within the hypervisor, and as the control stack

State of the art

16

for switching silicon. OVS is important in Software Defined Networks due its new

capabilities that are critical for these networks.

Using OVS for virtual networking is considered the core element of many datacenter

SDN deployments and the main use case is multi-tenant network virtualization. OVS

can also be used to direct traffic between network functions in service. In some cases,

it could be considered critical to many SDN deployments in data centers because it ties

together all the virtual machines (VMs) within a hypervisor instance on a server. It is

the first entry point for all the VMs sending traffic to the network and is the ingress

point into overlay networks running on top of physical networks in the data center.

Figure 6: Open vSwitch architecture

Note the OpenFlow protocol is included in the Open vSwitch architecture. This means

that this software has full support with this critical protocol and, therefore, there is no

need to install any extensions or plugins for its integration.

State of the art

17

2.5 The controller

In the SDN architecture, the controller is the main element. The device implements the

rules of the network, executes the instructions that are dictated by the applications

and distributes them among the different physical layer devices of the network. It is

responsible for managing the packets that do not fit in the entries of the flow tables.

The controllers differ from each other, in terms of the programming language and

platform, but eventually perform the same functions: communicate, using the

OpenFlow protocol, with the devices in the network.

An SDN Controller platform typically contains a collection of “pluggable” modules that

can perform different network tasks. Some of the basic tasks including inventorying

what devices are within the network and the capabilities of each, gathering network

statistics, etc. Extensions can be inserted that enhance the functionality and support

more advanced capabilities, such as running algorithms to perform analytics and

orchestrating new rules throughout the network.

Two of the most well-known protocols used by SDN Controllers to communicate with

the switches/routers is OpenFlow and OVSDB. Others protocols that could be used by

an SDN Controller is YANG or NetConf. Other SDN Controller protocols are being

developed, while more established networking protocols are finding ways to run in an

SDN environment. For example, the Internet Engineering Task Force (IETF) working

group – the Interface to the Routing System (i2rs) – is developing an SDN standard that

enables an SDN Controller to leverage proven, traditional protocols, such as OSPF,

MPLS, BGP, and IS-IS.

The controller contributes to the network by managing and monitoring the network

status by orchestrating all its services installed. It implements the service throughout

the network and designs thedevice topology and discovery mechanism to make all

elements interconnected. It also is capable of calculate the routes, and it is intelligent

enough to detect a malfunctioning link by rerouting connections, guaranteeing high

availability of the network. All devices are connected to the controller through TCP

State of the art

18

sessions. It also offers a set APIs that expose the services of the controller to the

managing applications.

Figure 7: Software Defined Network Controller Architecture

SDN controllers can be useful in many environments, including cloud and data center

networks, where they can offer better utilization of resources and faster turnaround

times for multitenant segregation, and in enterprise campus networks, in which the

benefits of network access control and network monitoring can be leveraged. They

also show great promise for service provider networks, where optimization and control

of application flows traffic is essential to business growth and success.

There are multiple open source SDN controllers focusing mainly in enterprise

environments [5]:

 NOX was the first OpenFlow controller, developed at Nicira Networks (acquired

by VMware in 2012) in parallel with OpenFlow. It was written in C++ as a

program to manage switches. Nicira donated NOX to the research community

in 2008.

State of the art

19

 POX is the successor to NOX, written in Python. POX is still under active

development with the goal to develop the archetypal, modern SDN controller.

 Beacon is written in Java and works with the Eclipse integrated development

environment. Although limited to star topologies, it was the first SDN controller

that allowed programmers without extensive experience to enable SDN

environments.

 Floodlight is a Java-based OpenFlow controller that is also enterprise-class and

Apache-licensed. It is part of a collection of open source projects done by Big

Switch. The controller supports a range of virtual and physical OpenFlow

switches and it can handle mixed OpenFlow and non-OpenFlow networks. The

Controller includes support for the OpenStack cloud orchestration platform as

well. Floodlight has already been used in a number of applications, including

the OpenStack Quantum Plug-in and the Floodlight Virtual Switch.

2.5.1 OpenDayLight (ODL)

OpenDayLight [6] is an Open Source project led by the Linux Foundation that aims to

accelerate the diffusion of innovation in design and implementation of an open and

transparent standard of SDN. It aims to become an open platform used by all

companies, preventing private applications from restricting market growth, while

reducing development costs.

The main advantage of this proposal is that eliminates barriers, since some

organizations do not want to commit to specific manufacturers that may block their

development in the future. Being a common platform, companies may opt for

technologies from different manufacturers.

The platform that provides this project (ODL) can be deployed directly without the

need for any other component. This is due to the architecture of the platform, which

provides a set of basic functions for the applications and the wide variety of

collaborators that contribute to the project.

State of the art

20

One of the main features that introduces this controller in a SDN is the microservice

architecture. In this case, a microservice is a particular network protocol or service that

a user wants to allow within their installation of the OpenDayLight driver, for instance;

BGP protocol, an AAA service (Authentication, Authorization and Accounting). By

implementing this architecture, the controller only implements the protocols the user

needs and thus reduces costs and implementations. Moreover, this type of

architecture allows the enterprise to easily scale according to the business needs.

