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ABSTRACT 

Replacement of electron-donating N,N-dialkyl groups with three or four-membered cyclic 

amines (e.g., aziridine and azetidine, respectively) has been described as a promising 

approach to improve some of the drawbacks of conventional fluorophores, including low 

fluorescent quantum yields (F) in polar solvents. In this work we have explored the 

influence of azetidinyl substitution on non-conventional coumarin-based COUPY dyes. Two 

azetidine-containing scaffolds were first synthesized in four linear synthetic steps and easily 

transformed into far-red/NIR-emitting fluorophores through N-alkylation of the pyridine 

moiety. Azetidine introduction in COUPY dyes resulted in enlarged Stokes’ shifts with 

respect the N,N-dialkylamino-containing parent dyes, but the F were not significantly 

modified in aqueous media, which is in contrast with previously reported observations in 

other fluorophores. However, azetidinyl substitution led to an unprecedented improvement in 

the photostability of COUPY dyes and high cell permeability was retained since the 

fluorophores accumulated selectively in mitochondria and nucleoli of HeLa cells. Overall, our 

results provide valuable insights for the design and optimization of novel fluorophores 

operating in the far-red/NIR region, since we have demonstrated that three important 

parameters (Stokes’ shifts, F and photostability) cannot be always simultaneously addressed 

by simply replacing a N,N-dialkylamino group with azetidine, at least in non-conventional 

coumarin-based fluorophores. 
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INTRODUCTION 

In recent years we are witnessing a new resurgence in the use of fluorophores based on small 

organic molecules on advanced biological imaging techniques.
1
 Current research efforts are 

focused on (i) the development of novel far-red and near-infrared (NIR) fluorophores by 

using modern chemical synthetic tools, (ii) fine-tuning their photophysical properties (e.g., 

absorption and emission wavelengths, fluorescence quantum yields and lifetimes, Stokes 

shifts and photostability) and (iii) improving their physicochemical properties (e.g., aqueous 

solubility and cell permeability), which are all together required for the applications of 

fluorescence microscopy in biological systems.
2
 Although numerous fluorophores are 

currently available, in vivo applications such as fluorescence-guided surgery urgently demand 

novel efficient, cell-permeable fluorescent probes based on low molecular-weight scaffolds 

operating in the optical window of the tissues.
3
 

Since the discovery of umbelliferone (7-hydroxycoumarin) at the end of the nineteenth 

century,
1d 

coumarins have been traditionally used as fluorescent organic molecules owing to 

their well-stablished photophysical properties and good cell permeability, and nowadays some 

coumarin derivatives (e.g., Alexa Fluor 350) are still being used in fluorescence microscopy. 

However, the fact that conventional coumarins such as Coumarin 1 (compound 1 in Scheme 

1) require UV excitation hampers most in vivo applications due to the toxicity of this radiation 

and its low capacity of penetration in biological tissues. For this reason, great efforts have 

been dedicated in the last decades to red-shift absorption and emission of coumarins into the 

blue-green-red region of the visible spectrum by introducing electron-withdrawing groups 

(EWG) at the coumarin skeleton, by extending the conjugation system through position 3,
4
 

or by fusion of aromatic cycles,
5
 including other fluorescent scaffolds.

6
  

Although the majority of the abovementioned coumarin derivatives maintain the electron-

withdrawing lactone moiety of the original umbelliferone, which creates a push-pull effect 

with electron-donating groups incorporated at position 7 (e.g., N,N-dialkylamino or 

hydroxy/alkoxy), in recent years some groups have demonstrated that absorption and 

emission of these chromophores can also be red-shifted by modifying it. Indeed, green light 

emission was accomplished either through thionation of the carbonyl group or by extending 

the conjugation of the system at position 2 with a dicyanomethylene group, being the 

applications of dicyanomethylene-caged oligonucleotides and cyclic RGD-containing 

particularly appealing.
7
 Very recently, we have reported the synthesis of novel coumarins in 

which one cyano group of dicyanocoumarin derivatives was replaced by a phenyl ring 

containing EWGs
8
 or by the electron-deficient pyridine heterocycle

9
 with the aim of further 
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increasing the push-pull character of the coumarin chromophore. The later coumarin scaffolds 

(compounds 2 and 3 in Scheme 1) allowed us to develop a new family fluorophores, 

nicknamed COUPY, whose photophysical properties can be easily tuned by selecting the 

appropriate combination of the N-alkylating group at the pyridine moiety and the substituent 

at position 4 of the coumarin skeleton (compounds 4-7 in Scheme 1).
9
 Taking into account 

their low molecular weight, COUPY dyes offer many attractive features such as large Stokes’ 

shifts, brightness and emission in the far-red/NIR region, as well as aqueous solubility and 

good cell permeability. Such novel fluorophores opened the way to solving some of the main 

drawbacks associated with conventional coumarin-based fluorophores. 

 

Scheme 1. Rational design of 7-azetidinyl-containing coumarin fluorophores. 

 

Recently, Lavis and collaborators described that replacement in conventional fluorophores of 

electron-donating N,N-dialkyl groups (e.g., rhodamines, coumarins, naphthalimides, 

acridines, etc.) with azetidine allows to increase the fluorescent quantum yield (F) in polar 

solvents.
10

 A similar behavior was described by Liu, Xu and co-workers when the three-

membered aziridine ring was used.
11

 These structural modifications, as well as other based on 
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cyclic amines,
12

 have been postulated to suppress twisted intramolecular charge transfer 

formation (TICT), which is one of the major non-radiative de-excitation pathways in many 

fluorophores containing N,N-dialkyl motifs. Indeed, twisting of the N,N-dialkylamino group 

out the fluorophore plane upon photoexcitation forms a non-emissive and short-lived reactive 

chemical species, which can be avoided through structural modifications and rigidification. 

Rivera-Fuentes and co-workers have demonstrated that azetidinyl substituent can also be 

exploited to modulate photochemical processes in coumarin-based caging groups.
13

 In 

addition, they have proposed a mechanism of fluorescence quenching for coumarin 1 that 

does not involve TICT states but rather H-bond induced non-radiative decay (HBIND).
14

 

Such unproductive decay channel was inhibited in 1Az analogue (Scheme 1) by azetidinyl 

substitution. 

Taking into account all the antecedents on azetidinyl-substituted fluorophores, we set out to 

study how this modification could influence the photophysical and physicochemical 

properties of coumarin-based COUPY dyes (4-7, Scheme 1). With this idea in mind, herein 

we describe the synthesis and photophysical characterization of azetidinyl analogues of 

COUPY fluorophores (4Az-7Az, Scheme 1), in which diethyl- or dimethylamino groups at 

position 7 of the coumarin skeleton have been replaced by the four-membered azetidine ring. 

Surprisingly, the fluorescent quantum yield of the resulting 7-azetidinyl-COUPY fluorophores 

was not significantly modified in aqueous media with respect their dialkylamino analogues. 

However, azetidinyl substitution led to a substantial improvement in photostability and larger 

Stokes’ shifts in polar solvents relative to the parent N,N-dialkylamino COUPY dyes, while 

emission was kept in the optimal far-red/NIR region. High cell permeability was retained after 

azetidine incorporation and the fluorophores accumulated selectively in mitochondria and 

nucleoli of HeLa cells as occurred with their parent N,N-dialkylamino dyes. Overall, our 

results provide valuable insights for the design and optimization of fluorophores operating in 

the far-red/NIR region.  
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RESULTS AND DISCUSSION 

Design, synthesis and characterization of 7-azetidinyl-coumarin fluorophores  

The synthesis of azetidinyl-coumarin scaffolds 2Az and 3Az was first explored by following 

an straightforward methodology recently developed by us for the preparation of the parent 

N,N-dialkylamino-COUPY scaffolds 2 and 3,
9
 which makes use of thiocoumarin precursors 

(Scheme 2). Unfortunately, the reaction of azetidinyl-coumarin 1Az
10

 with Lawesson’s 

reagent (LW) did not afford the expected compound (8) but several side-products, most of 

them resulting from the reaction of the thionating reagent with the azetidine moiety, as 

inferred by HPLC ESI-MS analysis (Scheme 2). Azetidine ring-opening occurred even under 

milder conditions (e.g., 60 ºC).  