OpenDayLight works perfectly with the OpenFlow protocol due to the same SDN

implementation. Nevertheless, it also provides support for a wide range of protocols,

not only OpenFlow, but also includes well-known protocols such as SNMP, NETCONF,

OVSDB, BGP, PCEP, LIS, among others.

Due to its Software-Defined focus, it supports custom development of new

functionalities composed of protocols and additional network services. It provides

high-level abstraction of its capabilities so that network engineers and developers can

create new applications to customize the configuration and administration of

networks.

The controller, thus, has the main action of centralized control of physical and virtual

network devices, controlling them with standards and open source protocols.

ODL controller is strictly implemented in software and is contained within its own Java

Virtual Machine (JVM). As such, it can be deployed on any hardware and operating

system platform that supports Java [8].OpenDaylight controller relies on the following

technologies:

 Maven: is a project management tool that simplifies and automates

dependencies between a project or different projects. This tooling will help

developers to manage all the required plugins and dependencies of its

applications, as well as to provide a project start-up by using its defined

archetypes.

 Java: it is the programming language that is used to develop applications and

features in the OpenDaylight’s controller. Developing in Java provides a

State of the art

21

valuable compile-time safety, as well as an easy way to implement defined

services.

 Open Service Gateway Interface (OSGi): it is the backend of OpenDayLight as it

allows to dynamically load bundles and JAR packages (they compose the

applications), and bind modules together for exchanging information.

 Karaf: it is an application container built on top of OSGi, which simplifies

aspects of packaging and installing applications.

 YANG: it is the key-point of the model-driven behavior in the controller.

Developers will use YANG to model application functionality, and to generate

APIs from the defined models, which will be later used to provide its

implementations. YANG supports modelling operational and configuration

data, as well as RPC and notifications.

Figure 8: OpenDayLight Architecture

State of the art

22

2.6 Benefits of Software Defined Networks

For enterprises, this new network architecture makes it possible for the network to be

a competitive differentiator. By using OpenFlow-based SDN enable IT departments to

address the high bandwidth, dynamic nature of today’s applications, adapt the

network to ever-changing business needs, and significantly reduce operations and

management complexity. The benefits may include:

 Centralized management of multi-vendor environments: SDN control software

can control any OpenFlow-enabled network device from any vendor, including

switches, routers and virtual switches. This eliminates the management of

group devices from individual vendors, so that the IT departments can use SDN-

based orchestration and management tools to quickly deploy, configure and

update devices across the entire network.

 Reduced complexity through automation: OpenFlow-based SDN offers a

flexible network automation and management framework, which makes it

possible to develop tools that automate many management tasks that are done

manually today. These automation tools will reduce operational overhead and

decrease network instability introduced by operator error. In addition, with

SDN, cloud-based applications can be managed through intelligent

orchestration and provisioning systems, further reducing operational overhead

while increasing business agility.

 Increased network reliability and security: SDN makes it possible for

enterprises to define high-level configuration and policy statements, which are

then translated down to the infrastructure via OpenFlow. An OpenFlow-based

SDN architecture eliminates the need to individually configure network devices

each time an end point, service, or application is added or moved, or a policy

changes, which reduces the likelihood of network failures due to configuration

or policy inconsistencies.

State of the art

23

 Granular network control: OpenFlow‘s flow-based control model allows IT to

apply policies at a very granular level, including the session, user, device, and

application levels, in a highly abstracted, automated fashion. This control

enables cloud operators to support multi-tenancy while maintaining traffic

isolation, security, and elastic resource management when customers share the

same infrastructure.

2.7 SDN implementations

There are functional implementations that are serving large organizations for their

business activity. The main benefits of SDN are mainly targeted at large computational

infrastructure and datacenters. One successful implementation is the University of

Pittsburgh Medical Center. [7]

The University Of Pittsburgh Medical Center (UPMC) is a $10 billion integrated global

nonprofit health enterprise that has more than 62,000 employees, 21 hospitals, and

400 clinical locations including outpatient sites and doctors’ offices serving a 2.2

million-member health insurance division, as well as commercial and international

ventures.

As a large healthcare provider, UPMC has a world class IT infrastructure environment

that is 80 percent virtualized serving over 4 Petabytes of storage within its data centers

supported by a private MPLS network.

With such a large and dynamic compute environment, UPMC found that its traditional

IP network was suffering from network configuration delays due to the complexity of

the workflow between the IT and IP teams within their organization and the exchange

of detailed network information (IP addresses, VLAN tags, QoS requirements, and

security profiles) that needed configuration setup for each application instance.

As such, UPMC looked at the SDN technology market for ways to streamline the

provisioning aspects of the network, and to provide an increase in the visibility and

State of the art

24

control of the network for the IP team. UPMC tried Nuage Networks SDN solution [8]

over a six-month period from May 2013 through October 2013 and has moved forward

with the deployment of SDN starting in February 2014.

With traditional (bare metal) server deployments where hosts were deployed for long

production lifecycles (three to four years) and network configuration was configured

once and then left alone did not apply. With the virtualized compute environment,

demands changed to require instant deployment for peak periods and a significant

increase in moves and changes to the network. The increased workload suffered from

the traditional IT to network team workflow processes and increased the likelihood of

human based configuration errors.