 

Scheme 2. Reaction of 7-azetidinyl-coumarin 1Az with Lawesson’s reagent. 

 

Taking into account the high reactivity of azetidine with Lawesson’s reagent, an alternative 

synthetic route for the preparation of 2Az and 3Az was explored (Scheme 3) in which 

thionation and the formation of the exocyclic C=C double bond would occur before the 

incorporation of the four-membered azetidine heterocycle. Starting from commercially 

available 7-hydroxycoumarins (10a and 10b), reaction with trifluoromethanesulfonic 

anhydride in pyridine conduced to the expected triflate derivatives (11a and 11b, 

respectively) in near quantitative yield.
15

 In this case, thionation with LW under standard 

conditions (reflux in toluene, overnight) afforded the expected 7-triflylthiocoumarins (12ab). 

The next step involved condensation of 12a and 12b with 4-pyridylacetonitrile to provide 

coumarins 13a (44%) and 13b (57%), respectively, after silica column chromatography. 

Finally, the azetininyl function at position 7 was introduced through Buchwald-Hartwig 

amination.
16

 The carbon-nitrogen bond was formed via the palladium-catalyzed cross-

coupling of azetidine with 7-triflylcoumarins (13ab) by using RuPhos-Pd-G3 and RuPhos as 

pre-catalyst and ligand, respectively, and potassium carbonate as base. After a two-step 

purification process (silica column chromatography followed by filtration through a HLB 
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cartridge), the two pure azetidinyl-COUPY scaffolds (2Az and 3Az) were isolated (60% and 

48% yield, respectively) and fully characterized by HR ESI-MS and 
1
H and 

13
C NMR.  

 

Scheme 3. Synthesis of 7-azetidinyl-COUPY scaffolds (2Az and 3Az) and their corresponding N-

alkylated fluorophores (4Az-7Az).  

 

As previously found with the parent COUPY scaffold 2 (Scheme 1),
9
 the 

1
H NMR spectrum 

of 2Az showed two sets of proton signals in an ∼93:7 ratio (Figure 1). 
1
H−1

H NOESY 

experiments (Figures 1 and S1) confirmed the existence of E and Z interconverting rotamers 

in solution around the exocyclic carbon-carbon bond and that the E rotamer was the one 

preferred. In the case of the 4-CF3 analogue (3Az), the E rotamer was the major species 

identified (Figure S2). 

Having at hand the two azetidinyl-COUPY scaffolds, we synthesized the corresponding N-

alkylated pyridinium derivatives following our previously described methodology.
9
 As shown 

in Scheme 3, reaction of 2Az and 3Az with methyl trifluoromethanesulfonate afforded N-

methylpyridinium-coumarin dyes 4Az and 6Az, respectively. Similarly, the use of 2,2,2-

trifluoroethyl trifluoromethanesulfonate allowed to obtain azetidinyl-COUPY dyes 5Az and 

7Az. The four new coumarin derivatives were isolated after silica column chromatography as 

purple (4Az-6Az) and dark blue (7Az) solids, and their purity was assessed by HPLC (Figure 

S3). Characterization was carried out HR ESI-MS and 1D (
1
H, 

13
C, and 

19
F) and 2D NMR. 

Similarly to parent COUPY dyes, the E rotamer was the major species for the corresponding 

7-azetidinyl derivatives 4Az, 5Az and 7Az, while around 7% of rotamer Z was identified for 

6Az (Figures S4−S7). 
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Figure 1. (A) Structures of the E and Z rotamers of coumarin 2Az with some diagnostic NOE cross-

peaks indicated. (B) Expansion of the 2D NOESY spectrum (tm = 500 ms, 25 °C) of 2Az in CDCl3 

showing exchange cross-peaks between rotamer resonances of the same sign as the diagonal.  

 

Photophysical characterization of 7-azetidinyl-COUPY fluorophores. 

The spectroscopic and photophysical properties of 7-azetidinyl-COUPY fluorophores (4Az-

7Az) were investigated to assess the effect of replacing the 7-N,N-dialkylamino group in 

COUPY dyes by the four-membered azetidine ring. The UV-Vis absorption and emission 

spectra of the compounds were collected in six solvents of different polarity and viscosity (see 

Figure 1 and Figures S8-S11). The photophysical properties of 4Az-7Az are summarized in 

Tables 1, S1 and S2 and compared with those of their parent 7-N,N-dialkylamino-COUPY 

dyes (4-7, respectively).
9
 As shown in Figure 2, the new 7-azetidinylcoumarins reproduced 

the trend previously found with 4-7 and provided intense coloured solutions due to the 

existence of an intense absorption band in the visible spectrum, with absorption maxima 

ranging from 515 nm (4Az) to 592 nm (7Az) in aqueous solution (PBS buffer), and from 566 

nm (4Az) to 630 nm (7Az) in DCM. Such bathochromic effects with respect conventional 

coumarins (e.g., compare with 7-azetidinylcoumarin 1Az: abs = 355 nm in H2O)
13

 are a 

consequence of the lengthening of the conjugated chromophore and the increased push−pull 

character of the conjugated system in COUPY dyes. The absorption maximum of 4-CF3 
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derivatives (6Az and 7Az) was significantly red-shifted with respect the 4-CH3 coumarins 

(4Az and 5Az) (from 25 to 47 nm, depending on the compounds and on the solvent). 

Moreover, the incorporation of a second strong electron-withdrawing CF3 group moiety led to 

an additional red-shift in the absorption maximum (e.g., compare abs = 541 and 607 nm for 

6Az and abs = 592 and 630 nm for 7Az in PBS and DCM, respectively). 

As previously found with the parent N,N-dialkylamino dyes 4-7, the 7-azetidinyl-COUPY 

analogues showed negative solvatochromism since an increase in the solvent polarity led to a 

significant blue-shift in their absorption maxima (e.g., for 4Az, λabs = 515 nm in PBS and 566 

nm in DCM). However, this effect was much pronounced in azetidinyl-containing dyes than 

in their corresponding parent compounds (e.g., compare data for 4Az with that for 4: λabs = 

545 nm in PBS and 569 nm in DCM), which suggests that replacement of the dialkylamino 

group by azetidine is accompanied by an increase of the difference between ground and 

excited state dipole moments (Figure S10 and Table S2). This blue-shift in absorption 

maxima in H2O upon azetidinyl substitution was also previously found for conventional 

coumarin 1 (e.g., compare abs = 381 nm for 1 vs abs = 355 nm for 1Az).
13

 By contrast, the 

molar absorption coefficients (ε) of 7-azetidinyl-COUPY dyes were not significantly 

influenced by the polarity of the solvent, which is the opposite trend that we previously found 

for 7-N,N-dialkylamino-COUPY dyes in which a slight hyperchromism was showed in less-

polar solvents. In general, the azetidine-containing COUPY dyes exhibited ε values smaller 

than those of the parent 7-N,N-dialkylamino dyes.  

 

 

This is a post-print (final draft post-refeering)Φ tublished in final edited form as
Bresolí-Obach, Roger, et al. High photostability in non-conventional coumarins with far-

red/NIR emission through azetidinyl substitution. En: Journal of Organic Chemistry. 
Washington DC: American Chemical Society, 2018. Vol. 83, n. 19, p. 11519-11531. ISSN 

1520-6904. Disponible a: https://doi.org/10.1021/acs.joc.8b01422

Po
st

-p
rin

t –
 A

va
ila

bl
e 

in
 h

tt
p:

//
w

w
w

.re
ce

rc
at

.c
at

 



10 
 

 

Figure 2. Comparison of the normalized absorption (solid lines) and fluorescence (dotted lines) 

spectra of 7-azetidinyl-COUPY dyes (compounds 4Az-7Az) in toluene (black lines) and in PBS buffer 

(red lines).  

 

7-Azetidinyl derivatives (4Az-7Az) reproduced the behavior of 7-N,N-dialkylamino-COUPY 

dyes (4-7) and showed emission in the far-red to NIR region (Figures 1 and S9), with the 

emission maximum ranging from 605 nm (4Az, ACN) to 681 nm (7Az, ACN). As shown in 

Tables 1 and S1, the compounds’ emission maxima showed a slight blue-shift with respect the 

N,N-dialkylamino series in polar solvents (ca 4-8 nm; e.g., em = 675 nm for 7Az and em = 

682 nm for 7 in PBS), which parallels the solvent effect on the compounds’ absorption 

maxima. As a result, 7-azetidinyl-COUPY dyes (except 7Az) exhibited larger Stokes’ shifts in 

polar solvents compared with their 7-N,N-dialkylamino parent dyes (e.g., 112 nm for 6Az vs 

92 nm for 6 in PBS buffer). Such large Stokes’ shifts could find application in Förster-type 

resonance energy-transfer (FRET) experiments where a good separation between excitation 

and emission bands result in better contrast. As previously found with the parent 7-N,N-

dialkylamino-COUPY dyes, the absorption and emission maxima for the 7-azetidinyl 

derivatives (4Az-7Az) was not significantly modified by changing the pH (Figure S11). 
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Table 1. Photophysical properties of 7-azetidinyl-COUPY dyes 4Az-7Az in different solvents. The 

data for coumarin derivatives 4-7 has been included for comparison purposes.
9 

 

R
1
, R

2
 Solvent 

abs  

(nm) 



(mM
-1

cm
-1

) 

em  

(nm) 

Stokes’shift  

(nm) 
F 

F 

(ns) 
 

  4 4Az 4 4Az 4 4Az 4 4Az 4 4Az 4 4Az 

R
1
=CH3 

R
2
=CH3 

PBS 545 515 34 20 604 599 59 84 0.12 0.11 0.9 0.8 

ACN 548 541 75 23 609 605 61 64 0.18 0.21 1.4 1.4 

Toluene 566 563 47 23 601 604 35 41 0.64 0.82 4.8 4.7 

  5 5Az 5 5Az 5 5Az 5 5Az 5 5Az 5 5Az 

R
1
=CH3 

R
2
=CH2CF3 

PBS 562 545 39 24 630 622 68 77 0.02 0.03 0.3 0.4 

ACN 567 561 43 24 636 627 69 66 0.12 0.03 1.2 0.7 

Toluene 582 580 47 22 625 625 43 45 0.54 0.64 5.4 4.9 

  6 6Az 6 6Az 6 6Az 6 6Az 6 6Az 6 6Az 

R
1
=CF3 

R
2
=CH3 

PBS 568 541 14 21 660 653 92 112 0.022 0.025 0.2 0.4 

ACN 569 567 47 20 668 661 99 94 0.023 0.02 0.2 0.4 

Toluene 601 607 20 20 657 658 56 51 0.19 0.24 2.4 3.1 

  7 7Az 7 7Az 7 7Az 7 7Az 7 7Az 7 7Az 

R
1
=CF3 

R
2
=CH2CF3 

PBS 595 592 8.3 9.5 682 675 87 83 0.043 0.024 0.5 0.6 

ACN 597 602 26 16 689 681 92 79 0.12 0.063 1.4 1.7 

Toluene 619 625 18 11 683 680 64 55 0.20 0.15 3.3 3.2 

 

As shown in Tables 1 and S1, 4-CH3 azetidinyl dyes (4Az and 5Az) exhibited excellent ΦF in 

less-polar solvents (e.g., 0.82 and 0.64 in toluene, respectively) whereas the fluorescence 

quantum yields for the 4-CF3 analogues (6Az and 7Az) were moderate (e.g., 0.24 and 0.15 in 

toluene, respectively). To our surprise fluorescence quantum yields (ΦF) of all the azetidinyl 

dyes both in polar protic and nonprotic polar solvents were similar (e.g 0.21 for 4Az and 0.18 

for 4 in ACN) or even slightly lower than those of the parent N,N-dialkylamino-containing 

dyes (e.g., 0.06 for 7Az and 0.12 for 7 in ACN). As previously stated, the stabilization of the 

TICT excited state is a major cause for fluorescence quenching in polar solvents for many 

conventional fluorophores, although HBIND has been recently postulated as a deactivation 

mechanism of the excited state of coumarin 1.
13

 Replacement of the 7-N,N-dialkylamino 

group in conventional coumarins with azetidine lead to a clear improvement in the fluorescent 

quantum yield of the fluorophore. (e.g., F = 0.06 for 1 and F = 0.92 for 1Az in H2O).
13
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Interestingly, ΦF values in glycerol (Table S1) were slightly lower in the azetidinyl-COUPY 

dyes (except for 4Az, which was higher) compared with N,N-dialkylamino-containing parent 

dyes, and similar fluorescence lifetime (F) values were obtained in this viscous polar solvent 

by time-resolved fluorescence spectroscopy (Figure S12). Overall, all these observations 

indicate that fluorescence quenching of non-conventional coumarin-based COUPY 

fluorophores in polar media cannot be exclusively attributed to the formation of a TICT 

excited state or to HBIND, which should had been prevented in their 7-azetidinyl-COUPY 

analogues, but to other competing deactivation channels.  

Very importantly, the photostability of azetidinyl-COUPY dyes was considerably increased in 

aqueous media relative to the N,N-dialkylaminocounterparts. As shown in Figure 3, the 

photostability of coumarin 4Az was similar to that of 4, while 5Az was photostable up to light 

fluences 3.3-fold higher than in the case of 5. The large photostability of the 4-CF3 series is 

particularly appealing since these compounds are photostable up to light fluences larger than 

200 (7Az) and 400 (6Az) J/cm
2
, fluences that are more than 10- and 20-fold, respectively, 

higher than those used for cellular imaging experiments.
17

 

 

Figure 3. Fluorescence bleaching of COUPY (4-7) (A) and azetidinyl-COUPY dyes (4Az-7Az) in 

PBS buffer (5 M) irradiated with green light (524 ± 17 nm; 8 mW/cm
2
). Fluorophores: 4,4Az (blue 

squares), 5,5Az (red circles), 6,6Az (black diamonds) and 7,7Az (green triangles). 
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Table 2. Values of fluence (J/cm
2
) where the fluorescence of COUPY (4-7) and azetidinyl-COUPY 

dyes (4Az-7Az) is reduced to the half. 

 

 
COUPY 

dyes 

Azetidinyl- 

COUPY dyes 

4-4Az 57 65 

5-5Az 89 289 

6-6Az -- 442 

7-7Az 1.8 226 

 

In summary, the replacement of N,N-dialkylamino groups with azetidine in conventional 

coumarins (e.g., 1 vs 1Az) and in non-conventional coumarins such as COUPY dyes (e.g., 4-7 

vs 4Az-7Az) leads to significant differences in their photophysics (Figure 4). The larger blue-

shifts in the absorption spectra of 4Az-7Az in polar solvents indicate that their ground state is 

more polar than the excited state when compared with 4-7. However, azetidinyl substitution 

does not significantly modify the position of the emission wavelength. As a result, azetidinyl-

COUPY dyes show enlarged Stokes shifts in polar solvents compared with their parent 

COUPY dyes.  

 

Figure 4. Comparison of the effect of replacing N,N-dialkylamino groups with azetidine in the 

solvatochromic properties of COUPY dyes, as exemplified with compounds 4 and 4Az. 
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Fluorescence imaging of 7-azetidinyl-COUPY dyes in living cells 

Having stablished how azetidine substitution influences the photophysical properties of the 

azetidinyl derivatives of COUPY dyes, we investigated their cellular uptake in living cells by 

using confocal microscopy. Compounds 4Az to 6Az were irradiated with a yellow light laser 

(ex = 561 nm) and 7Az with a red one (ex = 633 nm). As shown in Figure 5, fluorescence 

was clearly observed in all cases in different cellular organelles after 30 min of incubation 

with the compounds, thereby confirming a good uptake by HeLa cells. Moreover, azetidinyl-

COUPY dyes reproduced the same pattern of staining than their N,N-dialkylamino parent 

fluorophores (4-7) since mitochondria and nucleoli were clearly stained, together with 

intracellular vesicles.
9
 This subcellular localization of 4Az was confirmed with co-

localization experiments using commercially available specific markers for labelling 

mitochondria (MitoTracker Green FM, MTG), lysosomes (Lysotracker Green FM, LTG) and 

nuclei (Hoechst 33342). In addition, accumulation into nucleoli was further investigated 

through enzymatic digestion with RNase A. 

 

 

Figure 5. Cellular uptake of azetidinyl-COUPY dyes 4Az (A), 5Az (B), 6Az (C) and 7Az (D). Single 

confocal planes of HeLa cells incubated with the compounds (5 M) during 30 min at 37ºC. 