During the trial period, UPMC tested the functionality of SDN to provide network

virtualization overlays. It also validated the assumptions that SDN’s automation and

abstraction principles would significantly improve the organization’s ability to react to

changes driven by its business and improve the service delivery from its IT department.

The implementation of this SDN environment begun in February 2014, with a long-

term strategy to expand the SDN environment and to transition the production

network onto the SDN based network during the latter half of 2014 and into 2015.

The migration to SDN provides a number of benefits to UPMC. There is a notable gain

from overall network efficiency and they have decreased the network configuration

time for both applications changes and new deployments.

In Figure 8, an overview of the solution deployed for the UPMC infrastructure is

described. The top layer includes the cloud management platform, which controls the

datacenter infrastructure in the view of an infrastructure operator.

The underlying plane is the control plane of the datacenter. It communicates directly

with the cloud management platform so that all management operations of all

infrastructure dictated in this layer are passed through this control plane of the

datacenter. In this layer reside the multiple SDN controllers that orchestrate all the

network devices that each controller is responsible of managing. Note that there is

more than one controller in this plane. All controllers work in a federated mode, which

State of the art

25

they maintain all network status and changes in the network synchronized throughout

all controllers and, eventually, network elements.

Lastly, the data plane is where all network devices, hosts and the remaining datacenter

elements that transfer critical business data between them. This plane is completely

orchestrated from the control plane above it, where all controllers reside and

communicate with them. Operators do not have access directly to these elements

because the federated controllers monitors and manage them on behalf of the

operators. This represents one of the main advantages of the SDN implementation, the

centralized control of the entire network from one single point, and erases the

micromanagement of each network element.

Figure 9: UPMC Software Defined Networking Architecture Solution

Implementation

27

3 Implementation

Starting from the point where all the tools needed to perform a SDN simulation are

completely configured and ready to be used, it is intended to start with the

implementation of a common network architecture to understand the operation of

them, as well as try to give a global vision of each tool.

The tool used for the creation of SDN simulations is called Mininet; by introducing

console commands, using the Mininet API or by executing scripts in Python language

containing the desired topology, as this tool is based on Python.

3.1 Mininet

Mininet is a network emulator which creates a network of virtual hosts, switches,

controllers, and links. Mininet hosts run standard Linux network software, and its

switches support OpenFlow for highly flexible custom routing and Software-Defined

Networking. [9]

Mininet supports research, development, learning, prototyping, testing, debugging,

and any other tasks that could benefit from having a complete experimental network

on a laptop or other PC.

The main features that introduce Mininet are the provisioning of a simple and

inexpensive network testing environment for developing OpenFlow applications, it

enables developers to work independently on the same topology. It provides a

complex topology testing without the need to wire up a physical network and supports

arbitrary custom topologies and parametrize them depending on the characteristics on

the topology it is intended to test.

Implementation

28

It also includes a command-line interface that is topology and OpenFlow aware, for

debugging and testing network-wide tests. A Python API is provided for network

creation and experimentation.

Figure 10: Mininet architecture

Being an open source project and the availability of a Python API included in Mininet, it

is easy to develop and extend Mininet with plugins or complements that allows the

additions of features for this software. One that will be used in this thesis is the

Miniedit extension for Mininet. This extension allows us to design graphically any

custom network topology that is going to be created and simulated in a graphical

manner that is simple and intuitive to use. After the design, Miniedit is able to

translate the graphical design into a python script that Mininet can interpret and run

this script for network simulation.

In the following section, the installation and use of both Mininet and Miniedit are

described and used for emulating the proposed architectures.

Implementation

29

3.2 Environment Setup

It is proposed the creation of a common scenario in Mininet, which will have an

external controller (OpenDayLight) to see the topology created and the information

that circulates through the network devices. This will be done using the Python

language and the Miniedit API.

Mininet will be executed in a virtual machine that is already provided by their creators.

It is an Ubuntu Server distribution with all the packages and dependencies needed for

the correct operation of the Mininet simulator. It is also needed another Linux virtual

machine with a graphical interface for the controller machine, which comes with a web

interface and a REST API. The host machine is a Windows 10 with the VMware

Workstation Player 12 installed for the execution of Virtual Machines.

Due to the need of interconnectivity between the two guest machines, the VMware

Workstation Player needs to be configured with an external interface accessible by the

host and the other guest machines. This is configured in the Player with the following

configuration:

VM IP Interface Use

Mininet VM 192.16.169.130 eth1
Mininet

Simulator

Ubuntu 17.10 192.168.169.129 eth1
OpenDayLight

Controller
Table 3: VMware Player virtual machines network configuration

3.3 OpenDayLight controller setup

The controller requires a virtual machine with a graphical user interface as it includes a

web manager for displaying the network architecture and manage it. The Linux

distribution that will be used is an Ubuntu 17.10 and the latest version of the

OpenDayLight controller will be installed on it, which is called Nitrogen (v0.7).

Implementation

30

Once the Ubuntu distribution is installed as a virtual machine, it has to be checked that

the Internet connection due to the need of obtaining the packages that include all the

installation of the controller software. Because the previous network configuration

done in the VMware Workstation Player was configured with this need in mind, the

virtual machine has internet connection after the installation.