Coumarins 4Az to 6Az were excited at 561 nm and emission detected from 570 to 670 nm, and 7Az 

was excited at 633 nm and emission detected from 650 to 750 nm. White arrows point out 

mitochondria, white arrowheads nucleoli and yellow arrowheads vesicles staining. All images are 

colour coded using the Fire lookup table from Fiji (intensity calibration bar is showed in E). Scale bar: 

10 m. B C are at the same scale than A.  

 

As shown in Figures 6 and S13, the accumulation of COUPY dyes into the mitochondria was 

confirmed by comparing the distribution of the fluorescence emission of 4Az with that of 

Mitotracker Green. Co-localization was measured using two different coefficients, the 

Pearson's and Manders' (M1 and M2) coefficients,
18

 discarding in the case of the Pearson’s 

coefficient the staining of 4Az at the nucleoli. On the one hand, the Pearson's coefficient is an 

indicator of the correlation between two images, ranging from -1 to 1 and being 1 the 
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indicator of a perfect correlation. On the other hand, Mander's coefficients M1 and M2 

calculate the intensities of one channel co-localizing with the other. This coefficient ranges 

from 0 to 1 and is a good indicator even when the intensities between both channels clearly 

differ. Our results showed a clear correlation between MTG and 4Az signals with a Pearson's 

coefficient being equal to 0.778 on average. Moreover, the Mander's coefficients also 

confirmed that 4Az was located in the mitochondria. The amount of co-localization of 4Az 

over MTG (M1) was 0.54 on average, whereas that of MTG over 4Az (M2) was 0.77, which 

indicates that there is more MTG signal that co-localizes with 4Az than 4Az co-localizing 

with MTG. This was already expected as the 4Az staining was also located in the cytoplasm, 

vesicles and nucleoli where no MTG staining is observed. Similarly, the fluorescence 

observed on some vesicles along the cytoplasm was predominantly associated with lysosome 

accumulation, as inferred from co-localization experiments with Lysotracker Green (Figure 

S14).  

 

 

Figure 6. Co-localization studies. Single confocal plane of HeLa cells incubated with coumarin 4Az 

(5 M, red), Mitotracker Green FM (0.1 M, green) and Hoechst 33342 (1 g/ml, blue). A) Overlay 

of the three staining. B), C), D) coumarin 4Az, Mitotracker Green FM and Hoechst 33342, separate 

staining, respectively. White arrows point out mitochondria, white arrowheads nucleoli and yellow 

arrowheads vesicles staining. Scale bar: 10 m.  

 

Two additional experiments were carried out to investigate accumulation of the compound 

inside the nucleoli. An indirect evidence of nucleoli localization was first obtained when co-

staining 4Az with Hoechst 33342 since the fluorescence emission of the coumarin dye inside 

the nuclei was only observed in the spots where lacked Hoechst staining (Figure 6, 

arrowheads). In order to further confirm the origin of the staining of nucleoli by 4Az, we 

performed a ribonuclease (RNase A) digestion experiment following  a previously reported 

procedure.
18

 As shown in Figure S15, the fluorescence signal of coumarin 4Az at the nucleoli 
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was completely lost after treatment with RNase, which indicates that RNA is the target of 

coumarin 4Az in the nucleoli.  

Overall, confocal microscopy experiments in living HeLa cells indicate that azetidinyl-

COUPY fluorophores retain the cell membrane permeability of COUPY dyes, allowing 

visualization of specific cellular organelles, mainly mitochondria, lysosomes and nucleoli, 

after incubation during 30 min.  

 

Finally, the photostability of coumarins 4Az-7Az was also evaluated in HeLa cells by 

continuous irradiation with the laser beam of the confocal microscope (ex= 561 nm for 4Az 

to 6Az and ex= 633 nm for 7Az). As shown in Figure 7, the overall fluorescence signal was 

significantly decreased in the case of coumarin 4Az. By contrast, the intensity decrease in the 

case of the other fluorophores, particularly that of 6Az and 7Az, was minimal and 

mitochondria and nucleoli of HeLa cells were still clearly observed after 5 min of continuous 

irradiation. The higher photostability of coumarins 5Az to 7Az, particularly that of 4-CF3 

containing coumarins, are in good agreement with the fluorescence photobleaching results 

(Figure 3). Overall, azetidinyl substitution in combination with the incorporation of strong 

electron-withdrawing CF3 groups at the COUPY scaffold (both at the 4-position and at the 

pyridyl moiety via N-alkylation) led to fluorophores with far-red/NIR emission, good cell 

permeability and significant high photostability. 
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Figure 7. Photostability imaging. Single confocal planes at different time points of image acquisition 

are shown after incubation of HeLa cells with coumarins 4Az to 7Az (5 M) during 30 min at 37 
o
C. 

Coumarins 4Az to 6Az were excited at 561 nm and emission detected from 570 to 670 nm, and 7Az 

was excited at 633 nm and emission detected from 650 to 750 nm. Intensity calibration bar is showed 

in the upper right corner in D. Scale bar: 10 m. All images are at the same scale.  
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CONCLUSIONS  

In summary, in this work we have explored the influence of azetidinyl substitution on the 

photophysical and physicochemical properties of non-conventional coumarin-based COUPY 

dyes. First, two azetidine-containing scaffolds (2Az and 3Az) were synthesized from 

commercially available precursors in four linear synthetic steps, the key step being the 

introduction of azetidinyl function at position 7 through Buchwald-Hartwig amination. The 

high reactivity of azetidine with Lawesson’s reagent force thionation and the formation of the 

exocyclic C=C double bond to be performed before the incorporation of the four-membered 

azetidine ring. Such scaffolds were easily transformed into fluorophores 4Az-7Az through N-

alkylation of the pyridine moiety. Azetidine introduction in COUPY dyes resulted in enlarged 

Stokes’ shifts in polar solvents with respect the N,N-dialkylamino-containing parent dyes 

while emission was kept in the optimal far-red/NIR region. The fluorescent quantum yield of 

the resulting 7-azetidinyl-COUPY fluorophores was not significantly modified in aqueous 

media with respect to their N,N-dialkylamino analogues, which seems to indicate that 

fluorescence quenching in polar media of COUPY dyes cannot be exclusively attributed to 

the formation of a TICT excited state or to HBIND, but to other competing de-activation 

channels that seem not to be efficiently arrested by azetidine. However, azetidinyl substitution 

led to an unprecedented improvement in photostability and high cell permeability was 

retained since the fluorophores accumulated selectively in mitochondria and nucleoli of HeLa 

cells. Overall, our results provide valuable insights for the design and optimization of novel 

fluorophores operating in the far-red/NIR region, since we have demonstrated that fluorescent 

quantum yields in polar solvents and photostability cannot be always simultaneously 

improved by a single structural modification such as the replacement of a N,N-dialkylamino 

group with azetidine, at least in non-conventional coumarin-based fluorophores like COUPY 

dyes. 
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EXPERIMENTAL SECTION 

Materials and Methods 

Unless otherwise stated, common chemicals and solvents (HPLC grade or reagent grade 

quality) were purchased from commercial sources and used without further purification. 

Aluminium plates coated with a 0.2 mm thick layer of silica gel 60 F254 were used for thin-

layer chromatography analyses (TLC), whereas flash column chromatography purification 

was carried out using silica gel 60 (230-400 mesh). Reversed-phase high-performance liquid 

chromatography (HPLC) analyses were carried out on a Jupiter Proteo C18 column (250x4.6 

mm, 90 Å 4 m, flow rate: 1 mL/min) using linear gradients of 0.1% formic acid in H2O (A) 

and 0.1% formic acid in ACN (B). NMR spectra were recorded at 25 
o
C in a 400 MHz 

spectrometer using the deuterated solvent as an internal deuterium lock. The residual protic 

signal of chloroform, methanol or DMSO was used as a reference in 
1
H and 

13
C NMR spectra 

recorded in CDCl3, CD3OD or DMSO-d6, respectively. Chemical shifts are reported in part 

per million (ppm) in the  scale, coupling constants in Hz and multiplicity as follows: s 

(singlet), d (doublet), t (triplet), q (quartet), qt (quintuplet), m (multiplet), dd (doublet of 

doublets), dq (doublet of quartets), br (broad signal), etc. The proton signals of the E and Z 

rotamers were identified by simple inspection of the 
1
H spectrum and the rotamer ratio was 

calculated by peak integration. 2D-NOESY spectra were acquired in CDCl3 or DMSO-d6 with 

a mixing times of 500 ms. Electrospray ionization mass spectra (ESI-MS) were recorded on 

an instrument equipped with single quadrupole detector coupled to an HPLC, and high-

resolution (HR) ESI-MS on a LC/MS-TOF instrument.  

Synthesis of 7-azetidinyl-COUPY scaffold 2Az 

4-Methyl-7-coumarinyl-trifluoromethanesulfonate (11a). The published method with some 

modifications was followed to synthesize compound 11a.
15

 Trifluoromethanesulfonic 

anhydride (1 mL, 5.9 mmol) was added dropwise to a solution of 7-hydroxy-4-methyl-

coumarin 10a (1 g, 5.7 mmol) in pyridine (30 mL) at 0 °C. After stirring for 3 h at room 

temperature, AcOEt (50 mL) was added to the reaction mixture, and the resulting organic 

phase was washed with saturated NaCl (3 × 50 mL). Then, the organic layer was successively 

washed with 5 % aqueous HCl (4 × 40 mL) and saturated NaCl (2 × 40 mL), dried over 

anhydrous Na2SO4 and filtered. The solvent was removed under reduced pressure to give 1.67 

g (98 % yield) of a pale yellow solid which was used without further purification in the next 

step. TLC: Rf (DCM) 0.52; 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.69 (1H, d, J = 8.6 Hz), 

7.28 (1H, d, J = 2.4 Hz), 7.24 (1H, dd, J = 8.6, 2.4 Hz), 6.36 (1H, br q, J = 1.2 Hz), 2.46 (3H, 

d, J = 1.2 Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): 159.6, 154.3, 151.3, 150.9, 126.5, 
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120.2, 118.8 (q, J = 322 Hz), 117.5, 116.1, 110.7, 18.9; 
19

F NMR (376.5 MHz, CDCl3): -72.6 

(3F, s); LRMS (ESI-TOF) m/z [M+H]
+
 calcd for C11H8F3O5S

+
 309.2, found 308.8. 

4-Methyl-2-thioxo-2H-chromen-7-yl trifluoromethanesulfonate (12a). Compound 11a (1 g, 

3.2 mmol) and Lawesson’s reagent (6.1 g, 15.1 mmol) were dissolved in toluene (80 mL) 

under an argon atmosphere. The reaction mixture was stirred at 110 °C for 4 h. After that, an 

additional amount of Lawesson’s reagent (2 g, 4.9 mmol) was added and the reaction mixture 

was stirred at 110 °C overnight. The solvent was partially removed under vacuum and the 

mixture was filtered. After removal of the solvent under reduced pressure, the product was 

purified by column chromatography (silica gel, 0-8% AcOEt in hexane) to give 1.03 g (98 % 

yield) of a yellow solid. mp 98-99 ºC;TLC: Rf (30 % AcOEt in hexane) 0.47; 
1
H NMR (400 

MHz, CDCl3) δ (ppm): 7.71 (1H, d, J = 8.8 Hz), 7.41 (1H, d, J = 2.4 Hz), 7.28 (1H, dd, J = 

8.8, 2.4 Hz), 7.17 (1H, br q, J = 1.2 Hz), 2.38 (3H, d, J = 1.2 Hz); 
13

C{
1
H} NMR (101 MHz, 

CDCl3) δ (ppm): 196.5, 156.4, 151.0, 142.3, 130.0, 126.3, 121.6, 118.8 (q, J = 322 Hz), 118.6, 

110.4, 18.1;
19

F NMR (376.5 MHz, CDCl3): -72.5 (3F, s); HRMS (ESI-TOF) m/z [M+H]
+
 

calcd for C11H8F3O4S2
+
 324.9811, found 324.9809. 

2-(Cyano(4-pyridine)methylene)-4-methyl-2H-chromen-7-yl trifluoromethanesulfonate (13a). 

4-Pyridylacetonitrile (317 mg, 2.68 mmol) and NaH (60 % dispersion in mineral oil, 107 mg, 

2.68 mmol) were dissolved in anhydrous ACN (14 mL) under an argon atmosphere. After 

stirring for 30 min at room temperature, a solution of 12a (669 mg, 2.06 mmol) in anhydrous 

ACN (8 mL) was added, and the reaction mixture was stirred at room temperature for 2 h and 

protected from light. Then, silver nitrate (456 mg, 2.68 mmol) was added and the mixture was 

stirred at room temperature for 90 min. The crude was evaporated under reduced pressure and 

purified by column chromatography (silica gel, 50-100 % DCM in hexane and 0-1.4 % 

MeOH in DCM). After a second purification by column chromatography (silica gel, 0-35 % 

AcOEt in hexane), 371 mg (44 % yield) of a yellow solid were obtained. mp 165-167 ºC; 

TLC: Rf (50 % AcOEt in hexane) 0.35; 
1
H NMR (400 MHz, CDCl3) δ (ppm): 8.67 (1H, dd, J 

= 4.8, 1.6 Hz), 7.70 (1H, dd, J = 4.8, 1.6 Hz), 7.58 (1H, m), 7.23 (1H, m), 7.21 (1H, m), 7.08 

(1H, br q, J = 1.2 Hz), 2.42 (3H, d, J = 1.2 Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): 

160.6, 152.5, 150.6, 150.3, 140.8, 139.2, 126.1, 121.6, 121.5, 119.2, 118.8 (q, J = 322 Hz), 

118.2, 118.1, 110.1, 87.0, 18.7; 
19

F NMR (376.5 MHz, CDCl3): -72.56 (3F, s); HRMS (ESI-

TOF) m/z [M+H]
+
 calcd for C18H12F3N2O4S

+
 409.0464, found 409.0467. 

7-(1-Azetidinyl)-2-(cyano(4-pyridine)methylene)-4-methyl-coumarin (2Az). Azetidine (96 μL, 

1.42 mmol) was added to a solution of 13a (194 mg, 475 mol), RuPhos-G3-palladacycle (63 

mg, 71 mol), RuPhos (35 mg, 71 mol) and potassium carbonate (276 mg, 1.99 mmol) in 
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anhydrous THF (15 mL) under an argon atmosphere. The mixture was stirred at 70 °C 

overnight, and then the solvent was evaporated under reduced pressure. The crude was first 

purified by column chromatography (silica gel, 50-90 % AcOEt in hexane, dry load with 

Celite) and then with a HLB cartridge (C18, 10-80 % ACN in H2O, additive: 0.1 % formic 

acid). After combining and freeze-drying the pure fractions, 90 mg (60 % yield) of an orange 

solid were obtained. mp 164-166 ºC (decomposition temperature);TLC: Rf (5 % MeOH in 

AcOEt) 0.44; 
1
H NMR (400 MHz, CDCl3) δ (ppm): (major rotamer) 8.58 (2H, d, J = 6.2 Hz), 

7.75 (2H, d, J = 6.2 Hz), 7.33 (1H, d, J = 8.4 Hz), 6.77 (1H, br q, J = 0.8 Hz), 6.30 (1H, dd, J 

= 8.4, 2.0 Hz), 6.20 (1H, d, J = 2.0 Hz), 4.04 (4H, t, J = 7.2 Hz), 2.47 (2H, qt, J = 7.2 Hz), 

2.34 (3H, d, J = 0.8 Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): (major rotamer) 163.4, 

154.0, 153.9, 149.7, 144.3, 141.2, 125.4, 120.9, 119.8, 112.9, 111.2, 108.4, 96.5, 81.9, 51.9, 

18.7, 16.6; HRMS (ESI-TOF) m/z [M+H]
+
 calcd for C20H18N3O

+
 316.1444, found 316.1436.  