The controller is programmed based on the Java language. It includes the Apache Karaf

[10] software architecture, which is a polymorphic container that can host any kind of

applications, such as OSGi, Spring, WAR and much more.

Therefore, it is necessary to install the Java run-time by introducing the following

commands in the Ubuntu terminal:

After the installation of Java run-time, it is possible to download the OpenDayLight

package with the following command:

After the download, it is necessary to extract the contents of the compressed package:

That will create a new folder called ‘karaf-0.7.1’ that contains the OpenDayLight

software. As this is all needed to start the controller, it is proceeded to execute the

service by typing in the console:

It should appear a message that Karaf is booting up. After the startup sequence has

completed, another command-line interface should appear with the OpenDayLight

logo. It is necessary to install some dependencies that are needed in order to provide a

graphical interface, a RESTful API and the interaction between the controller and the

Open vSwitch software. The installation of these dependencies is done with the

following command:

Implementation

31

The ‘dluxapps’ dependencies are necessary for deploying the web application for the

controller. The ‘restconf’ package allows the access to the RESTCONF API, which is the

API that allows the configuration of the network from the controller to the network

devices. The ‘mdsal-apidocs’ is used for the Yang API. Finally, the ‘l2switch-switch’

packet provides similar functionality to an Ethernet switch to the network.

3.3.1 Controller access and management

After OpenDayLight is completely installed in the virtual machine, it is possible to

access to the web application. To perform that, a web browser is enough and write the

following URL:

The application exposes the application to the interfaces of the virtual machine at the

application default port, which is 8181. When the page is loaded, a login interface will

appear.

Implementation

32

Figure 11: OpenDayLight login interface

The default login credentials are ‘admin’ for both user and password. Once login has

been successful, the web interface is not difficult to use. It is composed of a main work

area and left side menu of four sections: Topology, Nodes, Yang UI and Yang Visualizer.

The network topology can be mapped in the Topology section. It is useful if to

overview all network connections if the network has been designed without any

graphical user interface. It will track any change the network suffers while it is

operational.

Figure 12: OpenDayLight Topology section

Implementation

33

The ‘Nodes’ section allows to track information of every network device connected to

the controller, such as network statistics, node connectors and configured flows.

Figure 13: OpenDayLight Nodes section

The last three sections use the Yang API. Yang is a data modeling structure similar to

others based on SNMP, SMI and MIB. It provides a functionality to the SDN switches in

a similar way as SMI does for the switches that are not SDN. Yang UI is a REST graphic

client to configure and sent REST requests to the OpenDayLight local database. It can

be used to get information or modify it in the database.

Implementation

34

Figure 14: OpenDayLight Yang UI section

This section shows all available APIs within this client from the ‘Expand All’ button. Not

all these APIs will work because all the features are not installed. One of those that

works is the so-called 'Inventory API', which will be launched by expanding the menu

with the name 'inventory' by going to the 'nodes' tab and sending the GET API request

to the controller from the 'Send' button. To the bottom, all the information about the

network will be displayed: nodes, ports, statistics and much more. If any switch or

interface listed is clicked, it will display details of each one of them.

3.4 Network Design

Once we have decided and installed all the tools that are going to be used, it is now

proceeded with the design of two network architectures, traditional and Software

Defined Networking. The architectures should have a similar pattern in order to

compare similar networks in terms of number of network devices yet each architecture

uses its main network technology as its core. The routing and devices are also identical

or very similar.

Implementation

35

As the Mininet VM is set up and running, there are several tools that are useful for

achieving the objectives in this project. One of the most useful is the Miniedit tool,

which is a graphical user interface developed in python that allows the creation of

complex network topologies defined by the user. It allows configuring the network

devices and, once the design is completed, exporting the designed topology into a

python script for future simulations.

Figure 15: Miniedit graphical interface

It presents a simple interface with a toolbar in the left side of the window and a menu

bar in the upper section of the window. The toolbar is filled with multiple tools that

allow the design of the network. Most of them are common network elements that are

needed for a network implementation, such as routers, switches, links, hosts and other

devices. By clicking on an element, it is possible to drag the element to the design area

and drop it wherever is wanted.

One of the main objectives of this thesis is to compare the performance between

traditional network and SDN architecture; therefore, two network designs are

proposed to be evaluated using Miniedit.

Implementation

36

3.4.1 SDN network architecture design

The first design consists in a SDN architecture by implementing a controller connected

to a set of switches forming a tree topology. The first level is exclusive for the

controller, as it is the network orchestrator and monitors all switches connected to it.

The controller should be considered as the core of the network. The second level is

composed of three switches connected between them. These switches act as the

distribution layer of the network, guarantying the redundancy and the availability of

the network. The last level consists of four switches, connecting three host machines

each one. This level is the access level.

Figure 16: SDN proposed architecture

The SDN controller is orchestrated with OpenDayLight controller. It connects directly

to all switches of the network. The switches are implemented with the Open vSwitch

specification. This software is designed for having full support for the OpenFlow

protocol that all the Software Defined Network is going to use for routing. The hosts

are all composed of a Linux operating system.