Synthesis of 7-azetidinyl-COUPY scaffold 3Az 

4-Trifluoromethyl-7-coumarinyl-trifluoromethanesulfonate (11b). The published method with 

some modifications was followed to synthesize compound 10b.
15

 Trifluoromethanesulfonic 

anhydride (1.7 mL, 7.7 mmol) was added dropwise to a solution of 7-hydroxy-4-

trifluoromethyl-coumarin (1.62 g, 7.0 mmol) in pyridine at 0 °C. After stirring for 5 h at room 

temperature, AcOEt (50 mL) was added to the reaction mixture, and the resulting organic 

phase was washed with saturated NaCl (3 × 50 mL). The organic layer was washed with 5 % 

aqueous HCl (5 × 40 mL) and saturated NaCl (2 × 40  mL), dried over anhydrous Na2SO4 and 

filtered. The solvent was removed under reduced pressure to give 2.41 g (95 % yield) of a 

white solid, which was used without further purification in the next step. TLC: Rf (50 % DCM 

in hexane) 0.46; 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.85 (1H, dq, J = 9.0, 1.6 Hz), 7.38 

(1H, d, J = 2.4 Hz), 7.32 (1H, dd, J = 9.0, 2.4 Hz), 6.88 (1H, s); 
13

C{
1
H} NMR (101 MHz, 

CDCl3) δ (ppm): 157.6, 155.1, 151.7, 140.7 (q, J = 33.7 Hz), 127.5 (q, J = 2.5 Hz), 121.3 (q, J 

= 276 Hz), 118.8 (q, J = 322 Hz), 118.5, 117.2 (q, J = 5.8 Hz), 113.7, 111.4; 
19

F NMR (376.5 

MHz, CDCl3): -64.9 (3F, br s), -72.5 (3F, s); LRMS (ESI-TOF) m/z [M+H]
+
 calcd for 

C11H5F6O5S
+
 363.2, found 362.7. 

4-Trifluoromethyl-2-thioxo-2H-chromen-7-yl trifluoromethanesulfonate (12b). Compound 

11b (1.21 g, 3.3 mmol) and Lawesson’s reagent (6.75 g, 16.7 mmol) were dissolved in 

toluene (140 mL) under an argon atmosphere. The reaction mixture was stirred for 15 h at 110 

°C. The solvent was partially removed under vacuum and the mixture was filtered. After 

removal of the solvent under reduced pressure, the product was purified by column 

chromatography (silica gel, 0-16 % DCM in hexane) to give 616 mg (48 % yield) of a bright 
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orange solid. TLC: Rf (30 % DCM in hexane) 0.53; 
1
H NMR (400 MHz, CDCl3) δ (ppm): 

7.83 (1H, dq, J = 8.8, 1.6 Hz), 7.46 (1H, d, J = 2.4 Hz), 7.45 (1H, s), 7.31 (1H, dd, J = 8.8, 2.4 

Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): 193.7, 157.3, 151.6, 130.2 (q, J = 33.5 Hz), 

128.7 (q, J = 5.9 Hz), 127.1 (q, J = 2.4 Hz), 122.0 (q, J = 276 Hz), 119.2, 118.8 (q, J = 322 

Hz), 115.4, 110.9; 
19

F NMR (376.5 MHz, CDCl3): -64.2 (3F, br s), -72.4 (3F, s); HRMS (ESI-

TOF) m/z [M+H]
+
 calcd for C11H5F6O4S2

+
 378.9528, found 378.9533. 

2-(Cyano(4-pyridine)methylene)-4-trifluoromethyl-2H-chromen-7-yl 

trifluoromethanesulfonate (13b). 4-Pyridylacetonitrile (377 mg, 3.19 mmol) and NaH (60 % 

dispersion in mineral oil, 132 mg, 3.31 mmol) were dissolved in anhydrous ACN (40 mL) 

under an Ar atmosphere. After stirring for 30 min at room temperature, a solution 12b (0.9 g, 

2.38 mmol) in anhydrous ACN was added and the reaction mixture was stirred at room 

temperature for 2 h and in the dark. Then, silver nitrate (718 mg, 4.23 mmol) was added and 

the mixture was stirred at room temperature for 2 h. The crude was evaporated under reduced 

pressure and purified by column chromatography (silica gel, 0-100 % AcOEt in hexane and 0-

1.5 % MeOH in AcOEt) to give to 632 mg (57 % yield) of a brown solid. mp 132-134 ºC; 

TLC: Rf (5 % MeOH in DCM) 0.63; 
1
H NMR (400 MHz, DMSO-d6) δ (ppm): 8.71 (2H, m), 

8.15 (1H, d, J = 2.4 Hz), 7.84 (2H, m), 7.77 (1H, br dq, J = 8.8, 1.6 Hz), 7.55 (1H, dd, J = 8.8, 

2.4 Hz), 7.40 (1H, s); 
13

C{
1
H} NMR (101 MHz, DMSO-d6) δ (ppm): 158.3, 152.9, 150.6, 

150.4, 137.5, 128.7 (q, J = 32 Hz), 126.4, 121.5, 121.4 (q, J = 275 Hz), 121.0 (q, J = 6 Hz), 

118.8, 118.2 (q, J = 322 Hz), 116.9, 114.8, 111.8, 91.6; 
19

F NMR (376.5 MHz, CDCl3): -64.7 

(3F, br s), -72.5 (3F, s); HRMS (ESI-TOF) m/z [M+H]
+
 calcd for C18H9F6N2O4S

+
 463.0182, 

found 463.0180. 

7-(1-Azetidinyl)-2-(cyano(4-pyridine)methylene)-4-trifluoromethyl-coumarin (3Az). 

Compound 13b (504 mg, 1.09 mmol), RuPhos-G3-palladacycle (54.1 mg, 64.7 µmol), 

RuPhos (29.9 mg, 64.2 µmol) and potassium carbonate (633 mg, 4.57 mmol) were dissolved 

in anhydrous THF (50 mL) under an argon atmosphere. Azetidine (221 µL, 3.28 mmol) was 

added and the mixture was stirred in the dark at 70 °C for 6 h. After removing the solvent 

under reduced pressure, the crude was first purified by column chromatography (silica gel, 

80-100 % DCM in hexane and 0-2 % MeOH in DCM, dry load with Celite) and then with a 

HLB cartridge (C18, 10-80 % ACN in H2O). After combining and freeze-drying the pure 

fractions, 193 mg (48 % yield) of a red solid were obtained. mp 170-172 ºC (decomposition 

temperature);TLC: Rf (5 % MeOH in DCM) 0.44; 
1
H NMR (400 MHz, CDCl3) δ (ppm): 8.77 

(2H, d, J = 6.2 Hz), 8.14 (2H, d, J = 6.2 Hz), 7.51 (1H, br dq, J = 9.2, 2.0 Hz), 7.22 (1H, s), 

6.40 (1H, dd, J = 9.2, 2.4 Hz), 6.25 (1H, d, J = 2.4 Hz), 4.16 (4H, t, J = 7.4 Hz), 2.56 (2H, qt, 
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J = 7.4 Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): 163.8, 155.0, 154.1, 147.2, 142.6, 

136.1 (q, J = 33 Hz), 126.6, 122.1, 121.7 (q, J = 277 Hz), 116.9, 110.5 (q, J = 6 Hz), 109.9, 

104.4, 95.6, 85.7, 51.6, 16.3; 
19

F NMR (376.5 MHz, CDCl3): (the trifluoroacetate salt of the 

compound was used for recording 
19

F NMR spectrum) -63.8 (3F, d, J = 1.5 Hz), -75.7 (3F, s); 

HRMS (ESI-TOF) m/z [M+H]
+
 calcd for C20H15F3N3O

+
 370.1162, found 370.1161. 

Synthesis of 7-azetidinyl-COUPY dyes 4Az-7Az 

4-((7-(Azetidin-1-yl)-4-methyl-2H-chromen-2-ylidene)(cyano)methyl)-1-methylpyridin-1-ium 

trifluoromethanesulfonate (4Az). Methyl trifluoromethanesulfonate (28 μL, 0.24 mmol) was 

added to a solution of compound 2Az (38 mg, 0.12 mmol) in DCM (20 mL) under an Ar 

atmosphere. The mixture was stirred overnight at room temperature and protected from light. 

After removing the solvent under reduced pressure, purification by column chromatography 

(silica gel, 0-8.5 % MeOH in DCM) afforded 27 mg (47 % yield) of a red solid. TLC: Rf (10 

% MeOH in DCM) 0.15; 
1
H NMR (400 MHz, CD3OD) δ (ppm): 8.45 (2H, d, J = 7.2 Hz), 

8.19 (2H, d, J = 7.2 Hz), 7.71 (1H, d, J = 8.8 Hz), 6.96 (1H, br s), 6.64 (1H, d, J = 2.4 Hz), 

6.60 (1H, dd, J = 8.8, 2.4 Hz), 4.20 (3H, s), 4.16 (4H, t, J = 7.4 Hz), 2.56 (3H, s), 2.52 (2H, qt, 

J = 7.4 Hz); 
13

C{
1
H} NMR (101 MHz, CD3OD) δ (ppm): 168.8, 156.4, 156.2, 155.5, 151.2, 

144.5, 127.8, 122.0, 119.0, 112.7, 112.2, 111.8, 96.3, 79.9, 52.7, 46.7, 19.1, 17.1; 
19

F NMR 

(376.5 MHz, DMSO-d6): -77. 8 (3F, s); HRMS (ESI-TOF) m/z [M]
+
 calcd for C21H20N3O

+
 

330.1601, found 330.1598; analytical HPLC (10 to 100% B over 30 min) Rt = 11.6 min.  

4-((7-(Azetidin-1-yl)-4-methyl-2H-chromen-2-ylidene)(cyano)methyl)-1-(2,2,2-

trifluoroethyl)pyridin-1-ium trifluoromethanesulfonate (5Az). 2,2,2-Trifluoroethyl 

trifluoromethanesulfonate (60 μL, 0.42 mmol) was added to a solution of compound 2Az (44 

mg, 0.14 mmol) in anhydrous ACN (25 mL) under an Ar atmosphere. The mixture was stirred 

at 70 °C and protected from light for 6 h. An additional amount of 2,2,2-trifluoroethyl 

trifluoromethanesulfonate (30 μL, 0.21 mmol) was added to the mixture, which was stirred at 

70 °C in the dark for 18 h. After removal of the major part of the solvent, the triflate salt was 

precipitated with cold diethyl ether, centrifuged, the solvent was decanted and the remaining 

solid vacuum dried. Purification by column chromatography (silica gel, 0-6 % MeOH in 

DCM) afforded 42 mg (56 % yield) of a dark purple solid. TLC: Rf (10 % MeOH in DCM) 

0.17; 
1
H NMR (400 MHz, DMSO-d6) δ (ppm): 8.60 (2H, d, J = 7.2 Hz), 8.22 (2H, d, J = 7.2 

Hz), 7.79 (1H, d, J = 8.8 Hz), 7.01 (1H, br s), 6.86 (1H, d, J = 2.4 Hz), 6.67 (1H, dd, J = 8.8, 

2.4 Hz), 5.59 (2H, q, J = 8.3 Hz), 4.13 (4H, t, J = 7.4 Hz), 2.59 (3H, s), 2.45 (2H, q, J = 7.4 

Hz); 
13

C{
1
H} NMR (101 MHz, DMSO-d6) δ (ppm): (the trifluoroacetate salt of the compound 

was used for recording 
13

C NMR spectrum) 167.2, 157.7 (q, J = 32 Hz, TFA salt), 154.7, 
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150.7, 143.7, 127.1, 123.0 (q, J = 279 Hz), 117.0 (q, J = 300 Hz, TFA salt), 120.4, 117.9, 

111.5, 111.2, 110.9, 95.4, 78.7, 56.2 (q, J = 33 Hz), 51.6, 18.7, 15.8; 
19

F NMR (376.5 MHz, 

CD3OD): -73.2 (3F, t, J = 8.3 Hz), -80.17 (3F, s); HRMS (ESI-TOF) m/z [M]
+
 calcd for 

C22H19F3N3O
+
 398.1475, found 398.1470; analytical HPLC (10 to 100% B over 30 min) Rt = 

13.2 min.  

4-((7-(Azetidin-1-yl)-4-trifluoromethyl-2H-chromen-2-ylidene)(cyano)methyl)-1-

methylpyridin-1-ium trifluoromethanesulfonate (6Az). Methyl trifluoromethanesulfonate (26 

μL, 0.23 mmol) was added to a solution of compound 3Az (42 mg, 0.11 mmol) in DCM (20 

mL) under an Ar atmosphere. The mixture was stirred overnight at room temperature and 

protected from light. After removal of the major part of the solvent, the triflate salt was 

precipitated with cold diethyl ether, centrifuged, decanted and vacuum dried. Purification by 

column chromatography (silica gel, 0-6 % MeOH in DCM) afforded 35 mg (60 % yield) of a 

purple solid. TLC: Rf (10 % MeOH in DCM) 0.22; 
1
H NMR (400 MHz, DMSO-d6) δ (ppm): 

(major rotamer) 8.75 (2H, d, J = 7.2 Hz), 8.29 (2H, d, J = 7.2 Hz), 7.52 (1H, br dq, J = 9.2, 

2.0 Hz), 7.05 (1H, s), 6.79 (1H, d, J = 2.4 Hz), 6.61 (1H, dd, J = 9.2, 2.4 Hz), 4.27 (3H, s), 

4.12 (4H, t, J = 7.2 Hz), 2.45 (2H, qt, J = 7.2 Hz); 
13

C{
1
H} NMR (101 MHz, CDCl3) δ (ppm): 

(major rotamer) 165.0, 155.4, 154.7, 147.4, 145.2, 135.2 (q, J = 32 Hz), 126.2, 123.0, 122.3 

(q, J = 275 Hz), 121.1 (q, J = 323 Hz), 117.6, 111.2, 110.2 (q, J = 6 Hz), 104.2, 96.9, 84.7, 

51.9, 47.2, 16.3; 
19

F NMR (376.5 MHz, CD3OD): (major rotamer) -65.2 (3F, s), -80.2 (3F, s); 

HRMS (ESI-TOF) m/z [M]
+
 calcd for C21H17F3N3O

+
 384.1318, found 384.1318; analytical 

HPLC (10 to 100% B over 30 min) Rt = 12.9 min.  

4-((7-(Azetidin-1-yl)-4-trifluoromethyl-2H-chromen-2-ylidene)(cyano)methyl)-1-(2,2,2-

trifluoroethylpyridin-1-ium trifluoromethanesulfonate (7Az). 2,2,2-Trifluoroethyl 

trifluoromethanesulfonate (39 μL, 0.27 mmol) was added to a solution of compound 3Az (33 

mg, 0.09 mmol) in anhydrous ACN (25 mL) under an Ar atmosphere. The mixture was stirred 

at 70 °C and protected from light for 8 h. The evolution of the reaction was followed by 

HPLC-MS and additional amounts of 2,2,2-trifluoroethyl trifluoromethanesulfonate were 

continuosly added (up to 2 mmol) and the reaction mixture was stirred at 70 ºC during 3 days. 

After removal of the major part of the solvent, the triflate salt was precipitated with cold 

diethyl ether, centrifuged, decanted and vacuum dried. Purification by column 

chromatography (silica gel, 0-5.5 % MeOH in DCM) afforded 22 mg (41 % yield) of a dark 

blue solid. TLC: Rf (10 % MeOH in DCM) 0.31; 
1
H NMR (400 MHz, DMSO-d6) δ (ppm): 

8.82 (2H, d, J = 6.8 Hz), 8.42 (2H, d, J = 6.8 Hz), 7.58 (1H, br dq, J = 8.8 Hz), 7.10 (1H, s), 

6.93 (1H, br s), 6.68 (1H, dd, J = 8.8, 2.0 Hz), 5.71 (2H, q, J = 8.8 Hz), 4.16 (4H, t, J = 7.6 
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Hz), 2.55 (2H, qt, J = 7.6 Hz); 
13

C{
1
H} NMR (101 MHz, DMSO-d6) δ (ppm): 165.9, 155.3, 

154.4, 149.6, 144.9, 135.9 (q, J = 32 Hz), 125.9, 122.9 (q, J = 280 Hz), 122.6, 121.9 (q, J = 

276 Hz), 120.7 (q, J = 323 Hz), 116.9, 111.5, 109.1, 104.4, 96.3, 84.1, 56.9 (q, J = 34 Hz), 

51.6, 15.8; 
19

F NMR (376.5 MHz, CDCl3): -64.8 (3F, d, J = 1.6 Hz), -72.8 (3F, t, J = 7.9 Hz), 

-80.15 (3F, s); HRMS (ESI-TOF) m/z [M]
+
 calcd for C22H16F6N3O

+
 452.1192, found 

452.1194; analytical HPLC (10 to 100% B over 30 min) Rt = 14.2 min.  