Implementation

37

This design has to be translated to the Miniedit tool in order to perform the

simulation, so the architecture designed can be tested in this tool.

Figure 17: SDN proposed architecture in Miniedit

Once the design is completed, Miniedit implements a feature that can translate the

proposed design into a Python script that can be later executed in Mininet. This design

is coded in Python using this feature, generating a Python script file. This script,

however, should be modified at the controller declaration to specify the IP address and

port where the controller service is located.

Figure 18: Controller configuration in python script

Once the change is made in the script, this tests scenario is ready to be executed and

simulate it in Mininet.

Implementation

38

3.4.2 Standard network architecture design

Due to the need of comparing a SDN and a standard network architecture, an almost

similar to the previous proposed SDN architecture is designed for the tests that are

going to be performed.

Figure 19: Traditional network proposed architecture

This proposed design has only two levels. The first level is composed of three switches

connected between them. These switches act as the distribution layer of the network,

guarantying the redundancy and the availability of the network. The last level consists

of four switches, connecting three host machines each one. Each switch of this design

is a ‘legacy’ switch in Miniedit. That is, a switch that does not implement any of the

SDN oriented protocols. In this case, these switches implement all of the protocols

except OpenFlow.

This proposed architecture is translated in the Miniedit tool.

Implementation

39

Figure 20: Standard network proposed architecture

Note the absence of the controller. In traditional networks, there is not a centralized

control of the whole network and each switch has to be configured manually. The

software that runs the switches is most likely to be proprietary, due to the lack of open

source viable alternatives, such as Cisco Nexus switches or Juniper. In this case, a

simple virtualization in the same Ubuntu system satisfies our needs. Finally, the hosts

are the same as the Software Defined Networking architecture.

3.5 Connecting Mininet with OpenDayLight controller

Once both network designs are completed, it is possible to start up both the controller

and Mininet services and link them to test the SDN network. Note that this step is only

needed in the SDN architecture.

Implementation

40

The first step is to start up the OpenDayLight controller in the virtual machine. This has

been explained in section 3.2. After that, the Mininet virtual machine is started to

simulate the SDN proposed network for testing purposes.

The following command is typed in the Mininet virtual machine terminal to begin the

simulation:

This produce the following output, which shows that the simulation creation went

well:

Figure 21: Mininet simulation environment creation output

After the creation of the network devices, the controller should have got the basic

information from the switches that are directly connected to it:

Implementation

41

Figure 22: OpenDayLight controller first network devices detection

The controller knows the first status of the network but does not know what elements

are connected to the switches. This is due to there is still no activity in the network yet.

The elements will show in the controller once a minimum traffic flows through the

network and the controller will then know the status of these elements. This is done by

typing the following command in the Mininet virtual machine:

This command executes ping commands from all host machines to the other host

machines, so that every host machine connects to every other host machine.

Implementation

42

Figure 23: Pingall command output

By doing this, the controller would have a minimal traffic generated by each host and

would map the current connections of the network. This change is appreciated in the

OpenDayLight controller:

Figure 24: OpenDayLight controller detection of all network elements

The ‘Nodes’ section shows information about the seven simulated switches, as shown

in the next image:

Implementation

43

Figure 25: Nodes section with switch list

Clicking on any ‘Node Connectors’ of any listed switch, the controller will show traffic

statistics that flows through that node.

Figure 26: Traffic statistic of a selected switch

After all that setup, the SDN environment is ready to perform the tests.

Implementation

44

3.6 Standard network simulation

The standard network architecture environment is more simple than the SDN

architecture environment. In this case, the Mininet virtual machine is the only machine

that will be used, since the network does not have the controller device. Thus, the

OpenDayLight virtual machine will not be used.

The following command is typed in the Mininet virtual machine to begin the simulation

of the standard network architecture:

Mininet will begin the simulation process. A similar output will be displayed when the

SDN network was being simulated.

If Mininet does not encounter any problem during the simulation setup, the

connectivity of all network devices is tested with the 'pingall' command:

If all packets have been received without any dropped packet, the standard network

environment is ready to be tested.

Results

45

4 Results

There are several metrics in networking architecture that allow comparing different

architectures designs in terms of performance. Most of the time, the performance is

modeled and simulated instead of measured, which is one of the aims of this thesis.

Some measures are often considered important and comparable through all network

designs. In this thesis, the measures that are emphasized are the latency and the

throughput.

4.1 Throughput

It is normally understood as throughput as the amount of data transferred from one

place to another or processed in a specified amount of time. Data transfer rates for

networks are measured in terms of throughput. This measure is typically measured in

kbps, Mbps and Gbps. The throughput is also defined as the actual speed of data

transport through a network and it will always be less than the bandwidth, which is the

theoretical channel capacity. This is due to the limitations of underlying physical

medium, available processing power of the system components and end-user

behavior.

Mininet provides a command that evaluates the throughput performance between

network devices in a simulated network. The most used is the tool called ‘iperf’, which

evaluates the TCP bandwidth between network elements.

The throughput test will consist of different ‘iperf’ experiments between two hosts,

beginning from the host h1, which is one host located at one extreme of the network,

to another hosts located in the network until the host located at the other extreme of

the network. In this network, the tests are h1->h3, h1->h6 and h1->h12.

Results

46

Figure 27: Throughput measure between different hosts

The results that are shown in the previous figure proves that in all cases the SDN

network performs better in terms of throughput compared to the traditional network

architecture.

4.2 Latency

Latency is a time delay between the cause and the effect of some physical change in

the system being observed. In a network environment, the latency is measured either

one-way (the time from the source sending a packet to the destination receiving it), or

round-trip delay time (the one-way latency from source to destination plus the one-

way latency from the destination back to the source).

Many software platforms provide a service called 'ping' that can be used to measure

round-trip latency. 'Ping' performs no packet processing; it merely sends a response

back when it receives a packet. Due to the use of ICMP protocol, Ping cannot perform

accurate measurements and differs from real communication protocols such as TCP.

8,94

5,68

3,59

8,86

5,32

3,11
2

3

4

5

6

7

8

9

h1->h3 h1->h6 h1->h12

TC
P

 T
h

ro
u

gh
p

u
t

(G
b

p
s)

 Iperf command executed between hosts

Throughput Comparison

TCP SDN TCP Traditional

Results

47

The latency test will consist of different ‘ping’ experiments between two hosts,

beginning from the host h1, which is one host located at one extreme of the network,

to another hosts located in the network until the host located at the other extreme of

the network. In this network, the tests are h1->h3, h1->h6 and h1->h12.

Figure 28: Latency measure between h1 and h3 in both network environments

In this experiment environment it is observed that the delay of the first ICMP packet in

the SDN network is always much higher than that of the traditional network. This

difference is because in SDN, when the first packet sent by host h1 arrives at the

switch, this network element does not know how to route it, encapsulates it in the

OpenFlow protocol and forwards all the contents of the incoming packet to the

controller, being responsible for managing the installation of the flow tables in each

switch. This initial process of establishing flow consumes a time that introduces a

latency in the network.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
-t

ri
p

 t
im

e

ICMP packet number

ICMP paquet sequence between h1 and h3

RTT (SDN) RTT (Standard)

Results

48

Figure 29: Latency measure between h1 and h6 in both network environments

The effect related in the previous experiment is repeated in this experiment but in this

case, the traditional network introduces much higher latency. This is due to the latency

that introduces the hops the packets must pass through the switches that are

connected, in this case three switches. The SDN architecture also suffers from this

hops but lesser than the traditional network.

Figure 30: Latency measure between h1 and h12 in both network environments

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 R
o

u
n

d
-t

ri
p

 t
im

e

ICMP packet number

ICMP paquet sequence between h1 and h6

RTT (SDN) RTT (Standard)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 R
o

u
n

d
-t

ri
p

 t
im

e

ICMP packet number

ICMP packet sequence between h1 and h12

RTT (SDN) RTT (Standard)

Results

49

As the ping increments in distance of hops, the ping is greater for both networks.

Nevertheless, the traditional network suffers more than the SDN architecture. This is

because in an SDN network, after the flows are installed, the routes to route the

frames are stored in the memory to achieve better performance. In a traditional

network it is necessary to analyze all the incoming frames in each switch, as part of the

process of learning MAC addresses as well as updating an internal database in the

switch that has the physical address of the host and the source port.

Conclusions

51

5 Conclusions

The SDN are a still developing technology that, as we have seen throughout this work,

pretend to be the solution to the problems of the current network structures, which

are appearing due to an increasing demand for resources by the emergence of new

technologies.

The current growth and the estimated demands for the coming years of information

technologies and telecommunications require major changes in the infrastructures of

current networks. The Software Defined Networks are the alternative that is envisaged

to face the current and future challenges in the telecommunications networks.

Trends such as user mobility, server virtualization, cloud-based infrastructure, IT-as-a-

Service, and the need rapidly to respond to changing business conditions place

significant demands on the network demands that today’s conventional network

architectures can’t handle. Software-Defined Networking provides a new, dynamic

network architecture that transforms traditional network backbones into rich service-

delivery platforms.

By decoupling the network control and data planes, OpenFlow-based SDN architecture

abstracts the underlying infrastructure from the applications that use it, allowing the

network to become as programmable and manageable at scale as the computer

infrastructure that it increasingly resembles. An SDN approach fosters network

virtualization, enabling IT staff to manage their servers, applications, storage, and

networks with a common approach and tool set. Whether in a carrier environment or

enterprise data center and campus, SDN adoption can improve network manageability,

scalability, and agility.

The future of networking will rely more and more on software, which will accelerate

the pace of innovation for networks as it has in the computing and storage domains.

SDN promises to transform today’s static networks into flexible, programmable

platforms with the intelligence to allocate resources dynamically, the scale to support

Conclusions

52

enormous data centers and the virtualization needed to support dynamic, highly

automated, and secure cloud environments. With its many advantages and astonishing

industry momentum, SDN is on the way to becoming the new norm for network.

This thesis has focused on comparing the current network architectures with the

emerging SDN topologies, integrating the new network devices this new architecture

introduces, such as the OpenDayLight controller, and test and compare their

performance in terms of latency and throughput with simulation software tools as

Mininet.