Photophysical characterization of 7-azetidinyl-COUPY dyes 4Az-7Az 

For the photophysical measurements, all solvents used were spectroscopic grade. Absorption 

spectra were recorded in a Varian Cary 6000i spectrophotometer (Varian, Palo Alto, CA) at 

room temperature. Molar absorption coefficients () were determined by direct application of 

the Beer-Lambert law, using solutions of 4Az-7Az in each solvent with concentrations 

ranging from 10
−6

 to 10
−5

 M. Emission spectra were registered in a Fluoromax-4 

spectrofluorometer (Horiba Jobin-Ybon, Edison, NJ). Fluorescence quantum yields (ΦF) were 

measured by comparative method using cresyl violet in ethanol (CV; F;Ref = 0.54 ± 0.03) as 

reference.
20

 Then, optically-matched solutions of 4Az-7Az and CV were excited and the 

fluorescence spectra was recorded. The absorbance of sample and reference solutions was set 

below 0.1 at the excitation wavelength and F were calculated using the following equation 

(1): 

ф𝐹;𝑆𝑎𝑚𝑝𝑙𝑒 =
𝐴𝑟𝑒𝑎𝑆𝑎𝑚𝑝𝑙𝑒

𝐴𝑟𝑒𝑎𝑅𝑒𝑓
𝑥 (

ƞ𝑆𝑎𝑚𝑝𝑙𝑒

ƞ𝑅𝑒𝑓
)

2

𝑥 ф𝐹;𝑟𝑒𝑓  (1) 

where AreaSample and AreaRef are the integrated fluorescence for the sample and the reference 

and ƞSample and ƞRef are the refractive index of sample and reference solutions respectively.  

Time-resolved fluorescence decays were registered with a time-correlated single photon 

counting system (Fluotime 200, PicoQuant GmbH, Berlin, Germany). The samples were 

excited at 502 nm by means of a picosecond-pulsed LED working at 10 MHz repetition rate. 

Fluorescence decays were acquired at the emission maxima and they were analyzed using the 

PicoQuant FluoFit c4.6.5 data analysis software. The counting frequency was kept always 

below 1%.  

The dipoles moments () differences between the ground (g) and excited states (e) for 

4Az-7Az have been estimated from the Lippert-Mataga equation:
21 

𝑆𝑡𝑜𝑘𝑒𝑠 𝑠ℎ𝑖𝑓𝑡 = 𝑣̅𝑎 − 𝑣̅𝑓 =  
2

ℎ𝑐𝑎0
3

 𝑥 (
𝜀 − 1

2𝜖 + 1
−

𝑛2 − 1

2𝑛2 + 1
)  𝑥 (𝜇𝑒 − 𝜇𝑔)

2

=
2

ℎ𝑐𝑎0
3

 𝑥 ∆𝑓 𝑥 ∆𝜇2     (2) 
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where h is Plank’s constant, c is the velocity of light, a0 is the radius of the Onsager cavity 

around the fluorophore. The parameters  and n are the solvent dielectric constant and 

refractive index, respectively, which are grouped in the term f. The Onsager radius was taken 

as half of the average distance between the push-pull moieties of the COUPYs fluorophores 

as described by Mukherjee et al.
22 

Photostability studies were performed by monitoring fluorescence bleaching of a 5 M 4Az-

7Az aqueous solution (PBS buffer) irradiated with green LED light (524 ± 17 nm; 7.5 

mW/cm
2
; LED Par 64 Short V2 lamp (Showtec, Kerkrade, The Netherlands)). 

Cell culture and treatments 

HeLa Cells were maintained in DMEM (Dullbecco Modified Eagle Medium) containing low 

glucose (1 g/L) and supplemented with 10% foetal calf serum (FCS), 50U/mL penicillin-

streptomycin and 2 mM L-glutamine. For cellular uptake experiments and posterior 

observation under the microscope, cells were seeded on glass bottom dishes (P35G-1.5-14-C, 

Mattek). 24 h after cell seeding, cells were incubated for 30 min at 37 ºC with azetidinyl-

COUPY fluorophores (4Az-7Az, 5 M) in supplemented DMEM. Then, cells were washed 

three times with DPBS (Dulbecco's Phosphate-Buffered Saline) to remove the excess of the 

compounds and kept in low glucose DMEM without phenol red for fluorescence imaging. 

Unless otherwise stated, no fixation was carried out.  

For co-localization experiments with Mitotracker Green and Hoechst 33342, HeLa cells were 

treated with 4Az (5 M) and MitoTracker Green FM (0.1 M) for 30 min at 37 ºC in non-

supplemented DMEM. After removal of the medium and washing three times with DPBS, 

cells were incubated for 10 min at 37 ºC with Hoechst 33342 (1 g/ml) in supplemented 

DMEM. Finally, cells were washed and kept in low glucose DMEM without phenol red for 

fluorescence imaging.  

For co-localization experiments with Lysotracker Green (0.2 M), the same procedure as for 

Mitotracker Green was used but without Hoechst 33342 treatment.  

For digestion experiments with RNase enzyme, HeLa cells were treated with coumarin 4Az (5 

M) for 30 min at 37 ºC in non-supplemented DMEM. After removal of the medium and two 

washes with DPBS, cells were fixed with 4% paraformaldehyde (Sigma) in PBS for 10 min at 

RT. Then, cells were permeabilized (2 x 5 min) with PBS buffer containing glycine (20 mM) 

and treated with 0.05% Saponin in PBS buffer containing glycine (20 mM) for 10 min at 

room temperature. After permeabilization, cells were washed again (2 x 5 min) with PBS 

buffer containing glycine (20 mM). Finally, 25 g/mL RNase A, DNase-free (ThermoFisher) 
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were added and incubated at 37 
o
C for 90 min. After addition of Hoechst 33342 dye and 

incubation at 37 
o
C for additional 30 min, cells were washed again twice with PBS before 

observation under the microscope.  

For photostability studies, HeLa cells were incubated with the compounds (5 M, 30 min at 

37 ºC) and kept in low glucose DMEM without phenol red for fluorescence imaging.  

Fluorescence imaging 

All microscopy observations were performed using a Zeiss LSM 880 confocal microscope 

equipped with a 405 nm laser diode, an Argon-ion laser, a 561 nm laser and a 633 nm laser. 

The microscope was also equipped with a full enclosure imaging chamber (XLmulti S1, 

Pecon) connected to a 37 ºC heater and a 5% CO2 providing system. Cells were observed 

using a 63X 1.2 multi immersion objective. Coumarins 4Az to 6Az were excited using the 

561 nm laser and detected from 570 to 670 nm. Coumarin 7Az was excited with the 633 nm 

laser and detected from 650 to 750 nm. In co-localization studies, Mitotracker Green FM and 

Lysotracker Green were observed using the 488 nm laser line of the Argon-ion laser whereas 

the 405 nm laser diode was used for observing Hoechst 33342. 

In photostability studies cells were continuously irradiated every 5 s with the 561 nm laser at 

15.8 W for 5 min. Laser power was measured using a photodetector (model 818-UV, 

Newport) connected to an optical power meter (model 840-C, Newport).  

Image analysis was performed using Fiji (1.51d).
23

 Unless otherwise stated, images are 

colorized using Fire lookup table. In photostability studies mean intensity was measured at 

each time point in at least 4 different areas of 5 m
2
 at each subcellular compartment 

(mitochondria, cytoplasm and nucleoli) and also in areas without cells to measure the 

background. Images were filtered with a median filter of radius 1 to reduce noise before 

intensity measurements.  

In co-localization studies, images were processed using Fiji. First each channel was filtered 

using a median filter with a radius of 1 and a Gaussian filter with a radius of 2. Then 

background was subtracted with a rolling ball radius of 50. To measure the Manders’ 

coefficients a threshold including all the cytoplasm and discarding the background was set. 

On the other hand, the Pearson’s coefficient measurements were performed after manually 

selecting and clearing the 4Az signal at the nucleoli. The same selection and clearing was 

applied on the Mitotracker channel. Both co-localization coefficients were measured using the 

JaCoP plugin
18

 on the different stacks of images (n=4) with each stack containing 3 to 5 cells.  
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