The use of latest technologies is one of the strengths of this thesis, as the technologies

applied in this thesis are the ones to be implemented in the main technological

companies in the near future. On the other hand, one of the possible weaknesses of

this thesis could be the non-deepening of the OpenFlow protocol and not knowing

how to take advantage of the capabilities of this protocol to obtain better performance

or new features in SDN networks.

5.1 Future lines of work

As this work focused solely on comparing both architectures, there has been a series of

tasks that would have been interesting to perform, which were beyond the scope of

this thesis. Deepen the knowledge of the OpenFlow protocol could have led to

interesting configurations and features to the SDN architecture, which improves the

overall capacities compared to traditional network architectures. Investigating more

about the capacities of a SDN controller and the unique capabilities it offers is also an

interesting future line of work.

Budget

53

6 Budget

All work done on this thesis has consisted in implementing a simulation environment

for performance testing. The economic impact found in this thesis has been an

estimation of hours dedicated to the realization of this project, evaluated at a price of

junior engineer (10€ / hour) and the licenses needed for the software used. In this

case, the software used is open source and free of use, so there is no license costs in

this thesis.

Task Hours (estimated) Cost

Documentation and Information
Research 50 500.00 €

Environment design and
Implementation 140 1,400.00 €

Simulation and tests 90 900.00 €

Total 250 2,500.00 €

Table 4: Budget estimation

References

55

7 References

[1] Open Network Foundation. Software-Defined Networking: The New Norm for

Networks. ONF White Paper. April 13, 2012. Available at:

[http://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf]. Accessed 13 November 2017

[2] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara Fraser,

David Lake, Jim Finnegan, Niel Viljoen, Marc Miller and Navneet Rao. Queen’s

University Belfast, Cisco Systems, Tabula and Netronome. Are We Ready for SDN?

Implementation Challenges for Software-Defined Networks. Future Carrier

Networks, IEEE Communications Magazine, July 2013, Pages 36-43. Available at:

[https://ieeexplore.ieee.org/abstract/document/6553676/]

[3] Open Network Foundation. OpenFlow Switch Specification. ONF White Paper.

December 31, 2009. Available at: [https://www.opennetworking.org/wp-

content/uploads/2013/04/openflow-spec-v1.0.0.pdf]. Accessed 15 November 2017

[4] Usenix, The Advanced Computing Systems Association, Ben Pfaff, Justin Pettit,

Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex

Wang, Joe Stringer, and Pravin Shelar. The Design and Implementation of Open

vSwitch. May 4 – May 6, 2015. Available at:

[https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf].

Accessed 25 November 2017.

[5] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado and Rob

Sherwood. On Controller Performance in Software-Defined Networks. Usenix, The

Advanced Computing Systems Association. 2013. Available at:

[https://www.usenix.org/system/files/conference/hot-ice12/hotice12-

final33_0.pdf]

[6] The Linux Foundation Projects. OpenDayLight. Platform Overview. Available at:

[https://www.opendaylight.org/what-we-do/odl-platform-overview]. Accessed 15

November 2017

References

56

[7] Gigaom, Ben Kepes. Analyst Report: SDN meets the real world: implementation

benefits and challenges. March 25, 2014. Available at:

[https://gigaom.com/report/sdn-meets-the-real-world-implementation-benefits-

and-challenges]. Accessed 14 December 2017.

[8] Nuage Networks, Nokia. Nuage Networks Provides Comprehensive Software-

Defined Networking (SDN) Solution to Leading Health Provider UPMC. January 16,

2014. Available at: [http://www.nuagenetworks.net/news/nuage-networks-

provides-comprehensive-software-defined-networking-sdn-solution-leading-

health-provider-upmc/]. Accessed 14 December 2017.

[9] Mininet. Mininet, An Instant Virtual Network on your Laptop (or other PC). 2017.

Available at: [http://mininet.org/]. Accessed 5 October 2017.

[10] Apache Karaf, The Apache Software Foundation. The Apache Karaf Open Source

Project. 2017. Available at: [https://karaf.apache.org/]. Accessed 23 November

2017.

Annexes

57

8 Annexes

In this section, the code that has been used in order to perform the simulation is

described. There are two code versions, the first one is the code used for simulating

the SDN network architecture and the second code is the legacy network architecture.

8.1 SDN network architecture code

In this code all elements of the network are declared and configured using the Python

language functions and API explicitly designed for Mininet.

First, an instantiation of a Mininet network is declared and the principal characteristics

of the network are also declared. In this case, the topology is custom so the topo

parameter is set to None. Then an ipBase is set in order to define the routing of the

entire network. This is the network routes that would be assigned to the network

elements.

Then, a declaration of the Controller is followed. Note the IP where is located. This is

the IP used in the Ubuntu machine described in the implementation section where the

controller is running. The type of controller is set to RemoteController in order to

indicate the Mininet not to virtualize the controller and connect to an external

controller.

Finally, the network elements such as switches and hosts are declared, connected and

configured. After this declaration, the switches and the controller are started and the

whole network is starting to run and ready to be tested.´

#!usr/bin/python

from subprocess import call

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch

Annexes

58

from mininet.cli import CLI

from mininet.log import setLogLevel, info

from mininet.link import TCLink, Intf

def myNetwork():

 net = Mininet(topo=None, build=False, ipBase='10.0.0.0/8')

 info('*** Adding OpenDayLight controller\n')

 c0 = net.addController(name='c0', controller=RemoteController,

ip='192.168.169.129', protocol='tcp', port=6633)

 info('*** Adding switches\n')

 s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

 s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

 s3 = net.addSwitch('s3', cls=OVSKernelSwitch)

 s4 = net.addSwitch('s4', cls=OVSKernelSwitch)

 s5 = net.addSwitch('s5', cls=OVSKernelSwitch)

 s6 = net.addSwitch('s6', cls=OVSKernelSwitch)

 s7 = net.addSwitch('s7', cls=OVSKernelSwitch)

 s8 = net.addSwitch('s8', cls=OVSKernelSwitch)

 s9 = net.addSwitch('s9', cls=OVSKernelSwitch)

 info('*** Adding hosts\n')

 h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)

 h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)

 h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)

 h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

 h5 = net.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None)

 h6 = net.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None)

 h7 = net.addHost('h7', cls=Host, ip='10.0.0.7', defaultRoute=None)

 h8 = net.addHost('h8', cls=Host, ip='10.0.0.8', defaultRoute=None)

 info('*** Adding links\n')

 net.addLink(h1, s1)

 net.addLink(s1, h2)

 net.addLink(h3, s2)

 net.addLink(s2, h4)

 net.addLink(h5, s3)

 net.addLink(s3, h6)

 net.addLink(s1, s5)

 net.addLink(s5, s2)

 net.addLink(s2, s6)

 net.addLink(s6, s3)

 net.addLink(s3, s7)

Annexes

59

 net.addLink(s7, s4)

 net.addLink(s4, h7)

 net.addLink(s4, h8)

 net.addLink(s9, s6)

 net.addLink(s9, s7)

 net.addLink(s5, s8)

 net.addLink(s8, s6)

 info('*** Starting network\n')

 net.build()

 info('*** Starting Controllers\n')

 for controller in net.controllers:

 controller.start()

 info('*** Starting switches\n')

 net.get('s1').start([c0])

 net.get('s2').start([c0])

 net.get('s3').start([c0])

 net.get('s4').start([c0])

 net.get('s5').start([c0])

 net.get('s6').start([c0])

 net.get('s7').start([c0])

 net.get('s8').start([c0])

 net.get('s9').start([c0])

 info('*** Post configure switches and hosts\n')

8.2 Legacy Network architecture code

In this code, an almost identical logic is developed as in the SDN simulation code. The

most outstanding change is the absence of the controller and, therefore, the

instantiation of this element is no longer required. Apart from this change, the

simulation code respects the same logic from the previous simulation code.

#!usr/bin/python

from subprocess import call

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch

from mininet.cli import CLI

from mininet.log import setLogLevel, info

Annexes

60

from mininet.link import TCLink, Intf

def myNetwork():

 net = Mininet(topo=None, build=False, ipBase='10.0.0.0/8')

 info('*** Adding switches\n')

 s1 = net.addSwitch('s1', cls=UserSwitch)

 s2 = net.addSwitch('s2', cls=UserSwitch)

 s3 = net.addSwitch('s3', cls=UserSwitch)

 s4 = net.addSwitch('s4', cls=UserSwitch)

 s5 = net.addSwitch('s5', cls=UserSwitch)

 s6 = net.addSwitch('s6', cls=UserSwitch)

 s7 = net.addSwitch('s7', cls=UserSwitch)

 s8 = net.addSwitch('s8', cls=UserSwitch)

 s9 = net.addSwitch('s9', cls=UserSwitch)

 info('*** Adding hosts\n')

 h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)

 h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)

 h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)

 h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

 h5 = net.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None)

 h6 = net.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None)

 h7 = net.addHost('h7', cls=Host, ip='10.0.0.7', defaultRoute=None)

 h8 = net.addHost('h8', cls=Host, ip='10.0.0.8', defaultRoute=None)

 info('*** Adding links\n')

 net.addLink(h1, s1)

 net.addLink(s1, h2)

 net.addLink(h3, s2)

 net.addLink(s2, h4)

 net.addLink(h5, s3)

 net.addLink(s3, h6)

 net.addLink(s1, s5)

 net.addLink(s5, s2)

 net.addLink(s2, s6)

 net.addLink(s6, s3)

 net.addLink(s3, s7)

 net.addLink(s7, s4)

 net.addLink(s4, h7)

 net.addLink(s4, h8)

 net.addLink(s9, s6)

 net.addLink(s9, s7)

 net.addLink(s5, s8)

 net.addLink(s8, s6)

Annexes

61

 info('*** Starting network\n')

 net.build()

 info('*** Starting switches\n')

 net.get('s1').start([c0])

 net.get('s2').start([c0])

 net.get('s3').start([c0])

 net.get('s4').start([c0])

 net.get('s5').start([c0])

 net.get('s6').start([c0])

 net.get('s7').start([c0])

 net.get('s8').start([c0])

 net.get('s9').start([c0])

 info('*** Post configure switches and hosts\n')

